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Abstract

This paper introduces a newly conceived methodology to design an admittance

filter for hands-on control tasks, ensuring stability of human-robot interaction.

Exploiting a nonlinear but simplified model of the human arm impedance, and a

simple characterisation of the end-effector equivalent robot compliance, absolute

stability theory allows to enforce a constraint on the design of the admittance

filter damping. An experimental analysis, conducted on different subjects, al-

lows to validate the human arm impedance model and determine the admittance

filter parameters for linear and circular trajectories. Finally, hands-on control

experiments reveal the absence of robot vibrations, induced by incipient in-

stability, either in the robot measurements or in the feeling perceived by the

human operator, and demonstrate that stability is guaranteed without causing

an excessive human effort in the execution of the task.

Keywords: hands-on control, stability of human-robot interaction, human

arm impedance model, admittance/impedance control

1. Introduction

In hands-on control, a typical example of physical human-robot interaction

(pHRI), the human operator walks the robot through a desired path pushing

and pulling the end-effector through a suitable handling device equipped with

a force/torque sensor. In order to achieve this behaviour, the control system,5

that is usually constituted by one or more admittance filters, exploits the sensor
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measurements to accommodate for the motion commanded by the operator.

From this description, it is evident that, during hands-on control tasks, hu-

man and robot are linked together and form a unique dynamical system, whose

properties mainly depend on the mechanical properties of the human arm and10

of the robot mechanical chain. In particular, the stability of this system, a

crucial property to guarantee a safe and comfortable human-robot interaction,

cannot be inferred directly from the stability of the two separate systems, i.e.,

the human and the robot. In fact, assuming that the dynamics of the human

arm are passive, a passive admittance filter is sufficient to ensure asymptotic15

stability of the closed-loop system [1] formed by the operator and the robot.

Nevertheless, in many practical situations this assumption does not hold, and

the robot, during the hands-on task, can exhibit severe vibrations, revealing the

position control loop is close to the stability limit [2, 3, 4].

The popularity of hands-on control, as a technique to perform pHRI tasks,20

and its widespread dissemination in many different application fields, ranging

from industrial robot programming [1, 5, 6, 7, 8] and cooperative lifting and

moving of large payloads [9], to robotic surgery [10, 11], calls for a rigorous

procedure to assess the stability of the human-robot interaction.

Considering human arm dynamics and arm mechanical impedance mod-25

elling, or pHRI and, in particular, admittance and impedance control, it must

be noticed that an extremely rich literature exists. For example, many dif-

ferent control strategies have been developed to adapt or optimize the admit-

tance/impedance filter parameters exploiting the robot redundancy [12], apply-

ing an online fast Fourier transform to the measured forces in order to detect30

and avoid incipient oscillations [13], using model-free continuous critic learn-

ing [14], proposing a variable impedance filter with online identification of the

human arm stiffness [15], or using neural networks to learn online from data

the robot and human arm models [4, 16, 17, 18]. On the other hand, different

experimental devices and protocols have been also created to investigate the35

characteristics of the human operator during admittance and impedance con-

trolled tasks [19, 20, 21].
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Nevertheless, none of the previous works has addressed the problem of human-

robot stability, i.e., hands-on control oscillations, in a unified way, considering a

realistic model of the human arm mechanical impedance, that can be identified40

from experimental data using the same robot and sensor adopted to perform the

hands-on control task, and proposing a theoretically grounded methodology to

tune the admittance filter parameters ensuring the stability of the human-robot

interaction.

To partially weaken the statement above, it must be noticed that a paper con-45

sidering human-robot interaction stability under admittance control has been

published very recently [22]. This work, however, considers only a single degree

of freedom rigid mechanical system, subject to velocity and admittance con-

trol, and assumes that the human arm is characterised by passive dynamics,

i.e., interaction stability can be guaranteed if the controlled mechanical system50

is passive as well. As a consequence of the aforementioned assumptions, the

authors conclude that the stability conditions are too conservative, and imply

a strong limitation on the velocity loop integral action, thus limiting the con-

trol performance of the mechanical system. Even the alternative methodology

proposed to overcome these limitations, however, being based on linear sys-55

tem’s analysis tools, cannot be applied to multi-link manipulators or realistic

nonlinear human arm impedance models.

The aim and contribution of this work is to fill the mentioned gap, devising

a stability analysis of the human-robot system, based on a nonlinear model of

the human arm and on the absolute stability theory, that allows to tune the60

admittance filter parameters ensuring stability of the human-robot interaction

during hands-on control tasks. The work includes also an experimental cam-

paign that shows the identification of the human arm impedance parameters,

the admittance filter tuning, and a validation of the proposed methodology

through hands-on control tests along linear and curvilinear paths. Moreover, a65

way to exploit the human arm nonlinear model to draw damping charts that

reveal the most critical areas in the robot workspace, in terms of stability of

the human-robot interaction, is presented, as well. Finally, the proposed tun-
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ing methodology opens the way to the design of an adaptive admittance filter

that, thanks to a continued online human arm impedance identification, ensures70

robust asymptotic stability and accuracy of the hands-on control task.

The paper is organized as follows. Section 2 formulates the problem of

assessing the stability of human-robot interaction during hands-on control tasks.

Section 3 introduces the two human arm models used in the paper. The first

one, more complex, that is exploited to simulate the human arm impedance, and75

the second one, simplified, that is exploited in Section 4 to study the absolute

stability of the human-robot system and to derive a design methodology to tune

the admittance filter parameters. Section 5 describes the experimental activity

performed to identify the human arm impedance parameters, and reports the

results of some hands-on control experiments demonstrating the effectiveness80

of the proposed methodology in providing a tuning of the admittance filter

that ensures absence of undesired vibrations during hands-on control tasks.

Conclusions are drawn in Section 6.

2. Problem formulation

In hands-on control or walk-through programming, the human operator plays85

the role of a teacher that physically walks the robot through the desired path.

The physical interaction between the operator and the robot has to be con-

ceived in such a way that he/she has the impression to grab a real tool instead

of the robot end-effector. The role of the control system is thus to accommodate

for the motion commanded by the operator, mimicking the same dynamic be-90

haviour of the real tool, i.e., behaving like a virtual tool that exhibits the same

mechanical properties of the real tool [1].

For these reasons, hands-on control techniques are usually based on admittance

control [1], a control strategy that is implemented closing an external loop out-

side the position control loops of the industrial robot controller (Figure 1). The95

admittance controller is fed by forces and moments exerted by a human operator,

measured by a force/torque sensor mounted at the end-effector, and determines
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modifications to the Cartesian references in order to guarantee the prescribed

compliant behaviour. As a consequence, during hands-on control the human

Position control loops

Admittance

�lters

Human

dynamics

Robot

dynamics
Robot position

controllers

Figure 1: Control architecture for admittance control. fP and τP are the forces and torques

exerted by human hand, respectively; pP (p̄P ) and rP (r̄P ) are the end-effector (reference)

Cartesian position and (reference) orientation, respectively.

operator is closing a further loop outside the industrial controller position loops100

(Figure 1) that, in particular situations, depending on the impedance properties

of the robot mechanical chain and the human arm, and on the admittance filter

tuning, can lead to severe robot vibrations or even instability.

In order to simplify the stability analysis of the hands-on control task, it is

usually assumed that the dynamics of the human arm are passive and, thus, a105

passive admittance filter is sufficient to ensure asymptotic stability of the closed

loop system [1]. In many practical situations, however, this simplification oc-

curs to be too rough as the robot during the hands-on task can exhibit severe

vibrations, revealing the position control is close to the stability limit.

For these reasons, a thorough stability analysis and a methodology to tune the110

admittance filters in order to ensure stability, as much as possible independently

of the specific human operator characteristics, are in order.

To this extent, a simplification of the control architecture in Figure 1 is

required. A closer analysis reveals that there is a neat frequency separation

between human dynamics and position control loops, whose response is from115

ten to twenty times faster with respect to the human dominant dynamics [23].

For this reason, one can assume that the effects of human torques and forces,

acting on the robot control loops as disturbances, are completely rejected by the

industrial robot controller. Furthermore, the relation between the reference and
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Admittance

�lters

Human

dynamics

Figure 2: Simplified control architecture for stability analysis.fP and τP are the forces and

torques exerted by human hand, respectively; p̄P and r̄P are the end-effector reference Carte-

sian position and orientation, respectively.

actual robot pose, thanks to the aforementioned frequency separation and to the120

properties of a cascaded control architecture, i.e., the standard control structure

applied in motion control systems, can be approximated with a unitary transfer

function.

As a consequence, the admittance control architecture can be simplified, for

the sake of the stability analysis, to a closed-loop system having the human125

dynamics in the feed-forward path and the admittance filters in the feedback

path (Figure 2). Starting from this formulation, once a suitable model of the

human dynamics has been defined (see Section 3 for further details), a stability

analysis based on the so called “Lur’e problem” [24] can be introduced (see

Section 4 for further details).130

3. Human arm model

This section focuses on the derivation of a model of the human arm dynamics

suitable for stability analysis and for a preliminary validation of the methodol-

ogy here proposed.

First of all, it must be noticed that the contribution of the human operator to135

the system dynamics and to the impedance of the mechanical chain is mainly

related to the human arm [15, 25]. For this reason only the human arm me-

chanical impedance is here considered.

Furthermore, differently from a robot, modelling a human arm is a very complex

task, depending on a huge number of parameters that can be time varying or140

6



may depend on the single person, and are often unmeasurable or very difficult

to be measured [26]. The complexity is further increased by the fact that an

accurate model of the human arm should consider not only mechanical charac-

teristics but also neuromuscular properties [27, 28, 29].

The aim of this section is thus to introduce two simplified human arm models,145

including mechanical and neuromuscular properties, able to represent the equiv-

alent mechanical impedance at the operator hand, i.e., the impedance seen by

the robot. The first one, targeted to simulation, is more accurate and considers

a complete visco-elastic characterization. The second one, instead, aiming at

stability analysis, is more simple and includes only the elastic effect.150

The two models are derived under the following assumptions:

• the operator hand performs a translational1 planar motion;

• the human arm mechanical impedance in the motion plane can be decom-

posed into two contributions, along the x and y directions, respectively;

• an isotropic human arm impedance model is adopted.155

The introduction of these assumptions, that are common to all the relevant lit-

erature on human-robot interaction, does not affect the validity of the model, as

it is demonstrated by the experimental results reported in Section 5, but greatly

simplifies its derivation and especially the parameter identification phase.

According to the previous assumptions, the complete force-displacement re-

lation, that models the mechanical behaviour of the human arm along the x

and y directions, is represented by the following second order differential equa-

tion [15, 30, 31]

Fh (qh, t) = Mh(qh, t)q̈h + Dh(qh, t)q̇h + Kh(qh, t)qh (1)

where Fh (qh, t) is the force exerted by the human arm at the hand frame in

the x and y directions, Mh(qh, t), Dh(qh, t) and Kh(qh, t) are the time-varying

1Though the model could be easily extended to consider rotational impedance, for the sake

of simplicity this work is focused only on the translational one.
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and configuration dependent equivalent mass, damping and stiffness matrices

related to the x and y directions, respectively, and qh = [x y]
T

.

Considering stiffness, experimental results [15, 26, 32] reveal that its effect is

dominant with respect to the viscous and inertial one, and that the spatial

components of the stiffness matrix are coupled, i.e., Kh(qh, t) is a non-diagonal

matrix. Consequently, the stiffness matrix can be decomposed into a symmetric

and an anti-symmetric component, but under the assumption of planar mo-

tion the symmetric component represents the dominant effect [26, 32]. Finally,

the symmetric component has directional properties and can be represented as

an ellipsoid, whose axis lengths and directions depend on the eigenvalues and

eigenvectors respectively, rotated in such a way that the principal axis is di-

rected along the line that passes through the wrist and the shoulder [26]. A

similar directional property characterises mass and damping, as well.

As for damping, it has been shown [23, 33, 34] that it is strictly related to human

arm stiffness and can be modelled using the following relation

Dh(qh, t) =

δxx√Khxx
(qh, t) 0

0 δyy
√
Khyy

(qh, t)


where δxx, δyy ∈ [0, 1] are weighting factors, and Khxx

(qh, t), Khyy
(qh, t), are160

the diagonal elements of the stiffness matrix.

As previously mentioned, the human arm behaviour depends either on its

mechanical characteristics and on neuromuscular properties. The model intro-

duced in (1) has thus to be integrated considering the most relevant neuromus-

cular properties, i.e., reaction times associated to voluntary and involuntary

movements, and effect of muscle co-contraction.

First of all, human reactions, either voluntary or involuntary, are characterised

by a reaction time ranging from 150 to 200 ms for voluntary movements [27],

and from 50 to 100− 200 ms for involuntary movements [8, 27, 35].

On the other side, co-contraction is a voluntary or involuntary simultaneous

isometric contraction of the agonist and antagonist muscles that generates an

increase of the hand Cartesian stiffness [36, 26]. The reaction time associ-
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ated to involuntary co-contraction, the only one considered in this work, ranges

from 30 ms, for primary reflexes, to 100− 200 ms, for secondary or postural re-

flexes [8, 27, 35].

In order to take into account the effects of these neuromuscular properties, stiff-

ness can be decomposed into two components as follows [25]

Kh(qh, t) = Kpost(qh, t) + Kcont(t)

where the first contribution is related to postural stiffness, and depends only on

the arm configuration, and the second one to the co-contraction phenomenon,

and depends only on the level of co-contraction. In the case of planar hand

motion and involuntary co-contraction, it can be shown [25] that stiffness due

to co-contraction can be modelled as

Kcont(t) = K̄contσ(t− τ)

where K̄cont is the maximum stiffness increase due to co-contraction, σ : R →

[0, 1] is a normalized muscular co-contraction index, and τ is a delay accounting

for involuntary reaction time.

On the other hand, experiments [37] show that postural stiffness, in case of

planar hand motion, can be decomposed into two components related to two

orthogonal axes, each one modelled as a quadratic function of the position along

the corresponding axis, i.e., for the x axis

Kpostx(x, t) = b1x
2(t) + b2x(t) + b3

where b1, b2, and b3 represent suitable coefficients.

From a stability analysis point of view, model (1) can be simplified neglecting

damping and inertia effects [25]. In fact, on one side damping has always a

stabilising effect, as a consequence considering only the stiffness component is

equivalent to analyse a worst case scenario; on the other side, as in hands-

on control tasks the human arm accelerations are rather low, stiffness effect is

dominant with respect to inertia.

A further simplification can be introduced, again in the direction of considering

9



the worst case scenario, associating the same involuntary reaction time τ to the

postural stiffness, as well.

In conclusion, the impedance model adopted for stability analysis along the x

direction is given by

Fh(x, t) = b1x
2(t− τ) + b2x(t− τ) + b3 + aσ(t− τ) (2)

where a is the maximum stiffness increase in the x direction due to co-contraction,

i.e., a = K̄contx .

4. Stability analisys of human-robot interaction165

-

Figure 3: The closed-loop system for absolute stability analysis.

Considering the simplified control architecture reported in Figure 2, one can

observe that:

• during hands-on control tasks, external reference inputs p̄P and r̄P , i.e.,

position and orientation reference values, respectively, are always zero;

• translational admittance filters can be represented by a diagonal trans-170

fer matrix, where each transfer function is a second order mass-damping

system2;

• human arm dynamics, for the sake of stability analysis, can be repre-

sented by a diagonal matrix where each diagonal element, modelling the

2The same holds for rotational admittance [1] but, according to the assumptions introduced

in Section 3, only translational motion is here considered.
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human arm translational impedance in one Cartesian direction, is given175

by relation (2).

Under the previous assumptions, the block diagram in Figure 2 is composed by

two independent closed-loop systems. As a consequence, the stability analysis

can be performed considering each motion direction separately.

The problem of assessing the stability of the human-robot interaction during an180

hands-on control task can be formalised as the problem of analysing the stability

of the SISO closed-loop system in Figure 3, where:

• GFtx
(s) is the transfer function of the admittance filter for a translational

motion along the x direction, defined as follows

GFtx
(s) =

1

Mxs2 +Dxs

where Mx and Dx are the virtual tool translational mass and damping in

the x direction, respectively;

• τ accounts for the delay introduced by the involuntary reaction time;185

• the feedback block represents the simplified human arm nonlinear imped-

ance model excluding the delay that has been added to the linear part of

the closed-loop system.
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Figure 4: An example of sector nonlinearity Fh(x, t) obtained with b1 = 600, b2 = 103.3̄,

b3 = 115, a = 100, and for co-contraction index equal to 0, 0.25, 0.5, 0.75, and 1.
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In order to recast the stability analysis into a Lur’e problem, for any given

σ(t), the nonlinear feedback

Fh(x, t) = Kh(x, t)x(t)

=
(
b1x

2(t) + b2x(t) + b3 + aσ(t)
)
x(t)

being a memoryless time-varying nonlinearity, piecewise continuous in t and

locally Lipschitz in x, has to satisfy the following sector condition [24]

αx2 ≤ xFh(x, t) ≤ βx2 ∀t > 0 (3)

where α, β ∈ R, α < β, and x ∈ [xmin, xmax], with xmin < 0 < xmax, xmin and

xmax determining the range of x values for which one is interested to prove the

absolute stability of the closed-loop system. Figure 4 shows an example where

for x ∈ [−0.3, 0.3] the human arm stiffness has been bounded between 80x and

300x. It is straightforward to verify that, for any reasonable parametrisation

of Kh(x, t), two constants α and β can be always determined such that (3) is

verified (see Section 5 for further details).

Moreover, note that stability robustness is strictly related to the distance be-

tween Fh(x, t) and the boundaries αx and βx.

On the other hand, the linear system in Figure 3, i.e., the impedance filter

GFtx
(s), must be an asymptotically stable and finite dimensional system. In

order to cope with these constraints, the delay can be substituted with its Padé

approximation, i.e., considering a first order Padé approximation3

G(s) = GFtx
(s)e−sτ ≈ 1

Mxs2 +Dxs

1− sτ/2
1 + sτ/2

and pole shifting can be applied in order to make G(s) asymptotically stable,

introducing

GT (s) =
G(s)

1 + αG(s)

3It can be easily shown [38], that a first order approximation is sufficient, i.e., increasing

the order the result of the stability analysis, even in terms of the minimum damping ensuring

stability, does not change.
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where α is one of the coefficients defining the boundaries of the sector nonlin-

earity.190

Using absolute stability theory [24], one can demonstrate that the closed-loop

system in Figure 3 is absolutely stable within a finite domain x ∈ [xmin, xmax]

if

ZT (s) = 1 + (β − α)GT (s) =
1 + βG(s)

1 + αG(s)

is strictly positive real, α and β being again the coefficients defining the bound-

aries of the sector nonlinearity.

In turn, ZT (s) is strictly positive real if and only if ZT (s) is asymptotically

stable and

Re

[
1 + βG(jω)

1 + αG(jω)

]
> 0 ∀ω ∈ R

The last condition holds if the Nyquist plot of G(jω) does not enter the disk in

the complex plane whose center is on the real axis and crosses the real axis at

−1/α and −1/β.

The previous analysis can be used to verify if a given parametrisation of

the admittance filter guarantees the stability of the human-robot interaction.

On the other side, the same procedure can be adopted, once the mass Mx has

been selected, to determine the minimum damping Dx ensuring stability of the

human-robot interaction.

Figure 5 shows an example of application of this methodology. Assuming a

sector nonlinearity bounded by α = 80 and β = 300, and a human impedance

characterised by a mass Mx = 2 Kg and a reaction time τ = 100 ms, transfer

functions G(s), GT (s) and ZT (s) are given by

G(s) =
1− 0.05s

(2s2 +Dxs) (1 + 0.05s)

GT (s) =
1− 0.05s

0.1s3 + (2 + 0.05Dx) s2 + (Dx − 4) s+ 80

ZT (s) =
0.1s3 + (2 + 0.05Dx) s2 + (Dx − 15) s+ 300

0.1s3 + (2 + 0.05Dx) s2 + (Dx − 4) s+ 80

An iterative procedure can be now applied, starting from a low damping and

increasing it until the Nyquist plot of G(jω) does not enter any more the disk195
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in the complex plane whose center is on the real axis and crosses the real axis

at −1/α and −1/β. Figure 5 shows a sequence of 4 iterations, starting from a

damping of 10 Ns/m (Figure 5(a)) and increasing its value until the Nyquist plot

is tangent to the disk (Figure 5(d)), corresponding to a damping of 32 Ns/m.

This last value represents the minimum damping Dx ensuring stability of the200

human-robot interaction.
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(a) Dx = 10 Ns/m
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(b) Dx = 20 Ns/m
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(c) Dx = 30 Ns/m
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(d) Dx = 32 Ns/m

Figure 5: An example of stability analysis.

Nevertheless, it must be considered that the procedure herein described ne-

glects an important aspect, sometime crucial in determining the stability of the

human-robot interaction, that is the robot flexibility at joint and link levels. To
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cope with this issue the linear system in Figure 3 has to be modified, introduc-

ing the equivalent end-effector Cartesian mass and stiffness of the robot.

Considering again a translation in the x direction, the dynamics of the imped-

ance filter, together with the mass-spring system representing the equivalent

mechanical characteristics of the robot at the end-effector, are represented by

the following second order system

Mxẍ1 +Dxẋ1 +Krx (x1 − x2) = 0

Mrx ẍ2 +Krx (x2 − x1) = −Kh(x2, t)x2 = −Fh(x2, t)

where Mrx and Krx are the equivalent end-effector Cartesian mass and stiffness

of the robot, respectively, and x1, x2 are the end-effector and hand positions,

respectively.

Applying the Laplace transform and solving with respect to the human hand

position x2 one obtains the following modified expression of GFtx
(s)

GFtx
(s) =

Mxs
2 +Dxs+Krx

(Mxs2 +Dxs+Krx) (Mrxs
2 +Krx)−K2

rx

that has to be substituted to the previous admittance filter transfer function.

In order to perform the stability analysis in this case as well, suitable relations

to derive the equivalent end-effector Cartesian mass and stiffness of the robot

have to be introduced.

The equivalent mass Mrj in the j-th Cartesian direction (j = x, y, z), depending

on the robot configuration q, is given by [39]

Mrj =
1

eTj [J(q)B−1(q)JT (q)] ej

where J(q) and B(q) are the geometric Jacobian and the generalized mass

matrix of the robot, respectively, q is the joint position vector, and ej is a

unitary vector defined as follows

ej =



[
1 0 0 0 0 0

]T
for the x direction[

0 1 0 0 0 0
]T

for the y direction[
0 0 1 0 0 0

]T
for the z direction
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Similarly, the equivalent stiffness Krj in the j-th Cartesian direction (j = x, y,

z), depending on the robot configuration q, is given by [40]

Krj =
1

eTj Ceeej

where the end-effector compliance Cee is composed by two different contribu-

tions, one related to lumped joint compliance and the other one due to dis-

tributed arm stiffness, i.e.,

Cee = CJ + CL

The joint compliance matrix CJ is defined as follows [40]

CJ = JA(q)K−1J JT (q)

where JA(q) is the analytic robot Jacobian and KJ = diag {k1, . . . , kN} is the

diagonal matrix of the joint stiffnesses kj , j = 1, . . . , N , N being the number of

links.

On the other side, the i-th link compliance matrix is given by [40]

CLi
= ALi

(q)TK−1Li
ALi

(q)

where ALi(q) is a transformation matrix from the absolute reference frame to

the i-th link reference frame defined as

ALi
(q) =

oRLi
(q) 0

0 oRLi
(q)

 I3 0

[ri]× I3


with oRLi

(q) the rotation matrix from the absolute reference frame to the

reference frame of the i-th link, ri ∈ R3 the distance vector from the external

end of the i-th link to the end-effector position, and [ri]× ∈ R3×3 the matrix

performing the cross product

[ri]× x = ri ∧ x ∀x ∈ R3

The stiffness of the i-link, modelled as an Euler-Bernoulli beam [40], with respect
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to its local reference frame is given by

KLi
=



12p 0 0 0 −6Lip 0

0 12q 0 6Liq 0 0

0 0 L2
i r 0 0 0

0 6Liq 0 4L2
i q 0 0

−6Lip 0 0 0 4L2
i p 0

0 0 0 0 0 L2
iu


p = EIx,i q = EIy,i r = EAi u = GIz,i

where E and G are the Young modulus and the shear modulus characterising

the link material, respectively, Ix,i, Iy,i and Iz,i, are the moments of inertia of

the cross-sectional area of the beam Ai, and Li is the length of the link.

Finally, the total link compliance matrix CL is defined as follows

CL =

N∑
i=1

CLi

where N is the number of links.

Note that, the stability analysis here presented does not change if a reference

signal is added to the system in Figure 3.

In particular, an additional virtual force, like the one generated by a virtual205

constraint [1], can be considered without affecting the stability of the closed-

loop system. Furthermore, a position (orientation) reference p̄P (r̄P ) can be

added as well, recasting it, thanks to a suitable impedance filter, into a force

(torque) reference.

5. Experimental results210

All the experiments, related to human arm parameter identification and

hands-on control, have been performed with a Comau Smart Six industrial robot

equipped with an ATI Gamma SI-130-10 force/torque sensor and an aluminium

handling tool (Figure 6). The robot is controlled by a C4GOpen industrial

controller, that allows an external real-time Linux PC, connected through a215
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2 ms real-time Ethernet link, to close some of the motion control loops.

In this specific application, the external PC is used to close an admittance loop

around the industrial controller joint position loops, and to log force/torque and

joint measurements.

Using an industrial robot has pros and cons. The main disadvantage is that220

Smart Six, as any industrial manipulator, is massive and bulky and thus both

parameter identification and hands-on control experiments, requiring the human

operator to be in close collaboration with the robot, can be very dangerous. On

the other side, considering that hands-on control has important applications in

industrial robot programming, using Smart Six allows to test the approach in a225

realistic scenario. Furthermore, Smart Six mechanical chain is characterised by

lumped flexibilities, at all the joints, and distributed flexibilities, especially at

the fourth link. Some hands-on control experiments revealed joint oscillations

close to the stability limit when the operator moves the robot forward and

backward in the plane including joints 2, 3 and 5. This makes Smart Six a230

perfect test bench to show the effectiveness of the approach here proposed.

Figure 6: The handling tool used to perform identification and hands-on experiments.
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5.1. Human arm identification

5.1.1. Experimental protocol

First of all, human arm impedance of three different subjects [27, 37], males

with an average age of 31 years, an average height of 182 cm, and all right-handed235

(more details are reported in Table 1), has been experimentally identified.

Following the experiments performed in [37], the set-up (Figure 7(a)) has been

organized as follows:

• a chair has been located in front of the robot, kept always at the same

position, where a person can sit down and grasp the end-effector handling240

tool keeping a comfortable position, i.e., without co-contracting muscles;

• five different postures have been used, corresponding to different end-

effector positions (see Table 2 and Figures 7(b)- 7(f)), but all characterised

by the same height with respect to ground.

Subject Gender Age Height Right/left

[years] [m] handed

1 male 41 1.75 right-handed

2 male 25 1.85 right-handed

3 male 28 1.87 right-handed

Table 1: Characteristics of the subjects used for human arm impedance identification.

Position ox[m] oy[m] oz[m]

P1 0.80 0.10 1.06

P2 0.95 0.00 1.06

P3 0.95 0.10 1.06

P4 0.95 0.20 1.06

P5 1.10 0.10 1.06

Table 2: Positions for human arm impedance identification, coordinates with respect to ab-

solute robot frame.
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(a) experimental setup (b) position P1

(c) position P2 (d) position P3

(e) position P4 (f) position P5

Figure 7: The experimental setup and the five positions used for human arm impedance

identification.
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Before each test, the human has been instructed to sit down on the chair and245

hand the tool without co-contracting muscles, keeping, as much as possible, a

planar human arm configuration, i.e., with shoulder center, elbow and wrist

in the same plane parallel to the ground plane. Moreover, subjects have been

asked to avoid looking at their hands during the identification experiment in

order to limit the effect of possible undesired muscle activations [31].
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(b) human arm reaction

Figure 8: An example of stimulus for human arm impedance identification (position reference

as a dashed line, actual position as a solid line), and the corresponding human arm force

response recorder by the sensor.

250

In order to identify the human arm impedance, the robot performs a very

small motion in the x and y directions recording the reaction of the human

arm in terms of force in both directions [27]. Differently from [27], however, a

trapezoidal space profile, instead of a square wave, has been adopted, mainly

for safety reasons. The trapezoidal wave is characterised by a constant velocity255

of 0.14 m/s for 0.05 s, zero velocity for 0.2 s, and a negative velocity of 0.07 m/s

for 0.1 s at the end (Figure 8). Using a trapezoidal instead of a square wave

space profile allows to limit the maximum required end-effector velocity, in this

way a reasonable safety threshold can be set on the robot Cartesian velocity,

triggering an emergency stop in case this value is exceeded.260

A complete test is constituted by 5 cycles, each one characterised by a trapezoid

in the x and another one in the y direction, and between two consecutive cycles a
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break of ten seconds is performed. The same test is executed twice, the first time

instructing the subject to avoid muscle co-contraction (σ = 0), the second time

asking him/her to co-contract his/her muscles as much as he/she can (σ = 1).265

Figure 9 shows an example of 5 cycles recorded from a subject avoiding muscle

co-contraction.
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Figure 9: Human arm reaction as recorded by the force sensor in a complete experiment

constituted by 5 cycles.

5.1.2. Identification results

A complete dataset is composed of five pulses in the x direction and five in

the y direction for each co-contraction index, and by the corresponding responses

of the human arm in terms of hand force in both directions (Figure 11).

As can be seen from Figure 8(b) the human arm response to a stimulus lasts

approximately half a second, in spite of that only the first 100 ms, characterized

by the visco-elastic response of the human arm (Figure 10), are usually exploited

to identify stiffness [27]. In the experiments here considered, however, this

procedure yields sometimes erroneous results, i.e., a negative stiffness, as it has

already been reported in [8]. For this reason, a window of 200 ms, including

secondary reflexes but excluding voluntary motion, has been used (Figure 10).

Moreover, hand forces are normalised subtracting the initial values, i.e., the

average forces computed in a time window of 30 ms before the perturbation
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onset.

Given end-effector position, velocity, acceleration, and hand force, human arm

mass, stiffness and damping matrices can be estimated using a linear regression

technique. In fact, the model in equation (1) can be expressed in identification

form as follows

Fh (qh, t)︸ ︷︷ ︸
F

=
[
Mh(qh, t) Dh(qh, t) Kh(qh, t)

]
︸ ︷︷ ︸

Π


q̈h

q̇h

qh


︸ ︷︷ ︸

Y

Then, given m measurements, the previous relation can be rewritten as

Fm = ΠYm

where Fm is the vector of m force measurements, and Ym the vector of m

position, velocity and acceleration measurements.

Matrix Π can be thus computed as

Π = FmY†m

where Y†m is the right pseudoinverse of Ym.

Tables 3 and 5 report the average (among the five pulses) stiffness and damping270

matrix elements for the three subjects and the five positions. Figure 14, instead,

shows a validation of the human arm impedance model referred to subject 2 and

posture 4. As it can be clearly seen, the force predicted by the human arm model

is in good accordance with the five experimentally recorded force reactions,

especially considering the complexity of the human arm neuromuscular system275

and the simplicity of the model. Moreover, as it can be seen in the figure, a

delay of 100 ms, representing the reaction time, has been introduced.

Using data in Table 3, the symmetric part of the stiffness matrix can be

determined and computing eigenvalues and eigenvectors the stiffness ellipsoids

associated to each position can be derived. Figure 12 shows these ellipsoids for280

the first subject.

Note that, as reported in literature [41, 26], the ellipsoid principal axes are
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Subject 1

Posture Kxx Kyy Kxy Kyx

[N/m] [N/m] [N/m] [N/m]

1 618.08 15.90 − 87.66 −114.98

2 416.47 16.28 −145.96 −178.69

3 297.98 18.64 −142.18 −129.71

4 306.82 33.54 − 58.16 − 89.84

5 252.89 50.47 −133.79 −161.42

Subject 2

Posture Kxx Kyy Kxy Kyx

[N/m] [N/m] [N/m] [N/m]

1 1304.92 47.76 − 91.46 − 95.12

2 366.07 9.89 − 90.19 −106.31

3 358.91 5.32 − 80.48 −122.62

4 402.06 32.06 − 54.49 − 69.67

5 208.04 29.14 −140.29 −147.97

Subject 3

Posture Kxx Kyy Kxy Kyx

[N/m] [N/m] [N/m] [N/m]

1 545.05 6.00 −136.67 −133.99

2 180.36 5.37 − 91.38 − 83.88

3 224.14 13.20 −102.50 −103.14

4 213.16 1.29 − 55.10 − 80.62

5 169.53 26.65 −129.72 − 93.11

Table 3: Results of human arm stiffness identification on the three subjects.
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Figure 10: Time intervals used in the human arm response analysis.

Fx Fy

P1, P3, P5 P2, P3, P4 P1, P3, P5 P2, P3, P4

b1 9900.0 2047.7 954.6 876.8

b2 −20851.0 −477.7 −1766.7 −124.1

b3 11168.0 321.0 823.7 10.5

a 266.0 50.0

Table 4: Results of human arm model averaged on the three subjects.
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Subject 1

Posture Dxx Dyy Dxy Dyx

[Ns/m] [Ns/m] [Ns/m] [Ns/m]

1 35.51 11.47 −10.07 −12.88

2 26.05 16.90 −12.70 −13.66

3 34.39 13.40 −10.85 −10.02

4 34.18 10.51 − 6.70 − 7.15

5 28.54 13.74 − 9.68 − 8.81

Subject 2

Posture Dxx Dyy Dxy Dyx

[Ns/m] [Ns/m] [Ns/m] [Ns/m]

1 40.53 11.31 − 8.25 − 5.52

2 30.59 21.30 −12.97 −12.52

3 38.48 15.20 −12.54 −11.17

4 45.85 11.27 − 8.77 − 7.58

5 27.05 18.63 −15.05 −11.21

Subject 3

Posture Dxx Dyy Dxy Dyx

[Ns/m] [Ns/m] [Ns/m] [Ns/m]

1 29.21 12.15 −13.61 −12.03

2 16.71 20.70 − 9.15 − 7.96

3 24.03 13.88 −11.19 −11.02

4 25.20 12.24 − 8.34 − 8.86

5 21.30 17.34 −11.94 −10.14

Table 5: Results of human arm damping identification on the three subjects.
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directed towards the shoulder position. Moreover, it can be also noticed that

the ellipsoid corresponding to posture P1 has a principal axis with a length that

is definitely greater with respect to the other ones, this is due to the fact that285

this human arm configuration is very close to a singularity, where the estimated

stiffness is due not only to muscles, but also to bones.
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(c) hand force in y direction
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(f) hand force in y direction

Figure 11: An example of complete experiment composed of 5 cycles.

Human

shoulder

Figure 12: Stiffness ellipsoids for subject 1.

Exploiting again data in Table 3 and the model introduced in Section 3, the
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human arm impedance relation along a linear path in the x or y directions can

be derived4.290

Figures 15 and 16 show the stiffness-position relation for a linear path along

positions P1, P3, P5 and P2, P3, P4, respectively (Figure 13), while Table 4

reports the corresponding values of the coefficients a, b1, b2, b3, that define the

arm impedance relation (2) of an average model among the three subjects.

Using a combination of the two models, the behaviour of the stiffness along a295

circular path (Figure 13) has been also determined (Figure 17).

Figure 13: Linear and circular paths used for hands-on control experiments.

5.2. Admittance filter tuning

Given the human arm stiffness model described in Section 3, the manipulator

stiffness matrices as reported in [40], and applying the procedure introduced in

Section 4, the minimum damping that stabilises the system for three different300

values of the virtual tool mass – 2 Kg, 25 Kg, 50 Kg –, and for the five human

arm postures considered in the identification process can be determined.

Gains are reported in Table 6.

Note that, the damping associated to posture P1 is definitely larger with

respect to that of the other postures. This is due to the fact, already observed305

4The same approach can be used to derive the damping-position and mass-position rela-

tions, that are not reported here as only the stiffness is required to compute the admittance

filter gains.
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Figure 14: Validation of human arm impedance for subject 2 in posture 4 (force predicted by

the model as a solid line, experimental data as dashed lines.
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Figure 15: Human arm stiffness model for a linear path along positions P1, P3, P5 (σ = 0,

black solid line; σ = 1, gray solid line).
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Figure 16: Human arm stiffness model for a linear path along positions P2, P3, P4 (σ = 0,

black solid line; σ = 1, gray solid line).
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Figure 17: Human arm stiffness model for a circular path (σ = 0, black solid line; σ = 1, gray

solid line).
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1− 3− 5
M Dx Dy

[Kg] [Ns/m] [Ns/m]

P1

2 174 35

25 266 60

50 705 85

P3

2 111 23

25 177 42

50 352 56

P5

2 87 40

25 139 74

50 290 98

2− 3− 4
M Dx Dy

[Kg] [Ns/m] [Ns/m]

P2

2 58 30

25 88 54

50 193 71

P3

2 49 28

25 72 41

50 160 67

P4

2 54 42

25 51 77

50 179 102

Table 6: Admittance filter gains for the different postures.
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in Section 5.1.2, that stiffness in P1 is larger with respect to stiffness of all other

postures.

5.3. Hands-on control experiments

Figure 18: The experimental setup used for the hands-on control experiments.

Hands-on control experiments have been performed asking human operators

to stand still in front of the robot, in a place marked by a rectangle on the floor310

(Figure 18), grasping the handling tool. To allow the execution of comparable

trajectories by different operators, a laser pointer has been attached to the

handling tool and two linear and one circular paths have been drawn on the

floor (Figure 18). The operator, thanks to the pointer projecting a laser spot on

the floor, follows these guidelines performing similar trajectories along different315

experiments.

Multiple tests have been performed, considering linear and circular paths

and different masses of the virtual tool. As the aim of these tests is to assess

the validity, including the robustness, of the proposed admittance controller

tuning methodology, the paths performed by the operators are similar but not320

identical to the ones considered for the identification step. For example, a path

along P2, P3, P4 is a line parallel to the y-axis, and thus to the segment used
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Figure 19: Hand path in an hands-on control experiment along P1, P3, P5.
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Figure 20: Hand positions and forces in an hands-on control experiment along P1, P3, P5.
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Figure 21: Hand path in an hands-on control experiment along P2, P3, P4.
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Figure 22: Hand positions and forces in an hands-on control experiment along P2, P3, P4.
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Figure 23: Hand path in an hands-on control experiment along a circular path.
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Figure 24: Hand positions and forces in an hands-on control experiment along a circular path.
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for identification purposes, having a similar but not equal length. In conclu-

sion, if the identification pattern guarantees that sufficient data are available

to characterise the arm impedance model for both the x and y directions over325

the region of the robot workspace required to perform the task, the operator is

then free to move along all this region with a guarantee on the stability of the

human-robot interaction.

In the following, the results of two repeated linear paths and one repeated cir-

cular path, with a virtual mass of 25 Kg for the linear path along P2, P3, P4 and330

of 50 Kg for the linear path along P1, P3, P5 and the circular path, are reported.

In particular, Figures 20 and 22, and Figures 19 and 21 show the forces, the

end-effector displacements and 3D paths for the linear movements along the x

and y directions, i.e., points P1, P3, P5 and P2, P3, P4, respectively. Figures 23

and 24, instead, show the same variables for the circular trajectory.335

In both experiments the human operator has not perceived any anomalous vi-

bration, nor it is evident from measured forces or positions.
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Figure 25: Hand path in an hands-on control experiment along a circular path with low virtual

mass.

The results of another test, characterised by a virtual tool mass of 2 Kg,

are shown in Figures 25 and 26. Such a low mass represents a very critical

situation, especially during the inversion of the direction of motion, i.e., when340

the end-effector velocity is close to zero and the stabilising effect of the damping
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Figure 26: Hand positions and forces in an hands-on control experiment along a circular path

with low virtual mass.
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Figure 27: Hands-on control experiment along a circular path with low virtual mass, x-position

and force during the inversion of the direction of motion.
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component vanishes. Nevertheless, as it can be seen in Figure 27, even in

this situation vibrations are very small and almost indiscernible by the human

operator.

5.4. Exploiting the human arm impedance model345
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Figure 28: Simulated 3D hand position for different admittance filter dampings.

The nonlinear model reported in Section 3 allows to draw some conclusions

related to a possible drawback of the presented approach, i.e., an excessive hu-

man effort caused by the increased value of the admittance filter damping used

to enforce stability. To show that this does not represent an issue, a sinusoidal

motion of the human hand has been simulated considering values of the admit-350

tance filter damping above and below the minimum determined by the stability
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analysis5. Moreover, a force disturbance of 30 N, almost ten times higher then

the one recorded during the identification experiments, has been injected after

3 seconds to verify the stability.

Figure 28 shows the 3D hand position for the minimum damping (Figure 28(a)),355

and for a damping of 75 % (Figure 28(c)), 70 % (Figure 28(b)) and 67.5 % (Fig-

ure 28(d)) the minimum one. As it can be clearly seen, the response of the

system to the force disturbance moves from well-damped oscillations, when the

minimum damping ensuring asymptotic stability is applied, to diverging oscil-

lations, i.e., instability.360

Furthermore, these four simulations allow to compare the human effort related

to different values of the admittance filter damping. In Table 7 the maximum

force and the work required to execute the task are reported.

Though the difference, in terms of work, between the minimum damping that

ensures stability of the closed-loop system and 67.5 % of this value is significant365

(there is an increase of approximately 50 %), it must be noticed that 6.45 J is

the energy required to lift a mass of 1 Kg for 62 cm, being thus a definitely little

effort.

D Fmax W

[Ns/m] [N] [J]

41.00 6.07 6.45

30.75 4.55 4.84

28.70 4.25 4.52

27.68 4.10 4.36

Table 7: Forces and human effort for different damping values.

Finally, using the human arm impedance model and the elastic model of

the robot introduced in Section 4, one can compute the minimum damping370

5As this comparison involves the use of damping coefficients that do not ensure stability,

for safety reasons it cannot be performed on the experimental system.

38



-1 -0.5 0 0.5 1

x [m]

-1

-0.5

0

0.5

1

y
 [

m
]

41

42

43

44

45

(a) 0.45 m

-1 -0.5 0 0.5 1

x [m]

-1

-0.5

0

0.5

1

y
 [

m
]

40

40.5

41

41.5

42

(b) 0.55 m

-1 -0.5 0 0.5 1

x [m]

-1

-0.5

0

0.5

1

y
 [

m
]

39

39.5

40

40.5

41

41.5

42

(c) 0.70 m

-1 -0.5 0 0.5 1

x [m]

-1

-0.5

0

0.5

1

y
 [

m
]

38

39

40

41

42

(d) 1.00 m

Figure 29: Minimum damping of the admittance filter in the robot workspace, for different

end-effector heights.
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ensuring stability of the closed-loop system for different robot configurations in

the robot workspace. This allows to draw the charts in Figure 29 that, for each

motion along the x-axis at a given and constant height, and starting from a

particular robot configuration, give the minimum damping of the admittance

filter. In other words, these charts give an intuitive representation of the risk of375

instability associated to each zone of the robot workspace.

6. Conclusions

This paper presents a novel methodology, based on absolute stability theory,

to assess the stability of the human-robot interaction during hands-on control

tasks. Thanks to a nonlinear but simplified model of the human arm impedance,380

whose parameters can be easily experimentally identified using least-squares

techniques, the admittance filter can be designed in such a way that the stabil-

ity is always ensured.

The experimental results confirm that the selected impedance model, though

simplified, is suitable to characterise the human arm reactions during human-385

robot interaction, and to assess the system stability. Moreover, hands-on control

tests reveal that the proposed designed methodology is able to guarantee sta-

bility, and thus absence of vibrations during the execution of the task, without

causing an excessive human effort. This allows to improve the safety and com-

fortability, reducing the psychological stress, of the human operator, increasing390

the accuracy of the executed task, as well.

Finally, the proposed methodology opens the way to the design of an adap-

tive admittance filter that, thanks to a continued online human arm impedance

identification, ensures robust asymptotic stability and accuracy of the hands-on

control task.395
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