
Proceedings of International Structural Engineering and Construction, 8(1), 2021
Interdisciplinary Civil and Construction Engineering Projects

Edited by El Baradei, S., Abodonya, A., Singh, A., and Yazdani, S.
Copyright © 2021 ISEC Press

ISSN: 2644-108X
www.doi.org/10.14455/ISEC.2021.8(1).AAE-08

 AAE-08-1

DEVELOPMENT OF A RULE-BASED SYSTEM FOR
AUTOMATED BIM CODE-CHECKING	

GIUSEPPE MARTINO DI GIUDA1, ANDREA BONOMI BOSEGGIA2 and

PALEARI FRANCESCO2
1Dept of Management, Università degli studi di Torino, Torino, Italy

2Dept of Architecture, Built Environment and Construction Engineering, Politecnico di
Milano, Milano, Italy

This paper aims to describe a method for code-checking integrated into a BIM-based
process. Recent developments in the field of model checking, made possible by the
increased level of maturity of information modelling, open the possibility to facilitate
regulatory controls. However, the automation of this process requires the definition
and classification of rules, which represent the translation of regulatory requirements
into a computer-based language. This activity, based on Italian legislation, represents
the first step to propose a system that aims at integrating BIM models with the rule
dataset. For this reason, this paper analyses the different types of queries through rules.
These rules must recall principles of generality, replicability, consistency, uniformity.
All these requirements are summarized in a structured spreadsheet and compared with
the information contained in the BIM model, through a tool implemented within
Dynamo software and facilitated by the use of scripts in Python language. The results
of this process can be represented in the model and in the spreadsheet for an immediate
visualization. This method allows a rapid and detailed control capable of highlighting
the potential of information modelling and its integration.

Keywords: Building codes, Dynamo, Python scripts, Query types, Requirements, Rule
dataset.

1 INTRODUCTION
BIM process has reached a level of maturity such that it is increasingly used in the design and
construction processes (Solihin 2015). This allows a finer control over the entire process, both
for new buildings and for the management of existing ones. Despite that, the checking process of
building models to evaluate their conformity to existing regulations is mainly done manually, due
to some difficulties that make the automation of this task very challenging (Eastman 2009).

The main issue is the huge amount and variety of existing regulations; each country has its
own codes and guidelines for different phases, disciplines and intended use of the building. This
extends the time and expertise required to manage all the specifications and requirements of the
building codes and make the correct design choices. Nonetheless, the same process has to be
done by the authority who has the responsibility of granting the building permission (Bus 2018).
A core phase is the iteration through multiple design alternatives to investigate different solutions
to problems, while maintaining the compliance with regulatory specifications and finding errors
in time. This activity is crucial, and causes some inconsistencies to the overall design due to
human errors.

El Baradei, S., Abodonya, A., Singh, A., and Yazdani, S. (eds.)

 AAE-08-2 © 2021 ISEC Press

An automated system of code-checking can facilitate and speed-up this work, while
incrementing the coherence and reliability of the entire project.

Several software solutions try to avoid this problem, but most of them are based on a black-
box approach, hiding the internal logic and algorithms to the end user and hindering changes
(Preidel 2018). This paper aims to find a different path, and define a general method of code-
checking based on the principles of replicability, coherence, uniformity and automation, focusing
on the management of BIM-based models.

2 METHOD
2.1 General Approach
As investigated by Eastman (2009), a rule-based system should support some classes of
functionalities like rule interpretation, building model preparation, rule execution and report of
checking results. Each one serves a specific task, and should be investigated separately. The
authors stated that this conceptual separation in classes serves their purpose of surveying the
checking systems based on rules, but they expect new issues to emerge.

Following studies try to further define the challenges of automated code compliance
checking; Aimi (2017) highlights the importance of building codes interpretation as “the most
vital and complex stage”. So, a fundamental part is to parse the implicit and contradictory
statements and make them explicit (Bus 2018). Assuming that, the adopted structure subdivides
the problem into four main tasks, as suggested by Eastman (2009) and Bus (2018):

• The definition of the working environment;
• The definition of the code-checking requirements, to consistently prepare the BIM models

and the contained data;
• The interpretation and translation of building codes into non-ambiguous rules for the

construction of a structured collection;
• The report of the check's results.

2.2 Working Environment

2.2.1 Object-oriented approach
There are numerous ways to develop the proposed system, and depending on the initial choices its
implementation success can drastically change. As a main principle, separating the concerns
keeps the system cleaner, and ensures its repeatability (Hjelseth 2016). For this reason, two main
elements are identified: data sources and the tool that executes the check. This separation
ensures the autonomy of information whose degree of complexity and detail can widely change
according to project requirements, guidelines and building codes. On the other hand, it allows to
choose the software that best fits users’ needs, both for the realization of the BIM model and for
the implementation of the code-checking system.
Moreover, two main data sources can be detected:

• The BIM model, containing all the geometries and information defined by project
requirements;

• The rulesets, a structured collection of all the rules extracted by the regulations.
This approach recalls the structure of an object-oriented system (Yang 2001), based on the

subdivision of attributes in classes. These classes are represented by the various legislative areas,
such as structures, interiors and exteriors spaces, installations or energy consumption aspects. In
addition, each class can be easily extended to include other regulations or custom guidelines.

Proceedings of International Structural Engineering and Construction, 8(1), 2021
Interdisciplinary Civil and Construction Engineering Projects

 AAE-08-3 © 2021 ISEC Press

2.2.2 Principle of the white-box
As previously highlighted, existing commercial solutions lack both transparency and
customization in analyzing input data due to their black-box approach. Although they are very
reliable, the use of these systems entails that professionals have to hand over their responsibilities
to hidden algorithms, generating a lack of trust over the results. In addition, they can lead to
hidden errors caused by misuse of the tool, or inoperable software because of the lack of some
building codes. These issues can be overcome by adopting a white-box approach and by making
the whole system accessible. Users can freely edit any part of the system, fix errors, update rules
and customize it according to their specific needs, resulting in a trustworthy and complete
approach.

2.3 Model Requirements
Albeit often neglected, the definition of starting requirements can be crucial for the success or
failure of the checking process. If the model contains less data than the amount required to
successfully run the check, the latter will be incomplete and easily led to failure. Also, the
overload of information is a useless waste of time, while only a part of it will be queried during
the regulatory controls. Lastly, if the model is incorrectly prepared, the checking process will
struggle to find the correct slots where the data is located, resulting in a check failure. So, the
purposes of the model and the checks required have to be defined at the beginning of the process,
along with the project requirements, to avoid malfunctioning and time loss. Each object modeled
should include only the exact amount of information required, other than its geometry (Eastman
2009). For example, building codes often require checking the localization of an object: in that
case, the object can be modeled as a box.

2.4 Regulatory Translation and Ruleset
Translating building codes into formal rules is the core part of any code-checking tool.

Previous studies (Eastman 2009) show that the most common method to translate regulatory
text into rules is the first order predicate logic. Each rule is a predicate that can be evaluated as
true or false. All prescriptive regulations generally require this type of checks, but only
measurable prescriptions can be abstracted to the level of rule; this issue can be a weakness, but it
can also help to simplify regulatory texts to their core aspects.

2.4.1 Rule’s structure
A rule is the building block of this system; it is an autonomous entity and does not rely on other
rules (Figure 1). Instead of being related to a specific environment, it can be implemented into
any existing software, as it supports both simple and complex logic statements and it supports the
model specifications used by the software.

There are mainly two ways to define a rule: with parametric tables or using specific computer
programming language (Eastman 2009). Both methods have pros and cons, such as the
straightforwardness of the first one and the potential that derive from the latter. On the other
hand, tables can’t represent big ranges of conditions, and learning a programming language can
be a major obstacle to non-programmers. However, these two methods can be used together, as
coding competences are being included in school curricula in recent years.

The process of defining a rule should follow some precise steps. The first one concerns the
extraction of a semi-formal rule from the regulatory plain text. This one, proposed by Bus
(2018), serves the purpose of keeping it still readable to humans; also, it allows to maintain a high

El Baradei, S., Abodonya, A., Singh, A., and Yazdani, S. (eds.)

 AAE-08-4 © 2021 ISEC Press

level of abstraction, independent from the specific implementation. At this level, each parameter
has to be submitted to “if-else conditions”. This structure also fits into a table: each row contains
a parameter, and columns are used to represent the condition that controls parameter’s values to
be respected. For example, columns can represent architectural typologies with different
threshold values, or distinguish between different building codes and guidelines.

Figure 1. Rule structure.

Then, semi-formal rules can be converted into formal rules based on the working
environment defined. As a general statement, formal rules are the core elements. They search for
specific data packages from both the model and the semi-formal rule table, they compare the
retrieved information by using predefined conditions derived from the formal-rules and they
return the results as a “passed” or “not passed” check. Depending on the software, it can be
implemented by using visual programming or scripting languages.

2.4.2 Rule classes and patterns
The process of translating plain text into rules highlights the existence of some patterns. Based
on Solihin (2015), three classes are identified as shown in Figure 2.

The first class collects rules based on explicit data. It is the most straightforward one, as it
directly checks the information contained into the object’s parameters. Information can be on any
data type, such as numeric values, Boolean values or textual strings. The latter can be properly
managed by defining in advance the exact text string to use. These solutions guarantee
unambiguity of strings and avoid checking errors caused by inconsistencies.

The second class groups rules based on derived data. It is the more complex class to
implement, as it strongly relies on the data structure of the software adopted. These rules derive
the information to be checked from the combination of multiple parameters. They use custom
algorithms to process the data obtained from specific parameters and derive the information
requested. Examples of these rules are the sum of areas, distances or average values.

The third class extends the first two and collects the rules based on external data inputs. For
this reason, both explicit and derived data rules may fall in this class if they need external inputs
to process the BIM model information. For example, to find the object located in a specific room
the system has to recognize the correct room object. This can be done by introducing an
encoding parameter into the model. However, since encoding systems are project-specific, they
should also be included into the rule as external inputs.

Proceedings of International Structural Engineering and Construction, 8(1), 2021
Interdisciplinary Civil and Construction Engineering Projects

 AAE-08-5 © 2021 ISEC Press

Figure 2. Classes of rules.

2.5 Check Reports
As a last step, the results of the rules execution have to be shown to the user. A coherent
approach is to return the output data to the same location of the input one, to create a direct
relation between the two types of information. Therefore a rule must write the result of the check
both into the BIM model, to provide designers with important information, and into the semi-
formal rule‘s table.

3 RESULTS
This system has been tested on a case study, concerning the renovation of an Italian primary
school. For this reason, Italian’s school regulations have been considered, such as fire safety,
accessibility, and energy performances legislative requirements. For each category, plain text has
been synthesized, interpreted and translated in semi-formal rules and for a better understanding of
the presented system, an example of rule is introduced. The software adopted are the Autodesk
Revit package along with the integrated open source visual programming tool of Dynamo, further
extended with custom nodes written in Python by using the Revit Python API (Figure 3).

Figure 3. Implementation process.

According to the regulations, minimum surface areas are defined for all the spaces. These
can vary depending both on school grade and on number of classes. The semi-formal rule’s table
shows the school grade on the columns, and with a simple function it calculates all minimum
areas by providing the number of classes as a required input value. This way, the rule
implemented in Dynamo and Python must require two input values to allow the execution: the
school grade and the code of the room. Then, it can search for the correct value by iterating
through the model data, executing the check and returning the result (Table 1).

El Baradei, S., Abodonya, A., Singh, A., and Yazdani, S. (eds.)

 AAE-08-6 © 2021 ISEC Press

Table 1. Implementation example.

1. BIM model
(Autodesk Revit)

2. Semi-formal rule (Excel table) -
columns classify params by school grade.

3. Formal rule (Dynamo Revit) -
both visual and Python scripting.

4 CONCLUSIONS
This approach summarizes practical code-checking related issues, defining a general and
replicable method, tested into a specific context. Its applicability can be further extended. The
system has a great potential over the checking of prescriptive codes, due to its implementation
straightforwardness, that does not need any special implementation other than a parameter lookup
from both the model and the semi-formal rule’s table. Nonetheless, thanks to its modularity the
system allows a deeper implementation of rules, not only for prescriptive parameters but also for
qualitative and quantitative ones. The white-box approach allows the creation of a database of
rules and semi-formal tables, and represents the basis for a growing collection of working rules.
In addition, the classes defined are general constraints to define more complex rules: this paper
does not directly take into account performance-based regulations, but they can generally be
translated into rules based on derived attributes or on external data. The process can require more
time, but it leads back to some basic rules shaped by more complex conditions. The main
limitations are the knowledge of the software used, their API (Application Programming
Interfaces) and the level of integration between the BIM model and the implemented rules.
Overcoming these difficulties can lead to technically advanced rules, such as geometry and
context-based analysis or path-finding tasks, and can facilitate the checking task.

References

Aimi, S. I., Kherun, N. A., and Noorminshah, A. I., A Review on BIM-Based Automated Code Compliance
Checking System, 5th International Conference on Research and Innovation in Information Systems
(ICRIIS), Langkawi, doi: 10.1109/ICRIIS.2017.8002486, July 16-17, 2017.

Bus, N., Roxin, A., Picinbono, G., and Fahad, M., Towards French Smart Building Code: Compliance
Checking Based on Semantic Rules, LDAC2018 6th Linked Data in Architecture and Construction
Workshop, London, United Kingdom, June 19-21, 2018.

Eastman, C., Lee, J. M., Jeong, Y.-S., and Lee, J.-K., Automatic Rule-Based Checking of Building Designs,
Automation in Construction, Science Direct, 18, 1011–1033, December, 2009.

Hjelseth, E., Classification of BIM-Based Model Checking Concepts, Journal of Information Technology in
Construction (ITcon), Special issue: SIB W78 2015 Special track on Compliance Checking, ITcon, 21,
354-369, November, 2016.

Preidel, C., and Borrmann A., BIM-Based Code Compliance Checking, Building Information Modeling,
Springer, 367-381, September, 2018.

Solihin, W., and Eastman, C., Classification of Rules for Automated BIM Rule Checking Development,
Automation in Construction, Elsevier, 53, 69–82, May, 2015.

Yang, Q., and Li, X., Representation and Execution of Building Codes for Automated Code Checking,
Proceedings of CAAD Futures, Eindhoven, Netherlands, doi: 10.1007/978-94-010-0868-6_24, July
315–329, 2001.

