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Abstract
Westudy theGinzburg–Landau functional describing an extreme type-II superconductorwire
with cross section with finitely many corners at the boundary. We derive the ground state
energy asymptotics up to o(1) errors in the surface superconductivity regime, i.e., between the
second and third critical fields. We show that, compared to the case of smooth domains, each
corner provides an additional contribution of order O(1) depending on the corner opening
angle. The corner energy is in turn obtained from an implicit model problem in an infinite
wedge-like domain with fixed magnetic field. We also prove that such an auxiliary problem
is well-posed and its ground state energy bounded and, finally, state a conjecture about its
explicit dependence on the opening angle of the sector.
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1 Introduction

The phenomenon of conventional superconductivity (see, e.g., [55] for a review of the physics
of superconductors) is nowadays very well understood at the microscopic level thanks to the
Bardeen–Cooper–Schrieffer (BCS) theory [8]: a collective behavior of the current carriers
in the material is responsible for a sudden drop of the resistivity below a certain critical
temperature. It is however astonishing how a phenomenological model as the Ginzburg–
Landau (GL) theory [42] is capable of predicting most of the key equilibrium features of the
phenomenon, in particular concerning the response of the superconducting material to an
external field. When it was introduced in the ‘50s, indeed, the GL model was motivated only
from purely phenomenological considerations. Only later it was shown that the GL theory
emerges as an effective macroscopic model from the BCS theory suitably close to the critical
temperature [37,40,43].

The interplay between superconductivity and strong magnetic fields is known to generate
a very rich variety of physical phenomena since the pioneering works of Abrikosov [2] and
St. James and De Gennes [54] in the late ‘50s/early ‘60s, who predicted the occurrence of
the famous vortex lattice and of surface superconductivity, respectively, working only in the
framework of the GL theory. In extreme synthesis, the response of a type-II superconducting
material to the external magnetic field can vary from a perfect repulsion of the field (Meissner
effect), for small fields, to a complete loss of superconductivity, for sufficiently strong ones.
In between, several different phases of the material can be observed, ranging from various
kinds of vortex states to configurations where the superconduction gets restricted to boundary
regions. Each of these phase transitions can be associated with a critical magnetic field
marking the threshold for the transition: the three major critical fields are

• the first critical field, which separate the Meissner behavior, i.e., when the magnetic
field inside the material is zero and superconductivity is unaffected, from states where
the penetration of the field has occurred at least at isolated points (vortices), where
superconductivity is lost;

• the second critical field, above which the superconducting behavior gets confined at the
surface of the sample (surface superconductivity);

• the third critical field, which marks the complete loss of superconductivity.

Let us now introduce in more detail the GL theory: the free energy of the material is
given by a nonlinear functional, which in the case of a superconducting infinite wire of cross
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section � ⊂ R
2 reads in suitable units

EGL
ε [ψ,A] =

∫
�

dr
{∣∣∣∣
(

∇ + i
A
ε2

)
ψ

∣∣∣∣
2

− 1

2bε2
(2|ψ |2 − |ψ |4)

}
+ 1

ε4

∫
R2

dr |curlA − 1|2, (1.1)

where ε, b > 0 are two parameters depending on the London penetration depth and the
intensity of the applied magnetic field, which is assumed to be parallel to the wire. The
function ψ , a.k.a. wave function or order parameter, is complex, while A is the induced
magnetic potential, whose curl yields the intensity of the magnetic field outside and inside
the sample (measured in units ε−2). The physical meaning of the order parameter is twofold:
|ψ |2 yields the relative density of Cooper pairs and, at the same time, the phase ofψ contains
the information about the stationary current flowing in the superconductor, i.e.,

j[ψ] := i
2 (ψ∇ψ∗ − ψ∗∇ψ) = Im (ψ∗∇ψ) . (1.2)

Hence, one typically speaks of a normal state, if ψ = 0 and A is such that curlA = 1,
while the perfect superconducting state is identified by |ψ | = 1, A = 0. Whenever |ψ | is
non-vanishing everywhere but not identically 1, the superconductor is said to be in a mixed
state. Any equilibrium state of the sample minimizes the free energy (1.1) and thus we set

EGL
ε := min

(ψ,A)∈DGL
EGL

ε [ψ,A], (1.3)

and denote by (ψGL,AGL) any minimizing configuration, where

DGL = {(ψ,A) ∈ H1(�) × H1
loc(R

2; R
2)
∣∣ curlA − 1 ∈ L2(R2)

}
. (1.4)

We provide some details about the above minimization and the properties of any minimizing
configuration (ψGL,AGL) in “Appendix B.1”. We also use the following convention: if we
need to specify the dependence on the domain �, we write EGL

ε [ψ,A;�] for the functional
and EGL

ε (�) for the corresponding ground state energy.
In the rest of the paper we are going to study the minimization (1.3) in the asymptotic

regime

ε � 1, (1.5)

corresponding to an extreme type-II superconductor. Under this idealization, one can identify
the mathematical counterparts of the critical values of the external magnetic field described
above in terms of properties of the minimizing configuration (ψGL,AGL) and it is also
possible to precisely identify the behavior of such thresholds (see, e.g., [53] for an extensive
discussion of the first phase transition). In particular, assuming that � is a simply connected
domain with smooth boundary ∂�, the second critical field associated with the transition
from bulk to surface superconductivity is identified with b = 1 [33, Chpt. 10.6] and thus with
a field of intensity

Hc2 = 1

ε2
, (1.6)

based on sharp estimates (Agmon estimates) of the decay of ψGL in the distance from the
boundary (see “Appendix B.3”); the third critical field marking the transition to the normal
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Fig. 1 A domain � with Lipschitz boundary and finitely many corners on ∂�

state on the other hand corresponds to b = 	−1
0 > 1, where 	0 � 0.59 is a universal

constant, i.e., more precisely [33, Chpt. 13],

Hc3 = 1

	0ε2
+ O(1). (1.7)

1.1 Setting: domains with corners

In this paper we are exclusively concerned with the behavior of the superconductor for very
strong magnetic fields above the second critical one, i.e., we always assume that hex > Hc2,
or, more concretely,

b > 1. (1.8)

The main novelty of this paper compared to other works on the GL functional above the
second critical field is that we assume that� is a bounded domain with a Lipschitz boundary,
i.e., we allow for the presence of corners on ∂� (see Fig. 1). Indeed, apart from few physics
papers (see [14,31,52]), the GL theory on domains with corners has already been studied
only in [15,45,46,50], with the focus on the third critical field though, and in [19], whose
results are improved in this work.

Themain reasonwhy it is interesting to study the behavior of theGL functional in domains
with corners for large magnetic fields is that for smaller fields one expects that the presence
of corners does not affect the salient features of superconductivity. Indeed, the occurrence
of vortices but also their uniform distribution and arrangement in regular lattices, which
occur for magnetic fields below Hc2, are bulk phenomena and, as such, little influenced by
the boundary regularity. On the opposite, the surface superconductivity regime, where the
density of Cooper pairs is non-vanishing only at and close to the boundary, might clearly
depend on the presence of singularities along ∂�. It is then important to know if and to what
extent corners can modify the boundary behavior, even more so, considered that in physics
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experiments it is hardly possible to distinguish between a sample with smooth boundary and
another which has corners there (see, e.g., [48, Fig. 1]).

We now specify in more detail our assumptions on the domain �. First, we require that
it is simply connected and its boundary ∂� is Lipschitz (see, e.g., [44, Def. 1.4.5.1]) and,
more concretely, it is a curvilinear polygon of class C∞, given by smooth pieces glued
together at finitely many points, where however the curvature remains finite (no cusps).
These assumptions are the same made, e.g., in [15,19,45].

Assumption 1 (Piecewise smooth boundary) Let � be a bounded open subset of R
2. We

assume that ∂� is a smooth curvilinear polygon, i.e., for every r ∈ ∂� there exists a neigh-
borhood U of r and a map � : U → R

2, such that

(1) � is injective;
(2) � together with �−1 (defined from �(U )) are smooth;
(3) the region �∩U coincides with either {r ∈ � | (�(r))1 < 0} or {r ∈ � | (�(r))2 < 0}

or {r ∈ � | (�(r))1 < 0, (�(r))2 < 0}, where (�) j stands for the j−th component of
�.

Assumption 2 (Boundary with corners)We assume that the set
 := {r1, . . . , rN } of corners
of ∂�, i.e., the points where the normal ν does not exist, is non empty but finite and given
by N points. We denote by β j the angle of the j−th corner (measured towards the interior)
and by s j its boundary coordinate.

The inward normal ν to ∂� is thus defined almost everywhere and jumps at the corners.
More precisely, we can find a counterclockwise parametrization γ (s) : [0, |∂�|) → ∂� of
∂� which is smooth a.e., i.e., for s �= s j , j = 1, . . . , N , s j being the curvilinear coordinate
of the j-th corner, and such that |γ ′(s)| = 1. The mean curvature K(s) is then defined a.e.
through the identity

γ ′′(s) = K(s)ν(s). (1.9)

We can then introduce a convenient system of tubular coordinates in a neighborhood of the
boundary (see also [33, Appendix F]) far from the corners: for any (s, t) ∈ At0 , where

At0 :=
{
(s, t) ∈ [0, |∂�|) × [0, t0)

∣∣∣∣ min
j=1,...,N

∣∣s − s j
∣∣ > ct0

}
,

with t0 � 1 small enough and c depending only on the corner opening angles, we can set

r(s, t) =: γ ′(s) + tν(s), (1.10)

which identifies a diffeomorphism from At0 to the region

�t0 := {r ∈ � | dist(r, ∂�) < t0, dist(r, 
) > ct0} ,

satisfying

dist (r(s, t), ∂�) = t. (1.11)

Therefore, such a map is invertible in the same region and identifies a system of local coordi-
nates (s, t) there. The parameters s, t (with the latter defined through (1.11)) are well-posed
also closer to the corners but there they do not identify a diffeomorphism and thus a set of
coordinates.
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1.2 Heuristics

Before entering the discussion of what is mathematically known on the phenomenon of
surface superconductivity, we resume here its key features for smooth domains, neglecting
errors and remainders: if b > 1, as ε → 0,

• the order parameter ψGL is non-vanishing only close to ∂�; more precisely it is expo-
nentially small in ε at distances from the boundary much larger than ε;

• the induced magnetic field curlAGL is suitably close to the applied one, i.e., a uniform
magnetic field of unit strength, and, consequently, one can find a local gauge close to ∂�

in which AGL is purely tangential and |AGL| = dist{r, ∂�};
• themodulus ofψGL is essentially independent of the tangential coordinate s and therefore

optimizes an effective one-dimensional problem where the only variable is the distance
from the boundary;

• the phase ofψGL is on the other hand constant in t and linear in s, with rapid oscillations,
or, more precisely, the current (1.2) is constant along s.

Summing up, we expect that AGL can be locally replaced by −tes close to ∂� and

∣∣ψGL(r)
∣∣ � f

( t
ε

)
, j[ψGL] � |�|

ε2
− α

ε
, (1.12)

for some f positive and α ∈ R, which leads to

ψGL(r) � f (t/ε)e− iαs
ε eiφε(r), (1.13)

φε standing for the gauge transformation mentioned above. Note the scaling factors 1/ε we
have extracted for later convenience, so that f and α are quantities of order O(1).

If we plug the ansatz (1.13) into the GL energy (1.1), we get

|∂�|
ε

∫ �ε

0
dt

{
|∂t f |2 + (t + α)2 f 2 − 1

2b
(2 f 2 − f 4)

}
, (1.14)

i.e., up to the prefactor |∂�|/ε, a one-dimensional (1D) energy functional evaluated on f
and depending on the real parameter α. The value �ε > 0 is to some extent arbitrary and
is chosen much larger than 1 in order to cover all the superconducting layer: we make the
following explicit choice

�ε := c1| log ε|, (1.15)

for a large constant c1. The minimization of the 1D functional above and some variants of it
w.r.t. both f and α is discussed in “Appendix A”. This identifies the leading term contribution
in the GL energy asymptotics E1D


 /ε, the optimal 1D profile f
(t) and the optimal phase α
.
The next-to-leading order term in the GL energy asymptotics is of orderO(1) and depends

on the mean curvature of the boundary: one can indeed refine the 1D model problem (1.14)
keeping track of O(ε) contributions coming from the curvature-dependent terms due to the
change of coordinates r → (s, t). Indeed, if we define the rescaled tubular coordinates as

{
t := t/ε ∈ [0, �ε],
s := s/ε ∈

[
0, |∂�|

ε

]
.

(1.16)

we get dr = dtds (1 − K(s)t), or, equivalently,

dr = ε2dtds (1 − εk(s)t) , (1.17)
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where we have set

k(s) := K(εs). (1.18)

1.3 Summary

In this paper we continue the analysis started with [19]. The expansion (2.10) provides indeed
only the leading order term in the energy asymptotics and does not capture the corner effects,
thatwe are going to investigate.More precisely,we prove that the presence of cornersmodifies
the O(1) term in the expansion (2.2). We also identify the model problem which yields such
a new contribution in terms of a genuine 2D model. Finally, we prove that the pointwise
estimate of |ψGL| in terms of f
 still holds far from the corners, precisely as in the smooth
case.

After having introduced some notation in § 1.4, we define in § 2 the effective model in the
corner region and state our main results about the GL energy asymptotics and the pointwise
estimate of the order parameter far from corners. Further comments about the effective model
and a conjecture about the possible explicit expression of the effective energy are contained in
§ 2.3. The well-posedness of the effective model problem is proven in detail in § 3, whereas
in § 4 and § 5 we provide the energy lower bound and the rest of the arguments needed
to complete the proof of our main results, respectively. The Appendix is divided in three
parts: in “Appendix A” we discuss the effective 1D problems and their related properties; the
GL minimization and some useful technical estimates are treated in “Appendix B”; finally,
“Appendix C” recalls the salient steps of the proof of the energy asymptotics in domains with
smooth boundaries, which are used to complete the proof of energy expansion.

1.4 Notation

Given their key role in the rest of the paper, we recall the definitions (1.10) and (1.16)
of tubular coordinates (s, t) and their rescaled counterparts (s, t). We stress that (s, t) or,
equivalently, (s, t) provide a smooth diffeomorphism, e.g., in

{
r ∈ Aε

∣∣ dist(r, 
) � ε| log ε|} ,

where 
 is the set of corner positions and

Aε := {r ∈ �
∣∣ dist (r, ∂�) � ε�ε

}
, (1.19)

for ε � 1, where (see (1.15))

�ε := c1| log ε|
and c1 is large enough constant, which is set once for all (see next (2.24)). Given a dif-
ferentiable function ψ(r) and a vector A(r), the transformations induced by the change of
coordinates r → (s, t) are

(∇ψ) (r(s, t)) = (1 − K(s)t)−1 (∂sψ̃)es + (∂tψ̃)et, (1.20)

where we have set ψ̃(s, t) := ψ(r(s, t)) and

es := γ ′(s), et := ν(s), (1.21)

for short. As a consequence, for any vector A,
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(curl A) (r(s, t)) = −∂t (A(r(s, t)) · es)
+ (1 − K(s)t)−1 [∂s (A(r(s, t)) · et) + K(s)A(r(s, t)) · es] . (1.22)

We are going to make use of Landau symbols, with the following convention: given two
functions f (x), g(x), with g > 0,

• f = O(g), if lim
x→0+ | f |/g � C ;

• f = o(g), if lim
x→0+ | f |/g = 0;

• f ∼ g, if f = O(g) and lim
x→0+ | f |/g > 0;

• for f > 0, f � g or f � g, if f = o(g) or g = o( f ), respectively;
• for f > 0, f � g or f � g, if f = O(g) or g = O( f ), respectively.

We also commit a little abuse of the notation by using the symbols O( ) and o( ) inside
an inequality to mean a precise direction of the estimate. As usual, O( ) and o( ) stand for
quantities whose sign is not known. In case of functions of two or more variables, we point
out the parameter, whose asymptotics we are considering, by adding a label, e.g., ox ( ) or
Ox () is meant to stress that we are estimating the behavior of the function as x → 0+. Finally,
we say that a quantity is O(ε∞), as ε → 0+, if it is smaller than any power of ε, i.e., it is
exponentially small in ε. We will also use the following convention: O(εa | log ε|∞), a > 0,
stands for a quantity which is bounded by εa | log ε|b for some large but finite power b > 0,
which is however not relevant since the | log ε|-factor is always dominated by ε-powers.

2 Main results

2.1 State of the art

We briefly review here the most recent and relevant results on surface superconductivity,
which are related to the analysis carried on in this paper (see [16] for a more detailed review).
After the series of works [17,23–25], following [49], where the problem was first investi-
gated, and [4,34], the phenomenon of 2D surface superconductivity in domains with smooth
boundaries is well understood: combining [23, Thm. 1] with [24, Lemma 2.1] (see also [17]),
one gets that, whenever

1 < b < 	−1
0 , (2.1)

the GL energy asymptotics is given by

EGL
ε = |∂�|E1D




ε
− 2πEcorr + o(1), (2.2)

where

E1D

 := inf

α∈R

inf
f ∈D 1D

∫ +∞

0
dt

{
|∂t f |2 + (t + α)2 f 2 − 1

2b
(2 f 2 − f 4)

}
, (2.3)

and

Ecorr :=
∫ +∞

0
dt t

{
|∂t f
|2 + f 20

(
−α
(t + α
) − 1

b
+ 1

2b
f 2


)}
= 1

3
f 2
 (0)α
 − E1D


 ,

(2.4)
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α
, f
 being a pair of minimizers of (2.3) (see “Appendix A.1”). Note that (2.2) can also be
rewritten as

EGL
ε =

∫ |∂�|
ε

0
ds E1D

k(s) + O(ε| log ε|∞),

with a more precise remainder term and where E1D
k is defined in (A.6) in “Appendix A.2”.

Expanding further E1D
k , the next-to-leading order correction in (2.2) can be shown to be

− Ecorr

∫
∂�

ds K(s) + o(1) = −2πEcorr + o(1), (2.5)

by the Gauss–Bonnet theorem, because � is flat and the Euler characteristic is equal to 1.
Moreover, in [17] the quantity Ecorr is numerically evaluated and it is shown that it is positive,
which has some important consequences on the distribution of superconductivity near the
boundary: regions with larger curvature attract Cooper pairs, which concentrate more there
(to first order), although to leading order superconductivity is uniform at the boundary.

Indeed, a consequence of (2.3) is that [23, Thm. 1] the density |ψGL|2 is L2-close to the
reference density f
. Such an estimate can in fact be strengthened in two directions:

• in [23, Thm. 2] it is proven that there exists a boundary layer
Abl ⊂ {r|dist(r, ∂�) � ε| log ε|}, containing the bulk of superconductivity, where Pan’s
conjecture holds true, i.e.,

∥∥∣∣ψGL( · )
∣∣− f
(dist( · , ∂�)/ε)

∥∥
L∞(Abl)

= o(1); (2.6)

• the approximation of |ψGL| in terms of f
 holds also locally [24, Thm 1.1] and one can
explicitly derive the asymptotics of the density of superconductivity (in fact, the L4 norm
of ψGL) in any reasonable subdomain contained in �.

It is expected that a regime of surface superconductivity with similar features occurs also
for genuine 3D samples but so far only partial results are available [38,39]. In particular,
in [38, Thm 1.1] (see also [36]) it is shown that such a regime does exist and the leading
order term in the energy asymptotics can be identified, although in terms of a rather implicit
effective problem. In [39, Thm. 1.5] it is then proven that, when the magnetic field is parallel
to the 3D boundary, the effective model is still given by the 1D functional (2.3) above.

One of the major differences for samples with non-smooth boundary is that one expects
[15,45–47,50] a shift of the third critical field, provided there is at least one corner with acute
opening angle 0 < β < π : more precisely, the transition to the normal state should occur
[15, Thm. 1.4] for applied fields larger than

Hc3 = 1

μ(β)ε2
(2.7)

where

μ(β) := inf specL2(Wβ )

(
− (∇ + 1

2 ix
⊥)2) , (2.8)

is the ground state energy of a Schrödinger operator with uniform magnetic field in an
infinite sector Wβ of angle β. The above result is however conditioned to the inequality
μ(β) < 	0 (see also [51, Chpt. 8.2] and references therein), which is known to be true for
0 < β < π/2 + ε [11,30,46] but is expected to hold in the whole interval β ∈ (0, π), based
on numerical simulations (see, e.g., [11,12,30]).
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As the applied field gets closer to (2.7) from below, the order parameter concentrates
around the corner of smallest opening angle and becomes smaller and smaller everywhere
else. Hence, one can speak of a corner superconductivity regime occurring before the tran-
sition to the normal state. On the other hand, in [19], we proved that, if 1 < b < 	0,
superconductivity is still uniform along the boundary (although only in L2 sense), leading to
the conjectured existence of another critical field

Hcorner = 1

	0ε2
, (2.9)

which marks the transition from surface to corner concentration. Indeed, if 1 < b < 	0,
then [19, Thm 1.1]

EGL
ε = |∂�|E1D




ε
+ O(| log ε|2), (2.10)

and, more importantly,∥∥∥∣∣ψGL( · )
∣∣2 − f 2
 (dist( · , ∂�)/ε)

∥∥∥
L2(�)

= O(ε| log ε|), (2.11)

which implies, to leading order, uniform distribution of superconductivity along the boundary
layer.

The result of [15] has also been recently improved in [45], where the presence of several
corners is taken into account and shown that, under the same unproven assumption, one can
identify several critical fields associated to the concentration of the order parameter close
to the respective corner. We also stress that, as noted in [7, Rmk. 1.9] (see also [5,6]), the
behavior of superconductivity in presence of corners is expected to be recovered in the case
of magnetic steps, i.e., for applied magnetic fields with a jump singularity along a curve.

2.2 GL energy and density asymptotics

Before stating our main results, we have to define the effective problem near the corners.
Here we only provide a sketchy definition and in the next § 2.3 we comment further about
its well-posedness and heuristic meaning. The model problem is given by first minimizing
the GL functional with given magnetic potential and unit magnetic field in large wedge-like
domain (see Fig. 2), and then subtracting the surface energy of the outer boundary of the
wedge. The wedge domain is supposed to describe the rectified and rescaled area close to
each corner, where the only relevant parameter is the opening angle β j .

We thus define the corner energy as

Ecorner,β := lim
�→+∞ lim

L→+∞

(
−2LE1D

0 (�) + inf
ψ∈D
(�β(L,�))

EGL
1

[
ψ,F;�β(L, �)

])
,

(2.12)

where E1D
0 (�) is a 1D effective energy analogous to (2.3), which is explicitly given by (see

“Appendix A.3” for further details)

E1D
0 (�) := inf

α∈R

inf
f ∈H1([0,�])

E1D
0,α[ f ], (2.13)

with

E1D
0,α[ f ] :=

∫ �

0
dt

{
|∂t f |2 + (t + α)2 f 2 − 1

2b
(2 f 2 − f 4)

}
, (2.14)
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Fig. 2 The region �β(L, �),
where β is the opening angle
ÂV B, L = |AV | = |V B| and
� = |AC | = |EB|

and we denote by α0 ∈ R, f0 ∈ H1([0, �]) a corresponding minimizing pair, i.e., E1D
0 (�) =

E1D
0,α0

[ f0]. The minimization domain is

D
(�β(L, �)) := {ψ ∈ H1(�β(L, �))
∣∣ ψ |∂�bd∪∂�in

= ψ


}
. (2.15)

where the boundaries are identified in Fig. 2 by the segments ∂�bd = AC ∪ EB and ∂�in =
CD ∪ DE and

ψ
(r(s, t)) := f0(t) exp
{−iα0s − 1

2 ist
}
, for |s| � �

tan(β/2) . (2.16)

Here, we have denoted by (s, t) a set of tubular coordinates similar to (1.10), yielding a
smooth parametrization of �β(L, �) ∩ {dist(r, V ) � c�}. Any function in D
(�β(L, �)) has
thus to satisfy Dirichlet non-zero boundary conditions on ∂�in and ∂�bd in trace sense, whose
role is going to be explained in next § 2.3. Finally, themagnetic potentialF is fixed and equals

F(r) := 1
2 (−y, x) =: 1

2r
⊥, (2.17)

in a coordinate system chosen1 as in Fig. 3. We also point out that the existence of the
limit in (2.12) is not trivial at all and, in fact, it will be the main content of Proposition 2.2.
Furthermore, the GL functional in the second term on the r.h.s. of (2.12) is independent of ε,
but still contains the parameter b ∈ (1,	−1

0 ).
The main result we prove in this paper is about the GL energy asymptotics as ε → 0, i.e.,

we derive the expansion of EGL
ε up to correction of order o(1). Compared with the case of

domains with smooth boundary, some new terms of order O(1) appear: each corner indeed
contributes to the energy by Ecorner,β j , β j being the corresponding opening angle.

Theorem 2.1 (GLenergy asymptotics)Let� ⊂ R
2 be any bounded simply connected domain

satisfying Assumptions 1 and 2. Then, for any fixed

1 < b < 	−1
0 , (2.18)

1 In fact, any choice of the coordinate system would lead to the same energy because of rotational invariance
of the GL functional and its gauge symmetry, which allows to incorporate any translation of the origin.
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Fig. 3 Cartesian coordinates for
the corner domain

as ε → 0, it holds

EGL
ε = |∂�|E1D




ε
− Ecorr

∫ |∂�|

0
ds K(s) +

N∑
j=1

Ecorner,β j + o(1). (2.19)

Remark 2.1 (Critical field Hc2) In smooth domains the regime of surface superconductivity
corresponds to the parameter interval 1 < b < 	−1

0 , namely the second critical field is
b = 1, while the third one is precisely b = 	−1

0 . This is motivated by the results in [24,25] in
combination with [32,35], where it is proven that, for b < 1, there is still superconductivity
in the bulk, while, for b > 	−1

0 , the normal state is a global minimizer of the GL functional,
respectively. The condition b > 1 is expected to be sharp also for domains with corners and,
consequently, we expect that the second critical field is given by

Hc2 = 1

ε2
, (2.20)

The value 1/ε2 can actually be taken as a definition of the second critical field, but, as for
smooth domains, it would be necessary to show that, for b � 1, there is still superconductivity
in the bulk. This has not yet been proven in case of samples with corners, but, based on the
results proven in [35], it is highly expected.

Remark 2.2 (Critical field Hcorner)The result proven in Theorem 2.1 substantiates evenmore
than [19] the conjecture about the appearance of an additional critical field

Hcorner = 1

	0ε2
, (2.21)

when corners are present along the sample boundary. Indeed, combining (2.19) and, more
importantly, next Proposition 2.1, with [15, Thm. 1.6] (see also [45, Thm. 1.2]), which states
the exponential decay ofψGL in the distance from
 (still, based on the unproved conjecture
on the linear model), one concludes that superconductivity is uniform along the boundary
layer until the threshold b = 	−1

0 is crossed and, then, concentrates close to the corners
with smallest opening angles. More precisely, assuming that all the angles β j are acute and
different, one can identify [45, Rmk. 1.4] a sequence of N critical fields

Hcorner = Hcorner,0 � Hcorner,1 � . . . � Hcorner,N−1 � Hcorner,N = Hc3, (2.22)
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with

Hcorner, j = 1

μ(β j )ε2
, for 1 � j � N , (2.23)

so that, in between Hcorner, j−1 and Hcorner, j , the material is superconducting only close
to the j−th corner r j . Let us stress that all these results are conditioned by the request
μ(β j ) < 	0 for all the corners, which is expected to hold true (but not proven) for any acute
angle 0 < β j < π .

Once the energy asymptotics is obtained, it is natural to ask whether one can extract
information about the behavior of the order parameter, which would then give access to the
physically relevant quantities, as the density of Cooper pairs. As already proven in [19, Thm.
1.1], the distribution of superconductivity along the boundary layer is uniform to leading
order (see (2.11)). Note that such an estimate goes along with the exponential decay proven
in (B.16), which implies that ψGL = o(1) at distance much larger than ε from the boundary
∂�: we can indeed restrict out attention to the boundary layer Aε defined in (1.19), since

ψGL(r) = O
(
εc1·c(b)+1

)
, in � \ Aε, (2.24)

and by taking c1 large, the above quantity can be made arbitrarily small. We thus denote it
as O(ε∞), to stress that it is an arbitrarily large power of ε.

Remark 2.3 (Refined L2 estimate)
An almost direct consequence of the energy asymptotics (2.19) is an improvement of the

bound (2.11): setting

�smooth := {r ∈ �|dist(r, 
) � c2ε| log ε|} , (2.25)

for some large enough constant c2 > 0, one has∥∥∥∣∣ψGL( · )
∣∣2 − f


2 (dist( · , ∂�)/ε)

∥∥∥
L2(�smooth)

= o(ε| log ε|). (2.26)

The estimates (2.11) or (2.26) do not exclude however the presence of vortices or region
with very little superconductivity left close to the boundary and, therefore, one would like to
prove a bound in a stronger norm, e.g., in L∞, which is stated in the next Proposition 2.1.

Proposition 2.1 (GL order parameter) Under the same assumptions of Theorem 2.1,
∥∥|ψGL(r)| − f
(0)

∥∥
L∞(∂�smooth∩∂�)

= o(1). (2.27)

Remark 2.4 (Uniform distribution of superconductivity) The estimate (2.27) can in fact
be extended to the boundary layer of points r such that dist(r, ∂�smooth) � ε

√| log ε|, in
the very same way as the analogous result in [23, Thm. 2]. An important consequence is the
uniformity of superconductivity in Aε , where one has∣∣ψGL( · )

∣∣ ∼ f
 (dist( · , ∂�)/ε) , (2.28)

not only in weak sense, as proven in [19], but also pointwise. Strictly speaking, the corner
regions are excluded, but, on the one hand, their overall area is O(Nε2| log ε|2), i.e., much
smaller than |Aε|, and, on the other, we do expect the minimizer of the corner problem to
be close to f
 almost everywhere but very close to the corner. An interested reader might
wonder whether it is possible to show that ψGL is close to such an effective minimizer in the
corner region, but this presumably requires to get some more information about the effective
problem (2.12) as well as extract a more precise estimate of the remainders in (2.19).
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Remark 2.5 (Current along ∂�) An important consequence of (2.6) in smooth domains is
the non-vanishing of ψGL close to the boundary, because of the strict positivity of f
, and
thus surface superconductivity is robust w.r.t. the inclusion of the applied magnetic field. In
addition, this allows to estimate the current (1.2) along the boundary or, equivalently, the
total winding number of ψGL on ∂� [23, Thm. 3]:

deg
(
ψGL, ∂�

) = |�|
ε2

− α


ε
(1 + o(1)). (2.29)

Such a behavior is similar (although physically different) to the ultrafast rotation regime for
angular velocities larger than the third critical one of rotating Bose-Einstein condensates,
when vortices are expelled from the boundary region [18,27] (see also [21,22,28] for further
results on rotating condensates). In presence of corners, (2.27) guarantees the non-vanishing
of ψGL only far from the corners and prevents us to estimate the current on ∂�. Indeed, the
pointwise estimate of the gradient (B.13) allows a variation of order 1 of ψGL on a scale
ε, which is much smaller than the tangential length of the corner region, thus implying that
ψGL may a priori vanish there.

2.3 Corner effective energy

We now give more details about the corner effective problem. Let us start by identifyingmore
precisely the corner region depicted in Fig. 2. It is meant as a suitable stretching and rescaling
(on a scale ε) of a local area around any corner of � of tangential and normal lengths both
of order ε| log ε|, as ε → 0. For later convenience, however, we consider a region where the
tangential length L along the angle is different from the normal length �. Let then �β(L, �)

be a triangle-like region as in Fig. 2, where β is the opening angle at the vertex V and side
lengths L, � > 0. In order to reproduce the shape of Fig. 2, we always assume that

� � tan
(

β
2

)
L. (2.30)

We recall the definition of the boundaries ∂�in, ∂�bd provided in § 2 and denote by ∂�out

the outer boundary AV B, so that ∂�β(L, �) = ∂�out ∪ ∂�in ∪ ∂�bd.
The effective energy in the corner region is given by a suitably rescaled GL energy with

fixed magnetic potential (2.17). The effective variational model is then

Ecorner,β(L, �) := −2LE1D
0 (�) + inf

ψ∈D
(�β(L,�))
EGL
1

[
ψ,F;�β(L, �)

]
, (2.31)

where D
(�β(L, �)) is defined in (2.15). The heuristics behind the choice (2.31) is that
in the surface superconductivity regime each portion of the boundary of the sample yields
a (leading order) energy contribution proportional to E1D


 times its length, which equals
E1D


 |∂�out| = 2LE1D

 in the case of �β(L, �). Indeed, the boundaries ∂�in and ∂�bd are

not expected to give any energy contribution. More precisely, ∂�in is immersed in the bulk,
where the order parameter is exponentially small in � and it could have been removed from
the outset by consider a solid wedge; similarly, ∂�bd is a fictitious boundary, whose role is to
separate the corner region from the rest. Mathematically, the non-zero Dirichlet conditions on
∂�in and ∂�bd in the minimization domain D
 guarantee that those portions of the boundary
do not contribute to surface superconductivity.

Once the boundary energy 2LE1D

 has been subtracted, what remains is precisely the

additional energy due to the presence of the corner. Such an energy is indeed of purely
geometric nature and is generated by the constraint on the boundary ∂�out: in order to
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reproduce the correct energy along ∂�out, the minimizer must behave like the model order
parameter f
(t)e−iα
s in a layer of widthO(1) around ∂�out, but the coordinate s has a jump
on the bisectrix of the domain and thus such a behavior is allowed only close far from the
corner. Themodulus of theminimizer f
(t) is in factwell defined and continuous everywhere,
since it depends on the normal coordinate which is continuous as well. Hence, in order to
glue together the two model profiles, any minimizer must accommodate a non-trivial phase
factor, which must be genuinely 2D, because no 1D function can adjust the jump of −iα
s
along the bisectrix. Unfortunately, the explicit expression of such a phase remains unknown,
expect in certain specific cases (for almost flat angles, see [20]).

The GL energy functional appearing in (2.31) is gauge invariant but we have chosen to
work in a prescribed local gauge, i.e., we have made an explicit choice of the vector potential
F, generating a unit magnetic field. In this respect the GL energy in (2.31) is similar to the
effective functional studied in [15, Eq. (1.11)], although both the parameter regime and the
domain are slightly different. Such a difference reflects indeed the different behavior of the
minimizer: in the present setting it decays in the distance from the outer boundary, whereas
in [15], the decay is in the distance from the corner.

Recalling that L and � are obtained via a rescaling from the tangential and normal length
of the corner region and thus, in the original problem in �, are actually of order | log ε| � 1,
we have to study the limit L, � → +∞ of (2.31).

Proposition 2.2 (Corner energy) Let {�n}n∈N, {Ln}n∈N be two monotone sequences with
�n, Ln → +∞, as n → +∞, and β ∈ (0, 2π), such that 1 � �n � tan (β/2) Ln � C�an
for some a > 0. Then, for any 1 < b < 	−1

0 , the limit

lim
n→+∞ Ecorner,β(Ln, �n) =: Ecorner,β (2.32)

exists, it is finite and independent of the chosen sequences.

As stated in Proposition 2.2 (see also Proposition 3.4), the corner energy Ecorner,β is
bounded for any β ∈ (0, 2π), although we have no information on its sign. In fact, it might
as well be zero. In a companion paper [20] however we prove that, when β is close to π , this
is not the case (see also below).

Once the well-posedness of the model problem has been proven, it is then natural to ask
whether one can derive the explicit dependence of Ecorner,β on the angle β. So far we have
not found such an expression but, based on some heuristic arguments, we formulate below
an unproven conjecture, which is inspired again by the Gauss–Bonnet theorem. Indeed, the
first order correction to the GL energy asymptotics in smooth domains reads equivalently

− Ecorr

∫ |∂�|

0
ds K(s) = −2πEcorr. (2.33)

In presence of corner singularities on ∂�, the Gauss–Bonnet theorem has to be modified to
take into account the corners: the only correction is that the integral of the curvaturemust now
be performed over the smooth part of ∂� and each corner yields a contribution proportional
to its opening angle

∫
∂�smooth

ds K(s) +
N∑
j=1

(π − β j ) = 2π.

Therefore, one can think of the above identity as if each corner contributes to the mean
curvature with a Dirac mass multiplied by π − β j and the integral is meant in distributional
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sense, i.e., formally replacing the curvature K(s) with

K(s) +
N∑
j=1

(π − β j )δ(s j ),

which, if substituted on the r.h.s. of (2.33), yields

−Ecorr

∫
∂�smooth

ds K(s) − Ecorr

N∑
j=1

(π − β j ).

After a direct comparison with the asymptotics proven in Theorem 2.1, i.e.,

−Ecorr

∫
∂�smooth

ds K(s) +
N∑
j=1

Ecorner,β j

it is then very natural to state the conjecture below. Note that, if true, the conjecture would
imply that the next-to-leading order term in the GL energy expansion would always be given
by −2πEcorr, irrespective of the presence of corners.

Conjecture 1 (Corner energy) For any 1 < b < 	−1
0 and β ∈ (0, 2π), one has

Ecorner,β = −(π − β)Ecorr. (2.34)

Remark 2.6 (Acute/obtuse angles) In the linear case, i.e., for a magnetic Schrödinger oper-
ator with uniform magnetic field in an infinite wedge, it is expected [15, Rmk. 1.1] and
numerically verified [1,13] that the ground state energy changes for acute or obtuse angles:
for the former it is a strictly increasing function of the angle, which equals	0 for flat angles,
while it is believed to remain constantly equal to 	0 for any obtuse angle. On the opposite,
in the nonlinear case, the above Conjecture would provide the same expression for acute and
obtuse angles.

As already anticipated, we prove in [20] that in a wedge with opening angle π − δ,
0 < δ � 1, the corner energy is given by

Ecorner,β = −δEcorr + O(δ4/3| log δ|) + O(�−∞), (2.35)

i.e., it coincides to leading order in δ with the conjectured expression. Furthermore, this also
shows that the corner energy Ecorner,β is non-trivial, at least for angles close to the flat one.

3 Corner effective problems

This section is mainly devoted to the proof of Proposition 2.2, i.e., the existence of the limit
defining the effective energy contribution of each corner, and the discussion of the properties
of such a limit. For later convenience, we also study anotherminimization problem in�β with
different boundary conditions and show that it asymptotically provides the same effective
energy (Proposition 3.5).
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3.1 Surface superconductivity in a finite strip

We start by studying a simple minimization problem in a finite strip. Similar problems have
already been studied in [4,23,49], taking into account the limit of an infinite strip. Here,
instead, the focus is more on boundary conditions and their effect on the ground state energy.
We are going to apply the corresponding obtained results to the minimization in (2.12) to
derive Proposition 3.5.

After a local gauge transformation and blow-up on a scale ε, the leading contribution to
the GL energy of a portion of the boundary layer of � of tangential length εL and normal
length ε�, suitably far from any corner, is (see, e.g., [23, Lemmas 2 & 4])

G [ψ; R(L, �)] :=
∫ L

0
ds
∫ �

0
dt

{
|∂tψ |2 + |(∂s − i t) ψ |2 − 1

2b

(
2|ψ |2 − |ψ |4)

}
, (3.1)

where L, � > 0, b ∈ (1,	−1
0 ) and R(L, �) stands for the rectangle

R(L, �) := [0, L] × [0, �] , with � � 1. (3.2)

We study two simple minimization problems associated to the energy (3.1). First, we set

ED(R(L, �)) := inf
ψ∈DD(R(L,�))

G [ψ; R(L, �)] , (3.3)

and denote by ψD any corresponding minimizer. The minimization domain is given by

DD(R(L, �)) :=
{
ψ ∈ H1(R(L, �))

∣∣ ψ(0, t) = f0(t), ψ(L, t) = f0(t)e
−iα0L ,

ψ(s, �) = f0(�)e
−iα0s

}
, (3.4)

where the boundary conditions are meant in trace H1/2-sense and we recall that f0, α0 is a
minimizing pair (see also “AppendixA.2”) of (2.13). The label D stands for theDirichlet-type
conditions at s = 0 and s = L . The heuristic meaning of such conditions is the following:

• on the boundary between the surface and the bulk region, i.e., for t = �, the order
parameter is exponentially small and the same holds true for f0(�), so the contribution
of the boundary conditions there is expected to be negligible; for this reason we could as
well have set ψ = 0 at t = �, but this would make the analysis more complicated;

• at the normal boundaries s = 0 or s = L , the order parameter is set equal to the ideal
minimizer (see § 1.2);

• no condition is set on the boundary t = 0, which is meant to coincide with a blow-up of
a portion of ∂�: this is crucial to capture the key features of surface superconductivity
and leads to Neumann conditions along the line t = 0.

By setting ψ := χ + f0(t)e−iα0s , one can reduce the variational problem (3.3) to the mini-
mization of a functional of χ with zero Dirichlet conditions on the boundaries s = 0, L and
t = �. This easily allows to deduce (see, e.g., [41, Chapt. 4]) the existence of a minimizer,
its smoothness and the fact that any minimizer solves

− (∇ − i tes)2 ψ = 1

b

(
1 − |ψ |2)ψ. (3.5)

The alternative version of (3.4) is provided by a modification of the energy: we define

G̃ [ψ; R(L, �)] := G[ψ; R(L, �)] −
∫ �

0
dt

F0(t)

f 20 (t)
jt [ψ]

∣∣∣∣
s=L

s=0
, (3.6)
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where F0 is the potential function (see also “Appendix A.3”)

F0(t) := 2
∫ t

0
dη (η + α0) f 20 (η), (3.7)

and jt is the normal component of the current j[ψ] given in (1.2), i.e., jt [ψ] =
i
2 (ψ∂tψ

∗ − ψ∗∂tψ). The boundary terms appearing in (3.6) are non-trivial only if the phase
ofψ varies along the normal to the boundary, which is obviously not the case for the reference
function f0(t)e−iα0s . The reason why such terms have been added to the energy will become
clear later (see the proof of Proposition 3.1 and in particular (3.22)). The minimization of
(3.6) is performed on a domain without constraints on the boundaries s = 0 and s = L , i.e.,
we set

EN(R(L, �)) := inf
ψ∈DN(R(L,�))

G̃ [ψ; R(L, �)] , (3.8)

where

DN(R(L, �)) :=
{
ψ ∈ H1(R(L, �))

∣∣ ψ(s, �) = f0(�)e
−iα0s

}
(3.9)

and we denote byψN any corresponding minimizer, which enjoys the same properties asψD,
except for conditions of magnetic Neumann-type at s = 0 and s = L , i.e.,

[
(∂s + iα0) ψN − i

F0(t)

f 20 (t)
(∂tψN)

]∣∣∣∣∣
s=0,L

= 0. (3.10)

The surface superconductivity behavior occurs for 1 < b < 	−1
0 and is characterized by

the emergence of the 1D effective model (2.13) or, equivalently, (2.3).

Proposition 3.1 (GL energies on a finite strip) For any 1 < b < 	−1
0 and L > 0, as � → ∞,

ED/N(R(L, �)) = L
(
E1D
0 (�) + O(�−∞)

) = L
(
E1D


 + O(�−∞))
)
. (3.11)

Remark 3.1 (Boundary conditions) The boundary condition ψN(s, �) = f0(�)e−iα0s is
needed for the asymptotics (3.11) to hold true. The reason is that otherwise one would get
an additional energy contribution from the boundary t = �, i.e., the energy would be twice
the value appearing in (3.11). Indeed, without the condition at t = �, exploiting the gauge
invariance of (3.1) and replacing ψ,−tes with ψ∗ei�s,−(� − t)es , one can exchange the
boundaries t = 0 and t = �, leaving the energy unaffected.

Proof We first observe that the last estimate is in fact stated in Lemma A.2 in “Appendix
A.3”. The rest of the statement is actually proven by showing separately that the first estimate
holds true for both ED and EN.

Let us first consider ED(R(L, �)). For the upper bound, we test G on the trial state
f0(t)e−iα0s , which immediately yields ED(R(L, �)) � LE1D

0 (�). For the corresponding
lower bound we use the same energy splitting used, e.g., in [24], i.e., we set

ψD(s, t) =: f0(t)e
−iα0su(s, t), (3.12)

which, via an integration by parts and the variational equation (A.7), leads to

ED(R(L, �)) = LE1D
0 + E0 [u; R(L, �)] , (3.13)
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where

E0 [u; R(L, �)] :=
∫ L

0
ds
∫ �

0
dt f 20

{∣∣∇s,t u
∣∣2 − 2(t + α0) js[u] + f 20

2b
(1 − |u|2)2

}
,

(3.14)

and js[ψ] is the tangential component of (1.2), i.e., explicitly js[ψ] = i
2 (ψ∂sψ

∗ − ψ∗∂sψ).
We stress that the decoupling does not generate any boundary term because f ′

0 vanishes both
at t = 0 and t = � by (A.17): the only non-trivial computation is the following integration
by parts

∫ L

0
ds
∫ �

0
dt
[
|u|2 f ′

0
2 + f0 f

′
0∂t |u|2

]
= −

∫ L

0
ds
∫ �

0
dt |u|2 f0 f ′′

0 ,

where f ′′
0 can then be replaced via the variational Eq. (A.7).

The key ingredient to bound from below E0[u] is the pointwise positivity of the cost
function (see (A.21) and (A.22) in “Appendix A.3”)

K0 := f 20 + F0, (3.15)

in I�̄ = [0, �̄] given by (A.23) (recall that �̄ = � + O(1) by (A.24)). Indeed, we integrate by
parts twice:

− 2
∫ L

0
ds
∫ �

0
dt (t + α0) f

2
0 (t) js[u]

= −
∫ L

0
ds
∫ �

0
dt F ′

0(t) js[u] =
∫ L

0
ds
∫ �

0
dt F0(t)∂t js[u]

= 2
∫ L

0
ds
∫ �

0
dt F0(t) Im

(
∂t u

∗∂su
)+

∫ �

0
dt F0(t) jt [u]

∣∣∣∣
s=L

s=0
, (3.16)

where the boundary terms of the first integration by parts vanish, because F0(0) = F0(�) = 0,
and the last terms vanish as well, since, due to boundary conditions, u(0, t) = u(L, t) = 1
and thus jt [u] = 0 there.

Using (A.25) and the simple bound 2|Im(ab)| � |a|2 + |b|2, one then obtains as in [23,
Eq. (4.38)] (see also [23, Sect. 2.3 & Proof of Prop. 4.2])

E0 [u; R(L, �)] �
∫ L

0
ds
∫ �̄

0
dt

{
K0(t)

(|∂su|2 + |∂t u|2)+ 1

2b
f 40 (1 − |u|2)2

}

+
∫ L

0
ds
∫ �

�̄

dt
{
f 20 |∇u|2 + 2F0(t) Im

(
∂t u

∗∂su
)}

�
∫ L

0
ds
∫ �

�̄

dt
{
f 20 |∇u|2 + 2F0(t) Im

(
∂t u

∗∂su
)}

, (3.17)

by (A.22) and the positivity of the last term on the r.h.s. of the first line. It thus remains to
estimate the quantity on the r.h.s. of (3.17) above, which can be done by integrating by parts
back:∫ L

0
ds
∫ �

�̄

dt
{
f 20 |∇u|2 + 2F0(t) Im

(
∂t u

∗∂su
)}

=
∫ L

0
ds
∫ �

�̄

dt
{
f 20 |∇u|2 − 2(t + α0) js[ f0u]}− 2F0(�̄)

∫ L

0
ds js[u]

∣∣∣∣
t=�̄

. (3.18)
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Now, exploiting (A.11) and the fact that �̄ = � + O(1), we deduce that

f0(t) = O(�−∞), f ′
0(t) = O(�−∞), for any t � �̄. (3.19)

Hence, |∇ψD| = f0 |∇u| + O(�−∞) in I� \ I�̄. Now, since F0(�) = 0, F0(�̄) � C� f 20 (�̄),
we can bound the boundary term (last term in (3.18)) by

CL sup
s∈[0,L]

∣∣ψD(s, �̄)
∣∣ ∣∣∇ψD(s, �̄)

∣∣ = LO(�−∞),

thanks to (B.38) and the bound ‖∇ψD‖∞ � C on the gradient of ψD (see (B.13)). For the
same reason, the first term on the r.h.s. of (3.18) can be bounded from below via Cauchy
inequality and (B.17) by

−C
∫ L

0
ds
∫ �

�̄

dt (t + α0)
2 |ψD|2 = O(L�−∞),

which finally yields,

∫ L

0
ds
∫ �

�̄

dt
{
f 20 |∇u|2 + 2F0(t) Im

(
∂t u

∗∂su
)} = O(L�−∞), (3.20)

and thus the statement.
The proof for the modified functional (3.6) is very similar. The upper bound is obtained by

evaluating the energy on the trial state f0(t)e−iα0s : notice that the phase of such a function is
independent of t , then the normal component jt of its current is identically zero and therefore
the boundary terms in G̃ do not yield any additional contribution. The final outcome is the
very same bound EN(R(L, �)) � LE1D

0 (�) as before.
One can then apply the splitting technique, setting (for a different u than before)

ψN(s, t) =: f0(t)e
−iα0su(s, t), (3.21)

to get the identity EN(R(L, �)) = LE1D
0 + Ẽ0[u; R(L, �)], where

Ẽ0[u; R(L, �)] := E0[u; R(L, �)] −
∫ �

0
dt F0(t) jt [u]

∣∣∣∣
s=L

s=0
. (3.22)

The proof of the lower bound is then completely analogous to the one above: the only non-
trivial observation is that the first integration by parts in (3.16) generates the same outcome,
because of the vanishing of F0 at the boundaries, and the last terms in (3.16) are exactly
compensated by the boundary terms in the functional (3.22), so that they sum up to zero.
Actually, this was the main reason to add those terms to (3.6) in first place. The lower bound
then follows from the positivity of K0, exactly as above. ��

A straightforward adaptation of the above arguments leads to the following result on a
modified problem with twisted boundary conditions, which is going to play a role later.

Proposition 3.2 (GL energy with twisted boundary conditions) Let κ ∈ [0, 2π), 1 < b <

	−1
0 and L > 0. Let also
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ED,κ(R(L, �)) := inf
ψ∈DD,κ (R(L,�))

G[ψ; R(L, �)], (3.23)

DD,κ(R(L, �)) :=
{
ψ ∈ DN(R(L, �))

∣∣ ψ(0, t) = f0(t)e
iκ, ψ(L, t) = f0(t)e

−iα0L
}

.

(3.24)

Then, as � → ∞,

E1D
0 (�)L + O(L�−∞) � ED,κ(R(L, �)) � E1D

0 (�)L + C

L
. (3.25)

Proof The lower bound is obtained via the splitting technique and the positivity of the cost
function as discussed in the proof of Proposition 3.1. For the upper bound it is sufficient to
test the functional on the trial state

f0(t)e
−iα0sei

κ(L−s)
L ,

and recall the optimality of the phase α0 yielding (A.8). ��
We conclude this section with a result which will be used later in the paper. In extreme

synthesis it states that, if one has an a priori upper bound on E0[u, R(L, �)], then it is possible
to extract some useful information on the corresponding order parameter ψ(s, t) and show
for instance that it is pointwise close to f0(t)e−iα0s up to a smooth phase factor.

Proposition 3.3 (Order parameter estimates) Letψ be a solution of (3.5) in the strip R(L, �),
with � � t0 > 0 and L > 0, satisfying the boundary conditions in (3.9) and (3.10), and let
u be defined as in (3.21). Let also Ẽ0[u; R(L, �)] be the functional defined in (3.22) in the
strip R(L, �) and assume that

Ẽ0[u; R(L, �)] � e � 1, (3.26)

for some e > 0. Then, if 1 < b < 	−1
0 ,

∥∥ f 20 ∇u
∥∥2
L2(R(L,�))

� Ce + O(L�−∞). (3.27)

Moreover, for any 0 < T � �̄, there exists a finite constant C > 0, such that

||ψ(s, t)| − f0(t)| � Ce1/4 + O(L�−∞)√
min[0,T ] f0

, for any (s, t) ∈ RL,T , (3.28)

∣∣∣∣∂s
∫ �

0
dt |ψ |2

∣∣∣∣
∣∣∣∣
s=L

� C

{
e + √

eL + 1

L

[
e1/4 + O(L�−∞)√

min[0,T ] f0
+ e−c(b)T

]
+ L

}
.

(3.29)

Proof Applying elliptic regularity theory to the equation satisfied by ψ one can prove as in
Lemma B.1 that

‖∇ψ‖L∞(R(L,�)) � C, (3.30)

Furthermore, ψ satisfies the Agmon estimates (B.17) and (B.38).
The key estimate is then the positivity of the cost function K0 in I�̄, as well as the lower

bound given by (A.27), i.e.,

K0(t) = f 20 (t) + F0(t) � cb f
4
0 (t), for any t ∈ I�̄. (3.31)
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Indeed, by acting as in the proof of Proposition 3.1, one immediately gets

Ẽ0[u, R(L, �)] �
∫
R(L,�̄)

dsdt K0(t) |∇u|2 + 1

2b

∫
R(L,�)

dsdt f 40 (t)
(
1 − |u|2)2

+ O(L�−∞). (3.32)

Plugging in (3.31) above, one obtains (3.27) and
∫
R(L,�)

dsdt f 40 (t)
(
1 − |u|2)2 � Ce + O(L�−∞). (3.33)

We now address (3.28): the starting point is provided by (3.33), which essentially implies
that |u| is approximately constant and equal to 1. The idea of proof goes back to [10] and
it has been used several times since then (see, e.g., [27]). Fix 0 < T � �̄ and assume by
contradiction that there was a point (s0, t0) ∈ RL,T , where

||ψ(s0, t0)| − f0(t0)| � c ē1/4√
min[0,T ] f0

, (3.34)

for suitable c > 0 and ē � e to be adjusted later. Then, by (3.30) and the analogous bound for
| f ′

0(t)| (see (A.11)),we deduce that therewould exist also a ball of radius� := c′ē1/4/
√

f0(t0)
centered in (s0, t0), with c′ a constant proportional to c and depending only on the a priori
bounds on the gradients, so that

||ψ(s, t)| − f0(t)| � 1

2

c ē1/4√
min[0,T ] f0

, in B�(s0, t0) ∩ RL,T .

Furthermore, we can also assume that at least one quarter of the ball is contained inside RL,T .
Hence,

∫
R(�,T )

dsdt f 40 (t)
(
1 − |u|2)2 =

∫
R(�,T )

dsdt
(
f 20 (t) − |ψ |2)2

� πc2

16
�2ē1/2 min[0,T ] f0 � Cc4ē

where C is a positive constant independent of c. Therefore, by taking c large enough and
ē = e + O(L�−∞), we would get a contradiction with (3.33), which completes the proof.

In order to finally get (3.29), we can restrict the integration to the interval t ∈ [0, �̄], since
the rest is exponentially small. We then compute

∂s

∫ �̄

0
dt |ψ(s, t)|2

∣∣∣∣
s=L

=
∫ L

0
ds
∫ �̄

0
dt
[
χ(s)∂2s |ψ(s, t)|2 + χ ′(s)∂s |ψ(s, t)|2] ,

(3.35)

for any smooth χ such that χ(L) = 1. Taking χ(s) = s/L , we get

∣∣∣∣
∫ δ

0
ds
∫ �̄

0
dt χ ′(s)∂s |ψ(s, t)|2

∣∣∣∣ � 1

L

∫ �̄

0
dt
∣∣|ψ(δ, t)|2 − |ψ(0, t)|2∣∣

� C

L

[
e1/4 + O(L�−∞)√

min[0,T ] f0
+ e−c(b)T

]
,
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by (3.28) and (B.38). For the first term on the r.h.s. of (3.35), we extend the integration in t
to �: using Neumann boundary conditions at t = �, one gets

∫ �

�̄

dt ∂2s |ψ |2 =
∫ �

�̄

dt � |ψ |2 + ∂t |ψ |2∣∣t=�̄
=
∫ �

�̄

dt � |ψ |2 + O(�−∞),

by (B.38) and the pointwise bound on the gradient of ψ . Hence, exploiting the Neumann
conditions also at t = 0 and (3.5), we obtain

∫ �̄

0
dt ∂2s |ψ |2 =

∫ �

0
dt � |ψ |2 + O(�−∞) =

∫ �

0
dt
[
2Re

(
ψ∗�ψ

)+ 2 |∇ψ |2]+ O(�−∞)

= 2
∫ �

0
dt
[|(∇ − i tes)ψ |2 − 1

b

(
1 − |ψ |2) |ψ |2]+ O(�−∞),

which yields, after integration in s,
∫ L

0
ds
∫ �

0
dt χ(s)∂2s |ψ(s, t)|2

= 2
∫
R(L,�)

dsdt χ(s)
[|(∇ − i tes)ψ |2 − 1

b

(
1 − |ψ |2) |ψ |2]+ O(L�−∞). (3.36)

In order to estimate the quantity on the r.h.s. of the expression above we observe that
∫
R(L,�)

dsdt χ(s)
[|(∇ − i tes)ψ |2 − 1

b

(
1 − |ψ |2) |ψ |2]

� Ẽ0[u] + 1

2b

∫
R(L,�)

dsdt
∣∣ f 40 − |ψ |4∣∣+ 2

∫
R(L,�)

dsdt (χ(s) − 1) (t + α0) f
2
0 js[u]

� C
[
e + √

eL + L
]
,

by (3.30) and (3.33). Altogether we get (3.29). ��

3.2 Properties of Ecorner,ˇ(L, �)

In the present and following Sections, we study the effective model introduced in (2.12) and
specifically prove the existence of the limit as well as its boundedness. The key properties
we are going to use in the proof of Proposition 2.2 are:

• change of gauge to replace the magnetic potential F with a � −tes (Lemma 3.1);
• uniform boundedness of Ecorner,β(L, �) and existence of the limit L, � → +∞ over

suitable subsequences (Proposition 3.4);
• further properties of the effectivemodel and, in particular, its dependence on the boundary

conditions (§ 3.4).

We recall the corner energy defined in (2.31) and set

GF[ψ] := EGL
1

[
ψ,F;�β(L, �)

] ; (3.37)

Eβ(L, �) := inf
ψ∈D
(�β(L,�))

GF[ψ], (3.38)

where both the energy EGL
1 , the minimization domain and the corner region are introduced in

§ 2. Any correspondingminimizer is denoted byψβ . Before proceeding further, we introduce
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an auxiliary problem in �β(L, �), modified by the addition of analogous boundary terms as
in (3.6). Such a problem will appear in the proof of the main theorem. We set

G̃F[ψ] := EGL
1

[
ψ,F;�β(L, �)

]−
∫ �

0
dt

F0(t)

f 20 (t)
jt
[
ψ(r(s, t))e

i
2 st
] ∣∣∣∣

s=L

s=−L
; (3.39)

Ẽβ(L, �) := inf
ψ∈D̃
(�β(L,�))

G̃F[ψ], (3.40)

where

D̃
(�β(L, �)) := {ψ ∈ H1(�β(L, �))
∣∣ ψ |∂�in

= ψ


}
, (3.41)

and ψ
 is defined in (2.16). Note that the boundary terms are slightly different than the ones
considered in (3.6), which is due to the presence of an additional phase in ψ
 compared to
f0e−iα0s , due to the different choice of the magnetic potential.
In the next Lemma 3.1, we show that the vector potential F can be replaced with a, such

that far from the corners

a(r(s, t)) � −tes, (3.42)

in boundary coordinates (s, t). It is not difficult to figure out that there exists no smooth gauge
transformation implementing the above change globally in �β(L, �), in particular close to
the bisectrix. More precisely, we define the wedge-domain �β(L, �) \ �̃β(L, �) (as depicted
in Fig. 4) through

�β(L, �) \ �̃β(L, �) :=
{
r ∈ �β(L, �)

∣∣ 1
2β − 1

�3
� ϑ � 1

2β + 1
�3

}
, (3.43)

in polar coordinates (�, ϑ) ∈ [0, �] × [0, β]. Hence, we obviously have
∣∣�β(L, �) \ �̃β(L, �)

∣∣ = O(�−1). (3.44)

The potential a is thus such that there exists a gauge phase φF ∈ H1(�β(L, �)) so that

a = F + ∇φF, (3.45)

and

a = −tes, in �̃β(L, �). (3.46)

As already explained, because of the jump of es along the bisectrix of the sector, one can not
set a = −tes everywhere. However, we require that

a = O(�4), in �β(L, �), (3.47)

which is in fact a constraint only in �β(L, �) \ �̃β(L, �). In next Lemma 3.1 we investigate
the existence of such a phase φF. Note that

curl a = curl(−tes) = 1, in �β(L, �), (3.48)

thanks to (1.22) and the gauge invariance of the curl.

Lemma 3.1 (Gauge choice) For any L, � > 0 satisfying (2.30) and so that∣∣�β(L, �)
∣∣

2π
∣∣∂�β(L, �)

∣∣ ∈ Z, (3.49)
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Fig. 4 The region
�β(L, �) \ �̃β (L, �) (shaded
area)

there exists a vector potential a ∈ L∞(�β(L, �)) and a phase φF ∈ H1(�β(L, �)) satisfying
(3.45), (3.46) and (3.47), such that

inf
ψ∈D
(�β(L,�))

GF[ψ] = inf
ψ∈DD(�β(L,�))

Ga[ψ], (3.50)

inf
ψ∈D̃
(�β(L,�))

G̃F[ψ] = inf
ψ∈DN(�β(L,�))

G̃a[ψ], (3.51)

where

DD(�β(L, �)) := {
ψ ∈ H1(�β(L, �))

∣∣ ψ |∂�bd∪∂�in
= ψ0

}
, (3.52)

DN(�β(L, �)) := {
ψ ∈ H1(�β(L, �))

∣∣ ψ |∂�in
= ψ0

}
, (3.53)

ψ0(s, t) := f0(t)e
−iα0s . (3.54)

Remark 3.2 (Constraint on L, �) The condition (3.49) reads L − 2�
tan β

= c(β, L�)Z where
c(β, �) is uniformly bounded as L, � → +∞. More precisely

c(β, L, �) −−−−→
L→+∞ 0, c(β, L, �) −−−−→

�→+∞ c(β),

uniformly in the other parameters. Hence, given generic �, L → +∞, it suffices to replace
L with L + O(1) to enforce (3.49).

Proof The two different minimization problem can be treated in the same way. It suffices to
prove the existence of the gauge phase φF and, in order to recover (3.46), we set

φF(s, t) := − 1
2 st, in �̃β(L, �). (3.55)

Note that such a phase is actually the same gauge phase used in [33, Appendix F] or in
[24, Eq. (4.7)] with vector potential set equal to F and recovers the additional phase factor
in the boundary terms in (3.39). Such a phase is in H1(�̃β(L, �)) but its definition can not
be extended to the whole �β(L, �). We can however continue φF arbitrarily in �β(L, �) \
�̃β(L, �), just requiring continuity through the boundary of the region. There are infinitely
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many ways of doing that and at least one such that the bound (3.47) is satisfied (e.g., a linear
interpolation).

In order to complete the proof, we need to show thatψeiφF is still a single-valued function.
It is not difficult to see [33, Appendix F] that, to this purpose, one has to correct (3.55) by
� s, where

� = 1

2π
∣∣∂�β(L, �)

∣∣
∫

�β(L,�)

dr curlF −
⌊

1

2π
∣∣∂�β(L, �)

∣∣
∫

�β(L,�)

dr curlF

⌋

=
∣∣�β(L, �)

∣∣
2π
∣∣∂�β(L, �)

∣∣ −
⌊ ∣∣�β(L, �)

∣∣
2π
∣∣∂�β(L, �)

∣∣
⌋

,

where � · � stands for the integer part. However, by the assumption (3.49), � = 0 and no
additional phase is needed. ��

From now on we are to going to study only the minimization on the r.h.s. of (3.50)
in Lemma 3.1, with the vector potential a satisfying (3.45), (3.46) and (3.47). In order to
guarantee that (3.49) is satisfied, however, we restrict the analysis to suitable monotone
sequences {�n}n∈N, {Ln}n∈N, such that

�n, Ln −−−−→
n→+∞ +∞, (2.30) and (3.49) hold, (3.56)

and consider Ecorner,β(Ln, �n) in the following. More precisely, we are going to study the
quantity

Eβ(Ln, �n) := inf
ψ∈DD(�β(Ln ,�n))

Ga[ψ;�β(Ln, �n))]. (3.57)

Any minimizer of (3.57) is denoted by ψn , i.e.,

Eβ(Ln, �n) := Ga
[
ψn;�β(Ln, �n))

]
. (3.58)

The existence of such a minimizer follows by standard arguments as well as the fact that any
ψn solves the variational equation⎧⎪⎨

⎪⎩
− (∇ + ia)2 ψn = 1

b (1 − |ψn |2)ψn, in �β(L, �),

ψn = f0(t(r))e−iα0s(r), on ∂�bd ∪ ∂�in,

n · (∇ + ia) ψn = 0, on ∂�out.

(3.59)

Note that the equation above coincides with (3.5) far from the vertex, where boundary coor-
dinates are well posed and a = −tes . We can thus apply to ψn the results in Lemmas B.1,
B.3, B.5 and B.6.

3.3 Boundedness and existence of the limit

We start by proving the uniform boundedness of Ecorner,β(L, �) as a function of �, L .

Proposition 3.4 (Boundedness of Ecorner,β(Ln, �n)) Let {�n}n∈N , {Ln}n∈N satisfy (3.56).
Then, for any 1 < b < 	−1

0 , there exists a finite constant C < +∞ independent of n,
such that

∣∣Ecorner,β(Ln, �n)
∣∣ � C . (3.60)
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Fig. 5 The partition of unity χ , η

Proof We first discuss the boundedness from below, which is the most difficult property to
prove, and show that

Ecorner,β(Ln, �n) � −C, (3.61)

for some finite 0 < C < +∞. The key tool is a suitable partition of unity, which isolates the
region where we want to retain the energy and allow us to discard the rest. We thus consider
two smooth positive functions χ and η, such that χ2 + η2 = 1 and whose supports are
described, e.g., in Fig. 5: we assume that η ≡ 1 inside the shaded area, while χ ≡ 1 in the
white area.

The dashed regions is where the supports of the two functions overlap. We choose the
angle ĈV D equal to β/2 for concreteness but any angle of order 1 would work. The distance
of the points A and B from the vertex V is also taken of order 1. Furthermore, the width of
the transition regions can also be taken in such a way that

|∇χ | = O(1), |∇η| = O(1). (3.62)

The rationale behind the choice of the partition of unity is that the energy contribution
coming from the support of χ reconstructs the leading term 2LE1D

0 (�), up to an O(1) error,
while the rest provides a correction of order O(1). Therefore, the support of χ must contain
the outer boundary ∂�out up to O(1) regions and the magnetic potential must be equal to
−tes there. Hence, the area close to the bisectrix is included in the support η, because there
the magnetic potential is unknown.

The key ingredient of the proof is then the IMS formula [29, Thm. 3.2], which yields

Eβ(Ln, �n) = G [χψn] + G [ηψn] −
∫

�β(L,�)

dr |∇χ |2|ψn |2 −
∫

�β(L,�)

dr |∇η|2|ψn |2

= G [χψn] + G [ηψn] + O(1), (3.63)
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where we have exploited the decay (B.35) to bound the contributions on the supports of
∇χ,∇η. We now claim that there exists a finite constant independent of n so that

Ga [ηψn] � −C, (3.64)

Ga [χψn] = 2LnE
1D
0 + O(1), (3.65)

which combined with (3.63) yields (3.60).
Let us first consider the first estimate above: dropping from the energy all the positive

terms, we get

Ga [ηψn] � −C
∫
supp(η)

dr |ψn(r)|2 � −C, (3.66)

by the decay of ψn as above. To complete the proof it remains only to deal with (3.65): since
supp(χ) is actually composed of two disconnected sets, denoted by T− (on the right of Fig. 5)
and T+, we can use boundary coordinates in both regions T±. We can then apply the splitting
technique described in the proof of Proposition 3.1 and set

χ(s, t)ψn(r(s, t)) =:
{
f0(t)e−iα0su−(s, t), in T−,

f0(t)e−iα0su+(s, t), in T+.
(3.67)

The same computation which leads to (3.13) yields now (recall (3.14))

Ga [χψn] = −1

b

∫
T−∪T+

dsdt f 40 (t) + E0[u−; T−] + E0[u+; T+]. (3.68)

Finally, as long as 1 < b < 	−1
0 , one can prove that the energies E0[u−; T−] and E0[u+; T+]

are both positive, exactly as in (3.17), leading to

Ga [χψn] � −1

b

∫
T−

dsdt f 40 (t) − 1

b

∫
T+

dsdt f 40 (t). (3.69)

The last step is the estimate of the two integrals on the r.h.s. of (3.69) above: the identity
(A.9) and the exponential decay (A.10) (both with k = 0) imply

−1

b

∫
T±

dsdt f 40 (t) � LnE
1D
0 − C

∫ �

0
dt te−2(t+α0)

2 + O(1) � LnE
1D
0 + O(1),

which together with (3.69) completes the lower bound proof.
The opposite side of the inequality (3.61) can be proven by simply using χ f0(t)e−iα0s as

a trial state (more precisely, setting u± = 1 in (3.67)). We omit the calculations, since they
are totally analogous to the ones above. ��

We are now in position to prove the first important result of this section.

Proof of Proposition 2.2 The first important observation is that Ecorner,β(L, �) is a monotone
non-increasing function of L and as such it admits a limit. Indeed, for any La < Lb, one
can easily construct a trial state for the energy in �β(Lb, �) by extending the minimizer in
�β(La, �) and setting the trial state equal to f0(t)e−iα0s where the minimizer is not defined.
The outcome of the trivial computation is the inequality Ecorner,β(La, �) � Ecorner,β(Lb, �).

Let {�n}n∈N , {Ln}n∈N be two monotone subsequences such that limn→+∞ �n =
limn→+∞ Ln = +∞ and (3.56) is satisfied (see Remark 3.2). By the monotonicity in L
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of the energy and its boundedness, we know that for any ε > 0 and any given n̄ ∈ N, there
exists n̄2(n̄) ∈ N, such that

∣∣Ecorner,β(Ln, �n̄) − Ecorner,β(Lm, �n̄)
∣∣ < 1

3ε, (3.70)

for any n,m > n̄2.
Furthermore, by the exponential decay of the minimizer and its derivatives (B.34), one

gets
∣∣Ecorner,β(Ln, �n) − Ecorner,β(Ln, �m)

∣∣ � CLne
−cmin{�n ,�m }.

Hence, if the sequences satisfy the condition

Ln � C�an, for some a > 0, (3.71)

we can conclude that there exists n̄1 ∈ N, such that
∣∣Ecorner,β(Ln, �n) − Ecorner,β(Ln, �m)

∣∣ < 1
3ε (3.72)

for n,m > n̄1.
In conclusion, we can estimate
∣∣Ecorner,β(Ln, �n) − Ecorner,β(Lm, �m)

∣∣ � ∣∣Ecorner,β(Ln, �n) − Ecorner,β(Ln, �n̄1+1)
∣∣

+ ∣∣Ecorner,β(Ln, �n̄1+1) − Ecorner,β(Lm, �n̄1+1)
∣∣

+ ∣∣Ecorner,β(Lm, �n̄1+1) − Ecorner,β(Lm, �m)
∣∣ < ε (3.73)

for any n,m > max {n̄1, n̄2(n̄1 + 1)}, so that the sequence is Cauchy and the limit exists.
The independence of the chosen subsequences relies on the uniqueness of the limit, while
the uniform boundedness has been proven in Proposition 3.4. ��

3.4 Neumann and Dirichlet problems in 0ˇ(L, �)

We are going to study the Neumann problem (3.40) on the monotone subsequences {�n}n∈N,
{Ln}n∈N introduced in the previous § 3.2, i.e., such that (3.56) holds. Our main goal here
is to show that, as in the case of the strip, the Dirichlet and Neumann energies coincide
asymptotically as n → +∞. This is going to play a key role in the proof of our main result,
since it implies the identity

Ecorner,β = lim
n→+∞

(−2LE1D
0 (�n) + Eβ(Ln, �n)

)

= lim
n→+∞

(−2LnE
1D
0 (�n) + Ẽβ(Ln, �n)

)
. (3.74)

Before proving the result we need however a technical lemma on a variational problem
with twisted boundary conditions, whose proof is postponed at the end of the section. Let
then κ ∈ [0, 2π) as in Proposition 3.2 and set

Eβ,κ(L, �) := inf
ψ∈DD,κ (�β(L,�))

G̃a[ψ], (3.75)

DD,κ(�β(L, �)) :=
{
ψ ∈ H1(�β(L, �))

∣∣∣ ψ |∂�in∪{s=−L} = ψ0, ψ |s=L = ψ0e
iκ
}

.

(3.76)
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Lemma 3.2 Let {�n}n∈N, {Ln}n∈N be two monotone subsequences such that (3.56) holds.
Then,

Eβ(Ln, �n) = Eβ,κ(Ln, �n) + on(1). (3.77)

Proposition 3.5 (Dirichlet and Neumann energies) Let {�n}n∈N, {Ln}n∈N be two monotone
subsequences such that (3.56) holds. Then, for any 1 < b < 	−1

0 ,

Eβ(Ln, �n) − Ẽβ(Ln, �n) = on(1). (3.78)

Proof In view of the vanishing of the boundary terms in the functional G̃a[ψ] on any ψ

belonging toDD(�β(Ln, �n)) (see also the proof of Proposition 3.1) and the trivial inclusion
DD(�β(Ln, �n)) ⊂ DN(�β(Ln, �n)), we deduce the inequality

Ẽβ(Ln, �n) � Eβ(Ln, �n). (3.79)

Hence, we only have to prove the opposite inequality, i.e.,

Eβ(Ln, �n) � Ẽβ(Ln, �n) + on(1). (3.80)

Preliminarily, we observe that the quantity Ẽcorner,β(Ln, �n) admits a limit, which is
independent of the chosen sequences, exactly as Ecorner,β(Ln, �n). The argument to prove it
is the same as in the proof of Proposition 2.2; therefore we spell in detail only the estimates
showing that Ẽcorner,β(L, �) is monotone in L for fixed �, up to an exponentially small error
term: let La < Lb, then we have

Ẽβ(Lb, �) = G̃a
[
ψ̃Lb,�;�β(La, �)

]+ G̃a
[
ψ̃Lb,�; R±

]
� Ẽβ(La, �) + G̃a

[
ψ̃Lb,�; R±

]
,

(3.81)

where R± are the rectangular regions [La, Lb]×[0, �] and [−Lb,−La]×[0, �], respectively.
Applying Proposition 3.1, we get

G̃a
[
ψ̃Lb,�; R±(Lb − La, �)

]
� (Lb − La)E

1D
0 (�) + O ((Lb − La)�

−∞) ,
which, plugged into (3.81), yields

Ẽcorner,β(Lb, �) � Ẽcorner,β(La, �) + O ((Lb − La)�
−∞) . (3.82)

Let {δn}n∈N be such that 0 � δn � 1 and the pair of sequences {Ln − δn}n∈N,
{
�′
n

}
n∈N

satisfies the same conditions (3.56) as {Ln}, {�n}. Note that we have also �′
n = �n + O(δn),

because of (3.49) (see also Remark 3.2). We denote by ψ̃n and ψ̃n,δn for short any energy
minimizer in �β(Ln, �n) and �β(Ln − δn, �

′
n), respectively. The splitting technique used to

derive (3.13), yields (recall (3.12), (3.22) and (3.67))

Ẽβ(Ln, �n)

= G̃a
[
ψ̃n;�β(Ln − δn, �

′
n)
]+ 2E1D

0 (�′
n)δn + Ẽ0

[
u−; R−

]+ Ẽ0
[
u+; R+

]+ O(�−∞
n )

� Ẽβ(Ln − δn, �
′
n) + 2E1D

0 (�′
n)δn + Ẽ0

[
u−; R−

]+ Ẽ0
[
u+; R+

]+ O(�−∞
n ), (3.83)

where R− = [−Ln,−Ln + δn] × [0, �′
n] and R+ = [Ln − δn, Ln] × [0, �′

n] and u± are
defined as in (3.12). Hence, we get that (recall that Ẽ0[u] � O(�−∞) if 1 < b < 	−1

0 )

Ẽ0
[
u±; R±

]
� Ẽcorner,β(Ln, �n) − Ẽcorner,β(Ln − δn, �

′
n) + O(�−∞

n ) =: en = on(1),

(3.84)
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for any δn � 1, since the two quantities Ẽcorner,β(Ln, �n), Ẽcorner,β(Ln − δn, �
′
n) admit the

same limit, as proven above.
Now, we claim that (3.84) implies that, up to a phase, ψ̃n is pointwise close to f0(t)e−iα0s

in the region R− ∪ R+ and, in particular, along the boundary ∂�bd. Indeed, applying Propo-
sition 3.3 to the functionals Ẽ0

[
u±; R±

]
(with δn in place of L), we get that

∫ −Ln+δn

−Ln

ds
∫ �̄n

0
dt f 40 |∇u−|2 +

∫ Ln

Ln−δn

ds
∫ �̄n

0
dt f 40 |∇u+|2 � Cen + O(�−∞

n ).

(3.85)

Furthermore, fixing some 0 < Tn � �̄n , then, for any t ∈ [0, Tn] and any s ∈ [Ln − δn, Ln]
or s ∈ [−Ln,−Ln + δn],

∣∣∣∣ψ̃n(r(s, t))
∣∣− f0(t)

∣∣ � Ce
1/4
n + O(�−∞

n )√
min[0,Tn ] f0

, (3.86)

∣∣∣∣∂s
∫ �n

0
dt
∣∣ψ̃n
∣∣2
∣∣∣∣
∣∣∣∣
s=±Ln

� C

{
√
en + 1

δn

[
en

1/4 + O(δn�
−∞
n )√

min[0,Tn ] f0
+ e−c(b)Tn

]
+ δn

}
.

(3.87)

In order to simplify the discussion, let us assume that the errors O(�−∞
n ) appearing on

the r.h.s. of (3.85) and (3.86) are much smaller than en , since, if this is not the case, i.e., en is
exponentially small in �n , then the argument is actually much simpler. Then, if we pick Tn
in such a way that

f0(Tn) = e
1/12
n = on(1), (3.88)

if the r.h.s. is larger than f0(�̄n), or Tn = �̄n otherwise, then

‖∇u±‖2
L2(R̃±)

� Ce
2/3
n = on(1), (3.89)

‖1 − |u±|‖L∞(R̃±) � Ce
1/8
n = on(1),

∥∥ψ̃n
∥∥
L∞(R±\R̃±)

� Ce− 1
2 c(b)Tn , (3.90)

where R̃+ := [Ln − δn, Ln] × [0, Tn] and we used (B.35). Note that, by the pointwise lower
bound on f0 stated in (A.10), we find that

C
√|log en | � Tn � 2

√|log en |(1 + on(1)) � 1. (3.91)

Now, we claim that (3.89) and (3.90) imply that u± is close in L2 sense to a constant
phase factor eiκ± , κ± ∈ R, or, equivalently, ψ̃n � f0(t)e−i(α0s−κ±) in R̃±. By applying the
Poincaré inequality∫

R̃+
dsdt |h − 〈h〉|2 � C

∫
R̃+

dsdt
{
T 2
n |∂t h|2 + δ2n |∂sh|2} ,

where 〈h〉 is the average of h over R̃+, to h = u+/|u+|, which is well posed since u+ does
not vanish in R̃+ by (3.90), we obtain that there exists κ+ ∈ [0, 2π) such that

∥∥∥∥ u+
|u+| − eiκ+

∥∥∥∥
2

L2(R̃+)

� CT 2
n e

2/3
n = on(1),

thanks to (3.91). This in turn yields the desired estimate via (3.90):
∥∥∥u+ − eiκ+

∥∥∥2
L2(R̃+)

� C
[
T 2
n e

2/3
n + δnTne

1/4
n

]
= on(1). (3.92)
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The idea is now to exploit the information collected above to construct a trial state and
prove an upper bound on Eβ(Ln, �n) in terms of Ẽβ(Ln − δn, �n) via Lemma 3.2: we set
ψtrial(r) := ψ̃n(r) close to the corner, while sufficiently far from it,

ψtrial(r) := ψ̃n(r) + η(s(r))
(
f0(t(r))e−iα0s(r)eiκ± − ψ̃n(r)

)
, (3.93)

where the phases κ± are the constants appearing in (3.92). The function η is smooth and
satisfies η(±Ln) = 1, supp(η) ⊂ [−Ln,−Ln + δn] ∪ [Ln − δn, Ln] × [0, �n] and |∇η| =
O(δ−1

n ). Obviously, the trial stateψtrial does not belong toDD but e−iκ−ψtrial ∈ DD,κ (recall
(3.76)) with κ = κ+ − κ−. Hence, using Lemma 3.2, we can estimate

Eβ(Ln, �n) � Eβ,κ+−κ−(Ln, �n) + on(1) � Ga[ψtrial;�β(Ln, �n)] + on(1)

� Ẽβ(Ln − δn, �n) +
∫ �n

0
dt

F0(t)

f 20 (t)
jt
[
ψ̃n
]∣∣∣∣∣
s=Ln−δn

s=−Ln−δn

+ Ga
[
ψtrial; R+ ∪ R−

]+ on(1).

(3.94)

Let us first consider the boundary terms at Ln , since the ones at −Ln are perfectly equiv-
alent: thanks to the boundary conditions (3.10) satisfied by ψ̃n , we get

∫ �n

0
dt

F0(t)

f 20 (t)
jt
[
ψ̃n
]∣∣∣∣∣
s=Ln−δn

= − 1

2

∫ �n

0
dt ∂s

∣∣ψ̃n
∣∣2
∣∣∣∣
s=Ln

+
∫ Ln

Ln−δn

∫ �n

0
dt

F0(t)

f 20 (t)
∂s jt

[
ψ̃n
]
.

Integrating by parts as in (3.16) and using the Agmon bound provided by Lemma B.5 as well
as the inequalities (A.22) and (A.25) , one can show that the second term on the r.h.s. of the
expression above is bounded by

∣∣∣∣∣
∫ Ln

Ln−δn

∫ �n

0
dt

F0(t)

f 20 (t)
∂s jt

[
ψ̃n
]∣∣∣∣∣

� 2
∫ Ln

Ln−δn

∫ Tn

0
dt
∣∣∂t ψ̃n

∣∣∣∣∂sψ̃n
∣∣+ 2e−c(b)Tn

∫
R+\R̃+

dsdt ec(b)t
∣∣∇ψ̃n

∣∣2

� C
[
‖ f0∇u‖2

L2(R̃+)
+ e−c(b)Tn

]
� C

(
e
5/6
n + e−c(b)Tn

)
, (3.95)

while the first one can be estimated via (3.87), so obtaining
∣∣∣∣∣
∫ �n

0
dt

F0(t)

f 20 (t)
jt
[
ψ̃n
]∣∣∣∣∣
s=Ln−δn

∣∣∣∣∣ � C

[
√
en + en

5/24 + e−c(b)Tn

δn
+ δn

]
. (3.96)

We now focus on the energy contributions of the regions R± (third term on the r.h.s. of
(3.94)): For simplicity, we are going to consider only the energy in the region R+, since the
corresponding one in R− can be bounded in the very same way. We have

Ga
[
ψtrial; R+

]
� 10

∥∥(∇ − i tes) ψ̃n
∥∥2
L2(R+)

+ 4
∥∥∥∇η

(
f0e

−iα0s+iκ − ψ̃n

)∥∥∥2
L2(R+)

+ 8
∥∥∥(∇ − i tes) f0e

−iα0s+iκ
∥∥∥2
L2(R+)

+ 1

b

(∥∥ψ̃∥∥4L4(R+)
+ ‖ f0‖4L4(R+)

)

� C

δ2n

∥∥∥ f0e−iα0s+iκ − ψ̃n

∥∥∥2
L2(R+)

+ C
(
e
5/6
n + e−c(b)Tn

)
+ O(δn) (3.97)
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thanks to (A.10) and (B.34) and where the first term on the r.h.s. has been bounded by Cauchy
inequality, exploiting (3.85), (B.34), (B.35) and the splitting technique:

∥∥(∇ − i tes) ψ̃n
∥∥2
L2(R+)

�
∫
R+

dsdt f 20
{|∇u+|2 − 2(t + α0) js[u+] + 1

b

(
1 − f 20

) |u+|2}

� C
[
‖ f0∇u‖2

L2(R̃+)
+ e−c(b)Tn

]
+ O(δn) � C

(
e
5/6
n + e−c(b)Tn

)
+ O(δn). (3.98)

We now exploit (3.90) and (3.92) to deduce that
∥∥∥ f0e−iα0s+iκ − ψ̃n

∥∥∥2
L2(R+)

�
∫
R̃+

dsdt f 20

∣∣∣u − eiκ
∣∣∣2 + Cδne

− 1
2 c(b)Tn

� C
[
T 2
n e

2/3
n + δnTne

1/4
n + e− 1

2 c(b)Tn
]
. (3.99)

Putting together (3.94) with (3.96), (3.97) and (3.99), we finally get

Eβ(Ln, �n) � Ẽβ(Ln − δn, �n)

+ C

{
√
en + en

5/24 + e−c(b)Tn

δn
+ T 2

n e
2/3
n + δnTne

1/4
n + e− 1

2 c(b)Tn

δ2n
+ δn

}

� Ẽβ(Ln − δn, �n) + C

[
T 2
n e

2/3
n + δnTne

1/4
n + e− 1

2 c(b)Tn

δ2n
+ δn

]
+ on(1)

� Ẽβ(Ln − δn, �n) + C
[
max

{
T 2/3
n e

2/9
n , T 2

n e
1/8
n

}
+ e− 1

10 c(b)Tn
]

+ on(1)

= Ẽβ(Ln, �n) + on(1), (3.100)

where we have optimized over δn by taking δn = max{T 2/3
n e

2/9
n , T 2

n e
1/8
n } + e− 1

5 c(b)Tn and
used that Tn = O(

√| log en |). ��

Proof of Lemma 3.2 We first observe that the existence of the limit as n → +∞ of
Eβ,κ(Ln, �n) − 2E1D

0 (�n)Ln can be shown as in the proof of Proposition 2.2. Hence for
any 1 � δn � min{�n, Ln}, we have

Eβ,κ(Ln, �n) − Eβ,κ(Ln − δn, �n) + 2E1D
0 (�n)δn = on(1).

By a trivial testing of the functional, exploiting the above estimate as well as Propositions 3.1
and 3.2, one gets

Eβ(Ln, �n) � Eβ,κ(Ln − δn, �n) + ED,κ(R(δn, �n))

� Eβ,κ(Ln − δn, �n) + 2E1D
0 (�n)δn + O(δ−1

n ) + on(1) = Eβ,κ(Ln, �n) + on(1).
(3.101)

The proof of the opposite inequality is identical. ��

4 Proof of the energy lower bound

In this Section we prove the lower bound to the GL energy which in combination with the
upper bound proven in Proposition 5.1, stated in next Section, will provide the proof of
Theorem 2.1.
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Proposition 4.1 (GL energy lower bound) Let � ⊂ R
2 be any bounded simply connected

domain satisfying Assumptions 1 and 2. Then, for any fixed 1 < b < 	−1
0 , as ε → 0, it

holds

EGL � |∂�|E1D
0

ε
− Ecorr

∫ |∂�|

0
ds K(s) +

N∑
j=1

Ecorner,β j + o(1). (4.1)

We recall the definition of the superconducting boundary layer

Aε := {r ∈ �
∣∣ dist (r, ∂�) � ε�ε

}
,

with (see (1.15)) �ε = c1| log ε|, for a large constant c1. The smooth part of the boundary
layer is defined as

Acut,ε := {r ∈ Aε

∣∣ ∣∣s(r) − s j
∣∣ � εLε

}
, (4.2)

where s j is the coordinate along ∂� of the j-th corner and

Lε = c2(ε)| log ε|, (4.3)

for some

c1
tan(β/2) � c2(ε) � C, (4.4)

so that (3.56) holds. The corner regions are denoted by � j,ε, j ∈ {1, . . . , N }, and coincide
with the complement of Acut,ε:

� j,ε := (Aε \ Acut,ε
) ∩ {r ∈ Aε | dist(r, r j ) � CεLε

}
. (4.5)

InAcut,ε, one can use the tubular coordinates (s, t) defined in (1.10) as well as their rescaled
counterparts given in (1.16).Wedenote byA the rescaling of the boundary layerAε . Similarly,
the set obtained via rescaling of the domainAcut,ε is denoted byAcut, i.e., with a little abuse
of notation,

Acut :=
(
[0, s1 − Lε] ∪ [s1 + Lε, s2 − Lε] ∪ · · · ∪

[
sN + Lε,

|∂�|
ε

])
× [0, c1| log ε|],

(4.6)

while � j stands for the rescaling of the domain � j,ε, i.e., � j := {r′ ∈ R
2
∣∣ r j + εr′ ∈ � j,ε

}
.

Before proceeding further, we summarize the main steps of the proof of the lower bound.
We are going to treat the smooth part of the layer and the corner regions differently. In order
to extract the O(1) contributions to the energy, it is indeed necessary to retain in the smooth
part of the layer the terms depending on the boundary curvature. The same precision is not
needed close to the corners. There, however, the procedure is more involved, since we have
to reconstruct the model problem discussed in § 2.3.

• The first step is the replacement of the magnetic vector potential (§ 4.1). The idea is
to replace AGL with −tes+ 1

2K(s)t2 + εδε far enough from the corners by means of a
suitable gauge change. Close to the corners, on the other hand, we replace AGL with
F (Lemma 4.3) by means of a priori bounds of the difference between AGL and F (see
“Appendix B.2”);

• The second step is the rectification of the corner regions (§ 4.2): via a suitable diffeo-
morphism, we map the corner region as in Fig. 6 onto a domain with the same shape
as �β(L, �) in Fig. 2; this allows us to reduce the lower bound to the corner effective
problem introduced in (2.12);
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Fig. 6 A typical corner region
� j,ε (or, after rescaling, � j )
before the rectification

• The third step is simply the completion of the lower bound (§ 4.3), where we just glue
together the lower bounds near the corners with the one in the smooth part of the domain
discussed in “Appendix C”.

4.1 Replacement of themagnetic field

In Acut,ε we aim at bounding from below the GL energy by the reduced energy functional
Gε[ψ;Acut], where

Gε[ψ;Acut] :=
∫
Acut

dsdt (1 − εk(s)t)
{
|∂tψ |2 + 1

(1−εk(s)t)2
|(∂s + iaε(s, t)) ψ |2

− 1
2b

(
2|ψ |2 − |ψ |4) } . (4.7)

aε(s, t) := aε(s, t)es, aε(s, t) = −t + 1
2k(s)t

2 + εδε, (4.8)

and ψ(s, t) = ψGL(r(s, t))e−iφε(r(s,t)), with φε a suitable gauge phase (see (4.10) below).
The replacement procedure by means of a local gauge choice is well described in [33,

Appendix F] for smooth domains and, in more details, in [24, Sect. 5.1]. A similar discussion
is extended in presence of corners at the boundary in [19, Sect. 2.4], where however the
energy of the corner regions is dropped.

Lemma 4.1 (Replacement of the magnetic potential in Acut,ε) Under the assumptions of
Proposition4.1, there existsφε ∈ C∞(�) such that, settingψ(s, t) := ψGL(r(s, t))eiφε(r(s,t)),
we get, as ε → 0,

EGL
ε

[
ψGL,AGL;Acut,ε

]
� Gε[ψ;Acut] + O(ε2| log ε|2). (4.9)

Proof As described above there are three operations, which are performed simultaneously,
to get (4.9):

• change to boundary tubular coordinates (s, t);
• extraction of a suitable gauge phase to replace AGL with −tes+ 1

2K(s)t2 + εδε;
• rescaling of all the lengths (e.g., via (1.16)).

As anticipated, the above procedures have been already discussed in the literature, therefore
we omit the details for the sake of brevity. We only provide the expression of the gauge phase
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for later convenience

φε(s, t) := −1

ε

∫ t

0
dηAGL(r(εs, εη)) · ν(εs) − 1

ε

∫ s

0
dξ AGL(r(εξ, 0)) · γ ′(εξ) + O(ε)s.

(4.10)

��
In the corner regions, on the opposite, it suffices to use a priori bounds on the solutions

of the GL equations to substitute AGL with F (recall (2.17)). Before doing that, we need
however a preparatory lemma:

Lemma 4.2 For any j= 1, . . . , N, as ε → 0,∥∥∥
(
∇ + i A

GL

ε2

)
ψGL

∥∥∥
L2(� j,ε)

= O(| log ε|). (4.11)

Proof The idea is to exploit the variational equation for ψGL in (B.6), to compute
∥∥∥
(
∇ + i A

GL

ε2

)
ψGL

∥∥∥2
L2(� j,ε)

= 1

ε2

∫
� j,ε

dr
(
1 − ∣∣ψGL

∣∣2) ∣∣ψGL
∣∣2

+
∫

∂� j,ε\∂�

dx ψGL∗
ν ·
(
∇ + i A

GL

ε2

)
ψGL = O(| log ε|2), (4.12)

by the bounds (B.10), (B.13) and the boundary conditions on ψGL (recall (B.6)). ��
We can now perform the vector potential replacement:

Lemma 4.3 (Replacement of the magnetic field in � j,ε) For any j = 1, . . . , N, there exists
ψ j ∈ H1(Aε), so that, as ε → 0,

EGL
ε

[
ψGL,AGL;� j,ε

]
� EGL

1

[
ψ j ,F;� j

]+ O(ε3/5). (4.13)

Remark 4.1 (Kinetic energy in the corner regions) CombiningLemma4.2withLemma4.3,
one can easily deduce that (4.11) holds true with (ψ j ,F) in place of (ψGL,AGL). More
precisely, let ψ j as in (4.13), then∥∥(∇ + iF) ψ j

∥∥
L2(� j )

= O(| log ε|). (4.14)

Proof A straightforward computation yields
∥∥∥
(
∇ + i A

GL

ε2

)
ψGL

∥∥∥2
L2(� j,ε)

−
∥∥∥
(
∇ + i F

ε2

)
ψGL

∥∥∥2
L2(� j,ε)

= −2Im
∫

� j,ε

dr
[(

∇ + i A
GL

ε2

)
ψGL

]∗ (
AGL

ε2
− F

ε2

)
ψGL −

∫
� j,ε

dr
∣∣∣AGL

ε2
− F

ε2

∣∣∣2 ∣∣ψGL
∣∣2

� −δ

∥∥∥
(
∇ + i A

GL

ε2

)
ψGL

∥∥∥2
L2(� j,ε)

− 1
ε4

( 1
δ

+ 1
) ∥∥AGL − F

∥∥2
L2(� j,ε)

� −Cδ| log ε|2 − 1
ε4

( 1
δ

+ 1
) ∥∥AGL − F

∥∥2
L2p(�)

∣∣� j,ε
∣∣1− 1

p , (4.15)

for any p ∈ [2,∞), where we have used Lemma 4.2. Plugging now (B.11), which reads for
p′ ∈ [2,+∞) ∥∥AGL − F

∥∥
L p′ (�)

= O(ε7/4), (4.16)
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thanks to the Agmon decay (B.16), we get
∥∥∥
(
∇ + i A

GL

ε2

)
ψGL

∥∥∥2
L2(� j,ε)

−
∥∥∥
(
∇ + i F

ε2

)
ψGL

∥∥∥2
L2(� j,ε)

� −C
[
δ| log ε|2

− 1√
ε

( 1
δ

+ 1
) (

ε2| log ε|2)1− 1
p

]
� −Cε3/4−1/p| log ε|2 (4.17)

after an optimization over δ (i.e., taking δ = ε3/4−1/p| log ε|−1/p). The proof is then com-
pleted by exploiting the invariance of the energy under combined translations and global
gauge change. ��

4.2 Rectification of the corner regions

We aim at estimating from below the energy close to the corners (first term on the r.h.s.
of (4.13)) by the minimal energy of the model problem introduced in (2.12) and discussed
in § 3. To this purpose there are two difficulties to overcome. First, one needs to force the
boundary conditions in the minimization of the corner energies appearing in (4.13), since an
unconstrainedminimizationwould lead to unwanted contribution from the normal boundaries
at s j ± Lε. Such a problem will however be solved by exploiting Proposition 3.5.

The second issue is less trivial: the model problem is indeed defined on a domain whose
boundary is straight, while typically the boundaries of the domains � j have a non-trivial
curvature, as in Fig. 6. Of course, being the corner regions rather small and the curvature
bounded, the corrections induced by this adjustment are of lower order (Lemma 4.4).

Let us introduce some notation: we are going to denote by � j,rect the corner region of
opening angle β j with straight sides, longitudinal length Lε and normal width �ε(1+ o(1)).
We do not require the inner boundaries of � j,rect to be straight since the exponential decay
of any GL minimizer makes such a boundary irrelevant. We also choose the coordinates in
such a way that the corner coincides with the origin. Hence, except for the inner boundaries,
� j,rect coincide with the region described in Fig. 2, up to a rotation:

� j,rect � R�β j (Lε, �ε), (4.18)

with R a rotation around the axis perpendicular to the plane passing through the corner.

Lemma 4.4 (Rectification of the corner) Let ψ j be the H1 function in (4.13). Then, there
exists a diffeomorphism R : � j → � j,rect, so that, setting ψ̃ j (R) := ψ j (r(R)),

EGL
1

[
ψ j ,F;� j

] = EGL
1

[
ψ̃ j ,F;�β j (Lε, �ε)

]+ O(ε| log ε|∞). (4.19)

Proof We want to map the region � j onto � j,rect via a suitable diffeomorphism and exploit
the fact that, thanks to the boundedness of curvature and the size of the region, such a map
is suitably close to the identity. A similar a trick has already been used, e.g., in [15]. Indeed,
there exists a smooth map R(r) : � j → � j,rect which is one-to-one, such that R(0) = 0 and

R j (r) = r j (1 + O(ε| log ε|)) , ∂ j Rk(r) = δ jk + O(ε| log ε|∞). (4.20)

Using such a map, we get

EGL
1

[
ψ j ,F;� j

] =
∫

� j,rect

dR
{∣∣(J∇R + i F̃

)
ψ̃ j
∣∣2 − 1

2b

(
2
∣∣ψ̃ j
∣∣2 − ∣∣ψ̃ j

∣∣4)} , (4.21)

where J is the jacobian matrix associated to the change of coordinates r → R and

ψ̃ j (R) := ψ j (r(R)), F̃(R) := F(r(R)). (4.22)
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By (4.20),

F̃(R) = 1
2R

⊥ (1 + O(ε| log ε|)) . (4.23)

Therefore, we can estimate from below the r.h.s. of (4.21) exactly as in (4.15), using (4.14)
in Remark 4.1, to get

EGL
1

[
ψ j ,F;� j

]
�
∫

� j,rect

dr
{∣∣(∇ + iF) ψ̃ j

∣∣2 − 1
2b

(
2
∣∣ψ̃ j
∣∣2 − ∣∣ψ̃ j

∣∣4)}

− C
[
δ| log ε|2 + (1 + 1

δ

)
ε2| log ε|4] � EGL

1

[
ψ̃ j ,F;� j,rect

]+ O(ε| log ε|∞). (4.24)

The last step is then the replacement of the region � j,rect with �β j (Lε, �ε), which can be
done exploiting the rotational invariance of the GL functional, and the exponential decay of
ψGL given by (B.16) (and thus of ψ). ��

4.3 Completion of the lower bound

We are now in position to complete the proof of the lower bound.

Proof of Proposition 4.1 Combining the results proven in Lemma 4.1, Lemmas 4.3 and 4.4,
we get

EGL � Gε[ψ;Acut] +
N∑
j=1

EGL
1

[
ψ̃ j ,F;�β j (Lε, �ε)

]+O(ε3/5). (4.25)

At this stage the energy contributions of the smooth part of the domain and its complement
have been completely decoupled, so we can bound them from below separately. In fact, the
lower bound to Gε[ψ;Acut] can be simply taken from [24, Prop. 4]:

EGL � |∂�|E1D
0

ε
− 2LεE

1D
0 − Ecorr

∫ |∂�|

0
ds K(s)

+
N∑
j=1

⎡
⎣EGL

1

[
ψ̃ j ,F;�β j (Lε, �ε)

]−
∫ c0| log ε|

0
dt

F0(t)

f 20 (t)
jt [ψ(s, t)]

∣∣∣∣∣
s=s j+Lε

s=s j−Lε

⎤
⎦+O(ε3/5).

(4.26)

Now, recalling the definitions of ψ in Lemma 4.1 and ψ̃ j in Lemma 4.4, we claim that

EGL
1

[
ψ̃ j ,F;�β j (Lε, �ε)

]−
∫ c0| log ε|

0
dt

F0(t)

f 20 (t)
jt [ψ(s, t)]

∣∣∣∣∣
s=s j+Lε

s=s j−Lε

= G̃F
[
ψ̃ j
]+ O(ε3/5),

(4.27)

where the functional G̃F is defined in (3.39).
Wenote that, because of the rigid translation and rotation, the boundaries ∂�β j ,bd coincides

with the portion of the lines s = s j ± Lε in A. Therefore, in order to replace ψ with ψ̃ j in
the boundary terms in (4.27), we need to estimate the contribution of the gauge phase as well
as the effect of the rectification. Next, we observe that
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jt [ψ]|s=s j±Lε
= jt

[
ψ j ((r(εs, εt)) − r j )/ε)e−iφε(s,t)e−i

F(r j )·r′
ε

]∣∣∣∣
s=s j±Lε

= [
jt
[
ψ j ((r(εs, εt)) − r j )/ε)

]− ∂t
(
φε(s, t) + 1

ε
F(r j ) · r′)]∣∣

s=s j±Lε
.

(4.28)

Recalling (4.22), we immediately see that the first term on the r.h.s. of the expression above
in fact reconstructs the boundary terms in G̃F. Moreover, by direct computation

−∂t
(
φε + 1

ε
F(r j ) · r′) = 1

ε

(
AGL(r) − F(r j )

) · et = 1
ε

(
AGL(r) − F(r)

) · et + 1
2r

′⊥ · et ,
where we have used the change of coordinates r = r j + εr′. Furthermore, the properties of
the diffeomorphism discussed in the proof of Lemma 4.4 imply that

1
2r

′⊥ · et = 1
2 s + O(ε| log ε|∞).

Hence, each boundary term can be rewritten

∫ c0| log ε|

0
dt

F0(t)

f 20 (t)
jt [ψ(s, t)]

∣∣∣∣∣
s=s j+Lε

s=s j−Lε

=
∫ c0| log ε|

0
dt

F0(t)

f 20 (t)

[
jt
[
ψ̃(r(s, t))

]+ 1
2 s
]∣∣∣∣∣
s=+Lε

s=−Lε

− 1

ε

∫ c0| log ε|

0
dt

F0(t)

f 20 (t)

(
AGL(r(s, t)) − F(r(s, t))

) · et
∣∣∣∣∣
s=s j+Lε

s=s j−Lε

+ O(ε| log ε|∞)

(4.29)

and it only remains to bound the last term. This can be done exploiting once more (B.11):
setting g(r) := F0(t(r))/ f 20 (t(r)) for short and using the vanishing of F0 at t = 0, c1| log ε|,
we get

1

ε3

∣∣∣∣∣
∫

� j,ε

dr ∇ · [g (AGL − F
)]∣∣∣∣∣ =

1

ε3

∣∣∣∣∣
∫

� j,ε

dr (∇g) · (AGL − F
)∣∣∣∣∣

� C | log ε|5
ε3

∥∥AGL − F
∥∥
L1(� j,ε)

, (4.30)

where we have used that both AGL and F are divergence free and the estimate

|∇g(r)| =
∣∣∣∣∣∂t

F0(t)

f 20 (t)

∣∣∣∣∣ � 2 |t + α0| +
∣∣∣∣∣
F0(t) f ′

0(t)

f 30 (t)

∣∣∣∣∣ � C | log ε|5, (4.31)

by (A.3), (A.11) and the simple bound (A.25). On the other hand, by (4.16),

∥∥AGL − F
∥∥
L1(� j,ε)

�
∥∥AGL − F

∥∥
L p(� j,ε)

∣∣� j,ε
∣∣1− 1

p � Cε7/4
(
ε2| log ε|)1− 1

p , (4.32)

for p ∈ [2,+∞), which implies (4.27) via (4.30).
Putting together (4.26)with (4.27) and observing that, by theAgmon decay,we can impose

the boundary condition ψ̃ = ψ0 along the interior boundary ∂�in up to O(ε∞) errors, we
thus get

EGL � |∂�|E1D
0

ε
− 2LεE

1D
0 − Ecorr

∫ |∂�|

0
ds K(s)

+
∑
j∈


inf
ψ∈D̃
(�β j (Lε,�ε))

G̃F
[
ψ̃, �β j (Lε, �ε)

]+ O(ε3/5)
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= |∂�|E1D
0

ε
− Ecorr

∫ |∂�|

0
ds K(s) +

∑
j∈


(
Ẽβ j (Lε, �ε) − 2LεE

1D
0

)+ O(ε3/5). (4.33)

The final step of the proof is the application of Proposition 3.5, which yields (see (3.74))

Ẽβ j (Lε, �ε) − 2LεE
1D
0 = Ecorner,β j + o(1), (4.34)

and thus the result. ��

5 Other proofs

We complete in this Section the proofs of the results proven in the paper, i.e., specifically, we
prove the energy upper bound matching the lower bound proven in Proposition 4.1. Finally,
we show how the energy asymptotics can be used to deduce a pointwise estimate of the order
parameter.

5.1 Upper bound and energy asymptotics

We state the main result of this section in the following Proposition 5.1. Note that Proposi-
tions 4.1 and 5.1 together completes the proof of Theorem 2.1, with the simple exception of
the replacement of E1D

0 with E1D

 , which can be done up to remainders of order O(ε∞) by

Lemma A.2.

Proposition 5.1 (GL energy upper bound) Let � ⊂ R
2 be any bounded simply connected

domain satisfying Assumptions 1 and 2. Then, for any fixed 1 < b < 	−1
0 , as ε → 0, it

holds

EGL � |∂�|E1D
0

ε
− Ecorr

∫ |∂�|

0
ds K(s) +

N∑
j=1

Ecorner,β j + o(1). (5.1)

Proof As usual the upper bound is obtained by testing the GL functional on a suitable trial
state. As a vector potential, we pick F = 1

2 (−y, x). The order parameter on the other hand
is much more involved: the idea is to recover the trial state given in [24, Eq. (4.14)] far from
the corners and glue it to the minimizers of the effective energies in every corner. To retain
the curvature corrections, as in [23] (see also “Appendix C”), we decompose the smooth part
of the layer into cells of tangential length of order ε. The order parameter is constructed in
such a way that its modulus is close to fkn (εt) (see “Appendix A.2”) in each cell, kn being
the average curvature, and to the modulus of the corner minimizer ψβ j (r) in the j−th corner
region, respectively. The phase ofψtrial on the other hand is given by a gauge phase analogous
to (4.10), but defined in terms of the vector potential F, plus the optimal phase exp{−iαkn s/ε}
in each cell. An additional phase is then added to patch together such factors. Explicitly, we
set

ψtrial(r) := χ (t(r)) ·
{
g(s(r), t(r))e−i S(s(r))eiφtrial(s(r),t(r)), for r ∈ Ãcut,ε,

ψ̃β j ,κ j

(R−1(r − r j )/ε
)
, for r ∈ � j,ε,

(5.2)

whereR is the rotation defined in (4.18) and κ j a suitable phase factor, given in (5.5) below.
Moreover, for some a > 0,

Ãcut,ε := {r ∈ Acut,ε
∣∣ ∣∣s(r) − s j

∣∣ � Lε + εa,∀ j= 1, . . . , N
}
, (5.3)
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is a subdomain of Acut,ε where boundary coordinates are well defined. In Acut,ε \ Ãcut,ε,
we take care of the transition from the smooth part of the layer to the corner region: for any
given j= 1, . . . , N , we concretely set

ψtrial(r) := ζ(s) f0 (t) e−i S(s j±Lε) + (1 − ζ(s)) fk± (t) e−i S(s j±Lε±εa), (5.4)

for any |s(r) − s j ± Lε| � εa and where we have denoted k± the average curvature in the
cells C± adjacent to the j-th corner region. The smooth cut-off function ζ is chosen in such
a way that it is positive and

ζ(s j ± Lε) = 1, ζ(s j ± Lε ± εa) = 0, |ζ ′| � Cε−a .

Furthermore,

• the smooth cut-off function χ(t) equals 1 for any t � c1| log ε| and vanishes for t �
| log ε|2, so that its gradient is bounded by O(| log ε|−2);

• the gauge phase φtrial is given by (4.10) with F in place of AGL; to leading order such a
phase equals − 1

2 st , so recovering part of the phase of ψ
 (recall (2.16));
• the function g(s, t) is taken directly from [24, Eq. (4.15)] (see also [24, Eq. (4.18)]): it

equals fkn in Cn , up to a smaller correction χn , which allows the continuous transition
from fkn to fkn+1 ;

• similarly, the phase S(s) is given by [24, Eqs. (4.20) & (4.21)]: to leading order S(s) =
−iαkn s in Cn , but, as for the density, one needs to add a higher order correction taking
into account the jump from αkn to αkn+1 ;

• ψ̃β j ,κ j (r
′) is close to the minimizer of the effective energy (3.75) in �β j (Lε, �ε), where

κ j := κ+, j − κ−, j and

κ±, j := −S(s j ± Lε) + α0(s j ± Lε) = −
∫ s j±Lε

0
dξ
(
αk(ξ) − α0

)+ O(| log ε|∞).

(5.5)

Applying the rectification procedure described in Lemma 4.4, we set

ψ̃β j ,κ j (r
′) = ψβ j ,κ j (R(r)), (5.6)

where R is the diffeomorphism of Lemma 4.4 and ψβ,κ any minimizer of (3.75).

We now sketch the main steps in the computation of the energy of (ψtrial,F), which were
already discussed elsewhere and focus afterwards on the new estimates:

• since curlF = 1 in �, the last term in the GL energy functional (1.1) vanishes;
• the integration can be restricted to Aε , where the cut-off function χ is 1 and all the rest

of the energy can be discarded thanks to the exponential decay of the modulus of ψtrial

as well as its derivatives (inherited from f0 and fk , see (A.10));
• the gauge phase φtrial allows to replace F with

(−t + 1
2εk(s)t

2
)
es in Ãcut,ε , as in

Lemma 4.1 up to an error of order O(ε| log ε|∞);
• the energy bound in Ãcut,ε is taken from [24] and stated in Proposition C.1:

EGL [ψtrial,F;Acut,ε
]

� |∂�|E1D
0

ε
− 2LεNE1D

0 − εEcorr

∫ |∂�|
ε

0
ds k(s) + o(1).

Given the discussion above, it remains to compute the energy of ψtrial in the region
Acut,ε \ Ãcut,ε as well as the energy contributions of all the corner regions � j,ε. Let us start
by considering the latter: getting rid of the diffeomorphism up to small errors, close to each
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corner we recover Eβ j ,κ j (Lε, �ε) = Eβ j (Lε, �ε) + o(1) by Lemma 3.2. Summing up, we
get

N∑
j=1

Eβ j (Lε, �ε) + o(1) =
N∑
j=1

Ecorner,β j + 2NE1D
0 Lε + o(1), (5.7)

where we have exploited the existence of the limit proven in Proposition 2.2.
Finally, let us consider the energy in Acut,ε \ Ãcut,ε and restrict ourselves to the interval

[s j − Lε −εa, s j − Lε]: the area of the region is of order ε2+a | log ε| and we can thus discard
all the terms involving f0, fk± and their derivatives there up to errors of orderO(εa | log ε|∞)

by (A.12) and (A.10). The only non-trivial term to estimate is thus the kinetic energy of the
cut-off function ζ : by grouping together the terms in a convenient way, one has to bound at
the boundary s j − Lε the quantity

C
∫ s j−Lε

s j−Lε−εa
ds
∫ �ε

0
dt
∣∣ζ ′(s)

∣∣2 ∣∣∣ f0 (t) e−i S(s j−Lε) − fk− (t) e−i S(s j−Lε−εa )
∣∣∣2

� Cε−2a
∫ s j−Lε

s j−Lε−εa
ds
∫ �ε

0
dt

[∣∣ f0 (t) − fk− (t)
∣∣2+ f 20 (t)

∣∣∣e−i S(s j−Lε)−e−i S(s j−Lε−εa )
∣∣∣2
]

� C
[
ε1−a + εa | log ε|∞] , (5.8)

by the identity

S(s) = α0s +
∫ s

0
dξ
(
αk(ξ) − α0

)+ O(| log ε|∞). (5.9)

Putting together all the energy contributions, we get (5.1). ��

5.2 Order parameter

As proven in [19], any minimizing ψGL is such that its modulus is suitably close in L2(Aε)

to the 1D profile f0(dist( · , ∂�)/ε). The presence of the corners affects the estimate only
at the precision one can approximate |ψGL| with f0, since the result in [19, Thm. 1.1] is
proven by neglecting the corner regions. The improved energy asymptotics of Theorem 2.1
obviously suggests that such an estimate can in fact be strengthened. Indeed, we prove here
that a pointwise estimate of the difference |ψGL| − f0 holds true in the smooth part of the
boundary layer.

Proof of Proposition 2.1 The starting point is the combination of the energy upper bound
(5.1), with the stronger lower bound which can be obtained by combining the arguments of
the proof of Proposition 4.1 with Lemma C.1: in each cell contained in the smooth part of
the boundary layer, we can retain the positive contribution appearing on the r.h.s. of (C.13).
The final outcome is the estimate

Mε∑
n=1

∫
C n

dsdt (1 − εknt) f
4
n (1 − |un |2)2 = o(1). (5.10)

A direct consequence is the estimate stated in (2.26) in Remark 2.3. Furthermore, (5.10) is
the key ingredient of a typical argument (first used in [10]) to deduce a pointwise estimate of
|un | and thus |ψGL| = f0|un | (see [24, Proof of Thm. 2, Step 2] but also the proof of (3.28)
in Proposition 3.3).

123



Effects of corners in surface superconductivity Page 43 of 57   236 

Instead of providing all the details, we comment only on the needed adaptations. First of
all, one has to select a subdomain of Cn , where a suitable lower bound on the density fn
holds true. In our case, we can restrict the analysis to the layer {dist(r, ∂�) � cε}, where
fn is bounded from below by a positive constant independent of ε. As a consequence, the
argument of [24, Proof of Thm. 2, Step 1] leads to

|∇ |un || � C, in {dist(r, ∂�) � cε} ∩ Cn . (5.11)

With such a bound at disposal, the aforementioned argument applies straightforwardly in the
boundary region {dist(r, ∂�) � cε}, leading to the pointwise estimate

||un | − 1| = o(1), in {dist(r, ∂�) � cε} ∩ Cn, (5.12)

which immediately yields (2.27). ��
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Appendix A. One-dimensional effective energies

In this Appendixwe recall some known results about the effective one-dimensional problems,
which are known to play a role in surface superconductivity. More details can be found, e.g.,
in [17,23–25].

A.1. Effective model on the half-line

Themodel problem describing the behavior of the order parameter along the normal direction
to the boundary ∂� in the surface superconductivity regime is given in first approximation
by the energy

E1D

,α[ f ] :=

∫ +∞

0
dt

{
|∂t f |2 + (t + α)2 f 2 − 1

2b
(2 f 2 − f 4)

}
, (A.1)

where t is the rescaled distance to the boundary and α ∈ R is a parameter.
For any α ∈ R, the functional (A.1) admits (see, e.g., [23, Prop. 3.1] or [24, Prop. 5]) a

unique minimizer in the domain D1D = {
f ∈ H1(R+; R) | t f (t) ∈ L2(R+)

}
with ground

state energy E1D

,α . The optimal profile is obtained by optimizing over α, as in (2.3). The

infimum can be easily shown to actually be a minimum, i.e., there exists an α
 ∈ R, where
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the minimum is achieved. We also denote by f
 the corresponding profile, i.e., the minimizer
of E1D


,α

, which satisfies

0 < f
 � C exp
{− 1

2 (t + α
)
2} . (A.2)

A.2. Curvature-dependent one-dimensional models

It is convenient to introduce a generalization of (A.1), which takes into account the effects
of the boundary curvature:

E1D
k,α[ f ] :=

∫ �

0
dt(1 − εkt)

{
|∂t f |2 + Vk,α(t) f 2 − 1

2b
(2 f 2 − f 4)

}
, (A.3)

where k ∈ R is the rescaled mean curvature, which is assumed to be constant here,

Vk,α(t) = 1

(1 − εkt)2
(
t + α − 1

2εkt
2
)2

(A.4)

and � = �(ε) � 1 is an ε-dependent quantity satisfying

| log ε| � � � ε−1. (A.5)

For any α ∈ R we denote the ground state energy of (A.3) by E1D
k,α . The corresponding

optimal energy is

E1D
k := inf

α∈R

E1D
k,α = inf

α∈R

inf
f ∈D 1D

�

E1D
k,α[ f ], (A.6)

whereD1D
� = H1(I�; R), with I� := [0, �], and one can prove the existence of a minimizing

αk ∈ R, i.e., E1D
k = E1D

k,αk
. The corresponding profile is then denoted by fk , which is

therefore the unique minimizer of E1D
k,αk

. We also set E1D
k := E1D

k,αk
, accordingly. Note that,

unlike E1D

,α , the new energy functional E1D

k,α depends on ε in the measure, in the potential Vk,α
and possibly in the upper extreme of the integration domain �.

The dependence on the curvature k of the model problem (A.6) is investigated in [24,
Props. 1 & 2], where it is shown that all the relevant quantities are essentially continuous in
k.We sum up here themain properties of the limiting functionals (A.3) and the corresponding
minimizers (see [23, Sect. 3] and [24, Appendix A] for the proofs):

• fk is a smooth non-negative function monotonically decreasing for t � 1, such that
‖ fk‖∞ � 1 and

− f ′′
k + εk

1−εkt f
′
k + Vk,α(t) fk = 1

b

(
1 − f 2k

)
fk, (A.7)

in I� with Neumann boundary conditions f ′
k(0) = f ′

k(�) = 0;
• for any 1 � b < 	−1

0 , fk is strictly positive and satisfies the optimality condition

∫ �

0
dt

1

1 − εkt

(
t + αk − 1

2εkt
2
)
f 2k (t) = 0; (A.8)

• for any k ∈ R,

E1D
k = − 1

2b

∫ �

0
dt (1 − εkt) f 4k (t). (A.9)
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• for any 1 � b < 	−1
0 and for ε small enough, there exist two positive and finite constants

c, c′ > 0, such that

c exp
{
− 1

2

(
t + 1

2

)2} � fk(t) � c′ exp
{− 1

2 (t + αk)
2} . (A.10)

We add to the above bounds the following estimate, which is quite similar to what is
proven in [24, Lemma 9]:

Lemma A.1 For any 1 � b < 	−1
0 and for ε � 1, there exists a finite constant C > 0, such

that ∣∣ f ′
k(t)
∣∣ � C e− 1

4 t
2
, for any t ∈ [0, �], (A.11)∣∣ f ′

k(t)
∣∣ � Ct3 fk(t), for any t ∈ [1, �]. (A.12)

Proof For the proof of (A.11) we simply notice that, by integrating the variational Eq. (A.7)
multiplied by fk(t) in [t, �] and using Neumann boundary conditions, we obtain

∣∣ f ′
k(t)
∣∣ � C

∫ �

t
dη η2 fk(η)

Then, the result is a consequence of the decay of fk (A.10).
The proof of (A.12) follows along the same lines of [24, Proof of Lemma 9]. ��
As first discussed in [23, Sect. 3], a key role in the study of the effective 1D models is

played by the following potential function

Fk(t) := 2
∫ t

0
dη

1

1 − εkη

(
η + αk − 1

2εkη
2
)
f 2k (η)

= − f ′
k
2
(t) + (t + αk)

2 f 2k (t) − 1
b

(
1 − 1

2 f 2k (t)
)
f 2k (t) + O(εk). (A.13)

which heuristically provides the energy gain of a single vortex at a distance εt from the
boundary. Similarly, the overall energy cost of a vortex is given by the cost function

Kk(t) := f 2k (t) + Fk(t), (A.14)

The properties of both functions are summed up below (see [23, Sect. 3] and [24, Appendix
A]): for any 1 < b < 	−1

0 and k ∈ R,

• Fk(t) � 0, for any t ∈ [0, �];
• Fk(0) = Fk(�) = 0;
• let t̄k,� > 0 be such that (t̄k,� is uniquely defined by monotonicity of fk for large t)

Īk,� := {t ∈ (0, �)
∣∣ fk(t) � �3 fk(�)

} = [0, t̄k,�] , (A.15)

then,

Kk(t) � 0, for any t ∈ [0, t̄k,�]. (A.16)

A.3. Effective model on an interval with k = 0

A special case of the 1D models discussed in the previous Section is the one obtained for
k = 0. It is in fact an approximation of the 1D effective energy E1D


 obtained by minimizing
the energy on a finite interval [0, �], � � 1, rather than in the whole of R

+ (see [23, Sect.
3]). There is indeed a unique minimizing pair f0, α0 of E1D

0,α[ f ] over f ∈ H1([0, �]) positive
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and α ∈ R. Like fk , f0 solves the variational Eq. (A.7) in the interval [0, �] with α0 in place
of αk . In addition, f0 satisfies Neumann boundary conditions

f ′
0(0) = f ′

0(�) = 0. (A.17)

Furthermore, all the properties (A.8)–(A.12) (with k = 0) hold true for f0 as well. In
particular, f0 is monotonically decreasing for t � t0, where t0 is the unique maximum
of f0, satisfying

0 < t0 � |α0| + 1√
b
. (A.18)

Lemma A.2 For any 1 < b < 	−1
0 , if � � 1, then

E1D
0 = E1D


 + O(�−∞). (A.19)

Proof It suffices to prove that for any finite α ∈ R,

E1D

,α − E1D

0,α = O(�−∞), (A.20)

which immediately implies (A.19), since the minima of both functionals are achieved for
bounded α (see, e.g., [23, Cor. 3.2 & Lemma 3.1]). However, (A.20) above is a trivial
consequence of the exponential decays (A.2) and (A.10). ��

A very important consequence of the properties of f0 [23, Prop. 3.5] is that, as for fk , if
we set (recall (3.7))

K0(t) := f 20 (t) + F0(t), (A.21)

where

F0(t) := 2
∫ t

0
dη (η + α0) f 20 (η) = −2

∫ �

t
dη (η + α0) f 20 (η),

then, for 1<b < 	−1
0 ,

K0(t) � 0, for any t ∈ I�̄, (A.22)

with

I�̄ := {
t ∈ (0, �)

∣∣ f0(t) � �3 f0(�)
} = [0, �̄] ; (A.23)

�̄ = � + O(1). (A.24)

In the whole interval [0, �], we can use (A.13) in combination with (A.12) to estimate

|F0(t)| = −F0(t) � Ct6 f 20 (t), ∀t ∈ [1, �]. (A.25)

Remark A.1 (Positivity of the cost function) An interested reader might wonder whether
K0(t) is in fact positive in the whole of [0, �]. There is however a simple argument showing
that this is not the case and ∃tm ∈ I�, where

K0(tm) < 0. (A.26)

To prove this, one first note that K0 is convex. Hence, since K ′
0(0) = 2α0 f 20 (0) < 0,

K ′
0(�) = 2(� + α0)

2 f 20 (�) > 0, there must be a minimum point at 0 < tm < �. In fact, by
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a close inspection of the condition K ′
0(tm) = 0, it is possible to prove that tm = � + O(1).

However, the analogue of (A.13) and the criticality condition K ′(tm) imply that

K0(tm) = (1 − 1
b + 1

2b f 20 (tm)
)
f 20 (tm) − �2 f 20 (�)(1 + o(1)) = − (�2 + o

(
�2
))

f 20 (�) < 0.

We complete the section, by showing that the positivity in (A.22) can in fact be strengthen
and promoted to a sort of coercivity of K0.

Proposition A.1 (Coercivity of K0) For any 1 < b < 	−1
0 , if � � 1, there exists a constant

cb > 0, such that

K0(t) � cb f
4
0 (t), for any t ∈ I�̄. (A.27)

Proof The proof idea is quite similar to the one used in the proof of [23, Prop. 3.5]. We
provide the details for the sake of completeness. We set

K̃ (t) := K0(t) − 1
�4

f 20 (t) − cb f 40 (t) + γ�, (A.28)

where γ� := (� + α0)
2 f 20 (�) − 1

b

(
1 − 1

2 f 20 (�)
)
f 20 (�), so that, by the identity (A.13), one

gets

K̃ (t) =
[
1 − 1

�4
− 1

b + ( 1
2b − cb

)
f 20 (t)

]
f 20 (t) − f ′

0
2
(t) + (t + α0)

2 f 20 (t). (A.29)

Now, if one can prove that K̃ � 0 in [0, �], the result then easily follows because

min
I�̄

(
1
�4

f 20 (�) − γ�

)
� min

I�̄

[
1
�4

f 20 (t) − �2 f 20 (�)
]

� 0,

for � large enough.
Let us then address the positivity of (A.28): at the boundary of the interval we have

K̃ (0) �
(
1 − 1

�4
− cb f 20 (0)

)
f 20 (0) > 0, K̃ (�) �

(
1 − 1

�4
− cb f0(�)2

)
f 20 (�) > 0,

(A.30)

if cb < 1/ f 20 (0) and � � 1. Hence, the function can become negative only in the interior of
I�, so let us look for its minimum points tm , which must satisfy K̃ ′(tm) = 0, yielding

(
1 − 1

�4
− 4cb f 20 (tm)

)
f ′
0(tm) = − (tm + α0) f0(tm).

If we now take cb < 1/(4 ‖ f0‖2∞), we can solve the above identity w.r.t. to f ′(tm) and plug
it into (A.29), so obtaining

K̃ (tm) =
[
1 − 1

�4
− 1

b − 2
(
1
�4

+ 4cb f 20 (tm)
)(

1− 1
2�4

− 2cb f 20 (tm)
)

(
1− 1

�4
−4cb f0(tm )

)2 (tm + α0)
2

]
f 20 (tm)

+ ( 1
2b − cb

)
f 40 (tm) �

[
1 − C

�2
− 1

b − 8cbt2m f 20 (tm)
]
f 20 (tm) � 0, (A.31)

if � � 1 and cb is taken small enough so that cb � 1
2b and cb <

(
1 − 1

b

)
/(8 ‖t f0‖2∞) (recall

(A.10)). Putting all the conditions together, we see that the result is proven if we take

cb < min

{
b−1

8b‖t f0‖2∞
, 1
2b , 1

4‖ f0‖2∞
, 1

f 20 (0)

}
.

��
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Appendix B. Technical estimates

In this Appendixwe collect several technical estimates, which are used in the paper. Through-
out this Appendix,�will denote a bounded and simply connected domain� ⊂ R

2 satisfying
Assumptions 1 and 2. We recall that for any bounded domain � ⊂ R

2 with locally Lipschitz
boundary, all the usual So*bolev embeddings hold true [3, Thm. 5.4]. In particular, in what
follows, we often use that, given a domain � with the strong local Lipschitz property (see
[3, Def. 4.5]), for all p ∈ [2,∞) and for all α ∈ [0, 1),

H1(�) ↪→ L p(�), H2(�) ↪→ W 1,p(�), W 2,p(�) ↪→ C0,α(�), (B.1)

where C0,α stands for the space of Hölder continuous functions with exponent α. We also
note that the diamagnetic inequality is verified in a piecewise smooth domain as well, i.e.,
for every A ∈ L2

loc(R
2; R

2), ψ ∈ L2
loc(R

2) such that (∇ + iA)ψ ∈ L2
loc(R

2), one has

|∇|ψ || � |(∇ + iA)ψ |, for a.e. r ∈ �. (B.2)

B.1. Minimization of the GL energy

For the sake of completeness, we briefly discuss the minimization of the GL functional in
domains with Lipschitz boundary. The material is mostly taken from [33] (see in particular
[33, Chpt. 15 & Sect. D.2.3]).

As proven in [33, Thm. 15.3.1], there exists a minimizing pair (ψGL,AGL) for GGL
κ [ψ,A],

such that (ψ,A − F) ∈ H1(�) × W 1,2
0,0 (R2), where W 1,2

0,0 (R2) is a suitable Sobolev space
properly defined in [33, Eq. (D.12)] and F given in (2.17)). In addition, we may fix the gauge
in such a way that

∇ · AGL = 0. (B.3)

This determines the potential up to an additive constant, which can be chosen so that
∥∥AGL − F

∥∥
H1(�;R2)

� C
∥∥curlAGL − 1

∥∥
L2(R2)

, (B.4)

which in turn implies [33, Lemma 15.3.2] that curl
(
AGL − F

) = 0 or, equivalently,

curlAGL = 1, in R
2 \ �. (B.5)

Hence,whenweevaluateEGL
ε on theminimizing configuration,wemay restrict the integration

domain in the last term in (1.1) to �.
Finally, any critical point (ψ,A) of EGL and in particular the minimizing pair (ψGL,AGL)

satisfies the GL variational equations

⎧⎪⎪⎨
⎪⎪⎩

−
(
∇ + i A

ε2

)2
ψ = 1

ε2

(
1 − |ψ |2)ψ, in �,

− 1
ε2

∇⊥curlA = jA[ψ]1�, in R
2,

ν ·
(
∇ + i A

ε2

)
ψ = 0, on ∂�,

(B.6)

where we have denoted by jA the current

jA[ψ] := i
2

[
ψ
(
∇ − i A

ε2

)
ψ∗ − ψ∗

(
∇ + i A

ε2

)
ψ
]

= Im
(
ψ∗
(
∇ + i A

ε2

)
ψ
)

. (B.7)
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Any minimizing pair is smooth in the interior of � and continuous at the boundary. More
precisely, for any �̃ ⊂ � with ∂�̃ ⊂ �◦ smooth, and for any α ∈ [0, 1)

ψGL ∈ C∞(�̃), AGL ∈ C∞(�̃; R
2); (B.8)

ψGL ∈ C0,α(�), AGL ∈ C0,α(�; R
2), (B.9)

as it can be seen by applying standard arguments in elliptic theory (see, e.g., [41]).

B.2. Elliptic estimates

We now state useful estimates valid for any critical point of EGL. The following bounds are
direct consequences of (B.6) [33, Chpts. 10, 11 & 15]:

‖ψ‖L∞(�) � 1. (B.10)∥∥AGL − F
∥∥
L p(�)

� Cε ‖ψ‖L2(�) ‖ψ‖L4(�). (B.11)

We also have a quantitative estimate of the magnetic gradient of ψ , which is however
limited by the presence of corners at the boundary.

Lemma B.1 Let ψ,A solve (B.6) and let

�ε := {r ∈ �
∣∣ dist(r, 
) � ε

}
, (B.12)

then ∥∥∥∥
(

∇ + i
A
ε2

)
ψ

∥∥∥∥
L∞(�ε)

� C

ε
. (B.13)

Proof The result can be deduced from the Eq. (B.6) and, in particular, the first one, applying
in a suitable way, e.g., [9, Lemma A.1]. ��

The counterpart of (B.13) for any minimizer ψ of the corner problems (3.38) and (3.40)
reads

‖(∇ + ia) ψ‖L∞({|s(r)|�1}) = O(1), (B.14)

and combining it with, e.g., (B.34) proven in next “Appendix B.3”, we also get

‖∇ψ‖L∞({|s(r)|�1}) = O(1). (B.15)

B.3. Agmon estimates

Another typical key tool in the study of the GL theory is the estimate of the decay properties
(Agmon estimates) of any solution (ψ,A) of the GL variational Eq. (B.6) in the surface
superconductivity regime, i.e., when the intensity of the applied magnetic field is such that
hex > Hc2. The result is in fact inherited from the linear problem associated to the GL energy,
i.e., a magnetic Schrödinger operator, and does not exploit the nonlinearity. The presence
of corners does not influence the exponential decay of the order parameter away from the
boundary [33, Sect. 15.3.1]. More precisely, for any b > 1 and for any (ψ,A) solving (B.6)
[15, Thm. 4.4],∫

�

dr exp
{
c(b) dist(r,∂�)

ε

}{
|ψ |2 + ε2

∣∣∣
(
∇ + i A

ε2

)
ψ

∣∣∣2
}

= O(ε), (B.16)
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where c(b) > 0, for b > 1, is independent of ε. When b → 1+, the above bound becomes
non-optimal because of the vanishing of c(b) and one can in fact prove other estimates
showing a power law decay of ψ [35]. Similarly, in presence of corners, the result might not
be optimal for b > 	−1

0 : assuming that there is at least one angle β along the boundary such
that μ(β) < 	0, one can prove [15, Thm. 1.6] a stronger decay w.r.t. the distance from that
corner. Here, μ(β) stands for the ground state energy of the magnetic Schrödinger operator
in an infinite wedge of opening angle β with unit magnetic field.

The translation of (B.16) in the setting of § 3.1, i.e., a GL functional with fixed parameter
ε = 1 in a finite strip R(�, L) is as follows:

Lemma B.2 Letψ solve (3.5) and satisfy the boundary conditions alternatively in (3.4), (3.9)
or (3.10) in R(�, L) with �, L > 0. Then, for any b > 1, there exists a constant c(b) > 0,
such that ∫

R(L,�)

dsdt ec(b) t
{|ψ |2 + |(∇ − i tes) ψ |2} = O(L). (B.17)

In the paper,weuseAgmonestimates also for the corner effective problem.Wediscuss here
such an extension to the setting of the effective problem formulated in (2.12) and discussed
in § 2.3.

Lemma B.3 Let �β(L, �) be the region given in Fig. 2, with L, � � 1 and L � �a, for some
a > 1. Let also ψ be a solution of (3.59), with b > 1. Then, there exists a constant c(b) > 0,
such that ∫

�β(L,�)

dr ec(b) dist(r,∂�out)
{|ψ |2 + |(∇ + ia) ψ |2} = O(L). (B.18)

The above result is a simple adaptation of (B.16) to the effective problem in �β(L, �). The
only difference is that the magnetic potential a is given and not a minimizer of the energy.
Before discussing its proof, however, we first state a technical lemma, which follows from a
standard inequality for the magnetic gradient and the equation solved by ψ .

Lemma B.4 Let �β(L, �) be the region given in Fig. 2, with L, � � 1 and L � �a, for some
a > 1. Let also ψ be a solution of (3.59) and let ξ be a smooth real function. Then, for any
set S ⊂ �β(L, �) with Lipschitz boundary,∫

S
dr
{|ψ |2 (∇ξ)2 + 1

b |ξψ |2 (1 − |ψ |2)} �
∫
S
dr curl(a) |ξψ |2

−
∫

∂S
dx
{ 1
2 ξ

2ν · ∇|ψ |2 + τ · ja[ξψ]} , (B.19)

where τ , ν stand for the tangential and normal unit vectors to ∂S, respectively.

Proof We start by integrating the following trivial bound (see, e.g., [26, Lemma 3.2]) for any
u weakly differentiable and a ∈ L∞ (we set a := (a1, a2))

|(∇ + ia) u|2 = |(∂1 + ia1 − i(∂2 + ia2)) u|2 − curl j[u] − a · ∇⊥|u|2
� −curl j[u] − a · ∇⊥|u|2,

which yields, taking u = ξψ ,∫
S
dr |(∇ + ia) ξψ |2 �

∫
S
dr curl(a) |ξψ |2 −

∫
∂S

dx
{
τ · j[ξψ] + τ · a|ξψ |2} ,

123



Effects of corners in surface superconductivity Page 51 of 57   236 

(B.20)

after an integration by parts of the last term and the use of Stokes theorem. Note that the last
two terms can be combined to reconstruct the magnetic current ja. To complete the proof it
suffices to use the Eq. (3.59) to compute the term on the l.h.s. The additional boundary term
in (B.19) is produced by the integration by parts of the cross product term ξ∇ξ · ∇|ψ |2 to
reconstruct the term ψ∗�ψ + h.c. of the variational equation. ��
Proof of Lemma B.3 As anticipated the result is a simple adaptation of (B.16) (see [33, Proof
of Thm. 12.2.1]). The key ingredient is the inequality (B.19), applied to S = �β(L, �),
together with the following choice of the function ξ :

ξ(r) = ξ(t(r)) = eat(r) f (t), (B.21)

with the function f such that | f ′| � C and

f =
{
1, for t ∈ [1,+∞],
0, for t ∈ [0, 1

2

]
.

We first estimate the boundary terms appearing in (B.19):∫
∂�β(L,�)

dx ξ2ν · ∇|ψ |2 = O(1), (B.22)

because ξ = 0 on ∂�out,∣∣ξ2ν · ∇|ψ |2∣∣ � Ce2a� f0(�) = O(�−∞), on ∂�in, (B.23)

and ∫
∂�bd

dx
∣∣ξ2ν · ∇|ψ |2∣∣ � C

∫ �

0
dt e2at f0(t) � C, (B.24)

where we have used the boundary conditions on ψ , the exponential decay of f0 (A.10) and
the estimate (B.13), which yields

|∇|ψ || � |(∇ + ia) ψ | � C, for dist (r, r0) � 1, (B.25)

r0 being the position of the corner. Similarly,∫
∂�β(L,�)

dx τ · ja[ξψ] = O(1), (B.26)

thanks to the vanishing at 0 of ξ and the bounds∫
∂�in

dx
∣∣τ · ja[ξψ]∣∣ � C

∫
∂�in

dx e2a� f 20 (�) = O(�−∞), (B.27)

∫
∂�bd

dx
∣∣τ · ja[ξψ]∣∣ � C

∫ �

0
dt e2at f0(t) � C, (B.28)

as in (B.23) and (B.24), respectively.
The rest of the proof is identical to [33, Proof of Thm. 12.2.1]: the estimates (B.22) and

(B.26) above together with (B.19) imply

(
1 − 1

b

) ‖ξψ‖2L2(�β(L,�))
�
∫

�β(L,�)

dr (∇ξ)2 |ψ |2 + O(1). (B.29)
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Noticing now that
∣∣ξ ′∣∣2 � 2(1 + ε)a2 f 2e2at + (1 + 1

ε

)
f ′2e2at � 2(1 + ε)a2 f 2e2at + C(ε)e2at ,

(B.30)

we conclude that
(
1 − 1

b − 2(1 + ε)a2
) ∫

t(r)� 1
2

dr e2at(r) |ψ |2 � C
∫
t(r)�1

dr |ψ |2 + O(1), (B.31)

and since we can always find ε > 0 and a(ε) > 0 so that the factor on the l.h.s. of the
above expression is positive, we obtain the result for the order parameter. The estimate of the
magnetic gradient however follows using (3.59) once more and the bound just proven. ��

Wecomplete the discussion of the decaying properties of the order parameterwith a refined
version of the estimate proven in Lemma B.3: we consider a solution of the differential
Eq. (3.59) and show that, in a subdomain of tangential length of order O(1), the r.h.s. of
(B.18) is O(1) as well. In order to state a more precise bound there, we identify two model
domains, i.e., a rectangle Sstrip of tangential side length O(1) far from the corner and the
region close to it Scorner. More precisely, we set

Sstrip := {r ∈ �β(L, �)
∣∣ s̄1 � s(r) � s̄2

}
, s̄2 − s̄1 � C, (B.32)

and either s̄1 � �/ tan (β/2) or s̄2 � −�/ tan (β/2), which ensures that in Sstrip we can use
the coordinates (s, t) and it corresponds to [s̄1, s̄2] × [0, �]. The other region Scorner is

Scorner := {r ∈ �β(L, �)
∣∣ s̄1 � dist(r, r0) � s̄2

}
, s̄2 − s̄1 � C, (B.33)

and 1 � s̄1, s̄2 � C�, i.e., it is a wedge-like domain where boundary coordinates can not be
used globally.

Lemma B.5 Let S� be one of the two domains defined in (B.32) and (B.33). Let also ψ be a
solution of (3.59), with b > 1. Then, there exists a constant c(b) > 0, such that∫

S�

dr ec(b) dist(r,∂�out)
{|ψ |2 + |(∇ + ia) ψ |2} = O(1). (B.34)

Proof The proof is identical to the one of Lemma B.3, with the only difference due to the
estimate of boundary terms. Exploiting (B.25) and the other properties of ψ and f0, it is
however easy to show that those terms provide contributions of order O(1), as well as the
r.h.s. of (B.31), which leads to the result. A short comment is in order for regions close to
the corner, where the pointwise bound (B.25) might fail: there one can always arrange the
domain S in such a way that the boundary ∂S is far enough from ∂�bd (still at a distance of
order 1 from the corner) so that (B.25) applies, while on ∂S ∩ ∂�out, the gradient estimate is
not used. ��

We finally provide a simple bound which is a direct consequence of (B.34).

Lemma B.6 Let ψ be a solution of (3.59), with b > 1. Then, there exists a finite constant C,
such that

|ψ(r)| � Ce− 1
2 c(b)dist(r,∂�out), (B.35)

where c(b) is the constant appearing in (B.34).
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Proof The result is proven by contradiction. Suppose that there was a point r̄ ∈ �β(L, �),
with dist(r̄, ∂�out) � 1 and dist(r̄, r0) � 1, so that

|ψ(r̄)| e 1
2 c(b)dist(r̄,∂�out) > C0, (B.36)

for some givenC0 > 0. Then, thanks to the pointwise bound (B.25), we can always construct
a square Q of unit side length containing r̄, such that

|ψ(r)| e 1
2 c(b)dist(r,∂�out) � 1

2C0, in Q. (B.37)

We are here assuming that C0 is large enough, so that

inf
r∈Q

(
|ψ(r)| e 1

2 c(b)dist(r,∂�out)
)

� C0 − √
2
(‖∇ |ψ |‖∞ + 1

2c(b)
)

� 1
2C0.

Hence, ∫
Q
dr |ψ(r)|2 ec(b)dist(r,∂�out) � 1

4C
2
0 ,

which contradicts (B.34), if C0 is large enough, since Q is fixed. ��
Reformulating the above result for the variational problems in the strip considered in § 3.1

yields the pointwise estimates

|ψ(s, t)| � Ce− 1
2 c(b)t , (B.38)

for any ψ solving (3.5) and where c(b) is the same constant appearing in Lemma B.2.

Appendix C. Local energy estimates

In this Section we sum up the salient points of the energy estimate in the smooth part of
the boundary layer. Thanks to Agmon estimates (see “Appendix B.3”), we can restrict our
analysis to the boundary layer (1.19), i.e.,

Aε = {r ∈ �
∣∣ dist (r, ∂�) � ε�ε

}
,

but here we will focus on its smooth component defined in (4.6):

Acut =
(
[0, s1 − Lε] ∪ [s1 + Lε, s2 − Lε] ∪ · · · ∪

[
sN + Lε,

|∂�|
ε

])
× [0, c1| log ε|],

where s j , j = 1, . . . , N is the tangential coordinate of the j−th vertex. By Lemma 4.1, we
can take as starting point of our analysis the effective functional introduced in (4.7):

Gε[ψ,Acut] =
∫
Acut

dsdt (1 − εk(s)t)

{
|∂tψ |2 + 1

(1−εk(s)t)2
|(∂s − i t)ψ |2 − 1

2b (2|ψ |2 − |ψ |4)
}

and its ground state energy

GAcut := inf
ψ∈H1

per(Acut)
Gε[ψ,Acut], (C.1)

where H1
per(Acut) := {ψ ∈ H1(Acut) |ψ(0, t) = ψ(|∂�|/ε, t),∀t ∈ [0, �]}. We also denote

Ismooth :=
N⋃
j=1

[
s j + Lε, s j+1 − Lε

]
, (C.2)
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with the identification sN+1 = s1 + |∂�|/ε. The material presented in this Section is essen-
tially taken from [24] (see, in particular [24, Lemmas 3, 6 and 7]), but an important difference
in the lower bound is given by the presence of holes in the boundary layer Acut, where the
corner regions have been removed. The key tool in the strategy is the decomposition of Acut

into cells:

Acut =
Mε⋃
n=1

Cn, Cn := [σn, σn+1] × [0, c1| log ε|], (C.3)

with |σn+1 − σn | ∝ 1 and Mε ∝ |Ismooth| /ε. We then approximate the curvature k(s) of the
boundary in each cell by its mean value

kn :=
∫ σn+1

σn

ds k(s) (C.4)

and set for short αn := αkn , fn(t) := fkn (t) (recall the notation of “Appendix A.2”).

Proposition C.1 (Upper bound to GAcut ) For any fixed 1 < b < 	−1
0 , as ε → 0, it holds

GAcut � |∂�|E1D
0

ε
− 2LεNE1D

0 − εEcorr

∫ |∂�|
ε

0
ds k(s) + o(1). (C.5)

Proof See [24, Sect. 4.1]. ��
We now complement (C.5) with a matching lower bound. As already pointed out, the

proposition below is the analogue of [24, Lemma 6] but the effect of the holes in the smooth
part of the domain now becomes apparent in the additional boundary terms appearing on the
r.h.s. of (C.6). Those terms arematched in [24, Proof ofLemma7,Step2] by the corresponding
boundary contributions coming from the cells which are missing in the present setting.

Proposition C.2 (Lower bound) Let ψ(s, t) ∈ H1(Acut) be a function enjoying the same
properties as ψGL(r(s, t)). Then, for any 1 < b < 	−1

0 , as ε → 0, it holds

GAcut [ψ] � |∂�|E1D
0

ε
− 2LεNE1D

0 − εEcorr

∫ |∂�|

0
ds k(s)

−
N∑
j=1

∫ c1| log ε|

0
dt

F0(t)

f 20 (t)
jt [ψ(s, t)]

∣∣∣∣∣
s=s j+Lε

s=s j−Lε

+ o(1). (C.6)

Proof The starting point is the very same splitting performed in [24, Lemma 6], which is
analogous to what we did in the proof of Proposition 3.1: in each cell Cn , we set

ψ(r(s, t)) =: un(s, t) fn(t)e−iαns, (C.7)

where un plays the same role as u in the decoupling (3.12). Such a splitting procedure allows
to extract from each cell the desired energy, i.e.,

E1D
kn (σn+1 − σn) + En[un], (C.8)

where the reduced energies are

En[u] :=
∫ σn+1

σn

ds
∫ �

0
dt (1 − εknt) f

2
n

{
|∂t u|2 + 1

(1−εknt)2
|∂su|2 − 2bn(t) js[u]

+ 1
2b f 2n (1 − |u|2)2} , (C.9)
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with bn(t) = 1
(1−εknt)2

(t +αn − 1
2εknt

2). By [25, Lemma 2.1], the first terms of (C.8) above
sum up to

|∂�|E1D
0

ε
− 2LεNE1D

0 − εEcorr

∫
Ismooth

ds k(s) + o(1). (C.10)

If 1 < b < 	−1
0 , the reduced functionals En[un] can be proven to be positive [24, Lemma

7] and can thus be dropped from the lower estimate, again up to small errors. Here, however,
the major difference with [24] occurs: the positivity of En[un] is proven in [24, Lemma 7]
via an integration by parts and exploits the pointwise positivity of the cost function Kk (see
(A.14) and (A.16)), but the estimate of the boundary terms emerging from the integration
has to be adjusted. Such terms have the form

−
∫ c1| log ε|

0
dt

F0(t)

f 20 (t)
jt [ψ(s, t)]

∣∣∣∣
s=σn+1

s=σn

.

The sum of all the terms is shown in [24, Lemma 7] to be small, but this requires (see [24,
Step 2 and eq. (5.33)]) to pair the term coming from one cell at σn with the one generated
in the adjacent cell again at σn . In our setting, due to the absence of corner regions in Acut,
some boundary terms are missing. Such terms are precisely given by

∑
j∈


∫ c1| log ε|

0
dt

F0(t)

f 20 (t)
jt [ψ(s, t)]

∣∣∣∣
s=s j+Lε

s=s j−Lε

, (C.11)

and have to be added and subtracted to apply [24, Lemma 7], leading to (C.6). ��
Note that in both the upper and lower bounds (C.5) and (C.6), we can easily replace the

integral over Ismooth with the integral over the whole boundary, since

εEcorr

∫
Ismooth

ds k(s) = Ecorr

∫ |∂�|

0
ds K(s) + O(ε| log ε|), (C.12)

by the boundedness of the curvature.
We conclude the Section with an important corollary of the above lower bound, which

will be used to prove a uniform estimate of |ψGL| in the smooth part of the layer.

Lemma C.1 (Lower bound on the reduced energies) Let un be defined in (C.7) and En be
given by (C.9). Then, if 1 < b < 	−1

0 , as ε → 0,

Mε∑
n=1

En[un] � | log ε|−4
Mε∑
n=1

∫
C n

dsdt (1 − εknt) f
2
n

[
|∂t un |2 + 1

(1−εknt)2
|∂sun |2

]

+ 1

2b

Mε∑
n=1

∫
C n

dsdt (1 − εknt) f
4
n (1 − |un |2)2 + o(1). (C.13)

Proof See [24, Proof of Lemma 7]. ��
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