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Abstract—In this paper, a systematic procedure to derive
equivalent circuit networks accurately reproducing the frequency
response of the input impedance of magnetic cores in a broad
frequency range is presented. The proposed procedure fore-
sees to represent the effective complex permeability spectra
of a magnetic core (i.e., the permeability resulting from the
superposition of intrinsic material properties and effects due to
structural features of the core) by a high-order Debye series
expansion, which is subsequently synthesized into suitable Foster
and Cauer networks. Such networks can be implemented in
any circuit simulator, and are particularly favorable for time-
domain transient simulation since they can be easily combined
with hysteresis models. Two nanocrystalline tape-wound cores
and a commercial bulk current injection probe are used as test
cases to prove the effectiveness of the proposed method both in
terms of accuracy and ease of implementation.

Index Terms—Complex permeability spectra, Debye models,
Foster and Cauer networks, Magnetic components.

I. INTRODUCTION

ACCURATE modeling of the frequency response of mag-
netic components is of paramount importance in many

Electromagnetic Compatibility (EMC) applications, spanning
from the selection of suitable common-mode chokes for
electromagnetic interference (EMI) filters [1] to the design
of magnetic-core probes for testing the immunity of electri-
cal/electronics components, such as those used for suscep-
tibility verification by the bulk current injection (BCI) and
pulse current injection (PCI) techniques [2], [3]. In these
frameworks, accurate characterization and modeling, through
suitable circuit networks, of the frequency response of the
magnetic-core complex permeability spectra, is a key ingre-
dient to increase the significance and effectiveness of circuit
simulation. Hence, different modeling strategies have been
proposed over the past few years to provide accurate circuit
representation of magnetic components in a wide frequency
interval.

Among these, a first approach is to make use of black-box
frequency-dependent models extracted from measurement data
[4], [5]. This approach generally provides accurate prediction
in the frequency domain but may fail for time-domain transient
simulation due to convergence issues and causality problems
owing to the inverse Laplace transform. A second approach
is to resort to single-stage R-L, R-L-C circuit networks, where
the frequency response of the complex permeability is repro-
duced through an analytical Debye [2] or Lorentz [6] model.
This approach allows for overcoming previous limitations, yet

generally leading to less accurate prediction, especially in
wide frequency intervals. A third approach foresees the use
of ladder networks with R-L or R-L-C components [1], [7]–
[10] to fit the measured frequency response. High precision
can be achieved through the corresponding representation
with suitably-selected stages and parameters. Besides, this
approach assures broad applicability both for frequency- and
time-domain simulation. However, the process of determining
the involved circuit parameters is quite cumbersome. Con-
ventional methods include approximate analytical-expression
evaluation [9], [11], whose effectiveness significantly degrades
for increasing frequencies, two-step optimization [1], [7], and
iterative approximation [8].

In this work, an alternative approach is presented, which
foresees the derivation of an analytical high-order Debye
model to represent the frequency response of the effective
complex permeability spectra of a magnetic core. Model
coefficients are extracted through an optimization procedure
to identify a suitable set of relaxation frequencies combined
with a least-square method [12] to determine the corre-
sponding weight coefficients. In previous papers [12]–[16],
similar methods were introduced to provide an analytical
representation of intrinsic material properties (i.e., intrinsic
permeability/permittivity of magnetic/dielectric materials) to
be used for finite-difference time-domain (FDTD) simulation.
Conversely, in this work, the obtained Debye representation is
used as starting point to synthesize equivalent circuit networks
representative for the frequency response of the effective com-
plex permeability spectra, resulting from the superposition of
the aforesaid intrinsic material properties and effects pertinent
to the specific structure (i.e., shape and dimensions) of the core
under analysis, [2], [17]. Particularly, it will be shown that each
term of the Debye series can be readily associated with an R-L
or R-C cell in the corresponding Foster network, whose circuit
elements are analytically estimated, starting from the pertinent
relaxation frequency and weight coefficient. In this respect, it
is worth mentioning that the analogy between simplified R-L-C
networks and Debye and Lorentzian representation of material
properties was already outlined in some previous works, e.g.,
[16], but the objective was not the synthesis of a behavioral
model to be exploited for circuit simulation.

For transient simulation (e.g., for pulse current injection),
the obtained ladder network can also be converted into the
corresponding Cauer I or II networks, and easily combined
with advanced hysteresis models [1], [7], [9] accounting for
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the nonlinear behavior of the magnetic material. Accuracy
and effectiveness of the proposed approach are proven by two
application examples, involving two nanocrystalline and ferrite
magnetic cores.

The manuscript is organized as follows. In Section II, the
procedure to derive the high-order Debye representation of
the complex permeability spectra extracted from measurement
data is presented. Equivalent circuit networks associated with
the obtained Debye models are derived in Section III and IV.
In Section V, two application examples, involving magnetic
cores with different characteristics, are presented to prove the
effectiveness of the proposed modeling strategies. Conclusions
are drawn in Section VI.

II. REPRESENTATION OF COMPLEX PERMEABILITY
SPECTRA VIA DEBYE MODELS

The frequency response of a magnetic core is determined
by the superposition of intrinsic properties of the magnetic
material the core is made of (i.e., its intrinsic relative per-
meability) on the one hand, and effects which are due to
its specific structural features (i.e., shape and dimensions) on
the other hand. The resulting effective permeability spectra
are the quantity of interest in view of circuit simulation of
networks in which such a core is arranged as an inductance
or a transformer. Unlike measurement of the intrinsic perme-
ability spectra, which requires the use of specific test fixtures
as well as availability of suitable material specimens [14],
the frequency response of the effective permeability spectra
µ̂r (ω) = µ′ (ω)−jµ′′ (ω) of a magnetic core can be extracted
by wounding a wire around the core, and by measuring the
resulting input impedance. Once spurious effects introduced by
the measurement setup (e.g., effects due to the input connector)
have been excluded from the measurement data [18], the
resulting impedance Ẑin is written as [7], [18]

Ẑin (ω) = jωL̂ (ω) = jωL0µ̂r (ω) (1)

where ω denotes the radian frequency and L0 the theoretical
inductance that would be measured assuming that the magnetic
field inside the core is ideally distributed. For toroidal cores,
an approximate yet valid expression for L0 is cast as L0 =
µ0Ac/lc [1], where: µ0 denotes the free-space permeability,
and Ac, lc are the cross-sectional area and average length of
the core, respectively.

A. First-order Debye model

To represent the permeability spectra µ̂r (ω) in (1) through
an analytical expression first, and then through a circuit
network, the traditional approach is to resort to the first-order
Debye model. Accordingly, the frequency response of µ̂r (ω)
extracted from the measured input impedance in (1) is fitted
by the analytical expression:

µ̂r (ω) = µ∞ +
µs − µ∞

1 + jω/ω0
(2)

where µs and µ∞ = 1 denote the core permeability under
static conditions, i.e., for f = 0 Hz, and for f approaching

infinite, respectively. Finally, the radian frequency ω0 takes the
meaning of relaxation frequency.

An example of the frequency response of the first-order
Debye model in (2) is plotted in Fig. 1(a), which allows for
the circuit representation in Fig. 1(b), whose circuit elements
can be readily estimated as:

Leq0 = L0

Leq1 = L0 (µs − 1)

Req1 = ω0Leq1

(3)
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Fig. 1. First-order Debye model: (a) Example of frequency response, and (b)
corresponding circuit network.

B. High-order Debye model

The first-order Debye model in (1) often results to be not
enough to fit the frequency response of actual magnetic cores,
especially in wide frequency intervals, thus making necessary
the use of high-order models. To this end, the procedure
initially introduced in [12] to extract high-order Debye models
of complex dielectric permittivity is here briefly revised with
the twofold objective to adapt it to the representation of
complex permeability spectra, and to provide them with a
suitable circuit representation.

According to [12], the frequency response of the complex
permeability µ̂r (ω) in (1) can be accurately reproduced by
cascading Np first-order Debye terms as

µ̂r (ω) = µ∞ + (µs − µ∞)

Np∑
p=1

ap
1 + j ωωp

(4)

where ωp = 1/τp denotes the p-th relaxation frequency with
dimensionless weight ap.

Re-writing µ̂r (ω) as µ̂r (ω) = µ′ (ω) − jµ′′ (ω), and
recognizing that the real µ′ (ω) and imaginary µ′′ (ω) parts
are related via the Kramers-Kronig theory [19], the unknown
coefficients of the imaginary part µ′′ (ω) can be fitted as the
first step. As a consequence, also the real part is automatically
reconstructed by exploiting the very same set of coefficients.

Several global optimization algorithms can be efficiently
utilized to extract the set of relaxation frequencies, assur-
ing accurate fitting of µ̂r (ω). In this manuscript, a pattern
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search (PS) strategy is utilized for its robustness and ease
of implementation in MATLAB. Meanwhile, the least-square
(LS) method is used to determine the corresponding weighting
vector a = [a1, a2, . . . , aNp

]
T based on a limited number

Nf ≈ 4Np (where Np usually equals 1-1.5 times the number
of frequency decades of interest) of samples of µ′′ (ω). This
yields:

a =
(
DTD

)−1
DT c (5)

where c is a Nf × 1 vector with ci = µ′′ (ωi)/(µs − µ∞) ,

and D is a Nf ×Np matrix with Dip = ωi

ωp
/

[
1 +

(
ωi

ωp

)2]
.

The obtained weights provide the best fit of the frequency
response extracted from measurement data in the least-square
sense for a given set of relaxation frequencies. The original
implementation of the algorithm in [12] foresees the introduc-
tion in the Debye series of a compensation term ∆µ, estimated
as the average error between the real part of the expansion
and the real part of the actual permeability over all sample
frequencies. In the implementation proposed in this work, such
compensation is omitted with negligible lack of accuracy, since
the objective here is to use the Debye series as the starting
point for the synthesis of equivalent circuit networks.

Another noteworthy difference with respect to the original
implementation in [12] is concerned with the presence of
negative weight coefficients in the Debye series. As a matter of
fact, the least-square algorithm can provide one or more neg-
ative weight coefficients, which, according to [12], should be
discarded (and then compensated) to avoid possible instability
of the FDTD solution. Conversely, in this work, the presence of
negative weight coefficients is admitted, since this is consistent
with the fact that the real part of the complex permeability may
become negative in certain frequency intervals. Indeed, the
frequency responses measured at the input of actual magnetic
cores may exhibit resonances to be ascribed to the combined
effect of the intrinsic characteristics of the magnetic material
and the specific dimensions of the core under analysis. For this
reason, negative weight coefficients are hereinafter retained in
the Debye series and provided with a suitable circuit repre-
sentation (which can be implemented in a whatever circuit
simulator without stability issues) in Section IV.

III. EQUIVALENT CIRCUIT MODELING WITH POSITIVE
WEIGHT COEFFICIENTS

Under the assumption that all the weight coefficients in (5)
are positive, the obtained Debye-series expansion can be trans-
formed into an equivalent circuit network, whose component
values can be readily obtained from (5) as explained in this
Section.

As the first step, an Np-stage Foster network, Fig. 2(a) is
considered to provide a suitable circuit representation of the
core input impedance in (1). Based on the obtained Debye-
series expansion, proper inductance and resistance values of
the components involved in the Foster network, i.e.:

ZFosterin = sLFoster0 +

Np∑
p=1

(
sLFosterp ‖ RFosterp

)
(6)
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Fig. 2. Equivalent ladder networks used to provide the Debye series expansion
in (5) with a suitable circuit representation: (a) Foster; (b) Cauer I; and (c)
Cauer II network.

are calculated, by combining the high-order Debye expansion
(4) and the complex input impedance expression (1) and (6)
(for p = 1, 2, . . . , Np). This yields:

LFoster0 = L0

LFosterp = L0ap (µs − 1)

RFosterp = ωpL
Foster
p

(7)

Alternative representations can be adopted, such as the
Cauer ladder networks in Fig. 2(b) and Fig. 2(c). As a
matter of fact, these models result in being more attractive
than the Foster one since they can be easily combined with
models representative for hysteresis losses (e.g., the Preisach
model [9]) so to provide a comprehensive representation of
the behavior of magnetic cores for transient time-domain
simulation [1], [7].

Suitable values for the R-L components involved in the
Cauer networks in Fig. 2(b) and Fig. 2(c) are numerically
deducted starting from the input impedances ZCauer1in and
ZCauer2in preliminary cast as the continuous fraction expres-
sions in (8) and (9), respectively.

IV. EQUIVALENT CIRCUIT MODELING IN THE PRESENCE
OF NEGATIVE WEIGHT COEFFICIENTS

As previously mentioned, fitting the input impedance of
magnetic cores may involve Debye terms weighted by negative
coefficients, since the frequency response of the effective
permeability spectra extracted from measurement data may
exhibit resonances due to dimensional effects [2], [18]. The
presence of negative coefficients in the Debye series requires
the introduction of negative-valued components in order to
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synthesize an equivalent network accurately reproducing the
actual frequency response, [20].

Let’s suppose that the obtained Debye series involves a neg-
ative weight coefficient. This should theoretically reflect into a
negative-valued R-L parallel cell in the corresponding Foster
network. In order to reduce the number of negative circuit
elements to the minimum, such a cell can be equivalently
modeled as illustrated in Fig. 3, which is a positive-valued R-C
parallel cell connected in series with a negative-valued resistor
R, [20]. Assuming the negative weight and its corresponding
relaxation frequency to be an and ωn, respectively, suitable
values for the involved R and C components are given by the
expressions:

R = −anωnL0 (µs − 1)

C = 1
ωnR

= 1
−anω2

nL0(µs−1)
(10)

R
C

R

Fig. 3. Equivalent circuit representation of a term of the Debye series weighed
by a negative coefficient.

The procedure can be generalized for whatever number
of negative weight coefficients. For instance, if the obtained
Debye series involves M positive and N negative weight co-
efficients, the corresponding input impedance can be modelled
by the Foster network depicted in Fig. 4, which was obtained
by connecting in series (a) the initial series inductance L0;
(b) N negative resistors and N (positive-valued) R-C cells
associated with the N negative weight coefficients; (c) M
(positive-valued) R-L cells associated with the M positive
weight coefficients. In spite of the presence of a negative-
valued resistor, the real part of the impedance associated with
the elemental cell in Fig. 3 is positive. Hence, on condition
the number of relaxation frequencies was properly selected,
this representation assures that also the real part of the input
impedance of the core takes positive value.

V. APPLICATION EXAMPLES

In this Section, two application examples are presented to
validate and prove the effectiveness of the proposed modeling
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Fig. 4. Equivalent Foster network for the synthesis of an input impedance
fitted by a Debye series with M positive and N negative weight coefficients.

procedure, both in the absence and in the presence of negative
weight coefficients. Eventually, time-domain measurements
are presented to assess the prediction accuracy of the proposed
core model for time-domain simulation.

A. Model validation in the absence of negative weight coeffi-
cients

The first two examples do not involve negative coefficients
and illustrate the measurement and modelling of the frequency
response of the complex relative permeability spectra of two
nanocrystalline magnetic cores made of Vitroperm material
[21], [22], as shown in Fig. 5(a).

The geometrical characteristics of the cores under analysis
are: cross-sectional area Ac = 2.28 / 1.62 cm2, average length
lc = 23.6 / 22.5 cm (for W984 and W436, respectively).
For experimental characterization, a thin conductive tape was
wound around the core, and the extremities were soldered to
the inner pin, and outer shield of an N-type and a subminiature
version A (SMA)-type connector [see Fig. 5(a)]. The core
input impedances were measured by a Vector Network Ana-
lyzer in the frequency interval from 10 kHz up to 1 GHz, and
the spurious effects introduced by input connectors were then
removed from measurement data, according to [18]. Based on
the obtained results, the complex permeability spectra of the
cores were retrieved by means of (1). Also, input impedance
measurements allowed estimating the initial permeabilities of
the two cores as µs = 3, 400 and 20, 000, which are in line
with the specifications provided by the manufacturer.

By application of the proposed algorithm, the core input
impedances were satisfactorily fitted by third-order Debye
series, involving positive coefficients only. For the core W436,
the corresponding circuit networks are shown in Fig. 6,
whose R-L values, estimated through the procedure proposed
in Section III, are collected in Tab. I. Similar circuits (not
reported here for brevity) are also obtained for the second core,
whose R-L values are collected in Tab. II. The comparisons be-
tween the complex relative permeability spectra obtained from
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(a)

(b)

Fig. 5. Pictures of the two magnetic components characterized and modeled
by the proposed technique: (a) Nanocrystalline magnetic core Vacuum-
schmelze W984 (left) and W436 (right) with hand-made injection connector
and winding; and (b) a commercial BCI probe FCC F-130A.

TABLE I
MODEL PARAMETERS FOR NANOCRYSTALLINE CORE W436

Model Param. Stage 0 Stage 1 Stage 2 Stage 3

Debye∗ ωp [rad] 1.2548E6 1.0211E7 8.0031E7
ap 0.7786 0.1488 0.0680

Foster L [H] 9.0478E-10 1.3707E-5 2.8368E-6 1.1661E-6
R [Ω] 17.1997 28.9658 93.3258

Cauer I L [H] 9.0478E-10 2.4990E-6 5.8628E-6 9.3486E-6
R [Ω] 139.4914 53.3314 18.8784

Cauer II L [H] 1.7711E-5 4.0640E-6 1.1509E-6 9.0574E-10
R [Ω] 27.9663 46.9979 64.6928

* Initial permeability of the Debye model: µs = 20, 000.

measurement data and those reconstructed by the proposed
model(s) are shown in Fig. 7, and shows good agreement in
the frequency interval from 10 kHz up to 1 GHz.

B. Model validation in the presence of negative weight coef-
ficients

As an application example of the proposed procedure in
the presence of negative weight coefficients, experimental
characterization and modeling of the complex permeability
spectra of the ferrite core of a commercial injection probe
for BCI immunity testing (i.e., probe FCC F-130A [18]) is
addressed in this subsection [see Fig. 5(b)]. For this probe,
the main geometrical and electrical characteristics, as well as a
detailed description of the procedure used to extract the spectra
of complex permeability from input impedance measurement

TABLE II
MODEL PARAMETERS FOR NANOCRYSTALLINE CORE W984

Model Param. Stage 0 Stage 1 Stage 2 Stage 3

Debye∗ ωp [rad] 7.1131E6 6.6020E7 3.4955E8
ap 0.8072 0.1069 0.0891

Foster L [H] 1.2140E-9 3.3309E-6 4.4092E-7 3.6778E-7
R [Ω] 23.6931 29.1095 128.5565

Cauer I L [H] 1.2140E-9 6.9941E-7 1.1842E-6 2.2560E-6
R [Ω] 181.3591 54.1558 31.2281

Cauer II L [H] 4.1408E-6 8.4888E-7 3.3145E-7 1.2206E-9
R [Ω] 36.0212 77.4090 68.9574

* Initial permeability for the Debye model is µs = 3, 400.
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Fig. 6. Ladder circuit networks used to model the frequency response of the
input impedance of the Vacuumschmelze W436 core: (a) Foster, (b) Cauer I
and (c) Cauer II network.

data can be found in [18], and therefore not repeated here for
brevity.

As observed in that work, the combined effects due intrin-
sic material properties superimposed to dimensional/structural
resonances and eddy currents introduce a pronounced reso-
nance phenomenon in the frequency response of such a probe,
giving rise to negative weight coefficients in the Debye series.
Particularly, in the frequency interval from 300 kHz up to 400
MHz, it is found that the proposed procedure assures accurate
fitting of the pertinent permeability spectra by means of a 5-th
order Debye model involving one negative weight coefficient
(see Table III). The corresponding Foster network is shown
in Fig. 8. The complex permeability spectra obtained from
input impedance measurement and those reconstructed by the
proposed 5-th order Debye model is shown in Fig. 9. The
achieved agreement proves the effectiveness and accuracy of
the proposed method.

It is worth mentioning that the number of used terms of
the Debye series here is higher than in the previous examples,
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TABLE III
MODEL PARAMETERS FOR FCC F-130A

Model Param. Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Debye∗ ωp [rad] 2.1418E6 3.3325E7 4.8534E8 4.8599E8 4.8713E8
ap 0.2306 0.2520 1.2453E5 -1.9600E5 7.1461E4

Foster∗∗ L [H] 4.8551E-9 4.8934E-7 5.3463E-7 0.2642 – 0.1516
R [Ω] -2.0209E8 1.0480 17.8164 1.2824E8 2.0209E8 7.3858E7
C [F] – – – – 1.0182E-17 –

* Initial permeability for the Debye model is µs = 438.
** Stage 0: L/R components are in series.

(a)

(b)

r

r

r̂

Measurement
Prediction

Measurement
Prediction

r

r

r̂

Fig. 7. 3-rd order Debye model fitting the complex permeability spectra of
the Vacuumschmelze (a) W984 core and (b) W436 core: Measurement data
(solid curves) versus reconstructions (dash-dotted curves).

4.8551E-9 -2.0209E8

Stage 4
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Stage 3
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1.0480

Stage 1

0.1516
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Stage 5

2.0209E8
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Fig. 8. Foster network modelling the frequency response of the input
impedance of the BCI probe FCC F-130A.

even though the frequency interval of interest is limited to 500
MHz only. This is due to the presence of negative coefficients.
Indeed, in this case, it is possible that the real part of the
overall impedance, which corresponds to the imaginary part of
the effective permeability in (1), may become negative, with
consequent convergence issues for time-domain simulation.
This can be easily avoided by increasing the number of
relaxation frequencies (i.e., the order of the Debye series) until
the frequency response of the real part does not longer exhibit

Measurement
Prediction

r

r

r̂

Fig. 9. 5-th order Debye model fitting the complex permeability spectra
of the BCI probe FCC F-130A: Measurement data (solid curves) versus
reconstructions (dash-dotted curves).

Measurement

4th-order Debye

3rd-order Debye

µ
’’ 

5th-order Debye

Fig. 10. BCI probe FCC F-130A: Frequency response of the imaginary
part of the complex permeability reconstructed by the proposed algorithm
for different orders of the Debye series.

negative values. For the specific example here considered (i.e.,
FCC F-130A probe), in Fig. 10 the imaginary parts of the
complex permeability spectra evaluated for increasing number
of relaxation frequencies (i.e., fitted through a third, fourth and
fifth-order Debye model) are compared in the interval from
100 MHz up to 30 GHz. The comparison clearly shows that
(unlike measurement data) the reconstruction obtained resort-
ing to a third-order approximation exhibits negative values for
frequencies above 200 MHz. This does no longer occur for
higher-order Debye approximations (as the fifth-order model
used in Fig. 9), thus assuring simulation convergence.
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C. Validation by time-domain measurement
To assess the effectiveness of the model also for time-

domain simulations, the test setup in Fig. 11 was used. The
setup involves the nanocrystalline core W436 mounted at
the midpoint of a hand-made calibration fixture, that was
previously modeled as in [18]. The input connector of the
nanocrystalline core is connected to the 50 Ω output of
an arbitrary waveform generator (AWG) Keysight M8190A,
which is used to generate Gaussian pulses with different center
frequencies. The induced voltage waveforms at the right end of
the calibration fixture were measured by a 50 Ω oscilloscope,
and the other fixture end was terminated in a 50 Ω load.

The peak-to-peak amplitude (i.e., 700 mV) of the injected
waveform was kept to a significantly lower value than the core
saturation level. Moreover, since the nanocrystalline core is
characterized by extremely-low hysteresis losses w.r.t. Eddy-
current losses, the proposed small-signal model is expected to
assure accurate reproduction of the core frequency response,
without the need for including any nonlinear effect, as in [7],
[9].

For time-domain simulation of the mentioned setup (see Fig.
12), the proposed circuit model of the nanocrystalline core was
combined with a distributed-parameter model of the calibration
fixture, [4], [18]. A Thevenin equivalent was used to represent
the AWG in the circuit simulation. It corresponds to a 50 Ω
resistor in series with an ideal voltage source retrieved from
the voltage measured on the second AWG channel. Results
obtained for Gaussian pulses with center frequencies of 100
kHz and 1 MHz are shown in Fig. 13. The good agreement
between the waveforms predicted by the proposed model
in Fig. 12 (dash-dotted curves) and the actual waveforms
measured at the fixture right-end (solid curves) confirms the
effectiveness and accuracy of the proposed modeling technique
also for time-domain simulation. For the sake of comparison,
also the predictions obtained by modelling the core by a
constant-valued inductance, corresponding to the first term of
the Debye series expansion, are shown (dotted curves).

VI. CONCLUSION

In this work, a systematic approach aimed at determining
equivalent circuits for reproducing the frequency response
of the input impedance of magnetic components in a wide
frequency interval was presented. The method foresees to
preliminarily fit the complex spectra of magnetic permeability
extracted from measurement data by an analytical high-order
Debye series. The obtained series is afterward converted into
an equivalent ladder Foster/Cauer network, whose R-L and/or
R-C cells are uniquely associated with each term in the Debye
series. Simple rules to determine the values of the involved
R, L, C components are provided starting from the Debye
series involving not only positive but also negative weight
coefficients (which occurs when the frequency response to be
fitted exhibits resonances). Compared with previous methods,
the proposed technique assures high accuracy along with a
significant reduction of computational efforts. Namely, it only
requires a single-step optimization procedure to determine a
suitable set of relaxation frequencies, followed by a least-
square method based on a limited number of samples to

AWG

Oscilloscope

Magnetic
core

50 Ω
Termination

(a)
(a)

(b)

Fig. 11. (a) Principle drawing and (b) test setup for validating the model of
the nanocrystalline core W436 by time-domain measurement.

evaluate the corresponding weight coefficients. The obtained
ladder networks can be implemented in a whatever circuit
simulator and used for simulation not only in the frequency
but also in the time domain, where applicable combined with
hysteresis models [1], [7], [9].
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