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LINE-OF-SIGHT EXTRACTION ALGORITHM FOR DEEP-SPACE
AUTONOMOUS NAVIGATION

S. A. Bella*, E. Andreis†, V. Franzese‡, P. Panicucci§, and F. Topputo¶

The proliferation of deep-space probes is posing new challenges in navigating
them with ground-in-the-loop methods. Ground tracking stations will reach satu-
ration owing to the escalation of small satellites in deep-space. Thus, autonomous
guidance, navigation, and control methods that are independent from ground com-
munications are necessary for future deep-space satellites. For deep-space appli-
cations, planets are used as beacons to determine the observer state in deep-space
using line-of-sight navigation and celestial triangulation. This paper introduces a
planets line-of-sight extraction algorithm for deep-space autonomous navigation.
In particular, the methodology focuses on image generation, image processing,
and line-of-sight extraction. The probe attitude is estimated from generated images
and, if a planet is detected, its line-of-sight is extracted to enable the autonomous
satellite position estimation. Numerical simualtions show that a 3σ accuracy of 20
arcseconds for the planet line-of-sight can be reached, yielding to a 3σ accuracy
of 1000 km for autonomous position estimation during deep-space application.

INTRODUCTION

Miniaturized platforms are gaining more and more interest from space agencies and companies
with respect to traditional large satellites. Deep-space missions with miniaturized satellites, such as
CubeSats, have been designed or are under study by the major space actors. Examples of miniatur-
ized interplanetary satellites from the European Space Agency (ESA) are M-ARGO (Miniaturized
Asteroid Remote Geophysical Observer) [1], LUMIO (Lunar Meteoroid Impacts Observer) [2, 3],
and Milani [4]. The National Aeronautics and Space Administration (NASA) is planning several
missions exploiting miniaturized platforms after the success of Mars Cube One (MarCO) [5], the
first deep-space CubeSat that performed a flyby of Mars.
Spacecraft miniaturization implies a decrease of costs related to the platform. However, the costs
due to operating a miniaturized spacecraft in deep-space are similar to large spacecraft as state-of-
art radiometric tracking techniques are used [6]. A possible solution to reduce operations costs is to
exploit on-board information to perform autonomous navigation without ground support.
Promising autonomous navigation methods exploit observations of planets in the Solar System to
understand the probe state. The line-of-sight (LOS) directions to known beacons, i.e. planets, in
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the Solar System can be used to provide information to estimation schemes and to triangulate the
observer’s position [7].
This paper tackles the problem of extracting the line-of-sight direction of known Solar System plan-
ets to estimate the observer state. Deep-space synthetic images are rendered and processed to extract
LOS directions which then provide information to an Extended Kalman Filter (EKF). The space-
craft attitude is estimated from the image as well. The LOS extraction performances, the attitude
accuracy, and the navigation accuracy are then characterized for a typical CubeSat mission scenario.
The paper is structured as follows. Section ‘Methodology’ outlines the image processing to extract
the LOS direction and presents the attitude and position estimation methods. Section ‘Simulation
Environment’ describes the simulation environment together with the settings used for the simula-
tions. Section ‘Performances’ summarizes the performances of the line-of-sight extraction method,
the attitude estimation method and the position estimation method. Lastly, concluding remarks are
given in Section ‘Conclusions’.

METHODOLOGY

Stars and Planets Centroid Computations

When a deep-space image containing planets and stars is taken, their centroids must be computed to
enable autonomous spacecraft navigation in terms of position and attitude. This implies the planets
and stars centroids detection by following the flowchart in Figure 1.

Figure 1: Proposed centroiding algorithm flowchart.

First, the background noise is removed. This can be achieved by setting up a thresholdK, expressed
in pixel intensity, so that if a pixel intensity Ii,j (where i, j denote the pixel coordinates) is lower
than the threshold, it is set to zero. Thus:{

Ii,j = Ii,j if Ii,j > K

Ii,j = 0 if Ii,j ≤ K
(1)

The thresholding procedure can be static or dynamic. Static thresholding uses a constant threshold
K [8]. Dynamic thresholding uses a constant threshold K which is function of the image intensity
[9, 10]. In this work, the following dynamic method is used:

K = µ+ 3 σ

µ = 1
N

∑
i,j Ii,j

σ =
√

1
N

∑
i,j |Ii,j − µ|2

(2)
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Figure 2: Region of interest (red box) to locate the centroid (red circle).

where N is the total pixels number, µ is the intensity mean, and σ is the intensity standard deviation
over the image. Then, the coordinates of the brightest pixels in the image are identified [11]. Second,
a squared centroiding window, also known as region of interest (ROI), delimits the object with a
margin of one pixel on each side to accurately compute the centroid. An example of this procedure
is reported in Figure 2. Then, the computations of the centroid with sub-pixel accuracy is performed
by computing the first image moments within each ROI [12]:

I00 =
∑

i,j Ii,j wi,j

I10 =
∑

i,j xi Ii,j wi,j

I01 =
∑

i,j yj Ii,j wi,j

(3)

where i and j are the pixels within the ROI, I00 is the overall intensity within the ROI, x and y the
pixel coordinates, I10 and I01 are the static moments within the ROI in the two directions, and wi,j
is a weighting parameter. In this work, the weighting parameter is defined as wi,j = Ii,j to give
more importance to brighter pixels. Finally, the sub-pixel centroid coordinates are computed as:

xc =
I10

I00
yc =

I01

I00
(4)

This process is repeated for all the brightest pixels identified as candidates for stars and planets. This
step provides the centroids of the brightest objects in the images which are exploited to determine
the spacecraft attitude and to extract the planet LOS.

Star Identification and Attitude Determination

Once the possible candidates for the stars and planets are determined, the spacecraft must identify
which are the observed stars and, from this piece of information, it must determine its attitude.
The attitude determination exploits the identification of a geometrical asterism in stars triplets which
are matched with a known database. The identification of the Liebe’s parameters are used in this
work to perform this step [13]. Recall that the minimal number of stars to determine the spacecraft
attitude from a star asterism is three.
The Liebe’s parameters on a three-star asterism are reported in Figure 3. In the figure, points A, B
and C represent the three stars on the celestial sphere and the spherical triangle can be characterized
with three parameters owing to its geometrical construction. Therefore, by considering A as a
reference star, the geometrical features can be defined as the angular distance from the other stars
(e.g., b, c), and the angle between those angular distances (i.e., α). The reference star is selected as
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Figure 3: Liebe’s parameters a, b, c, α, β, and γ on the spherical triangle formed by A, B, and C.

the brightest of the triplet. Recall that a star brightness is directly linked to the star magnitude which
is available from the star catalogue. Note that, as the stars have not been identified yet, the reference
star and its magnitude can not be coupled in the catalog. To overcome this problem, an equivalent
brightness parameter is defined according to the pixel intensity within the ROI, called IROI. Thus

IROI =
∑
i,j

Ii,j (5)

This parameter is a coarse estimation of a star brightness, since the photoelectrons coming from the
star activate more pixels owing to the sensor defocussing, which is performed to reach sub-pixel
accuracy in the centroiding computation. The LOS directions to the points A, B and C are used to
estimate the parameters a, b, c, and α exploiting the following equations:

cos(a) = ρ̂TB ρ̂C

cos(b) = ρ̂TA ρ̂B

cos(c) = ρ̂TA ρ̂C

cos(a) = cos(b) cos(c) + cos(α) sin(b) sin(c)

(6)

The set of Liebe’s parameters can then be matched with the database to identify the observed stars.
To perform the extraction, the m brightest objects on the image, with brightness defined as in Equa-
tion 5, are selected and the Liebe’s parameters are computed for all the possible combinations among
them. The possible combinations M are given by:

M =

[
m!

k!(m− k)!

]
(7)

with k = 3 as a three-star asterism is chosen. The Liebe’s parameters are then stored in a M-by-6
vector for comparison with the database.
The Liebe’s parameters of each stars triplet in the M-by-6 vector are compared to the Liebe’s pa-
rameters in the database according to a cost function J∆:

J∆ = |∆α|+ |∆b|+ |∆c| (8)

where the operator ∆ (·) represents the difference between the Liebe’s parameter on the set and on
the database.
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Finally, the triplet that minimizes J∆ is selected as the matching one, the stars IDs are extracted
from the database and their angular coordinates on the celestial sphere are taken from the Hipparcos
catalog. This provides the stars LOS in the inertial reference frame N are known. Let vB and vN
denote the star LOS in the spacecraft-fixed reference frame B and in the inertial reference frameN .
LetRBN be the attitude matrix from B to N , vN is computed as:

vN = RBNvB (9)

Once at least three linearly independent directions are known in both the camera and the inertial
reference frames, there are a variety of methods that can be applied in order to retrieve the actual
attitude matrix. In this work, the singular value decomposition method is applied [14].
According to this method the computation of the attitude matrixRBN = RT

NB relies on solving the
Wahba’s problem:

J =
1

2

N∑
i=1

pi||vBi −RNBvNi ||2 (10)

where pi is a weighting parameter that depends on the ith sensor measurement, and N is the overall
number of measurements.
By exploiting the following definitions:{

J̃ = Tr(RNBBT )

B =
∑N

i=1 pi vBiv
T
Ni

(11)

and by considering the singular value decomposition B = USVᵀ, it has been shown that the Wahba’s
problem solution is [14]:

RBN = UMVᵀ; (12)

where M is defined as:

M =

1 0 0
0 1 0
0 0 det(U) det(V)

 . (13)

This procedure provides a way to compute the spacecraft attitude from an image and to enable the
LOS extraction and the state estimation.

Line-Of-Sight Extraction and Position Estimation

Once the spacecraft attitude is determined, the planets LOS can be extracted from the image. If no
planet is present in the image, a slew maneuver can be performed to point at a Solar System planet.
Preferred choice would be to point to the brightest planet, i.e. the one with the lowest magnitude, to
ensure an high signal-to-noise ratio in the image. By having an estimation of the spacecraft position
and orientation, the the relative geometry and the magnitude V can be computed for every planet in
the Solar System. This provides the planet to be pointed. Then, the probe computes the pointing
direction required to acquire a planet of interest and slews towards that direction to align with it the
camera boresight. Then, an image is acquired and processed to detect the planet of interest.
By having a coarse pointing towards the planet and a spacecraft attitude estimation, the acquired
image is processed to identify the planet centroiding and to compute the planet LOS. Recall that
the stars geometry is known and it can be matched to the stars database, while the planets are
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very bright objects in the image which that do not match with any stars asterism. Thus, the planet
can be identified accordingly. The centroid coordinates in pixels can be easily converted to LOS
information thanks to the pinhole camera model equations. Let ρ̂B = [ρ̂x ρ̂y ρ̂z]

T be the planet LOS
in the spacecraft-fixed reference frame. From the image coordinates, the planet LOS is computed
by exploiting the pinhole camera model:

ρz = f√
x2c+y2c+f2

ρx = −xc ρzf
ρy = −yc ρzf

(14)

where xc and yc are the planet centroid in world coordinates, and f is the camera focal length. The
LOS is then expressed in the inertial reference frame:

ρ̂N = RBN ρ̂
B (15)

From different planets’ LOS in the inertial reference frame, the spacecraft position can be estimated
exploiting two observations [15, 16]. Considering Figure 4, the spacecraft position is expressed as:

r = r1 − ρ1 ρ̂1 = r2 − ρ2 ρ̂2 (16)

where ρ = ρρ̂. After multiplying Equation 16 with ρ̂1 and ρ̂2, the system is rewritten as:[
−1 ρ̂T1 ρ̂2

−ρ̂T2 ρ̂1 1

]
︸ ︷︷ ︸

A

[
ρ1

ρ2

]
︸︷︷︸

x

=

[
ρ̂T1 (r2 − r1)

ρ̂T2 (r2 − r1)

]
︸ ︷︷ ︸

b

(17)

This linear system can be solved as x = A−1b to retrieve ρ1 and ρ2. Note that the solution is
determined only when the matrix A is not singular. This can happen when the two planets are
aligned with the observer, i.e. when the angle γ, defined in Figure 4, is equal to 0◦ or 180◦. Then,
by exploiting the solution x in Equation 16, the spacecraft inertial position r is retrieved.
By considering that the planets position with respect to the Sun in the inertial reference frame is
available from the planets ephemerides, the problem is to compute the planets LOS vectors with
respect to the spacecraft positions, ρ̂1 and ρ̂2. To autonomously estimate the spacecraft state on
board, an Extended Kalman Filter (EKF) featuring planets LOS aquisition has been developed. Its
algorithmic overview is reported in Table 1 for sake of completeness.
The system dynamics is described by the vector field f and process noise w. The measurement

𝒓1

𝒓2

𝝆1

𝝆2

OBJECT 1
OBSERVER

OBJECT 2

SUN

𝛾𝒓

Figure 4: Geometry of the celestial triangulation problem.
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Table 1: Scheme of the Extended Kalman Filter

System State Space ẋ = f(x(t), t) +w
yk = h(xk) + νk

Propagation Block xpk = xck−1
+
∫ tk
tk−1

f(x(t), t)dt xc0 = E[x0]

Φk = Φk−1 +
∫ tk
tk−1

FΦdt Φ0 = I

Sk = Sk−1 +
∫ tk
tk−1

ΦQΦT dt S0 = Q

Ppk = ΦkPckΦ
T
k + Sk Pc0 = E[x0x

T
0 ]

Correction Block Kk = PpkH
T
k (HkPpkH

T
k +Rk)

−1

xck = xpk +Kk[yk − h(xpk)]

Pck = (I −KkHk)Ppk(I −KkHk)
T +KkRkK

T
k

model is defined by the equation h and white noise ν. In the propagation block at tk, xpk is the
predicted state vector with error covariance matrix Ppk , Φk the state transition matrix (STM),Q the
covariance matrix of the process noise, and F the Jacobian matrix of dynamics f . In the correction
block, Kk represents the Kalman gain, xck the corrected state vector with error covariance matrix
Pck , Rk the covariance matrix of the measurement noise, H the Jacobian matrix of measurement
model h, and yk the observed vector.

SIMULATION ENVIRONMENT

Geometry for Images Generation

In this subsection the needed preliminaries for image rendering are reported in details. The image
generation renders two different types of celestial objects, stars and planets, as they are observed
from on-board star trackers. Moreover, to correctly generate the image, the object has to be properly
located in the image. A star tracker collects the incoming light with an optical sensor, transfers the
light to a reading sensor, elaborates the analog information, and extracts the digital data [17]. Thus,
it is important to model the geometrical transformations and the sources of errors involved with the
representation of the three-dimensional world into an image.
On the one hand, stars are usually stored in stars catalogues, such as the Hipparcos catalogue [18],
which provides the right ascension and declination on the stars on the celestial sphere. The first
needed step is to understand which are the stars from the catalogue that are observed from the
camera. Thus, RBN is used to perfrom a rotation from the spacecraft-fixed reference frame to the
inertial reference frame. This is achieved with a series of counterclockwise rotations taking into
account the camera pointing angles, defined as the right ascension α ∈ [0◦, 360◦], the declination
δ ∈ [−90◦, 90◦], and the twist angle φ ∈ [0◦, 360◦].
By assuming that the camera boresight is coincident with the spacecraft-fixed reference frame third
axis,RBN is given by:

RBN = R3(α)R2(π/2− δ)R3(φ) (18)

where Rk denotes the rotation matrix about the axis k. This enable to represent the stars in the
spacecraft-fixed reference frame by combining Equations 15 and Equation 18. Recall that, since the
stars are inertially-fixed and placed at infinity, their projection in the image plane is not dependent
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Figure 5: Pinhole camera model [20].

on the spacecraft position in the Solar System. Thus, their inertial positions are extracted from the
Hipparcos catalog and used as input to the image generation process [18].
On the one hand, planets position depends on the current epoch. In the current study, only planets
smaller than one pixel have been considered because of the high distances in the Solar System.
This implies that no raytracing is necessary which simplify the planets rendering procedure. Planets
ephemerides are used to retrieve their position rpl with respect to the Sun in the N reference frame
and, by knowing the spacecraft position r with respect to the Sun, the relative position ρ between a
planet and the spacecraft can be computed.
Once the stars and planets positions in the spacecraft-fixed reference frame are computed, they can
be projected on the image plane. The projection is performed with the pin-hole camera model [19].
The model parameters are the focal length f , which is the distance between the image plane and
the pinhole, the field of view (FOV), which is the observable angle of the real world, and the screen
half-size L, which is half-length in world unit of a square-shaped image sensor. These parameters
are correlated as follows:

FOV = 2 θ = 2 arctan

(
L

f

)
. (19)

In Figure 5 a sketch of the pinhole camera model is shown. Let PB = [XB, YB, ZB]T be a world
point and let Pi = [xi, yi]

T be its projection onto the image plane. Considering the similarity
between the triangles OPBO” and OPiO′, the projection is given by [16]:{

xi = −f XB
ZB

yi = −f YBZB

(20)

Moreover, a screen is composed of a Npx × Npx matrix of pixels. The image sensor dimension is
thus related to the pixels number as:

2L = Lpx Npx (21)

This is true when each pixel is squared and has the same characteristic dimension Lpx.
Finally, the relation to obtain the coordinates in the screen reference frame is expressed in given by:{

xp = −sx xi + ox

yp = −sy yi + oy

{
sx = sy =

Npx
2L

ox = oy =
Npx
2

(22)
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where the minus sign is due to flipped image, sx and sy are the pixel size in world unit, and [ox, oy]
T

is the image center position in the image.

Radiometry for Images Generation

Once the relative geometry and projection between the observer and the sources as stars and planets
are defined, it is necessary to derive a radiometric model to consider how the light interacts with the
image sensor passing through the camera optics. When gathering light, a certain flux of photons
passes through the lens, the photons hit the image sensor generating photoelectrons, and the photo-
electrons are collected by the camera electronics. The theoretical approach that supports this model
is summarized hereunder [21].
By using the Planck-Einstein relation, a photon energy Eγ can be computed from the speed of light
c, the Planck constant h and the wavelength of interest λ as follows:

Eγ =
c h

λ
(23)

Then, by knowing the photon flux density Fλ and the bandwidth BW , the photon flux count Fγ can
be evaluated:

Fγ =
FλBW

Eγ
(24)

As Fγ is the photon flux count emitted from the object, the photon flux count impacting the image
sensor must be computed by considering the optics characteristics. Thus:

Fγ/sens = Fγ Tlens π

(
d

2

)2

(25)

where Tlens is the lens transmission factor, d is the lens aperture, and Fγ/sens is the photon count
entering the sensor. Then by considering the quantum efficiency Qe, the electron count on the
sensor Fe/sens is gathered:

Fe/sens = Qe Fγ/sens (26)

Finally, the total number of electrons on the sensor Ne/sens depends on the exposure time T as
follows:

Ne/sens = Fe/sens T (27)

Note that, thanks to the magnitude definition, it is possible to select a reference object and a refer-
ence magnitude Vref to evaluate the others objects’ magnitude through similarity:

Ne/sens(V ) = Ne/sens(Vref)× 10
(Vref−V )

2.5 (28)

On the one hand, stars magnitude is tabulated in the Hipparcos catalogue. On the other hand,
planets magnitude must be computed from the planet-spacecraft distance and their phase angle. The
apparent magnitude model, based on the intrinsic definition of magnitude, is used for this purpose
[22]:

V = V (1, 0) + 5 log10(‖ρ‖T
∥∥rpl

∥∥) +m, (29)

where V (1, 0) is the planet absolute magnitude andm is the phase law. Both parameters are reported
in Table 2. Note that the phase law depends on the phase angle β defined as the angle between ρ and
rpl. As star trackers are generally defocused to increase subpixel accuracy in centroid estimation,
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Table 2: Planets magnitude parameters.

V(1, 0) m (β in degrees)

Mercury -0.36 3.8(β/100) - 2.73(β/100)2 + 2.00(β/100)3

Venus -4.29 0.09(β/100) + 2.39(β/100)2 - 0.65(β/100)3

Earth I -3.86 0.016β
Mars -1.52 0.016β

Jupiter -9.25 0.005β
Saturn -8.90 0.044β
Uranus -7.19 0.028β

the photoelectrons spread over many pixels. A normal distribution models this behaviour:

Ne/px(x, y) =
Ne/sens(V )

2πσ2
exp

(
−
(

(x− x0)2 + (y − y0)2

2σ2

))
, (30)

where σ represents the object defocus level, and [x0, y0]T are the object center coordinates both
expressed in pixel units.
Then, the pixel well capacityQmax is used to saturate pixel with an electron count greater thanQmax.
Finally the pixel intensity Ipx, which is an integer number between 0 and 255, is computed as:

Ipx = 255 round
(
Ne/px

Qmax

)
. (31)

where round(·) is the function that rounds each element of the input to its nearest integer, rounding
up the singularities (e.g. 0.5→ 1).
Note that there are many noises involved with the image acquisition. For this purpose, a simplified
noise model is used to modify the ideal image I0 before the conversion from photoelectron units to
pixel intensity. Each contribution has the following meaning according to its source [23]:

• εQ is the quantization noise due to A/D conversion;

• εR is the readout noise due to A/D conversion;

• εFP is the fixed pattern noise due to the tendency of pixel to be brighter or darker than ex-
pected;

• εDS is dark signal noise due to photoelectrons generated even when no photons are incoming;

• εDSNU is the fixed pattern noise due to dark signal non uniformity;

• ε% is a margin that takes into account eventual errors during the estimation of the noise.

Therefore, the noise standard deviation ε is estimated as:

ε = [εQ + εR + εFP + (εDS + εDSNU)T ] (1 + ε%) (32)

IEarth phase law is preliminary supposed to be the same as Mars due to lack of data.
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Table 3: α-Lyrae optical parameters.

V [-] Fλ

[
W

m2 µm

]
λ [nm]

α-Lyrae 0.03 3.44 ×10−8 555.6

Thanks to this formulation, a noise realization δI1 is obtained by sampling a Gaussian distribution
of zero mean and standard deviation ε. Moreover, the sensor photoresponse non uniformity (PRNU)
is model with the constant εPRNU. The noise due to the PRNU δIPRNU is computed as follows:

δIPRNU = εPRNU µI 1Npx (33)

where µI is the image intensity mean over all image pixels and 1Npx is the all-ones matrix of
Npx ×Npx size. Finally the noisy image is given by:

I = I0 + δIPRNU + δI1 (34)

Images Generation

Once the relative geometry, the projection model and the radiometric model are defined, it is possible
to render the synthetic images. Only the stars and planets inside the FOV according to the pointing
direction and with the correct magnitude are used for the image generation. A reference celestial
object has to be chosen to apply the radiometric equations [21]. The selected object is α–Lyrae,
whose properties in terms of magnitude V , flux Fλ and wavelength λ are reported in Table 3.
Three different constellations have been used to validate the model. These are the Orion, the Canis

Major, and the Crux constellations. The parameters used to simulate the images are reported in
Table 4. Note that the noise values applied to simulate the images are also shown in Table 5.
The synthetic images have been validated against real images as shown in Figure 6. The validation
process consists in identifying each constellation features in terms of their absolute and relative
position. This is due to the fact that the real images are taken on a more complex spectrum than the
one simulated. It is possible to notice how the brightest stars are visible, letting the comparison of
constellation features possible and thus validating the image generation process.

Simulation Settings

Table 6 shows the characteristics of various optical camera characteristics. These are used as refer-
ence to define the optical camera characteristics used for the numerical simulations. The selected
camera characteristics are shown in Table 7.
The optical camera characteristics in Table 7 are used to render synthetic images of stars and planets
in the Solar System. In particular, the dataset of images considers the spacecraft position randomly
picked in a range within 0.5 AU and 10.5 AU from the Sun and pointing directions all around the
celestial sphere. The pointing directions are aligned with a set of evenly distributed points on the
celestial sphere [25]. The number of points follows the rule

Npts(ipts, jpts) = 2 + 10(i2pts + ipts jpts + j2
pts) (35)

Ihttp://www.sinclairinterplanetary.com/, last visited on July 2021
IIhttps://www.bluecanyontech.com/, last visited on July 2021

IIIhttps://www.cypress.com/, last visited on July 2021
IVhttps://ams.com/, last visited on July 2021

11

http://www.sinclairinterplanetary.com/startrackers
https://www.bluecanyontech.com/components
https://www.cypress.com/file/94726/download
https://ams.com/documents/20143/36005/CMV4000_DS000728_3-00.pdf/36fecc09-e04a-3aac-ca14-def9478fc317


Table 4: Optical camera setup.

Orion Canis Major Crux

FOV [deg] 17.5 23.5 7.5
f [mm] 25 25 200
T [ms] 300 150 200

Npx [px] 1024x1024 1024x1024 1024x1024
F [-] 0.9 0.9 2.5

Qe × Tlens 0.49 0.49 0.49
Qmax [e] 14000 14000 14000
σ [px] 2 2 2

Table 5: Noise parameters.

εQ [e] εFP [e] εDS
[ e

s

]
εDSNU [e] εR [e] εPRNU [-] ε% [-]

7 100 200 100 100 0.02 0.2

Table 6: Comparison between different optical cameras characteristics.

FoV [deg] Image size [px] f [mm] F [-] Qe × Tlens

NavCam [16] 16 × 10 2048 × 1280 40 3.2 -
Sinclair ST-16RT2 I 15 × 20 2592 x 1944 16 1.6 -
Blue Canyon NST II 10 × 12 - - - -

HAS 2 III 20 × 20 1024 × 1024 - - 0.45
FaintStar [24] 20 × 20 1024 × 1024 - - 0.49
CMV 4000 IV 14 × 14 2048 × 2048 44 1.1 0.60

Table 7: Optical camera setup.

FoV [deg] Image size [px] f [mm] F [-] Qe × Tlens T [ms] Qmax [e] σ [px]

20 × 20 1024 × 1024 40 3.2 0.49 300 14’000 2
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(a) Real image: Orion constellation. (b) Simulated image: Orion constellation.

(c) Real image: Canis Major constellation. (d) Simulated image: Canis Major constellation.

(e) Real image: Crux constellation. (f) Simulated image: Crux constellation.

Figure 6: Real image versus simulated images for three different constellations.
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Table 8: Attitude error as a function of database size M . The first column report the computed
attitude determination standard deviation σε. The other columns reports the percentage of sample
in the associated bounds.

Database Size M [-] σε [arcsec] ≤ σε [%] ≤ 2σε [%] ≤ 3σε [%]

936 6.1075 82.39 94.22 98.04
836 6.0558 82.09 93.94 98.04
736 6.2105 83.02 94.03 97.86
636 5.9630 81.99 94.59 97.95
629 6.1015 81.90 94.50 98.23
628 6.0841 81.90 94.59 98.23
627 5.9868 81.62 94.40 98.23
626 5.9444 82.09 94.68 97.95
616 5.5887 81.12 94.58 97.85

which is also known as covering rule, which identifies the number of points to optimally cover a
sphere. In this work, ipts = jpts = 6 which implies Npts = 1082 points over the celestial sphere.
In this way, the images dataset is generated to test and characterize both attitude determination and
LOS extraction.

PERFORMANCES

Attitude determination

The performances of the attitude determination algorithm are presented in this section. Each image
in the images dataset is used to compute the spacecraft attitude and then the attitude determination
error statistics are computed. The attitude error ε is computed as

ε = arccos(b̂T b̂C) (36)

where b̂ and b̂C are the true and computed pointing direction, respectively. The attitude determina-
tion error is evaluated for each image in the dataset and then a pointing error distribution is gathered.
The values of the attitude determination standard deviation σε are reported in Table 8 for different
database dimensions M . In the table, the percentage of samples inside the σε, 2σε and 3σε are
reported to show that the distribution is well approximated by a Gaussian distribution.
The numerical simulations show a maximal pointing error of 6.21 arcsec for the attitude determina-
tion and it can be noticed that performances start to degrade when the database size M decreases.

Planet acquisition

In this section an example of the planet acquisition procedure is reported to better explain the pro-
cedures involved in the overall planet line of sight extraction algorithm. First, the probe tracks some
stars to determine its attitude as shown by the red circles in Figure 7a. Then, the probe computes the
pointing direction required to acquire a planet of interest and slews towards that direction to align
the camera boresight with the planet direction. Then, an image is acquired and processed to detect
the planet of interest - red square in Figure 7b. Finally, the planet LOS is obtained by computing
the planet centroid, shown in Figure 8, and by exploiting the pinhole camera model.
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(a) Attitude determination (b) Optimal planet pointing

Figure 7: Example of the planet acquisition procedure

Figure 8: Detail of planet pointing in Figure 7b. The noisy background is visible as well.

Line-of-sight Accuracy

In this section the LOS extraction accuracy is computed to understand the performances of the
planet LOS determination for the proposed algorithm. The planet LOS estimation error is computed
analogously to the error in the pointing direction given in Equation 36.
To take into account position uncertainties, the each Cartesian component of the nominal position
is perturbed with a realization of a white noise with zero mean and standard deviation σr. The error
on each component is considered uncorrelated to the other Cartesian components. In this work, it is
considered a maximal position error of 106 km as the observed planets would fall outside the image.
Table 9 reports the standard deviation in LOS estimation to the planets. The worst case, which is
due to the highest position standard deviation, has a standard deviation σLOS = 6.69 arcseconds,
which leads to a 3σLOS LOS accuracy of 20.1 arcseconds for the planets detection. This static
characterization of the algorithm is needed and preparatory for the following section where this
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standard deviation is used in an EKF to update the spacecraft state. Moreover, in the table, the
percentage of samples inside the σLOS, 2σLOS and 3σLOS are reported to show that the distribution
is well approximated by a Gaussian distribution.

Table 9: Line of sight error statistics as a function of position standard deviation σr. The first
column report the computed attitude determination standard deviation σLOS. The other columns
reports the percentage of sample in the associated bounds.

εr [km] σLOS [arcsec] ≤ σLOS [%] ≤ 2σLOS [%] ≤ 3σLOS [%]

104 6.6924 84.54 88.89 97.96
105 5.7415 85.56 91.57 96.67
106 5.6085 86.39 91.57 97.22

Position estimation

The position estimation performances in a dynamical simulation are presented in this section. The
probe is assumed on an interplanetary transfer toward Mars, during which it estimates its state by
measuring the LOS directions to the planets. The LOS is modelled with its nominal value and per-
turbed with white noise of standard deviation equal to σLOS. At t0, the probe nominal position and
velocity are r0 = [43.9, 145.8, 1.48] × 106 km and v0 = [−29.92, 12.18, 0.43] km/s, respectively,
and they are initially known with a σ accuracy of 106 km and 10−1 km/s.
The navigation cycle begins at t0. The probe tracks a couple of planets one at a time for one hour
with a frequency of 0.01 s. Between the two observation windows, a slew maneuver of 20 minutes,
where the state is only propagated, is considered. Eventually, the probe state is propagated for 10
days. The entire operational window is composed of 25 navigation legs.
It is assumed that the on-board camera can observe only the planets characterized by relative magni-
tude lower than 6 and Solar Aspect Angle greater than 35 deg, with a 3σLOS measurement accuracy
of 20.1 arcseconds, according to Table 9. Then, the optimal beacons selection strategy [7] is applied
to select the best pair of beacons among the visible ones. Figure 9 and Figure 10 show the position
and velocity error profiles, respectively. The samples error profile is displayed with blue solid lines,
whereas the dashed ones define the 3σ filter covariance bounds. At the end of the operation window,
the 3σ error of the probe position and velocity is lower than 480 km and 0.05 m/s.

CONCLUSIONS

This paper shows that autonomous positioning of a deep-space satellite is possible extracting the
line-of-sight directions to known planets from optical images. A planet centroid can be detected
with an accuracy of 20.1 arcseconds in 3σ confidence after an attitude determination procedure.
The error for the whole attitude determination process remains within 18.3 arcseconds in terms of
3σ. By considering these errors in the position estimation method, the spacecraft position can be
estimated with an accuracy better than 1000 km in 3σ in deep-space.
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Figure 9: Position error and covariance 3σ bounds. Thirty samples are shown.

Figure 10: Velocity error and covariance 3σ bounds. Thirty samples are shown.
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