

Ejecta analysis for an asteroid impact event in the perturbed circular restricted three body problem

Mirko Trisolini, Camilla Colombo, Yuichi Tsuda

31st Workshop on JAXA Astrodynamics Symposium and Flight Mechanics, 26-27 July 2021

- CRADLE is a project funded by the European Union under the MSCA Actions
- Global fellowship hosted by Politecnico di Milano in collaboration with

- Started in late March this year
- The focus is on exploration missions towards asteroids and other small bodies

Background The CRADLE project

- Start from the knowledge acquired by Hayabusa-2 mission **Objective**
- Study the feasibility of in-orbit particle collection missions
- In-orbit particle sample and return devices

Focus areas

Dynamics of fragments generated by kinetic impactors

31st Workshop on JAXA Astrodynamics Symposium and Flight Mechanics

- Modelling the ejecta behaviour
- Finding feasible conditions for material collection

Contributions

- Extend the knowledge of asteroid composition
- Enable multi-asteroid sampling

Shoemaker, Helin, "Earth-approaching asteroids as targets for exploration", 1978.

Introduction

Target analysis

- Possible ways to select viable targets for future missions
- Reachability
 - ΔV estimated with two-burn manouevre¹
 - Several options with delta-V comparable or lower than the required for Mars missions

Introduction

Target analysis

- Possible ways to select viable targets for future missions
- Reachability
 - ΔV estimated with two-burn manouevre¹
 - Several options with delta-V comparable or lower than the required for Mars missions

Exploitability

- Position of Lagrangian point L2 as indicator of possible collection regions
- Small L2 altitudes lead to complex collection scenarios

5

Average L2 altitude for 1 mm size particles

Shoemaker, Helin, "Earth-approaching asteroids as targets for exploration", 1978.

Target analysis

Introduction

- Possible ways to select viable targets for future missions
- Reachability
 - ΔV estimated with two-burn manouevre¹
 - Several options with delta-V comparable or lower than the required for Mars missions

Exploitability

- Position of Lagrangian point L2 as indicator of possible collection regions
- Small L2 altitudes lead to complex collection scenarios
- Combined L2 altitude $-\Delta V$ analysis

Shoemaker, Helin, "Earth-approaching asteroids as targets for exploration", 1978.

31st Workshop on JAXA Astrodynamics Symposium and Flight Mechanics

Correlated

distribution

$$f(s,u) = as^{-\alpha-1}u^{-\gamma-1} \cdot \Theta[bs^{-\beta} - u]$$

Ejection velocity depends on particle size Larger particles are limited to lower velocities

Ejecta model

A distribution derivation

- Predicting the fate of the ejecta requires modelling the ejecta behaviour after the impact
- Distribution of particle size (s), velocity (u), and launch direction (ϑ, Ψ)
- We assume the particle size and velocity distribution can be modelled independently from the launch direction

 $f(s, u) = as^{-\alpha - 1}u^{-\gamma - 1}$ The ejection velocity is independent form the particle size

Uncorrelated

distribution

The coefficients of the distributions can be estimated from experimental correlations and conservation laws

¹ Arakawa et al., "An artificial impact on the asteroid (162173) Ryugu formed a crater in the gravity-dominated regime", Science, 368, 67-71, 2020 Science

Crater ejecta after impact on Ryugu¹

POLITECNICO MILANO 1863

Ejecta model

Parameters selection

¹Holsapple, Housen, "Momentum transfer in asteroid impacts. I. Theory and scaling", Icarus, Vol 221, pp. 875-887, 2012 ² Housen, Holsapple, "Ejecta from impact craters", Icarus, Vol. 211, pp. 856-875, 2011

31st Workshop on JAXA Astrodynamics Symposium and Flight Mechanics

Total ejecta mass Me (v*, M) Ξ mass -og (ejecta

• s_{min} : typical values range between 10 µm and 100 µm in diameter

- **s**_{max}: a common threshold is 10 cm. Alternatively, a diameter corresponding to 10% of the ejected mass is suggested
- *u_{min}*: *knee velocity* from experimental results
- *u_{max}*: selected from experimental correlations²
- **b**: only for the correlated distribution. Can be selected imposing: $bs_{min}^{-\beta} - u_{max} = 0$
- a: obtained from mass conservation

Log (ejecta velocity v)

V_{max}

v*

10⁷ 10² - 10^{2} 10⁶ Particle speed (m/s) Particle speed (m/s) 10⁵ density 104 Particle (**10**³ 10² 10^{1} 101 - 10^{1} 10-3 10-3 10^{-4} 10^{-4} Particle size (m) Particle size (m)

Comparing the particle density for the correlated and uncorrelated distributions

10⁸

Distribution example

Uncorrelated

31st Workshop on JAXA Astrodynamics Symposium and Flight Mechanics

9

26/07/2021

Correlated

Ejecta model

Comparison with experimental correlations

The two behaviours depend on the selection of the minimum ejection speed

- The distributions more closely follow the experimental correlations¹ without porosity correction
- The correlated distribution is steeper \rightarrow coherent with the limitations on the maximum velocity vs particle size.

¹ Housen, Holsapple, "Ejecta from impact craters", Icarus, Vol. 211, pp. 856-875, 2011

Sensitivity analysis

Minimum ejection speed

- Focus on the minimum ejection speed
 - Assumed approximately equal to the knee velocity
- The minimum ejection speed determines the possibility of having particles trapped around the asteroid and eventually leaving through L2
- Gives important information on the feasibility of the mission
 - If the minimum velocity is greater than the escape velocity, all the particles will quickly leave the neighborhood of the asteroid
- Depends on the target properties and the impactor properties
 - The target material strength (Y) strongly affects the outcome

12 POLITECNICO MILANO 1863

Sensitivity analysis

Minimum ejection speed vs. target properties

Assuming a fixed impact scenario with characteristics similar to Hayabusa2.

• Comparing the ratio u_{min} / u_{esc} as a function of the asteroid size, density, and strength.

Sensitivity analysis

Comparison between materials

Comparing two different materials: weekly cemented basalt (WCB) and sand-like material

Collection options

Possible particle collection methods:

In-situ collection:

- Touch-down collection
 - Hayabusa 2 mission
- Landing and collection
 - Rosetta mission

In-orbit collection:

- Orbital region around the asteroid
 - Close to the impact location
- L2 region
 - Exploiting the three-body problem

17

First analysis based on L2 collection methods

31st Workshop on JAXA Astrodynamics Symposium and Flight Mechanics

POLITECNICO MILANO 1863

18

L2 collection analysis

Preliminary results

- Fixed the particle diameter
- Fixed the velocity
 - The velocity is $v_{C2} + \epsilon \cdot (v_{esc} v_{C2})$ to slightly "open" L2¹
 - v_{C2} is the ejection velocity corresponding to a zero velocity at L2
 - ϵ is user parameter that defines the opening ($\epsilon = 0.02$ in this work)
- Compute the Jacobi constant and use it as a constraint for the ejection speed at the surface of the asteroid.
- Performed a grid search
 - *α*, *δ* grid of 5 deg bins on the asteroid surface
 - Ejection angles (in-plane and out-of-plane) grid of 5 deg bins
 - Check which conditions lead to escape through L2
- Limited the search to the 1st and 4th quadrant
- Analysis on a Ryugu-like asteroid

¹ Latino, Soldini, Colombo, Tsuda, Ejecta orbital and bouncing dynamics around asteroid Ryugu, 70th IAC, October 2019

nanics 19 POLITECNICO MILANO 1863

L2 collection analysis

Preliminary results

- Example of ejecta trajectories for 5 mm particles ejected in all directions from a location on the asteroid's surface
- In red the portion of particles escaping via the L2 gap

L2 collection analysis

Preliminary results

- Example of ejecta trajectories for 5 mm particles ejected in all directions from a location on the asteroid's surface
- In red the portion of particles escaping via the L2 gap
- We compute the portion of spherical angle (available ejection area) that leads to escape trajectories

Available ejection area

L2 collection analysis

Preliminary results

- Example of ejecta trajectories for 5 mm particles ejected in all directions from a location on the asteroid's surface
- In red the portion of particles escaping via the L2 gap
- We compute the portion of spherical angle (available ejection area) that leads to escape trajectories
- However, experimental results shows ejection angles are limited
 - We assume possible ejection angles between 25° and 65°

L2 collection analysis

Preliminary results

- Example of ejecta trajectories for 5 mm particles ejected in all directions from a location on the asteroid's surface
- In red the portion of particles escaping via the L2 gap
- We compute the portion of spherical angle (available ejection area) that leads to escape trajectories
- However, experimental results shows ejection angles are limited
 - We assume possible ejection angles between 25° and 65°
- We thus have a reduction of the available ejection area
- Particularly, several regions in the (α, δ) plane do not lead to escape trajectories

POLITECNICO MILANO 1863

Available ejection area

L2 collection analysis

Asteroid rotation contribution

POLITECNICO MILANO 1863

23

- We included the contribution of the asteroid rotation
- Assuming a uniform rotation around the z-axis
- The ejection locations leading to escape trajectories change significantly

31st Workshop on JAXA Astrodynamics Symposium and Flight Mechanics

L2 collection analysis

Particle number estimation

- Combine the previous area with the uncorrelated ejection distribution
- Assuming a uniform ejection angle between 25° and 65°
- Assuming a small interval of 1 μ m around d_p to estimate the number of particles

31st Workshop on JAXA Astrodynamics Symposium and Flight Mechanics

Conclusion and future work

- Preliminary analysis of a in-orbit particle collection mission concept
- Ongoing development of a distribution-based ejection model
 - Correlated and uncorrelated distributions
 - Future work to include launch direction distributions
- Sensitivity analysis to compare the minimum ejection speed with the escape velocity
 - Target properties are more influential than impactor properties
 - Larger and denser asteroids allow for more possibilities for collection
- Preliminary analysis of collection region at L2
 - Collection is feasible but limited to impacts in specific region of the asteroid surface
 - Contribution of asteroid rotation can be relevant

POLITECNICO MILANO 1863

> This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 896404 - CRADLE

Ejecta analysis for an asteroid impact event in the perturbed circular restricted three body problem

Mirko Trisolini, Camilla Colombo, Yuichi Tsuda

mirko.trisolini@polimi.it