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Abstract. In Computer Vision, images of dynamic or segmented scenes are modeled
as linear projections from Pk to P2. The reconstruction problem consists in recovering
the position of the projected objects and the projections themselves from their images,
after identifying many enough correspondences between the images. A critical locus
for the reconstruction problem is a variety in Pk containing the objects for which the
reconstruction fails. In this paper, we deal with projections both of points from P4 → P2

and of lines from P3 → P2. In both cases, we consider 3 projections, minimal number for
a uniquely determined reconstruction. In the case of projections of points, we declinate
the Grassmann tensors introduced in [21] in our context, and we use them to compute
the equations of the critical locus. Then, given the ideal that defines this locus, we prove
that, in the general case, it defines a Bordiga surface, or a scheme in the same irreducible
component of the associated Hilbert scheme. Furthermore, we prove that every Bordiga
surface is actually the critical locus for the reconstruction for suitable projections. In
the case of projections of lines, we compute the defining ideal of the critical locus, that is
the union of 3 α–planes and a line congruence of bi–degree (3, 6) and sectional genus 5 in
the Grassmannian G(1, 3) ⊂ P5. This last surface is biregular to a Bordiga surface [40].
We use this fact to link the two reconstruction problems by showing how to compute the
projections of one of the two settings, given the projections of the other one. The link is
effective, in the sense that we describe an algorithm to compute the projection matrices.

1. Introduction

Linear projections from P3 to P2 are the natural geometric model for pictures of static
three-dimensional scenes taken from pinhole cameras. Similarly linear projections from
Pk to P2, with k ≥ 3, arise when images of particular dynamic and segmented scenes are
considered ([39, 21, 28, 38, 22]).

Given multiple images of an unknown scene, taken from unknown cameras, the recon-
struction of the positions of cameras and scene points is a classical problem in Computer
Vision, which has been generalized as well in the setting of higher dimensional projective
spaces.

Sufficiently many images and sufficiently many sets of corresponding points in the given
images should in principle allow for a successful projective reconstruction. Anyway, there
exist sets of points, in the ambient space Pk, for which the projective reconstruction fails.
These configurations of points are called critical, which means that there exist other non
projectively equivalent sets of points and cameras that give the same images in the view
planes.

Critical loci for projections from P3 to P2 have been studied by many authors. Among
the many papers on the subject, we recall [13, 27, 29, 19, 24, 20, 35, 2]. In the case of
projections from higher dimensional Pk to the projective plane P2, when k ≥ 4, critical
loci were described in [11] in the case of one view, and in [7, 3, 6] in the case of multiple
views.
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In this paper we focus on the case of three projections from P4 to P2, that is the first non–
classical case, since three views is the minimum number which allows us to reconstruct the
scene, when the scene points are general (in a sense which will be clear later). Our purpose
is to get a scheme–theoretical description of the critical locus. The critical locus comes out
to be a classical surface in P4, the so–called Bordiga surface ([12]). The approach used here
to obtain the polynomials that generate the ideal of the critical locus is different from the
one followed in [7]: we use the Grassmann tensor introduced in [21]. In [2], a first seminal
case of this idea has been applied to two projections from P2 to P1, while in [10] this
approach is used to study the critical locus when it is a hypersurface. The construction
of the critical locus given in [7] allowed the set–theoretical description of it, while the
one given here through the Grassmann tensor allows us to compute the generators of
the ideal of the critical locus and its first syzygy module, so giving a scheme–theoretical
description of the critical locus itself. In more details, the ideal is minimally generated by
4 degree 3 forms that are the maximal minors of a 4× 3 matrix with linear entries. From
the Hilbert–Burch Theorem, it follows that the critical locus is a determinantal variety of
codimension 2 and degree 6 in P4, and so it belongs to the irreducible component of the
Hilbert scheme containing Bordiga surfaces.

A very natural question arising as a consequence of the above results is whether every
Bordiga surface in P4 is the critical locus of suitable projections. To give a positive answer
to this question, we heavily use the geometry of Bordiga surfaces.

We recall that a Bordiga surface S is the blow–up of P2 at 10 general points, embedded
in P4 via the complete linear system of the quartics through the 10 points. S contains
exactly 10 lines, corresponding to the base points of the linear system. The ideal of the
10 points is determinantal, too. The 5× 4 matrix of linear forms whose maximal minors
are the generators of the ideal of the 10 points in P2 is strongly related to the matrix that
presents the surface S in P4. We use such a relation to prove that the generators of the
first syzygy module of the ideal of S can be chosen in a very particular form. Finally, we
use this particular presentation to prove that every Bordiga surface is the critical locus
for suitable projections, that we explicitly construct.

Quite surprisingly, the Bordiga surface is linked to another classical problem in Com-
puter Vision: reconstruction using lines. Given an unknown scene in P3, consisting of a
set of lines (i.e. a subset of the Grassmannian G(1, 3)), and taken multiple images of this
scene, in which corresponding lines in the different views are identified, the goal is the re-
construction of the scene. The reconstruction using lines is particularly significant in the
real word, since images of lines can be more easily and accurately detected and tracked
than points [30]. A classical result of Buchanan and Maybank shows that the critical
locus for reconstruction in P3 using lines is essentially a line congruence of bidegree (3, 6)
and sectional genus 5 in G(1, 3). This congruence admits a biregular model in P4 which
is a Bordiga surface [40]. Furthermore, Maybank proves that every Bordiga surface can
be obtained in this way, i.e. as model in P4 of a congruence in G(1, 3) which arises as the
critical locus for the reconstruction using lines. As a consequence of this, we have more
deeply investigated, also from an algebraic point of view, the relations between the two
critical loci. To do this we have computed the generators of the ideal of the critical con-
gruence, obtaining its scheme–theoretical description, and proved that the whole critical
locus in G(1, 3) is the union of the quoted congruence with three α-planes corresponding
to the lines through the centers of projection.

Finally we have explicitly described how to link the projections from P3 to P2 used in
the reconstruction using lines, with the ones from P4 to P2 used in the reconstruction
using points, which give rise to biregular critical loci, and conversely. This provides a
connection between the two reconstructions, a priori independent each other.

The plan of the paper is as follows. In sections 2 and 3 we recall the geometric con-
structions of the Bordiga surface and of the (3, 6) line congruence respectively and, for
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both of them, we give the algebraic translation of their constructions. Moreover in sec-
tion 3 we present some results on the (3, 6) line congruence we are not able to quote.
Section 4 is devoted to recall the main facts on multiview geometry in higher dimension,
in particular the description of the Grassmann tensor. In section 5 we prove that the
generators of the ideal of the critical locus for 3 projections from P4 to P2 can be deduced
via the appropriate Grassmann tensor and that this locus is actually a Bordiga surface.
Moreover we prove also that the converse holds, i.e. every Bordiga surface S is the critical
locus of suitable linear projections. In section 6 we provide the definition of critical locus
for reconstruction using lines, we compute the defining ideal of such a critical locus and
finally we show that the (3, 6) congruence is the main component of this locus. Section
7 gives a bridge between the two above problems of criticality, by explicitly computing
the equations of the maps between the two critical loci. From the maps we are able to
compute the projections of one of the two settings given the projections of the other one.
In section 8 we provide a Singular session in which we compute a degree 10 arithmetically
Gorenstein curve contained in a given (3, 6) line congruence. We need this curve to make
effective the algorithm in section 7.

2. On the Bordiga surface

In this section, we recall the construction of the Bordiga surface and some properties
of this surface we’ll use later on in the paper. For more information on this surface, see
[12],[16].

Let P2 = Proj(S = C[z0, z1, z2]) be the projective space of dimension 2 over the complex

ground field C, and let p1, . . . , p10 ∈ P2 be ten general points. Let P̃2 π−→ P2 be the blow–
up of P2 in p1, . . . , p10. The linear system |4π∗L − E1 − · · · − E10|, where L is the line

divisor in P2 and Ei is the exceptional divisor associated to pi, i = 1, . . . , 10, embeds P̃2

in P4 = Proj(R = C[y0, . . . , y4]), and becomes the hyperplane divisor H of the image.

If ϕ : P̃2 ↪→ P4 is the embedding, B = ϕ(P̃2) is named Bordiga surface. B is a smooth
surface of degree 6 and sectional genus 3. ϕ maps each Ei onto a line, and moreover B
contains exactly these 10 lines. It is possible to prove that these lines are pairwise skew
and that no three of them are contained in a 3–dimensional linear space. The canonical
divisor of B is KB = | − 3π∗L + E1 + · · · + E10|. By adjunction, it is possible to prove
that the image of a plane cubic through 9 among p1, . . . , p10 is a plane cubic in B, as well.
Moreover, the plane containing it and the exceptional line associated to the 10th point
are skew linear spaces. Finally, the image of a line containing no point among p1, . . . , p10

is a rational normal quartic curve Γ contained in B.
Now, we give the algebraic translation of the previous geometric constructions.
Because of the generality assumption, Z = {p1, . . . , p10} has Hilbert function hZ(j) =

min{
(
j+2

2

)
, 10} for j ≥ 0, and so IZ , defining ideal of Z in S, is generated by 5 forms

g0, . . . , g4 of degree 4. As Z is a codimension 2 arithmetically Cohen–Macaulay (ACM,
for short) closed subscheme of P2, the ideal IZ is determinantal and its minimal free
resolution is

(1) 0→ S4(−5)
NZ−→ S5(−4)→ IZ → 0.

The forms g0, . . . , g4 are a basis of the complete linear system of quartic curves through
p1, . . . , p10. If we define ϕ : R → S as ϕ(yi) = gi, i = 0, . . . , 4, then IB = ker(ϕ) is the

defining ideal of the Bordiga surface B = ϕ(P̃2). IB is determinantal too, and its minimal
free resolution is

(2) 0→ R3(−4)
NB−→ R4(−3)→ IB → 0.

This proves that B is a codimension 2, ACM closed scheme in P4 with Hilbert polynomial
pB(t) = (6t2 + 2t+ 2)/2. From [18], it follows that
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Proposition 2.1. The Bordiga surface is the general element of the irreducible component
of the Hilbert scheme HilbpB(t)(P4) containing the codimension 2, ACM closed subschemes
of P4 with Hilbert polynomial pB(t).

From the point of view of liaison theory, the Bordiga surface is linked to a degree 3
rational normal scroll. In fact, let S be the surface complete intersection two general
cubic hypersurfaces containing B. Then, by standard argument from liaison theory, the
defining ideal of the residual surface B′ has the following minimal free resolution

0→ R2(−3)→ R3(−2)→ IB′ → 0

and so B′ is a degree 3 rational normal scroll, as claimed. Moreover, the intersection
between B and B′ is an arithmetically Gorenstein curve of degree 8 and socle degree 3,
as its minimal free resolution is

0→ R(−6)→
R2(−3)
⊕

R3(−4)
→

R3(−2)
⊕

R2(−3)
→ IB∩B′ → 0,

computed by mapping cone from the short exact sequence

0→ IS → IB ⊕ IB′ → IB∩B′ → 0.

Such a curve is the image in B of a curve in the linear system |7π∗L−2E1−· · ·−2E10| =
|−KB+H| and so the curve is a twisted anticanonical divisor on B (see, [25] for generalities
on such divisors). Such a linear system will play a role in next sections.

By adjunction ([32], pp.48–49), one can prove that the matrices NZ and NB are related
each other by

(3) NB

 z0

z1

z2

 = NT
Z

 y0
...
y4

 .

If p ∈ P2 \Z, then rank(NZ ⊗C(p)) = 4 as (1) remains exact after tensorization by C(p),
residue field of p. So p is mapped to the point in P4 whose homogeneous coordinates solve
the linear system

(4) (NZ ⊗ C(p))T

 y0
...
y4

 = 0.

If p ∈ Z, then rank(NZ ⊗ C(p)) = 3, and so the solutions of (4) are the points of
the exceptional line EP . Moreover, if p ∈ Z, then IZ : Ip has a unique generator in
degree 3, the defining form fC of the plane cubic curve C through Z \ {p}. For every
line L 3 p, we have that lfC ∈ 〈g0, . . . , g4〉, with l ∈ C[z0, z1, z2]1 defining L, and so lfc =
a0(l)g0 + · · ·+a4(l)g4 for suitable ai(l) ∈ C. Then, the hyperplane a0(l)y0 + . . . a4(l)y4 = 0
contains ϕ(C). As there are two linearly independent lines in P2 containing p, we have
that ϕ(C) is contained in a dimension 2 linear space, as well. Hence, ϕ(C) is a plane
cubic, because IB is generated in degree 3. Now we want to explain why the above plane
containing ϕ(C) is skew with Ep. In fact, the solutions of (4) define the sub–linear system
of plane quartics through p1, . . . , p10, singular at p. As the quartics defined by lfC are
smooth at p, then they are not in the sub–linear system above, and so the intersection of
the two linear spaces is empty.

Now, if L ⊂ P2 is a general line, we can assume that L ∩ Z = ∅. Let p, q ∈ L be

two distinct points and let ML =

 z0p z0q

z1p z1q

z2p z2q

 be the rank 2 matrix whose columns are

homogeneous coordinates of the points p, q. Then NBML is a 4×2 matrix of generic rank
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2 of linear forms in R, and so its maximal minors define a rational normal curve Γ of
degree 4 contained in B.

3. On the line congruence of bi–degree (3, 6) and sectional genus 5

In this section, we recall the construction and some properties of the line congruence
K of bi–degree (3, 6) and sectional genus 5 in the Grassmannian G(1, 3) of lines in P3,
following [40], [1]. Furthermore, we present three properties of K for which we are not
able to quote a reference.

As in section 2, let P̃2 be the blow–up of P2 at 10 general points p1, . . . , p10. The

linear system |7π∗L − 2E1 − · · · − 2E10| on P̃2 embeds P̃2 in G(1, 3) ⊂ P5 = Proj(T =
C[x0, . . . , x5]). For a suitable choice of the coordinates, G(1, 3) = V (x0x5 − x1x4 + x2x3).

Let ψ : P̃2 → G(1, 3) be such an embedding, and let K = ψ(P̃2) be its image. Then, K
is a line congruence of bi–degree (3, 6) and sectional genus 5. The canonical divisor is
KK = |−3π∗L+E1+· · ·+E10| while the hyperplane divisor isH = |7π∗L−2E1−· · ·−2E10|.
Moreover, the converse holds true, that is to say, every such a surface is the embedding

of P̃2 with |7π∗L− 2E1 − · · · − 2E10|. In G(1, 3), the ideal sheaf IK|G(1,3) is generated in
degree 3 and it holds

(5) 0→ O5
G(1,3) → E2(1)3 → IK|G(1,3)(3)→ 0

where E2 is the rank 2 vector bundle on G(1, 3) coming from the universal exact sequence

0→ E1 → H0(OP3(1))⊗OG(1,3) → E2(1)→ 0.

The first result we are not able to quote concerns the shape of the minimal free resolution
of the defining ideal IK of K in T .

Proposition 3.1. The minimal free resolution of IK has the shape

(6) 0→ T 5(−5)→ T 12(−4)→
T (−2)
⊕

T 7(−3)
→ IK → 0.

Proof. From (5), we get the resolution of IK|G(1,3) over TG = T/〈x0x5−x1x4 +x2x3〉, that
is periodic, and it is

· · · → T 12
G (−5)→ T 12

G (−4)→ T 7
G(−3)→ IK|G(1,3) → 0

as H0(E2(1)) = H0(OP3(1)). By [34], the minimal free resolution of IK has the shape

0→ T 5(−5)→ T 12(−4)→
T (−2)
⊕

T 7(−3)
→ IK → 0

as claimed, where the degree 2 generator of IK is the defining form of G(1, 3). �

In particular, K is ACM with Hilbert polynomial pK(t) = (9t2 + t + 2)/2. A result
similar to Proposition 2.1 holds.

Proposition 3.2. The line congruence of bi–degree (3, 6) and sectional genus 5 is the
general element of the irreducible component of the Hilbert scheme HilbpK(t)(P5) contain-
ing the codimension 3, ACM closed subschemes of P5 with Hilbert polynomial pK(t) and
resolution (6).

Now, we go back to the geometric description of K.

As P̃2 is embedded both in P4 as a Bordiga surface B, and in G(1, 3) as a suitable line
congruence K, it is natural to look for maps from P4 to G(1, 3) that transform B into K.
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In [40], it is proved that the map θ that makes commutative the diagram

(7) P̃2

ψ

��

ϕ // B ⊂ P4

θxx
K ⊂ G(1, 3)

is associated to the linear system |OP4(2) \ Γ| where Γ ⊂ B is a degree 4 rational normal
curve in P4, and so Γ is the image in B of a line in P2. The map θ contracts lines that
are bi–secant to Γ and so θ is an embedding of P4 \ F where F is the secant variety to Γ,
a degree 3 hypersurface. Moreover, θ maps F to a Veronese surface V .

Now, we can prove the second result we are not able to quote.

Theorem 3.1. The line congruence K of bi–degree (3, 6) and sectional genus 5 in G(1, 3)
is Gorenstein linked to a Veronese surface V by an arithmetically Gorenstein surface S
of degree 13 and socle degree 4.

Proof. The map θ−1 is defined on K \ C where C = K ∩ V and V is the contraction of
the secant variety to Γ where θ is not an embedding. The curve C is in the linear system
|10π∗L− 3E1− · · ·− 3E10| = | −KK +H| and so C is a twisted anticanonical divisor. By
([25], Lemma 5.4), C is arithmetically Gorenstein in P5, and its minimal free resolution
can be easily constructed by self–duality, because the minimal free resolution of IV is a
subcomplex of the resolution of IC . Then, we have

0→ T (−7)→
T 3(−4)
⊕

T 6(−5)
→

T 8(−3)
⊕

T 8(−4)
→

T 6(−2)
⊕

T 3(−3)
→ IC → 0.

Let S = K ∪ V . Then, we have the short exact sequence

0→ IS → IK ⊕ IV → IC → 0

from which we get the shape of the minimal free resolution of IS:

(8) 0→ T (−7)→
T 4(−4)
⊕

T (−5)
→

T (−2)
⊕

T 4(−3)
→ IS → 0

and so we get that S is arithmetically Gorenstein of degree 13 and socle degree 4, as
claimed. Moreover, K is algebraically linked to V by S and the linkage is geometric,
because both K and V are irreducible varieties, and so they have no irreducible component
in common.

Conversely, let V ⊂ G(1, 3) be a Veronese surface, and let S be an arithmetically
Gorenstein surface of degree 13 and socle degree 4 containing V and contained in the
Grassmannian G(1, 3). Then, the Hilbert function of the Artinian reduction of S is
(1, 3, 5, 3, 1), and so its minimal free resolution is (8). Hence, the residual variety K has
minimal free resolution (6) and so K is a line congruence of bi–degree (3, 6) and sectional
genus 5, as claimed. �

Remark 3.1. As the shape of the resolution of IC allows cancellations, the general element
of | −KK +H| is not the intersection of K with a Veronese surface.

Now, we describe an algorithm, based on [31], to compute such a surface S, given a
general line congruence K. It can be easily adapted to start from V. In last section 8, we
implement it in Singular ([15]), as this explicit computation is needed in section 7, which
is the algorithmic part of the paper.

Given a reduced Gröbner basis of IK with respect to the degree reverse lexicographic
ordering (degrevlex, for short) in T , the initial ideal in(IK) is generated by 〈x2x3, x

3
0, x

2
0x1,

x0x
2
1, x

3
1, x

2
0x2, x0x1x2, x

2
1x2〉. With “general” line congruence, we mean that the generators

of in(IK) are as large as possible w.r.t. the degrevlex ordering and the Hilbert function
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of IK . Then, we write polynomials p1, . . . , p5 whose coefficients are indeterminates, and
whose initial terms are x3

0, x
2
0x1, x0x

2
1, x

2
0x2, x

4
1, respectively. Also in this case, we choose

the largest monomial ideal compatible with the Hilbert function of S. We want to compute
the indeterminate coefficients in such a way that {x0x5 − x1x4 + x2x3, p1, p2, p3, p4, p5}
is a reduced Gröbner basis of IS. At first, we reduce p1, . . . , p5 w.r.t. the Gröbner
basis of IK and we set equal to 0 their normal forms. This gives a linear system in the
indeterminate coefficients. We compute the solutions of this system, and we substitute
them in the polynomials p1, . . . , p5. Then, we run the Buchberger algorithm on the input
{x0x5−x1x4 +x2x3, p1, p2, p3, p4, p5} and we set equal to zero their S–polynomials. We get
a new set of equations, no more linear. It is possible to check, however, that the equations
allow us to express all but two of the remaining variables as rational functions of the last
two ones. More precisely, the two special variables are the coefficients of x2

1x2, x0x1x2 in
p4. For a random choice of them, we compute the polynomials p1, . . . , p5 and we get the
arithmetically Gorenstein surface S we are looking for. As a by–product, we have that
such surfaces form a dimension 2 family, whose parameter space contains an open subset
of an affine plane A2. This confirms that for every line in P2, containing no point among
p1, . . . , p10, we can construct a rational normal curve Γ in the Bordiga surface B ⊂ P4

and a curve C contained in K ⊂ G(1, 3) where the map θ is not an embedding.

As last result, we describe a geometric property of K.
We proved in section 2 that a plane cubic curve containing 9 of the 10 points in Z is

mapped onto a plane cubic curve in B, as well. Now we prove that these plane curves are
mapped by θ to plane curves again. Take, for example, an element in |3π∗L−E2−· · ·−E10|.
The degree of its image in K is 3 and its genus, computed via adjunction, turns out to
be 1. So it is a plane curve in K, too. The plane containing this curve is an α–plane
in G(1, 3). To compute the equations of the α–plane, one can proceed as follows. Let
Ci ⊂ P2 be the cubic curve not containing pi, i = 1, . . . , 10, and let `ij be the line through
pi, pj, with i 6= j. Then, `ijCiCj is a degree 7 plane curve singular at p1, . . . , p10, and
so it is a linear combination of a basis of the linear system. These linear combinations
give the equations of the hyperplanes in G(1, 3) ⊂ P5 containing the image of Ci. If we
select p1, p2, p3 as distinguished points among p1, . . . , p10, and we set α1, α2, α3 the planes
containing the images of C1, C2, C3, respectively, then each one of them intersects the
other two ones, as the intersection point is image of the further intersection point of Ci
and Cj other then the base points.

Now, we can prove the last result we are not able to quote.

Proposition 3.3. With the previous notations, let Y be the union of the line congruence
K and the three planes α1, α2, α3. Then, Y is an ACM surface of bi–degree (6, 6) in
G(1, 3) and the minimal free resolution of its defining ideal is

(9) 0→ T 3(−6)→
T 3(−4)
⊕

T 4(−5)
→

T (−2)
⊕

T 4(−3)
→ IY → 0.

Proof. To prove the result, we use mainly mapping cone procedure. The starting point is
the following short exact sequence

0→ IK∩(α1∪α2) → IK∩α1 ⊕ IK∩α2 → IK∩α1∩α2 → 0.

As K ∩αi is a degree 3 plane curve, the minimal free resolution of IK∩αi
is Koszul, with 3

generators in degree 1 and a further generator in degree 3. On the other hand, K∩α1∩α2

is a point, and so also the minimal free resolution of IK∩α1∩α2 is Koszul with 5 generators
in degree 1. Furthermore, K ∩ (α1 ∪ α2) is the union of two plane cubic curves meeting
at a point, and so there are two minimal generators in degree 3.
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Then, by mapping cone on the previous sequence, we get

0→
T ( − 5)
⊕

T 2(−6)
→

T 5(−4)
⊕

T 6(−5)
→

T 8(−3)
⊕
T 6(−4)

→

T (−1)
⊕

T 4(−2)
⊕

T 2(−3)

→ IK∩(α1∪α2) → 0.

Before going on, we construct the minimal free resolution of Iα1∪α2∪α3 . We choose
coordinates in P5 in such a way that Iα1 = 〈x0, x1, x2〉, Iα2 = 〈x0, x3, x4〉, Iα3 = 〈x1, x3, x5〉,
so to let them intersect pairwise. Hence, Iα1∪α2∪α3 = 〈x0x1, x0x3, x0x5, x1x3, x1, x4, x2x3,
x2x4x5〉, and its minimal free resolution has the shape

0→ T (−6)→
T 3(−4)
⊕

T 3(−5)
→

T 8(−3)
⊕
T 3(−4)

→
T 6(−2)
⊕

T (−3)
→ Iα1∪α2∪α3 → 0.

Now, we consider the short exact sequence

0→ IK∩(α1∪α2∪α3) → IK∩(α1∪α2) ⊕ IK∩α3 → IK∩(α1∪α2)∩α3 → 0.

When we apply the mapping cone procedure, we consider that, by degree argument, the
minimal free resolution of Iα1∪α2∪α3 is a sub–complex of the resolution of IK∩(α1∪α2∪α3),
and that K ∩ (α1 ∪ α2) ∩ α3 is a set of 2 points, and so its minimal free resolution is
Koszul, too, with 4 generators in degree 1 and a generator in degree 2. Then, we get

0→ T 4(−6)→
T 3(−4)
⊕

T 12(−5)
→

T 8(−3)
⊕

T 12(−4)
→

T 6(−2)
⊕

T 4(−3)
→ IK∩(α1∪α2∪α3) → 0.

Finally, from the short exact sequence

0→ IY → IK ⊕ Iα1∪α2∪α3 → IK∩(α1∪α2∪α3) → 0

we get the result on the minimal free resolution of IY . From the minimal free resolution,
it follows that Y is ACM. �

4. On multiview Geometry for projections from P4 to P2

In this section we fix notation and terminology and give a short overview of classical
facts in Computer Vision related to the problem of projective reconstruction of scenes
and cameras from multiple views.

Even if all the definitions can be given in full generality, we restrict ourselves to the
case of projections from P4 to P2. In this context, a camera P is a linear projection from
P4 onto P2, from a line CP , called center of projection. The target space P2 is called view.
A scene is a set of points Xi ∈ P4.

Using homogeneous coordinates in P4 and P2, we identify P with a 3 × 5 matrix of
maximal rank, defined up to a multiplicative constant. Hence CP comes out to be the
right annihilator of P.

Let us consider a set of cameras Pj : P4 \CPj
→ P2 projecting the same scene in P4 and

the corresponding set of images in the different target planes. In this setting, proper linear
subspaces (points or lines), Li, i = 1 . . .m, of different views are said to be corresponding
if there exists at least a point X ∈ P4 such that Pi(X) ∈ Li for all i = 1 . . .m.

In the context of multiple view geometry, the problem of projective reconstruction of a
scene, given multiple images of it, is the following: given many enough scene points in P4

and identified a suitable number of corresponding subspaces on each image, one wants to
get the projection matrices (up to projective transformations), i.e. the cameras, and the
coordinates in P4 of the scene points.

Hartley and Schaffalitzky, [21], have constructed a set of multiview tensors, called Grass-
mann tensors, encoding the relations between sets of corresponding subspaces. We recall
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here the basic elements of their construction in the case of three projections from P4 to P2,
which turns out to be the minimal number of views allowing projective reconstruction.

Consider three projections Pj : P4 \ Cj → P2, j = 1, 2, 3, with centers C1, C2, C3 in
general position.

Let {L1, L2, L3} be three general linear subspaces (points or lines) of P2 of codimension
α1, α2, α3, respectively. (L1, L2, L3) is a triple of corresponding subspaces if and only
if (P1)−1(L1) ∩ (P2)−1(L2) ∩ (P3)−1(L3) is not empty. From the Grassmann formula, if∑
αj = 5, j = 1, 2, 3, the existence of points in the previous intersection gives a constrain

which allows us to construct the Grassmann tensor. Hartley and Schaffalitzky call the
triple (α1, α2, α3) a profile for the reconstruction problem. In our situation the only
possible profiles are: (α1, α2, α3) = (2, 2, 1), (2, 1, 2) or (1, 2, 2).

Let {L1, L2, L3} be three general linear subspaces of P2 as above and let Sj be the
maximal rank matrix of type 3× (3−αj) whose columns are a basis for Lj, j = 1, 2, 3. By
definition, if the Lj’s are corresponding subspaces, there exists a point X ∈ Pk such that
Pj(X) ∈ Lj for j = 1, 2, 3. In other words there exist three vectors vj ∈ C3−αj j = 1, 2, 3
such that:

(10)

 S1 0 0 P1

0 S2 0 P2

0 0 S3 P3

 ·


v1

v2

v3

X

 =

 0
0
0

 .

The existence of a non–trivial solution (v1,v2,v3,X) of system (10) implies that the
coefficient matrix has determinant zero, as it is square of order 9 in our case. This
determinant can be thought of as a tri-linear form (tensor) in the Plücker coordinates of
the spaces Lj. This tensor is the Grassmann tensor.

In the following we explicitly construct such a tensor for the profile (2, 2, 1), others being
similar. Now L1, L2 are points and L3 is a line. We denote by (x1, x2, x3), (y1, y2, y3) the
homogeneous coordinates of L1 and L2, respectively, and by (z1, z2, z3) and (w1, w2, w3)
the homogeneous coordinates of two points of L3. In this case the matrix of the coefficients
of the linear system (10) becomes:

T P1,P2,P3

L1,L2,L3
=



x1 0 0 0 P1[1, 1] P1[1, 2] P1[1, 3] P1[1, 4] P1[1, 5]
x2 0 0 0 P1[2, 1] P1[2, 2] P1[2, 3] P1[2, 4] P1[2, 5]
x3 0 0 0 P1[3, 1] P1[3, 2] P1[3, 3] P1[3, 4] P1[3, 5]
0 y1 0 0 P2[1, 1] P2[1, 2] P2[1, 3] P2[1, 4] P2[1, 5]
0 y2 0 0 P2[2, 1] P2[2, 2] P2[2, 3] P2[2, 4] P2[2, 5]
0 y3 0 0 P2[3, 1] P2[3, 2] P2[3, 3] P2[3, 4] P2[3, 5]
0 0 z1 w1 P3[1, 1] P3[1, 2] P3[1, 3] P3[1, 4] P3[1, 5]
0 0 z2 w2 P3[2, 1] P3[2, 2] P3[2, 3] P3[2, 4] P3[2, 5]
0 0 z3 w3 P3[3, 1] P3[3, 2] P3[3, 3] P3[3, 4] P3[3, 5]


where Pi[j, k] denotes the element in position (j, k) of the matrix Pi.
If L1, L2 and L3 are corresponding spaces then the linear system

(11) T P1,P2,P3

L1,L2,L3


λ
µ
α
β
X

 = 0

has a non trivial solution, and so det(T P1,P2,P3

L1,L2,L3
) = 0.

The converse is true for general L1, L2 and L3 since we are looking for a non trivial solution
of (11) in which X is a point of P4 (i.e. X 6= 0) and X /∈ C1 ∪ C2 ∪ C3.
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In particular this happens if L1 /∈ P1(C2 ∪ C3) and L2 /∈ P2(C1 ∪ C3). Under this

hypothesis, if det(T P1,P2,P3

L1,L2,L3
) = 0, then L1, L2 and L3 are corresponding as the linear

system (11) has a non trivial solution with X as required. Indeed the case X = 0 doesn’t
occur, since, in the opposite case, either L1 or L2 are not points, or L3 is not a line.
Moreover X /∈ C1 ∪ C2 ∪ C3, for the assumption.

In conclusion, for the chosen profile (2, 2, 1), one sees that det(T P1,P2,P3

L1,L2,L3
) = 0 is indeed

the tri–linear constraint between the coordinates x and y of the first and second view and
the Plücker (i.e.dual) coordinates of the line < z,w > of the third view so to let them be
corresponding.

5. Critical loci for projective reconstruction of points and their
geometry

As discussed in the previous section, folklore on the reconstruction problem says that
sufficiently many views and sufficiently many sets of corresponding points in the given
views should allow one a successful projective reconstruction. This is generally true, but
even in the classical set–up of two projections from P3 to P2 one can have non projectively
equivalent pairs of sets of scene points and of cameras that produce the same images in
the view planes, thus preventing reconstruction. Such configurations and the loci they
describe are referred to as critical. In [7], critical loci for projective reconstruction of
camera centers and scene points from multiple views for projections from Pk to P2 have
been introduced and studied. Here we shortly recall the basic definitions in the case in
which we are interested in, i.e. three views from P4 to P2. Moreover we study the critical
locus X for general projections. The non general case is under investigation, and some
preliminary results are summarized in [9].

Definition 5.1. A set of points {Xj}, j = 1, . . . , N, N � 0, in P4 is said to be a critical
configuration for projective reconstruction from three views if there exist two collections of
3×5 full-rank projection matrices Pi and Qi, i = 1, 2, 3, and a set of N points {Yj} ⊂ P4,
non-projectively equivalent to {Xj}, such that, for all i and j, Pi(Xj) = Qi(Yj), up
to homography in the image planes. The two sets {Xj} and {Yj} are called conjugate
critical configurations, with associated conjugate matrices {Pi} and {Qi}.

Remark 5.1. It can be proved that in the above definition N ≥ 7 is enough.

The generators of the ideal of the critical locus X can be obtained by making use of
the Grassmann tensor introduced in the previous section.

Indeed, the Grassmann tensor T P1,P2,P3 encodes the algebraic relations between corre-
sponding subspaces in the different views of the projections P1, P2, P3. Hence by definition
of critical set, if {Xj,Yj} are conjugate critical configurations, then, for each j, the pro-
jections P1(Xj), P2(Xj) and P3(Xj) are corresponding points not only for the projections
P1, P2, P3, but for the projections Q1, Q2, Q3, too.

Following the construction of the previous section, we first choose the profile (2, 2, 1).
If L′1, L

′
2, L

′
3 is a triple of corresponding spaces for the projections Q1, Q2, Q3, where

L′1, L
′
2 are points with homogeneous coordinates L′1 = (x′1, x

′
2, x
′
3)T , L′2 = (y′1, y

′
2, y
′
3)T

in the first two views respectively, and L′3 is the line spanned by z = (z′1, z
′
2, z
′
3) and

w = (w′1, w
′
2, w

′
3) in the third view, the trilinear relation between L′1, L

′
2, L

′
3 is given by

the vanishing of det(TQ1,Q2,Q3

L′
1,L

′
2,L

′
3

), where

TQ1,Q2,Q3

L′
1,L

′
2,L

′
3

=

 L′1 0 0 0 Q1

0 L′2 0 0 Q2

0 0 z w Q3

 .

Considering as corresponding spaces L′1 = P1(X), L′2 = P2(X) and any line L′3 passing
through P3(X), with X any point in the critical locus, one gets that the determinant of
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the matrix

M ′ =

 P1(X) 0 0 0 Q1

0 P2(X) 0 0 Q2

0 0 P3(X) v Q3


must vanish for every choice of v = (a, b, c)T .

This implies that all the cofactors of the elements a, b, c in M ′ must vanish.
Since the above reasoning holds for all the possible profiles (2, 2, 1), (2, 1, 2) or (1, 2, 2),

one sees that X is in the critical locus if and only if one has the vanishing of all the
maximal minors of

M =

 P1(X) 0 0 Q1

0 P2(X) 0 Q2

0 0 P3(X) Q3

 .

From the above discussion it follows that the maximal minors of M generate the ideal
of the critical locus X , as X has to satisfy no other constraint.

Remark 5.2. In [7], the critical locus for a suitable number n of projections from Pk to
P2 has been introduced and studied in a more general context. If k is even, the critical
locus is a determinantal variety, defined by 3n polynomials of degree n. In the particular
case of three projections from P4 to P2, up to a constant, these polynomials are exactly
the maximal minors of M defined above.

Now we study the geometry of the critical locus X in a general situation, where general
means that the greatest common divisor of the generators of the ideal is trivial.

Since the generators have a trivial greatest common divisor, by Hilbert–Burch Theorem
([17], Theorem 20.15), a free resolution of the ideal IX they generate is

(12) 0→
R3(−4)
⊕

R5(−3)

M−→ R9(−3) −→ IX → 0

where M is the above matrix.

By generality assumption, we can assume that rank

 Q1

Q2

Q3

 = 5. Hence, we can cancel

the summand R5(−3) from the resolution, and we get the minimal free resolution

(13) 0→ R3(−4)
NX−→ R4(−3) −→ IX → 0.

Let us assume that a non–vanishing minor is given by the last 5 rows and columns in M .
Then if we write M as the following block matrix

M =

(
A B
C D

)
with A of type 4× 3, and D invertible, we can reduce M with elementary operations on
rows and columns to the block matrix(

NX 0
0 I5

)
where I5 is the 5× 5 identity matrix, 0 are null matrices of suitable type, and

NX = A−BD−1C.

Because of the way it is obtained, NX has linear entries. As the elementary operations
on the columns correspond to base changes in the free module R3(−4)⊕R5(−3) while the
ones on the rows correspond to base changes in the free module R9(−3), the global effect
is to construct a new set of 4 generators of the ideal IX again as maximal minors of NX .
Then, the critical locus X is a codimension 2 arithmetically Cohen–Macaulay scheme in
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P4 with Hilbert polynomial p(t) = (6t2 + 2t + 2)/2 = pB(t). From Proposition 2.1, we
have the following

Proposition 5.1. The general critical locus for projective reconstruction for three views
from P4 to P2 is in the irreducible component of HilbpB(t)(P4) containing the Bordiga
surfaces.

It is then natural to characterize the locus filled by critical loci inside this irreducible
component. Quite surprisingly, this locus coincides with the whole irreducible component.
In fact, we have

Theorem 5.1. Let B be a Bordiga surface. Then B is a critical locus for the projective
reconstruction from three views from P4 to P2, that is to say, there exist two couples of
three projections P1, P2, P3 and Q1, Q2, Q3 from P4 to P2 such that the associated critical
locus is B.

Proof. Let Z ⊂ P2 be a set of 10 points in uniform position and let B be the associated
Bordiga surface. B is irreducible, of course. We choose a reference frame in P2 in such a
way that the fundamental points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) are in Z. For this choice,
from equation (3), we have that the columns of NB in resolution (2) define three lines in
P4 that lie on the Bordiga surface B. We take these lines as centers of three projections
P1, P2, P3.

By performing elementary operations on the rows of NB = (nij), we can assume that
n41 = 0 and n11, n21, n31 are linearly independent.

Now, we want to prove that n42 6= 0. Assume by contradiction that n42 = 0. Then,
with easy computations, we have that IB is generated by

n43 det(N1̂4;3), n43 det(N2̂4;3), n43 det(N3̂4;3), det(N4̂).

So,

IB = 〈n43, det(N4̂)〉 ∩ 〈det(N1̂4;3), det(N2̂4;3), det(N3̂4;3)〉

where îj; k denotes the cancellation of the rows i, j and of the column k from NB, while î
denotes the cancellation of the i–th row, and hence B is not irreducible. In more details,
〈n43, det(N4̂)〉 defines a cubic surface in a P3 while 〈det(N1̂4;3), det(N2̂4;3), det(N3̂4;3)〉 de-

fines a cone in P4 over a twisted cubic curve in a suitable P3. Finally, the two surfaces
meet along a twisted cubic curve. Then, n42 6= 0.

Analogously we get n43 6= 0.
Performing other elementary operations on the rows of NB, we can get n32 = 0. In

analogy to the previous case, n33 6= 0 otherwise B would be non irreducible, as only an
element in the third row of NB is non–zero. Let p1

3X,p
2
3X,p

3
3X be a basis of the ideal

generated by ni3, i = 1, . . . , 4. Moreover, let E be the 4× 3 matrix such that
n13

n23

n33

n43

 = E

 p1
3X

p2
3X

p3
3X

 .

As n33 6= 0 and n43 6= 0, the last two rows of E are non–zero, as well.
Then, if we set

A =


n11 0 0
n21 0 0
n31 0 0
0 n42 0

 and C =


0 n12 0
0 n22 0
0 0 p1

3X
0 0 p2

3X
0 0 p3

3X
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we have that NB = A− FC for

F =


−1 0
0 −1
0 0
0 0

∣∣∣∣∣∣∣∣ −E
 .

Let D be any invertible matrix of order 5 and take B = FD. Then, the maximal minor
of the matrix

M =

(
A B
C D

)
generate the same ideal IB that defines the Bordiga surface B from which we started.

The matrices P1X, P2X, P3X are the three matrices deduced by taking the rows of(
A
C

)
three by three.

Let Q1, Q2, Q3 the three matrices obtained by taking the rows of

(
B
D

)
three by three.

We want to check that Qi has maximal rank 3. This is obvious for Q3 because the rows
of D are linearly independent. Q1 has rank three too, because the first three rows of F
are linearly independent and D is invertible. The last row of B is the last row of F times
D, and so it is a linear combination of the last three rows of D with non–zero coefficients.
So, it is not a linear combination of the first two rows of D, again because D has rank 5.
Hence, Q2 has maximal rank 3, too, and the proof is complete. �

6. Critical loci for projective reconstruction of lines and their
geometry

In the previous sections, we have dealt with the reconstruction problem for sets of
points from their images via three projections from P4 to P2. Moreover we have studied
the critical loci for this problem.

A different reconstruction problem arises when one considers projections of lines in
P3 instead of projections of points. This set–up has been considered and studied by
various authors, in particular T.Buchanan [14] and S.J.Maybank [30]. Given a set of
lines in P3 and n projections of these lines to P2, T.Buchanan [14] shows that n = 3 is
the minimum n such that it is possible to reconstruct the set from their images, up to
projective transformations in P3. Of course, also in this context, there is a natural notion
of critical locus, consisting of lines in P3.

Definition 6.1. A set of lines {λj}, j = 1, . . . , N, N � 0, in P3 is said to be a critical
configuration for projective reconstruction of lines from three views if there exist two
collections of 3×4 full-rank projection matrices ϕi and ψi, i = 1, 2, 3, and a set of N lines
{µj} in P3, non-projectively equivalent to {λj}, such that, for all i and j, ϕi(λj) = ψi(µj),
up to homography in the (dual) image planes. The two sets {λj} and {µj} are called
conjugate critical configurations, with associated conjugate matrices {ϕi} and {ψi}.

In [14], the author, using geometrical arguments, shows that given two triples of projec-
tions from P3 to P2, the associated critical set for reconstruction via lines is a congruence
K of bi-degree (3, 6) and sectional genus 5 in the Grassmannian G(1, 3) (see section 3).

In this section, via an algebraic approach, we compute the defining ideal of the critical
locus for this reconstruction problem. We prove that the critical locus is the union of the
above line congruence and of the three α−planes in G(1, 3) corresponding to the three
centers of projection in P3.

To start, we denote by ϕi : P3 → P2 and ψi : P3 → P2, i = 1, 2, 3, two triples of
projections and we consider the associated critical locus for the reconstruction problem
through lines considered by T.Buchanan [14]. Let Oi ∈ P3 (respectively, O′i ∈ P3) be the
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center of the projection ϕi (resp. ψi). As in the following we are interested in the rows of
the matrices ψ1, ψ2, ψ3, we set

(14)

 ψ1

ψ2

ψ3

 =

 R1
...
R9


where Ri is a 1× 4 matrix. As we consider general projections, we assume that the above
matrix has rank 4.

As proved in [23], if we call l a line in P3 and l′ its image in P2 via a projection ϕ = (ϕij),
the Plücker coordinates of l are transformed into the Plücker coordinates of l′ via

ϕ ∧ ϕ =

∣∣∣∣ ϕ21 ϕ22

ϕ31 ϕ32

∣∣∣∣ ∣∣∣∣ ϕ21 ϕ23

ϕ31 ϕ33

∣∣∣∣ ∣∣∣∣ ϕ22 ϕ23

ϕ32 ϕ33

∣∣∣∣ ∣∣∣∣ ϕ21 ϕ24

ϕ31 ϕ34

∣∣∣∣ ∣∣∣∣ ϕ22 ϕ24

ϕ32 ϕ34

∣∣∣∣ ∣∣∣∣ ϕ23 ϕ24

ϕ33 ϕ34

∣∣∣∣∣∣∣∣ ϕ31 ϕ32

ϕ11 ϕ12

∣∣∣∣ ∣∣∣∣ ϕ31 ϕ33

ϕ11 ϕ13

∣∣∣∣ ∣∣∣∣ ϕ32 ϕ33

ϕ12 ϕ13

∣∣∣∣ ∣∣∣∣ ϕ31 ϕ34

ϕ11 ϕ14

∣∣∣∣ ∣∣∣∣ ϕ32 ϕ34

ϕ12 ϕ14

∣∣∣∣ ∣∣∣∣ ϕ33 ϕ34

ϕ13 ϕ14

∣∣∣∣∣∣∣∣ ϕ11 ϕ12

ϕ21 ϕ22

∣∣∣∣ ∣∣∣∣ ϕ11 ϕ13

ϕ21 ϕ23

∣∣∣∣ ∣∣∣∣ ϕ12 ϕ13

ϕ22 ϕ23

∣∣∣∣ ∣∣∣∣ ϕ11 ϕ14

ϕ21 ϕ24

∣∣∣∣ ∣∣∣∣ ϕ12 ϕ14

ϕ22 ϕ24

∣∣∣∣ ∣∣∣∣ ϕ13 ϕ14

ϕ23 ϕ24

∣∣∣∣


Hence, we denote Φi = ϕi ∧ϕi : P5 → P2 and similarly Ψi = ψi ∧ψi both for i = 1, 2, 3.

Remark 6.1. The center of the projection Φi is the 2–plane in P5 defined by Φi(X) = 0.
They are contained in the Grassmannian G(1, 3) and parameterize the lines of P3 through
Oi, for every i, i.e. they are α–planes.

In a natural way, then, we are induced to consider the reconstruction problem for
points in P5 from three views, which turns out to be the minimum number needed for the
reconstruction of a scene. Let X = (x0, . . . , x5)T be a point in P5. As done in section 5
while computing the critical locus for two triples of projections from P4 to P2, one has to
consider the 9× 9 matrix

M =

 Φ1(X) 0 0 Ψ1

0 Φ2(X) 0 Ψ2

0 0 Φ3(X) Ψ3


where 0 is the 3× 1 null matrix.

Remark 6.2. In the case of two triples of projections from P5 to P2, det(M) = 0 is the
defining equation of the hypersurface that is critical for the reconstruction for points in
this setting. Indeed, det(M) = 0 is equivalent to require that the linear system

M


λ1

λ2

λ3

Y

 = 0

has a non–trivial solution such that Y 6= 0.

The condition det(M) = 0 is not enough in our case to describe the critical locus
since both X and Y are lines and so their coordinates must satisfy the equation of Klein
hyperquadric. For X we have x0x5−x1x4+x2x3 = 0. The situation for Y is more involved.
Indeed we have first to compute the coordinates of Y by solving suitable homogeneous
linear systems, then to impose that such coordinates satisfy the Klein equation.
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If we denote by Mî the matrix obtained from M by erasing the i–th row, the homoge-
neous linear system becomes

Mî


λ1

λ2

λ3

Y

 = 0 1 ≤ i ≤ 9.

It follows from Cramer’s rule that

yj = (−1)1+j det(M
î,j+4

), j = 0 . . . 5,

where Mĥ,k is the matrix obtained from M by erasing the h–th row and the k–th column.
Now we have to impose that the computed y0 . . . y5 satisfy y0y5 − y1y4 + y2y3 = 0.

To simplify notations, we set

(15) Φi(X) =

 Φi1

Φi2

Φi3


that are the natural variables to construct the generators of the ideal of the critical locus
Y . In fact, while det(M) is a degree 3 form in the Φij’s, irreducible in the general case,
the form y0y5 − y1y4 + y2y3 has degree 6 and it is the product of three linear forms and a
cubic form in the Φij’s. To fix notations we denote by gi the cubic arising from the linear
system associated to Mî. For example, let us consider the linear system associated to M1̂.
In this case, the linear forms are

Φ21 det


R7

R8

R9

R4

+ Φ22 det


R7

R8

R9

R5

+ Φ23 det


R7

R8

R9

R6

 = 0,

Φ31 det


R4

R5

R6

R7

+ Φ32 det


R4

R5

R6

R8

+ Φ33 det


R4

R5

R6

R9

 = 0,

Φ12b− Φ13a = 0,

where

a = (Ψ1)21b12 − (Ψ1)22b13 + (Ψ1)23b23 + (Ψ1)24b14 − (Ψ1)25b24 + (Ψ1)26b34,

b = (Ψ1)31b12 − (Ψ1)32b13 + (Ψ1)33b23 + (Ψ1)34b14 − (Ψ1)35b24 + (Ψ1)36b34

and (b12, . . . , b34) are the Plücker coordinates of the line through the points

(det((ψ2)1̂), det((ψ2)2̂), det((ψ2)3̂), det((ψ2)4̂))

and
(det((ψ3)1̂), det((ψ3)2̂), det((ψ3)3̂), det((ψ3)4̂)) ,

where, this time, ĥ means that we erase the h–the column.
We have then proved the following:

Theorem 6.1. The defining ideal IY of the critical locus is generated by the Klein hyper-
quadric, det(M) and g1 . . . , g9.

Now we compute the minimal generators and free resolution of the ideal IY . It is
straightforward to check that

gi =

1,2,3∑
j,h,k

Φ1jΦ2hΦ3k det


Ri

Rj

R3+h

R6+k

 i = 1, . . . , 9
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while

det(M) = −
1,2,3∑
i,j,h

Φ1iΦ2jΦ3hci,3+j,6+h

where

Φijh =

 Ri

Rj

Rh

 and

ci,j,h = det


det((Φ1)1̂) det((Φ1)2̂) det((Φ1)3̂) det((Φ1)4̂)
det((Φ2)1̂) det((Φ2)2̂) det((Φ2)3̂) det((Φ2)4̂)
det((Φ3)1̂) det((Φ3)2̂) det((Φ3)3̂) det((Φ3)4̂)

det((Φijh)1̂) det((Φijh)2̂) det((Φijh)3̂) det((Φijh)4̂)

 .

Let J be the ideal generated by g1, . . . , g9, det(M). Then,

Proposition 6.1. The minimal free resolution of J is

0→ T 3(−4)→ T 4(−3)→ J → 0

and so the scheme defined by J is ACM of codimension 2 in P5.

Proof. Without loss of generality, we assume that R1, R2, R4, R7 are linearly independent,
and so they are a basis of C4. Moreover, we set

Ri = αi1R1 + αi2R2 + αi3R4 + αi4R7 i = 3, 5, 6, 8, 9

and

D = det


R1

R2

R4

R7

 .

We remark that D is the coefficient of Φ12Φ21Φ31 in g1.
First, we verify that J is generated by g1, . . . , g4. In fact, it holds

g5 = −α31α54 − α34α51

α34

g1 −
α32α54 − α34α52

α34

g2 +
α54

α34

g3 −
α33α54 − α34α53

α34

g4

g6 = −α31α64 − α34α61

α34

g1 −
α32α64 − α34α62

α34

g2 +
α64

α34

g3 −
α33α64 − α34α63

α34

g4

g7 = −α31

α34

g1 −
α32

α34

g2 +
1

α34

g3 −
α33

α34

g4

g8 = −α31α84 − α34α81

α34

g1 −
α32α84 − α34α82

α34

g2 +
α84

α34

g3 −
α33α84 − α34α83

α34

g4

g9 = −α31α94 − α34α91

α34

g1 −
α32α94 − α34α92

α34

g2 +
α94

α34

g3 −
α33α94 − α34α93

α34

g4

det(M) =
1

α34D
c2,3,4g1 −

1

α34D
c1,3,4g2 +

1

α34D
c1,2,4g3.

The equalities have to be checked by verifying that the coefficients of Φ1iΦ2jΦ3h are the
same on both sides. It is very long, but straightforward. As example, we check some of
them.

The first term we consider is Φ13Φ23Φ31 in the g5 relation. The coefficient on the left
side is equal to

det


R5

R3

R6

R7

 = det


α51R1 + α52R2 + α53R4

α31R1 + α32R2 + α33R4

α61R1 + α62R2 + α63R4

R7

 = D det

 α51 α52 α53

α31 α32 α33

α61 α62 α63

 .
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On the right, we have

−α31α54 − α34α51

α34

det


R1

R3

R6

R7

− α32α54 − α34α52

α34

det


R2

R3

R6

R7

+
α54

α34

det


R3

R3

R6

R7

−

−α33α54 − α34α53

α34

det


R4

R3

R6

R7

 = −α31α54 − α34α51

α34

det


R1

α32R2 + α33R4

α62R2 + α63R4

R7

−

−α32α54 − α34α52

α34

det


R2

α31R1 + α33R4

α61R1 + α63R4

R7

− α33α54 − α34α53

α34

det


R4

α31R1 + α32R2

α61R1 + α62R2

R7

 =

=D

{
−α54

α34

(
α31 det

(
α32 α33

α62 α63

)
− α32 det

(
α31 α33

α61 α63

)
+ α33 det

(
α31 α32

α61 α62

))
+

+

(
α51 det

(
α32 α33

α62 α63

)
− α52 det

(
α31 α33

α61 α63

)
+ α53 det

(
α31 α32

α61 α62

))}
=

=D

−α54

α34

det

 α31 α32 α33

α31 α32 α33

α61 α62 α63

+ det

 α51 α52 α53

α31 α32 α33

α61 α62 α63



and so the equality holds.
Now, we check the equality of the coefficients of Φ11Φ21Φ31 in the det(M) relation. On

the left side, we have −c147. On the right side, we have

+
1

α34D
c234 det


R1

R1

R4

R7

− 1

α34D
c134 det


R2

R1

R4

R7

+
1

α34D
det


R3

R1

R4

R7

 =

=
1

α34

c134 +
1

α34D
det


α32R2

R1

R4

R7

 =
1

α34

det


det((Φ1)1̂) . . .
det((Φ2)1̂) . . .
det((Φ3)1̂) . . .

det((Φ134 − α32Φ124)1̂) . . .

 =

=
1

α34

det


det((Φ1)1̂) . . .
det((Φ2)1̂) . . .
det((Φ3)1̂) . . .

det((α34Φ174)1̂) . . .

 = −c147

and so the equality holds also in this case.
As second step, we check that the minors with sign of the following matrix N are equal

to g1, . . . , g4.
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D

α34

Φ11 −
∣∣∣∣ α31 α34

α51 α54

∣∣∣∣Φ22 −
∣∣∣∣ α31 α34

α61 α64

∣∣∣∣Φ23

−α31Φ31 −
∣∣∣∣ α31 α34

α81 α84

∣∣∣∣Φ32−

−
∣∣∣∣ α31 α34

α91 α94

∣∣∣∣Φ33

D

α34

Φ12 −
∣∣∣∣ α32 α34

α52 α54

∣∣∣∣Φ22 −
∣∣∣∣ α32 α34

α62 α64

∣∣∣∣Φ23

−α32Φ31 −
∣∣∣∣ α32 α34

α82 α84

∣∣∣∣Φ32−

−
∣∣∣∣ α32 α34

α92 α94

∣∣∣∣Φ33

D

α34

Φ13 α54Φ22 + α64Φ23 Φ31 + α84Φ32 + α94Φ33

0
α34Φ21 −

∣∣∣∣ α33 α34

α53 α54

∣∣∣∣Φ22

−
∣∣∣∣ α33 α34

α63 α64

∣∣∣∣Φ23

−α33Φ31 −
∣∣∣∣ α33 α34

α83 α84

∣∣∣∣Φ32−

−
∣∣∣∣ α33 α34

α93 α94

∣∣∣∣Φ33



.

Once again, the check is straightforward. For example, let us consider the minor obtained
by erasing the last row of N and let us compute the coefficient of Φ11Φ22Φ33 in the minor.
It holds

D

α34

{
−α94

∣∣∣∣ α32 α34

α52 α54

∣∣∣∣+ α54

∣∣∣∣ α32 α34

α92 α94

∣∣∣∣} =
D

α34

α34

∣∣∣∣ α52 α54

α92 α94

∣∣∣∣ = det


R4

R1

R5

R9


and so we get det(N4̂) = g4. With analogous computations, we get det(N1̂) = −g1,
det(N2̂) = g2, and det(N3̂) = −g3. As g1, . . . , g4 are irreducible for general choices, we get
the claim by Hilbert–Burch Theorem. Moreover, N represents the map T 3(−4)→ T 4(−3)
in the resolution of J . �

Remark 6.3. The scheme defined by J in P5 is a lifting of a Bordiga surface in P4 in
the following sense. Let ` be a general linear form in T. Hence there is an isomorphism
between R and T/`. As J is ACM the minimal free resolution of J remains exact over
T/` and so (J+`)/` defines a Bordiga surface in P4 = Proj(R). Moreover, the matrices N
and NX of the two minimal free resolutions have the same properties: the three columns
span linear spaces of codimension 3, in position (4, 1) there is a zero, and the element in
position (3, 2) is a linear combination of the ones in positions (1, 2) and (2, 2). The main
difference is that the linear spaces spanned by the columns are pairwise skew in the case
of the Bordiga surface, while every couple of them has a point in common in the case of
J , as the codimension 2 linear spaces are α–planes in this case, and so the intersection of
two of them is the point corresponding to the line through the centers of the two nets of
lines.

Now we can describe the geometry of the critical locus, starting from its defining ideal,
and Buchanan’s result.

Theorem 6.2. The critical locus for the reconstruction problem for a pair of three pro-
jections ϕi, ψj, i, j = 1, 2, 3, of lines from P3 to P2 is the union of a line congruence of
bi–degree (3, 6) and sectional genus 5 and the three α–planes associated to the projection
centers of the ϕi’s. Moreover, each α–plane intersects the line congruence along a degree
3 plane curve.

Proof. The scheme defined by J is irreducible for general choices, and so the Klein hy-
perquadric is regular with respect to it. As the defining ideal of the critical locus Y is
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IY = J + (x0x5 − x1x4 + x2x3)T , then its minimal free resolution is

0→ T 3(−6)→
T 4(−5)
⊕

T 3(−4)
→

T (−2)
⊕

T 4(−3)
→ IY → 0

and so the Hilbert polynomial of Y is pY(t) = (12t2 − 8t+ 8)/2. Hence, Y is a surface in
P5 of degree 12. It is an easy check to verify that the centers α1, α2, α3 of the projections
Φ1,Φ2,Φ3 are the α-planes associated to the centers of ϕ1, ϕ2, ϕ3 respectively and are
contained in Y , as every maximal minor of N is a combination of Φi1, . . . ,Φi3, for i =
1, 2, 3. Moreover, we know that a line congruence K of bi–degree (3, 6) and sectional genus
5 is contained in the critical locus. Then, by degree argument, Y = K ∪α1 ∪α2 ∪α3. By
using the same argument as in Proposition 3.3, we get that each αi intersects K along a
degree 3 plane curve, as claimed. �

7. A bridge between the two reconstruction problems

In this section, we want to show that the two reconstruction problems considered in
the previous sections are related each other, in the following sense. Given two triples of
projections from P4 to P2, and the corresponding critical locus X ⊂ P4, it is possible to
determine two triples of projections from P3 to P2 in such a way that the critical locus
for the reconstruction problem for lines is the union of three suitable α–planes and the
image of X in G(1, 3) via the rational map θ : P4 → G(1, 3) quoted in (7). Furthermore,
also the converse holds. Now we describe various steps to get the ϕi and ψj from the Pi
and Qj.

(1) Let Pi, Qj : P4 99K P2 be projections, with i, j = 1, 2, 3. The critical locus X ⊂
P4 for the reconstruction problem for points has been studied in section 5. In
particular, we proved that X is a Bordiga surface, and we computed the 4 × 3
matrix NX whose columns generate the first syzygy module of IX from the 9× 8
matrix M whose maximal minors generate the same ideal IX .

(2) As explained at the end of section 2, a degree 4 rational normal curve Γ ⊂ X
can be obtained by taking the maximal minors q0, . . . , q5 of NXML where ML is a
general 3 × 2 matrix of maximal rank. To fix the order, q0 = det(NXML)3̂4, q1 =
det(NXML)2̂4, q2 = det(NXML)1̂4, q3 = det(NXML)2̂3, q4 = det(NXML)1̂3, q5 =
det(NXML)1̂2, where, as usual, .̂. means that the corresponding rows are omitted.

(3) Following [40], we define the map θ : T = H0
∗ (OP5) → R = H0

∗ (OP4) by setting
θ(xi) = qi, i = 0, . . . , 5. Then, θ−1(IX ) = IK where K is a line congruence of
bi–degree (3, 6) and sectional genus 5 as the ones studied in section 3.

(4) From equation (3), we get NZ from NX where the columns of NZ generate the
first syzygy module of IZ in S = H0

∗ (OP2), Z being a set of 10 points in general
position, among which there are p1(1 : 0 : 0), p2(0 : 1 : 0), p3(0 : 0 : 1). We remark

that X is the image of the embedding of P̃2, blow–up of P2 in Z, via the linear
system |4π∗L− E1 − · · · − E10|.

(5) Let Ci ⊂ P2 be the plane cubic curve containing Z \ {pi}, with i = 1, 2, 3. The
equation of Ci is the only degree 3 generator of IZ : Ipi . Let C ′i ⊂ X be the image
of Ci and C ′′i ⊂ K be the image of C ′i. The saturated ideal that defines C ′′i is
θ−1(IC′

i
) and so we can compute the plane αi spanned by C ′′i . The critical locus

we are looking for is Y = K ∪ α1 ∪ α2 ∪ α3.
(6) The last map in the minimal free resolution of IY is T 3(−6)→ T 4(−5)⊕ T 3(−4).

Let NY be the matrix that represents T 3(−6) → T 4(−5): the maximal minors
of this matrix define the ideal J and so we can recover the projection matrices
Φi,Ψj from it, i, j = 1, 2, 3, as explained in Proposition 6.1. Hence, it is possible
to compute the projections ϕi, ψj : P3 → P2 we want to construct.
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Now, we give an algorithm that summarizes the previous discussion, and that can be
easily implemented in Singular [15], for example.

Input: projection matrices P1, P2, P3, Q1, Q2, Q3.
Output: projection matrices ϕ1, ϕ2, ϕ3, ψ1, ψ2, ψ3.

(1.1) Given the 5× 1 matrix V Y = [y0, . . . , y4], compute P1 · V Y, P2 · V Y, P3 · V Y and
the 9× 8 matrix M .

(1.2) Compute the matrix NX = A − BD−1C as in section 5, and the ideal IX of the
maximal minors of NX .

(2) Choose a general 3 × 2 matrix ML of numbers, compute MΓ = NXML, and its
maximal minors q0, . . . , q5 in the above order.

(3) Define the map θ by setting θ(xi) = qi, i = 0, . . . , 5, and compute IK = θ−1(IX ).
(4.1) Given the 3×1 matrix V Z = [z0, z1, z2], compute the matrixNZ fromNX according

to equation (3).
(4.2) Compute g0, . . . , g4, maximal minors of NZ with alternating signs, and set IZ the

ideal they generate.
(4.3) Define the map π by setting π(yi) = gi, i = 0, . . . , 4.
(5.1) Compute F1 = (IZ : 〈z1, z2〉)3, F2 = (IZ : 〈z0, z2〉)3, F3 = (IZ : 〈z0, z1〉)3 and

Iαi
= (θ−1 ◦π−1(Fi))1, i = 1, 2, 3, where (. . . )j means the degree j part of the ideal

in parenthesis.

(5.2) Compute IY = IK ∩
(⋂

i=1,2,3 Iαi

)
.

(6.1) Compute the third matrix in the minimal free resolution of IY and take the sub-
matrix with linear entries.

(6.2) Put this matrix in the form of the proof of Proposition 6.1.
(6.3) Compute matrices Φi,Ψj, 1 ≤ i, j ≤ 3, from the last matrix, and the associated

projection matrices ϕi, ψj.

Now, we describe the converse construction.

(1) Given the projections ϕi, ψj : P3 → P2, we can compute the maps Φi,Ψj and the
critical locus Y ⊂ G(1, 3) for the reconstruction problem for projections of lines,
as explained in section 6. Moreover, we compute the line congruence K and the
three α–planes that are the irreducible components of Y .

(2) As explained in section 3, we compute a Veronese surface V ⊂ G(1, 3) such that
K ∪ V is an arithmetically Gorenstein surface of degree 13 and K ∩ V is a degree
10 arithmetically Gorenstein curve.

(3) Let θ−1 : R→ TG be the map associated to K ∩ V , where TG = T/〈x0x5− x1x4 +
x2x3〉 is the coordinate ring of the Grassmannian G(1, 3). Then, θ−1(IK) = IX
where X is a Bordiga surface.

(4) From Theorem 5.1, we get projections Pi, Qj : P4 → P2, 1 ≤ i, j ≤ 3, such that X
is the associated critical locus for the reconstruction problem.

As before, we give the corresponding algorithm. It can be implemented in Singular [15].

Input: projection matrices ϕ1, ϕ2, ϕ3, ψ1, ψ2, ψ3.
Output: projection matrices P1, P2, P3, Q1, Q2, Q3.

(1.1) Compute Φi,Ψj, 1 ≤ i, j ≤ 3, as in section 6.
(1.2) Compute the critical locus Y for the reconstruction problem for lines, and its

irreducible components.
(2) In the line congruence K contained in Y , compute a degree 10 arithmetically

Gorenstein curve C = K ∩ V whose ideal is generated by 5 quadrics q0, . . . , q4 in
addition to the Klein hyperquadric x0x5 − x1x4 + x2x3.

(3) Define θ−1 : R→ TG as θ−1(yi) = qi, i = 0, . . . , 4, and compute θ−1(IK) = IX .
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(4) Compute the generators of the first syzygy module NX of IX and compute a basis
from which it is possible to reconstruct the projections Pi, Qj : P4 → P2, 1 ≤ i, j ≤
3, we are looking for.

8. A computer session concerning the line congruence

In this section, we present a computer session in Singular in which, staring from the
ideal of a general line congruence K of bi–degree (3, 6) and sectional genus 5, we compute
a degree 13 arithmetically Gorenstein surface S such that S = K ∪ V where V is a
Veronese surface, and K ∩ V is a degree 10 arithmetically Gorenstien curve that allows
us to compute the map θ−1 : G(1, 3)→ P4.

Input: ideal IK of a general line congruence.
Output: ideals IS and IC where S = K ∪ V,C = K ∩ V .

ring r = 0, (x(0..5), a(1..268)),dp;
ideal ik; \\ This ideal has to be given as input. The first generator is the Klein

hyperquadric.
option(redSB);
ideal k1 = std(ik); \\ reduced standard basis of ik
\\ In the following lines, we compute general polynomials that will become a reduced

standard basis of is
matrix mon3[1][46] = x(5)3, x(4) ∗ x(5)2, x(3) ∗ x(5)2, x(2) ∗ x(5)2, x(1) ∗ x(5)2, x(0) ∗

x(5)2, x(4)2 ∗ x(5), x(3) ∗ x(4) ∗ x(5), x(2) ∗ x(4) ∗ x(5), x(1) ∗ x(4) ∗ x(5), x(0) ∗ x(4) ∗
x(5), x(3)2 ∗ x(5), x(1) ∗ x(3) ∗ x(5), x(0) ∗ x(3) ∗ x(5), x(2)2 ∗ x(5), x(1) ∗ x(2) ∗ x(5), x(0) ∗
x(2)∗x(5), x(1)2 ∗x(5), x(0)∗x(1)∗x(5), x(0)2 ∗x(5), x(4)3, x(3)∗x(4)2, x(2)∗x(4)2, x(1)∗
x(4)2, x(0)∗x(4)2, x(3)2 ∗x(4), x(1)∗x(3)∗x(4), x(0)∗x(3)∗x(4), x(2)2 ∗x(4), x(1)∗x(2)∗
x(4), x(0)∗x(2)∗x(4), x(1)2 ∗x(4), x(0)∗x(1)∗x(4), x(0)2 ∗x(4), x(3)3, x(1)∗x(3)2, x(0)∗
x(3)2, x(1)2 ∗ x(3), x(0) ∗ x(1) ∗ x(3), x(0)2 ∗ x(3), x(2)3, x(1) ∗ x(2)2, x(0) ∗ x(2)2, x(1)2 ∗
x(2), x(0) ∗ x(1) ∗ x(2), x(1)3;

matrix cp1[46][1] = a(1..46);
poly p1 = (mon3 ∗ cp1)[1, 1] + x(0)3;
matrix cp2[46][1] = a(47..92);
poly p2 = (mon3 ∗ cp2)[1, 1] + x(0)2 ∗ x(1);
matrix cp3[46][1] = a(93..138);
poly p3 = (mon3 ∗ cp3)[1, 1] + x(0) ∗ x(1)2;
matrix cp4[45][1] = a(139..183);
poly p4 = (submat(mon3, intvec(1), intvec(1..45)) ∗ cp4)[1, 1] + x(0)2 ∗ x(2);
matrix mon4[1][85] = x(5)4, x(4) ∗ x(5)3, x(3) ∗ x(5)3, x(2) ∗ x(5)3, x(1) ∗ x(5)3, x(0) ∗

x(5)3, x(4)2 ∗ x(5)2, x(3) ∗ x(4) ∗ x(5)2, x(2) ∗ x(4) ∗ x(5)2, x(1) ∗ x(4) ∗ x(5)2, x(0) ∗ x(4) ∗
x(5)2, x(3)2∗x(5)2, x(1)∗x(3)∗x(5)2, x(0)∗x(3)∗x(5)2, x(2)2∗x(5)2, x(1)∗x(2)∗x(5)2, x(0)∗
x(2)∗x(5)2, x(1)2∗x(5)2, x(0)∗x(1)∗x(5)2, x(0)2∗x(5)2, x(4)3∗x(5), x(3)∗x(4)2∗x(5), x(2)∗
x(4)2 ∗ x(5), x(1) ∗ x(4)2 ∗ x(5), x(0) ∗ x(4)2 ∗ x(5), x(3)2 ∗ x(4) ∗ x(5), x(1) ∗ x(3) ∗ x(4) ∗
x(5), x(0) ∗x(3) ∗x(4) ∗x(5), x(2)2 ∗x(4) ∗x(5), x(1) ∗x(2) ∗x(4) ∗x(5), x(0) ∗x(2) ∗x(4) ∗
x(5), x(1)2∗x(4)∗x(5), x(0)∗x(1)∗x(4)∗x(5), x(0)2∗x(4)∗x(5), x(3)3∗x(5), x(1)∗x(3)2∗
x(5), x(0)∗x(3)2∗x(5), x(1)2∗x(3)∗x(5), x(0)∗x(1)∗x(3)∗x(5), x(0)2∗x(3)∗x(5), x(2)3∗
x(5), x(1)∗x(2)2∗x(5), x(0)∗x(2)2∗x(5), x(1)2∗x(2)∗x(5), x(0)∗x(1)∗x(2)∗x(5), x(1)3∗
x(5), x(4)4 +a(231)∗x(3)∗x(4)3, x(2)∗x(4)3, x(1)∗x(4)3, x(0)∗x(4)3, x(3)2 ∗x(4)2, x(1)∗
x(3) ∗ x(4)2, x(0) ∗ x(3) ∗ x(4)2, x(2)2 ∗ x(4)2, x(1) ∗ x(2) ∗ x(4)2, x(0) ∗ x(2) ∗ x(4)2, x(1)2 ∗
x(4)2, x(0)∗x(1)∗x(4)2, x(0)2∗x(4)2, x(3)3∗x(4), x(1)∗x(3)2∗x(4), x(0)∗x(3)2∗x(4), x(1)2∗
x(3)∗x(4), x(0)∗x(1)∗x(3)∗x(4), x(0)2 ∗x(3)∗x(4), x(2)3 ∗x(4), x(1)∗x(2)2 ∗x(4), x(0)∗
x(2)2∗x(4), x(1)2∗x(2)∗x(4), x(0)∗x(1)∗x(2)∗x(4), x(1)3∗x(4), x(3)4, x(1)∗x(3)3, x(0)∗
x(3)3, x(1)2 ∗ x(3)2, x(0) ∗ x(1) ∗ x(3)2, x(0)2 ∗ x(3)2, x(1)3 ∗ x(3), x(2)4, x(1) ∗ x(2)3, x(0) ∗
x(2)3, x(1)2 ∗ x(2)2, x(0) ∗ x(1) ∗ x(2)2, x(1)3 ∗ x(2);
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matrix cp5[85][1] = a(184..268);
poly p5 = (mon4 ∗ cp5)[1, 1] + x(1)4;
ideal rel; \\ This ideal will contain the relations among the a(j)’s
poly sp; \\ the following are local variables
int i;
int j;
int k;
int fl;
ideal mx = x(0..5);
matrix mx3[1][56] = std(mx3); \\ monomials of degree 3
matrix mx4[1][126] = std(mx4); \\ monomials of degree 4
matrix lp1[1][8] = std(lead(k1)); \\ leading monomials of k1

for(i = 1; i <= 8; i = i + 1){k1[i] = k1[i]/leadcoef(k1[i]); }; \\ normalized reduced
standard basis of k1;
\\ we compute the normal form of p1 with respect to k1 and we collect the coefficients

of the monomials in the ideal rel
sp = p1;
for(j = 56; j >= 1; j = j − 1){
fl = 0;
k = 0;
while((k < 8)and(fl == 0)){
k = k + 1;
if(gcd(lp1[1, k],mx3[1, j]) == lp1[1, k]){fl = 1; }};
if(fl == 0){
if(sp <> reduce(sp, std(mx3[1, j]))){
rel = rel, (sp− reduce(sp, std(mx3[1, j])))/mx3[1, j]; };
sp = reduce(sp, std(mx3[1, j])); };
if(fl == 1){
sp = sp− ((sp− reduce(sp, std(mx3[1, j])))/lp1[1, k]) ∗ k1[k]; }; };
\\ repeat verbatim the above computation for sp = p2, p3, p4 and we collect the coeffi-

cients of the monomials in the same ideal rel
sp = p2;
...
\\ we compute the normal form of p5 with respect to k1 and we collect the coefficients

of the monomials in the same ideal rel
sp = p5;
for(j = 126; j >= 1; j = j − 1){
fl = 0;
k = 0;
while((k < 8)and(fl == 0)){
k = k + 1;
if(gcd(lp1[1, k],mx4[1, j]) == lp1[1, k]){fl = 1; }};
if(fl == 0){
if(sp <> reduce(sp, std(mx4[1, j]))){
rel = rel, (sp− reduce(sp, std(mx4[1, j])))/mx4[1, j]; };
sp = reduce(sp, std(mx4[1, j])); };
if(fl == 1){
sp = sp− ((sp− reduce(sp, std(mx4[1, j])))/lp1[1, k]) ∗ k1[k]; }; };
\\ we compute a standard basis of rel, and we reduce p1, . . . , p5 modulo it. After this

step, they belong to ik
rel = std(rel);
poly p11 = reduce(p1, rel);
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poly p21 = reduce(p2, rel);
poly p31 = reduce(p3, rel);
poly p41 = reduce(p4, rel);
poly p51 = reduce(p5, rel);
\\ we run Buchberger’s algorithm of the set {ik[1], p11, . . . , p51} and we compute the

coefficient in such a way that they form a Gröbner basis. The relations are stored in rel
kill rel;
ideal rel;
matrix lp[1][6] = x(2) ∗ x(3), x(0)3, x(0)2 ∗ x(1), x(0) ∗ x(1)2, x(0)2 ∗ x(2), x(1)4;
matrix pp[1][6] = x(2) ∗ x(3)− x(1) ∗ x(4) + x(0) ∗ x(5), p11, p21, p31, p41, p51;
intmat b[9][2] = 1, 5, 2, 3, 2, 5, 3, 4, 3, 5, 2, 4, 4, 5, 4, 6, 3, 6;
for(i = 1; i <= 5; i = i+ 1){
sp = (lp[1, b[i, 2]] ∗ pp[1, b[i, 1]]− lp[1, b[i, 1]] ∗ pp[1, b[i, 2]]);
sp = sp/gcd(lp[1, b[i, 2]], lp[1, b[i, 1]]);
for(j = 126; j >= 1; j = j − 1){
fl = 0;
k = 0;
while((k < 6)and(fl == 0)){
k = k + 1;
if(gcd(lp[1, k],mx4[1, j]) == lp[1, k]){fl = 1; }};
if(fl == 0){
if(sp <> reduce(sp, std(mx4[1, j]))){
rel = rel, (sp− reduce(sp, std(mx4[1, j])))/mx4[1, j]; };
sp = reduce(sp, std(mx4[1, j])); };
if(fl == 1){
sp = sp− ((sp− reduce(sp, std(mx4[1, j])))/lp[1, k]) ∗ pp[1, k]; }; }; };
\\ we choose randomly the values of a(182), a(183) and compute a standard basis of rel:

in such a way, every coefficient has a numerical value that we substitute in p11, . . . , p51
ideal rel1 = a(182)− random(−5, 5), a(183)− random(−5, 5), rel;
rel1 = std(rel1);
poly p12 = reduce(p11, rel1);
poly p22 = reduce(p21, rel1);
poly p32 = reduce(p31, rel1);
poly p42 = reduce(p41, rel1);
poly p52 = reduce(p51, rel1);
ideal is = ik[1], p12, p22, p32, p42, p52;
ideal iv = quotient(is, ik);
ideal ic = iv, ik;
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[25] J.O. Kleppe, J.C. Migliore, R. Miró–Roig, U. Nagel, and C. Peterson. Gorenstein Liaison, Complete
Intersection Liaison Invariants and Onubstructedness. Mem. Amer. Math. Soc., n. 732, Vol. 154,
(2001).

[26] J. Kollár, K.E. Smith, and A. Corti. Rational and nearly rational varieties, In Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 2004.

[27] J. Krames. Zur ermittlung eines objectes aus zwei perspectiven (ein beitrag zur theorie der
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