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Abstract At the mirrors of a Laser-Diode Self-Mixing Interferometer, the output 
beams carry anti-correlated (i.e., in phase opposition) interferometric signals, 
whereas the superposed noise fluctuations are (partially) correlated. Therefore, 
by using as an instrumental output of the interferometer the difference of the two, 
we double the amplitude of the self-mixing useful signal while the superposed 
noise is reduced. To validate the idea, we first calculate the noise reduction by 
means of a second-quantization model, finding that in a laser diode the SNR can 
be improved by 8.2-dB, typically. Then, we also carry out an experimental 
measurement of SNR and find very good agreement with the theoretical result. 
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1. Introduction 
The Self-Mixing Interferometer (SMI) is a well-known minimum-part configuration of 
interferometry based on the modulations of the cavity field induced by the weak return from the 
target under measurement [1]. The modulation indexes are the signals cos 2k∆s and sin 2k∆s (with 
k=2 π/λ and s=distance to the target) for the AM (amplitude modulation) and FM (frequency 
modulation) respectively, that are necessary to trace back unambiguously the displacement ∆s [2]. 
As the process is coherent, the SMI can work well even with very minute returns (e.g. down to 10-

8 of emitted power) and this feature, coupled to the simplicity of the setup (no external optical parts 
required in principle) has led to the development of a number of applications of SMI, in the fields 
of mechanical metrology, biomedical signal sensing, physical quantity measurements and 
consumer products, see e.g. Ref. [1,3] for reviews. 
About detection and processing of the modulated signal, usually the AM component is preferred 
because readily available on the laser beam power, and conveniently detected by the monitor 
photodiode usually provided by the manufacturer on the rear mirror of the laser package. Using 
the AM modulation, we can make digital or analogue processing of the SMI signal, respectively 
to count fringes of half-wavelength for displacement measurement and or to sense vibrations with 
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an output analogue replica of the signal s(t) waveform, down to fraction of the wavelength and 
even much less with appropriate circuits [2,3]. 
One specific feature of the SMI is that the interferometric signal is carried by the beam, and is 
found not only on the rear output where the monitor photodiode PD2 is placed (see Fig.1), but also 
on the front output, where it can be picked up by a beamsplitter (BS) and photodiode PD1, as well 
as on the target itself (not shown in Fig.1) and on the returning beam by means of photodiode 
PD1'. 

 
 
Fig. 1. Different pickups of the output signal from a self-mixing interferometer: from rear 

PD2 and from front mirror, PD1 and PD1'. 
Placing the detecting photodiode on the target allows to exploit a unique property of the SMI, 
namely measuring the displacement or vibration of a target from the target location itself while it's 
moving – but this possibility will not be developed in this paper. Another special feature of SMI 
with semiconductor laser is the availability of the signal across the anode-cathode terminals of the 
laser diode (not shown in Fig.1) that in this case works also as a detector – a feature demonstrated 
for SMI operation at THz frequency [4]. More commonly, however, it's the rear photodiode PD2 
signal to be used, because it is normally already available in the laser diode package and it doesn't 
obstruct the path of propagation to the remote target.  
Also, the placement of the detector on the front beam output is interesting, because the signal here 
is in phase opposition to that detected at the rear mirror in semiconductor laser diodes driven well 
above threshold, as found by the analysis presented in Ref. [5].  
Therefore, making the difference signal of the two outputs, the amplitude of the SMI signal 
improves of a factor of 2, as experimentally verified in Ref.[6].  
Additionally, it is reasonable to expect that the two outputs, which are generated by the same 
optical field E0 travelling back and forth in the laser cavity, are affected by the same noise carried 
by E0 (that is to say, the two output noises are correlated) and thus the difference signal has less 
noise than the two SMI signals, or its SNR (signal-to-noise) ratio is furtherly improved. 



If this conjecture proves correct, the performance of the SMI are improved in its ultimate 
sensitivity or detectable NED (noise-equivalent-displacement) [2]. 
In this paper we analyze the noise of the two outputs (front and rear) and of their difference with 
a semiclassical noise model [7] which accounts for second quantization and finds that indeed the 
two outputs have a partial correlation of noise and that the SNR can be improved up to about 10 
dB by the differential signal. Then we test the theoretical results with a 650-nm laser diode SMI 
and are able to measure an 8.2 dB improvement of SNR, in good agreement with theory. 
 

2. Theoretical Model and Analysis 
To avoid unnecessary complications, we consider the simplified scheme of Fig.2 to evaluate signal 
and noise of the front and rear outputs of the laser diode, with the photodetectors placed directly 
on the outputs of the laser. The power reflectivity of mirrors M1 and M2 are R1 and R2, the power 
exiting from mirrors are P1 and P2, and they are converted into electrical current signals I1= σP1 
and I2= σP2 by photodiodes PD1 and PD2. We suppose PD2 totally absorbing and PD1 partially 
reflecting, so as to act as the target and generate the feedback field re-entering the laser cavity after 
propagation to distance s and the accumulated optical phase shift φ=2ks. 

 
Fig.2. Simplified scheme of an SMI for the evaluation of front and rear outputs signal and noise. 
The output power P is related to the electrical field amplitude E by the well-known Poynting's 
relation P=aE2/2Z0, where a is the cross-section area of the beam and Z0 is the vacuum impedance. 
In the following however, we write simply P1=E1

2 and P2=E2
2 for the powers exiting at mirrors M1 

and M2.  
Now, we want to calculate the quiescent amplitude of the fields E1 and E2 as a function of the 
unperturbed internal field E0, and their SMI amplitude variations ∆E1 and ∆E2 due to a feedback 
from the target at distance s returning into the cavity a fraction A of the field E0 (taken just before 
M1, see Fig.2). The problem was solved in Ref. [5] with the following result for the output field 
amplitudes E1 and E2 when perturbed by a small return AE0 from the target along a phase shift φ 
=2ks: 

                        E1= t1 E0 {1 - (t1
2/r1) (A cos φ) [(2γL + ln R1R2)-1 - R1/T1]}               (1)                                                              

                        E2 = √(r1/r2) t2 E0 {1- (t1
2/r1) (A cos φ) (2γL + ln R1R2)-1}                  (2)                                                                

where: 
A is the attenuation suffered by the field signal on the go-and-return path; 
φ= 2ks is the optical phase accumulated in the path to the target and back, with k=2π/λ the 
wavevector and s the target distance; 
r1,2 =√R1,2 and t1,2 =√R=T1,2 are the field reflection and transmission of mirrors M1 and M2, 
respectively;  



2γL is the round-trip gain along the laser cavity of length L,  
and factor 1 in curl parentheses indicate the quiescent (or unperturbed) value of the field, to which 
the AM modulation term induced by the self-mixing is added. 
From Eqs.1 and 2, we can calculate the modulation m1 and m2, defined as the ratio of SMI signal 
(the term added to unity) and the constant unperturbed field superposed to them, E1,2 for A=0, and 
the result is 
                            m1= (t1

2/r1) (A cos φ) [(2γL + ln R1R2)-1 - R1/T1]                       (3)                                                                          

                            m2 = (t1
2/r1) (A cos φ) (2γL + ln R1R2)-1.                                    (4) 

  
hence the ratio: 
                            m1/m2 =1-(R1/T1)(2γL+ln R1R2)                                                 (5)  

Because of Eq.5, the outputs are in phase (m1/m2 =1) at threshold (2γL=-ln R1R2) then in normal 
operating conditions above threshold, 2γL+ln R1R2> T1/R1, the outputs become in phase 
opposition (m1/m2 negative, typically ≈ -3). The difference in modulation indexes of rear and front 
output is explained by the extra contribution, in the front output, coming from the reflection, on 
the front mirror, of the field returning from the remote target.  
In practical operation of a laser diode, the amplitudes of the constant component upon which the 
SMI is superposed can be brought to the same value, let's say 1, by a (noiseless) amplification. 
Then, the SMI signal amplitudes are given just by the modulation indexes of Eqs.3 and 4.  
Interesting feature of these dependences is that the difference signal is twice the semi-sum of 
(absolute) amplitudes as soon as one of the two changes its sign, the case of m1 at increasing bias. 
To see this, let's write Eqs.3 and 4 in the form: m'1= g-r, and m'2=g. Then, the difference signal is 
m'1-m'2= -r at all times. But, when m'1 changes sign, its (positive) amplitude is r-g and the semi-
sum is ½ (m'1+m'2)= r/2; accordingly the ratio (m'1-m'2) / ½(m'1+m'2) is equal to 2 (in absolute 
value). For clarity, a numerical example about this statement is provided in the Appendix.  
In conclusion, although the amplitudes of the SMI output signals and their ratio (Eq.5) may change 
with gain γ – or with bias current – their difference is always double the average (or semisum) 
amplitude of the output signals. 

3. Noise Model and calculations 
We model the SMI noise with the scheme of Fig.3 bottom, which is rigorous from the point of 
view of second quantization, as described in Ref.[7]. The oscillating field E0 is assumed constant 
in the cavity, and the coherent state fluctuation ∆Ecoh is attributed to it. The fluctuation ∆Ecoh is a 
Gaussian noise of amplitude such that the power P0=aE0

2/2Z0 carried by the field E0 has the 
classical quantum (or shot) noise, σp

2=2hνP0B, where B is the bandwidth of observation [6]. 
Explicitly, the fluctuation ∆Ecoh has zero average, <∆Ecoh>=0, and a quadratic mean value given 
by <∆Ecoh

2>=(a/2Z0)½hν B, or also a power spectral density d<∆Ecoh
2>/df=½hν, of half photon 

per Hertz. In the following, we omit for simplicity the factor a/2Z0. 
Additional to the noise carried by the oscillating field, we shall consider also noises entering in the 
unused port of beamsplitters and partially reflecting mirrors. Indeed, for the second quantization, 
every port left unused is actually a port left open to the vacuum-state fluctuation, that is a field 
fluctuation, let us call it ∆Evac (see Fig.3), equal to the coherent state fluctuation, ∆Evac = ∆Ecoh, 
consistent with the fact that the coherent state fluctuation ∆Ecoh is independent from the value of 
the field E0 and is therefore found also where it is E0=0, .e., at unused ports [7]. 



With the addition of ∆Evac1 and ∆Evac2 in Fig.3, the noise model is complete [7] and we can calculate 
the fluctuations of output fields E1 and E2 as well the variance of noises superposed to output 
powers P1 and P2. 

 
 
Fig. 3. Top: the laser diode cavity has mirrors with (power) reflectivity R1 and R2 and the optical 
oscillating field E0 is assumed constant inside the cavity; bottom: the second quantization model, 

in which field E0 is accompanied by the coherent state fluctuation ∆Ecoh, and the vacuum state 
fluctuations ∆Evac1,2 enter in the unused post of the mirrors, described as beamsplitter because 

they have non-unitary transmission. 
 
In the classical picture, the output powers P1 and P2 are affected by the shot noise due to the Poisson 
distribution of photons which are carried along, and the variance of the power fluctuation is given 
by the well-known shot-noise expression σP

2 = 2 hν P B. As it is generated by the same power P0 
travelling back and forth in the cavity, the powers P1 and P2 have some correlation in their shot-
noise fluctuation, but not complete correlation because the mirrors select at random which photon 
is transmitted and which is reflected. 
In the following, we calculate the variances σP1

2 and σP2
2 for the two outputs as made up by two 

terms each: one totally correlated and another totally uncorrelated to the corresponding term of the 
other output, so that the first can be cancelled out in a differential operation and we can evaluate 
the SNR improvement thereafter. 
With reference to Fig.3, let's now compute mean value and variance of the power delivered at 
output 1, P1=<E1

2> (having omitted for simplicity the multiplying term a/2Z0); also, for simplicity 
let us assume equal mirror reflectivity, R1=R2=R. Then, at mirror M1 we can write: 

               E1 = t (E0+∆Ecoh) + i r ∆Evac1      (6) 

where t=√T and r=√R are the field transmission and reflection coefficient of the mirrors, ∆Ecoh is 
the Gaussian, zero average, field fluctuation affecting E0 (and independent from amplitude E0) and 
∆Evac1 is the same distribution, but uncorrelated to ∆Ecoh , that enters as the vacuum fluctuation [7] 
from the unused port of the beamsplitter. Properties are: 

              <∆Ecoh)>=< ∆Evac1> =0, and    σE
2=<∆Ecoh

2>=<∆Evac1
2>=½ hνB               (7) 



Now, the mean value of P1 is given by the classical expression P1 ∝E2 but subtracted of the square 
average of the vacuum field (because this cannot be observed) [7]: 

            P1 = < E 12 > - <∆E vac1
2>                           (8) 

Inserting (6) in (8) we get: 

           P1 = t2 E0
2 + t2<∆ E coh

2> + r2<∆ E vac1
2> + 2 t2< E0 E coh> +2tr<E0 E vac1> +2tr<Ecoh E vac1>  

                    - <∆ E vac1
2>                                                                                               (9) 

and, because the 2nd, 3rd, 7th and the last term on the right-hand side cancel out, we get: 
       <P1> = t2 E0

2+ 2 t2< E0 E coh> +2tr< E0 Evac1> +2tr<Ecoh E vac1>                     
As the mean value of Ecoh and Evac1 are zero, Ecoh and E vac1 are uncorrelated, and noting that E0

2= 

P0
 and t2 =T we get: 
       <P1> = t2 E0

2=T P0                                  (10) 
i.e., just the expected result. 

Variance is calculated as the difference σP1
2=< P12> -< P1>2, or 

     σP1
2= t4 E0

4 + 4 t4< E0
2 E coh

2> +4t2r2<E0
2 E vac1

2> - t4 E0
4 + vanishing double products 

Substituting t2=T and r2=R, we get  

     σP1
2 = 4T2E0

2<E coh
2> + 4 TR E0

2 <E vac1
2>                                                              (11) 

and using TE0
2= P1 and <E coh

2>=<E vac1
2>= ½ hνB, we finally obtain 

   σP1
2 = 2 T P1 hν B + 2R P1 hν B,                                                  (12) 

Worth noting, as R+T =1, (12) is also written as σP1
2 =2P1hνB, that is, the classical variance 

expected for a Poisson-statistics power P1. 
But now we can repeat the calculation for exit 2, and it is straightforward to write the result as: 
     P2 = P1 

σP2
2 =  4T2E0

2<E coh
2> + 4 TR E0

2 <E vac2
2>   

        = 2 T P2 hνB + 2 R P2 hνB                                                    (13) 
Note that the first right-hand side terms of (12) and (13) are the same as derive from the same 
process, the beating of signal with its coherent state fluctuation, so they are completely correlated 
and will be canceled out making the difference P= P1- P2. Instead, the second right-hand side terms 
of (12) and (13) are completely uncorrelated because they come from different independent 
fluctuations, E vac1 and E vac2. 
Taking account of the correlations, we get for the variance of P= P1-P2   
     σP2-P1

2 = 4T R E0
2 <E vac1

2> +4 TR E0
2 <E vac2

2> = 8 TR P0 ½ hν B = 4R P1 hν B    (14) 

to be compared to σP1
2 = σP2

2 = 2 P1 hν B. Therefore, the ratio of free and differential variance is: 

     σP2-P1
2/ σP1

2 = 2R                            (15) 
and the corresponding SNR ratio, considering the doubling of differential signal becomes: 
     F = [SNR P2-P1/SNR P1]2  = (4/2R)/1 = 2/R                               (16) 



For a semiconductor laser with a typical R=0.3 we get 
 F = 2/0.3 = 6.6  (or 8.2 dB) 

About the output voltage signal V = Rtr σP obtained across a resistance R fed by the photodiode 
current I=σP, we have for the SNR the same:  tor 
    [SNR P2-P1/SNR P1]2=[SNRV2-V1/SNR V1]2  or also 

SNRV2-V1/SNR V1 = √F,  and 20 log√F = 10 log F = 8.2 dB 
For as He-Ne laser, the front and rear outputs are in phase, in the normal operation of the source 
[5], so the factor 2 of the differential outputs is not achieved, and we have F=1/R. Moreover, as 
the reflection coefficient of typical He-Ne mirrors is R=0.95-0.98, the improvement in F is 
marginal. 
With a slightly different method based on second quantization, Elsasser and coworkers [8] have 
calculated the correlations of the output fields in a Fabry-Perot laser, including the effects of 
internal absorption and spatial hole burning, with the aim of generating correlated light beams, and 
found correlation factors up to 0.8. The low-frequency suppression of 1/f components in a laser 
diode by output subtraction has been investigated by R.J. Fronen [9] finding almost complete 
correlation between the two outputs. 

3.1 Extension of the noise results 
Usually, Fabry-Perot semiconductor lasers have cleaved facets, so R1=R2 and the results of 
previous Sections apply. However, one can come across lasers with R1≠R2 and therefore we extend 
here the theory to the general case of different mirror reflectivity. 
On repeating the calculations of previous Section, we find that, upon equalizing the output power 
amplitudes, the variancesof the output difference is given by:  

        σP2-P1
2 = 2 [R2T1+R1T2] √(R1R2) P00 hv B 

where P00 is the power at the crossover point internal to the laser, at which left-going and right-
going beams are of equal power. Moreover, the variances of the outputs – after balancing of the 
mean power signal – is: 

        σP1or2
2 = 2 √(T1T2) √(R1R2) P00 hν B 

hence the variance ratio becomes: 
        σP2-P1

2 /σP1or2
2 = [R2T1+R1T2] /√T1T2                                      (15') 

for R2=R1=R, and T1=T2=T, Eq.(16') gives the same as Eq.(15). Also, the improvement in SNR is 
given by  F= 2√(T1T2)/ [R2T1+R1T2], becomes F=1/2R for equal R and T.  

3.2 Picking the front output signal 
As said above, the receiving photodiode placed on the front output of mirror M1 can also serve, 
with its transparent window reflecting a few percent of the incoming radiation, as the target surface 
while intercepting practically all the power P1 available. However, when this arrangement is not 
allowed by the application, normally because of its invasiveness, we can use either (i) a 
beamsplitter, deviating a fraction of the power in transit to the photodiode P1, as shown in Fig.4 
(top), or a partial removal of the outgoing beam (see below). 



The beamsplitter offers a compact solution to power pickup, because it may be as small as the 
beam, but has the serious disadvantage of opening a port to the vacuum fluctuation, term ∆EvacBS 
in Fig.4 (bottom). 
                                  

 
Fig. 4. (top) Pickup of the front SMI signal by means of beamsplitter BS, deviating a fraction 
RBS of power P1 to photodiode PD1; (bottom) equivalent circuit for the evaluation of noise, 

showing the added fluctuation ∆EvacBS entering in the unused port of the beamsplitter. 
 
The calculation of powers and associated variances follows the guidelines of previous Section, and 
for brevity we will omit here the detailed development of the analysis, limiting ourselves to report 
the results. For R1=R2=R, it is found that power at the detector PD1by is given by: 
           P1BS = (rBS t)2 E0

2= RBS P1 =T RBS P0                                     (16) 

while power at the other mirror is still P1 = t2 E0
2=T P0, larger than P1BS, and this circumstance will 

generally require a balance operation to get equal amplitude levels. The variance of fluctuations 
associated with P1BS is: 

     σP1BS
2 =  2T RBS P1BS hνB + 2 (R RBS +TBS) P1BS hνB  

                  = 2 T RBS
2

 P1 hνB + 2 RBS(R RBS +TBS) P1 hνB                       (17) 
After the (noiseless) power amplification by a factor 1/RBS to equalizing the amplitude of P1BS 

before subtracting P2. so that we obtain P1-P2 =2P1, we get for the equalized variance σP1BS(eq): 

σP1BS(eq)
2 = σP1BS

2/ RBS2 = {2T RBS
2

 P1 hνB + 2 RBS (R RBS +TBS) P1 hνB } /RBS2 

              = 2T P1hνB + 2 (R +TBS/RBS) P1hνB                                (18) 
to be compared with 

          σP1
2 = 2T P1hνB + 2R P1hνB 



whence the first terms (correlated) cancels out again, and the second ones give the difference as: 

            σP2-P1
2 = 2 (2R +TBS/RBS) P1hνB 

and SNR P1-P2
2= 4/2 (2R +TBS/RBS) P1hνB  

                     =2/(2R  +TBS/RBS) hνB                                                                  (19)  

to be compared to the single-channel SNR P1
2= 1/2 hνB, whence the final result 

              F = [SNR P2-P1/SNR P1]2 = 2/(R+TBS/2RBS)                                      (20) 
From Eq.20 we can see that the beamsplitter affects severely the improvement factor F. Indeed, if 
we chose a 50/50 beamsplitter, F would be less than 2. For the improvement to be comparable to 
F=2/R of the direct configuration (Fig.2), we shall limit TBS/2RBS to a fraction of R. For example, 
taking TBS=0.05 to have F=7.8 dB, or TBS=0.10 for F=7.5 dB. At these low values of transmittance, 
almost all the power of the M1 output is taken by the photodiode and only a little fraction TBS is 
used to sense the remote target. As a consequence, the SMI signal is decreased and the performance 
worsened, so that the improvement of F of the differential output becomes illusory. 
The second method, consisting in sampling the outgoing beam by removing a small portion of it 
by means of a totally reflecting prism (or a mirror) is depicted in Fig.5. 
 

 
 
Fig.5. picking a portion a' of the beam outgoing from mirror M1 by means of a reflecting prism 

 
The power collected by this arrangement is the ratio of areas a' and a+a' of the intercepted beam 
and the total beam, or P1P=a'/(a+a') P1 (fig.5). However, at equal a'/(a+a') and RBS, the fractional 
pickup of the beam is dramatically different from the beamsplitter pickup, because it doesn't open 
the port to the vacuum fluctuations (as the BS in Fig.4 does). This is due to the total reflection of 
the prism (or of a mirror in place of it) that makes the arrangement a 2-port device instead of the 
4-port of the beamsplitter (Fig.4). 
Therefore, for this configuration, the expressions of variance (Eqs. 12 and 13) hold with P1 
replaced by P1P, and the variance ratio of the signal difference (Eq.14) and the improvement 
(Eqs.15 and 16) also apply. 

 

4. Experimental Validation 
We carried out the experiment with a 650-nm diode laser, Roithner QL65D6SA with a Fabry-Perot 
structure. The laser had a threshold of 30 mA and was biased at 40 mA and emitted 5 mW. The 
monitor photodiode incorporated in the package supplied a 0.2 mA current, so it was receiving 
only about 10% of the power emitted by the rear mirror, and this simplified the balancing operation 



with the 10%=a'/(a+a') power picked up by a 1-mm side rectangular prism on the beam of about 
w0=10-mm at the exit of a F=5-mm, NA=0.53 collimating lens. Photodiode PD1 was fed a 
transimpedance amplifier with Rf1=4.7-kΩ feedback resistance, and PD2 to another 
transimpedance amplifier feedback resistance Rf2 adjustable between 1 and 10-kΩ.  A difference 
op-amp provided a signal proportional to PP1-P2, and its output was directly sent to a digital 
oscilloscope. The target was a loudspeaker placed at 10-cm distance, with the central part covered 
by plain white paper. To balance the two channels, we applied a 1.5-mA triangular waveform to 
the bias current, and adjusted Rf2 so as to reach the condition of equal amplitude, or near to zero 
difference, as shown in Fig.6. 
 

 
 

Fig.6. balancing of the two SMI signals detected by PD1and PD2: a triangular waveform  
is applied to the bias and generates detected responses brought to nearly identical (top trace),  

that is, with a residual small difference (bottom trace) 
 

Then we analyze the difference signal PP1-P2 and its fluctuations, both in the frequency domain by 
means of a spectrum analyser, and as a total amplitude by means of an ac-coupled rms voltmeter. 
 

 
Fig.7. signal detected by PD1and PD2 and their difference, exhibiting a noise 2.5 ±1 dB smaller. 

 



In Fig.7 we report the result of spectral noise measurement of the two channels PP1 and P2, and of 
their difference PP1-P2, which is 2.5 dB smaller. Taking account of the doubling of signals (which 
amounts to 6 dB for their square, see Eq.20), the SNR improvement is 2.5+6= 8.5 ±1 dB.  
We have also measured the total amplitude fluctuations of the two channels and of their difference 
and found that the improvement is even better than that recorded by the spectral density, typically 
of 2...3 dB. This is due to the presence, on both channels, of electrical (EMI) disturbances and the 
1/f noise component collected almost equally by both channels and obviously cancelled by the 
difference operation. For example, in Fig.8 we report an example of the SMI channels deliberately 
disturbed by an EMI perturbation generated by the brushes of an electrical motor placed in close 
proximity to the optical SMI. The series of peaks at frequencies from 30 to 300 kHz are reduced 
in amplitude by about 25 to 30 dB thanks to the difference operation. 
 

 
Fig.8. Peaks of EMI superposed to the SMI of channels PD1and PD2 (yellow and yellow-green) 

and the difference channel (red), exhibiting a disturbance reduction of 25...30 dB. 

5. Conclusions 
We have demonstrated that the difference signal of the two outputs – front and rear – of a laser 
diode SMI has an improved SNR respect to each of the two outputs. On a Fabry-Perot laser, we 
have measured an improvement of 8.5±1 dB, in good agreement with the theoretical value of 8.2 
dB. We have found that also EMI collected by the two channels is strongly reduced (of 25...30 
dB) by the difference operation. The improvement is due to the two signals being in phase 
opposition above threshold, and to the partial correlation of the noises as shown by an analysis 
based on a second-quantization model. 
 

6. Appendix 
Let's make some exemplary cases calculating the values of  m1,2  normalized to (t1

2/r1) (A cos φ) 
using Eq.3 and 4. Let's assume for our semicondictor laser diode, R1,2=0.3, so that ln R1R2=-2.40, 
and R1/T1=0.428. At threshold, 2γL = -ln R1R2= 2.40. Then we have, at various values of round 
trip gain 2γL: 



____________________________________________________________________ 
2γL             2.40x1.1          3.60         4.80         5.40       6.00         7.20       9.60 
            (10% above thr)    50% above          x2         x2.25         x2.5            x3              x4 

____________________________________________________________________ 
m2  (rear)          4.17              0.83          0.42        0.33       0.28        0.21      0.114           
 
m1 (front)           3.74                0.4          -0.01.     -0.10      -0.15      -0.22.    -0.316          
signal 
difference       0.43               0.43         0.43        0.43       0.43        0.43        0.43 
ratio of diff 
to semisum     0.11              0.70          2.0           2.0          2.0         2.0          2.0       
____________________________________________________________________       
 
As we can see, when signal m1 changes sign, the ratio of difference to semi-sum of amplitudes 
(the absolute values of m's) becomes equal to 2. 
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