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ABSTRACT 
 

In this paper, a framework is presented for the joint state tracking and parameter estimation 

of partially observed structural systems characterized by a relatively large number of 

degrees of freedom. To pursue this aim in real-time, the order of the system is reduced via 

an optimal set of bases, or proper orthogonal modes (POMs) obtained through proper 

orthogonal decomposition. Since the aforementioned POMs are sensitive to damage, which 

is defined as a change in the stiffness of the structural model, the variation in the 

characteristics of the POMs themselves is also tracked online. Taking advantage of the 

linear relationship between the observation process and the components of the POMs, a 

solution to the whole problem is obtained with an extended Kalman filter or a hybrid 

extended Kalman particle filter for the joint tracking-estimation purposes, and with a 

further Kalman filter for the model update purposes. The efficiency of the proposed method 

is assessed through simulated experiments on a 8-story shear type building. 
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1. INTRODUCTION 
 

Aging of infrastructures in developed countries, performance based design, and 

environmental changes all call for systems to monitor in real-time the health of structural 

systems. The current practice to assess the health and integrity of a structure is predominantly 

based on visual inspections, whose frequency can vary from once a month to once every a few 

years, depending on factors related to the age and the importance of the structure itself. Such 

inspections primarily furnish a qualitative awareness on possible structural defects, and once 

damage is detected a quantitative evaluation of the remaining lifetime of the structure becomes 

necessary. The reliability of the said visual inspection is thus primarily related to the capability 

of the inspector. Recent advances in measurement technology, computing power, and signal 

processing have provided an unprecedented prospect for developing autonomous, robust and 

continuous structural health monitoring (SHM) systems. Numerous structures across the globe 

have been already instrumented by sensors that include strain gages, accelerometers and 

displacement transducers to quantify their responses. State-of-the-art monitoring schemes in 

the literature are centered on extracting parameters of a model of the structure from the 

measured signals, so as to be able to update it and detect, localize, and quantify damage from 

changes in the system characteristics. 

In a physics-based SHM framework, the detection of changes in the mechanical properties 

of structural members is the main objective. A damage in the structure is considered as a 

degradation of its stiffness and/or load bearing capacity, see [1]; such degradation may be due 

to a change of the geometry of the members, or to a reduction of their mechanical properties. 

Accordingly, the detection of damage in a structure can be posed as a system identification 

problem. Dealing with a linear structure, i.e. assuming that damage can be temporarily frozen 

within the time window between two subsequent observation instants, several algorithms can 

provide an offline identification of the system properties. In the time domain, the data driven 

stochastic subspace identification algorithm is de facto standard for output only identification 

of structural models, see [2]; the subspace identification algorithm has been widely applied for 

deterministic input-output systems, see [3]. The aforementioned methods rest on singular value 

decomposition (SVD) and QR decomposition techniques, see [4]. They have been also adopted 

for online system identification by operating on a fixed-length window that moves over time: 

when a new observation becomes available, the subspace is re-identified. The computational 

costs associated with SVD and QR techniques prevent the real-time application of such 

methods for large structural systems; to reduce such costs, methods have been proposed to only 

update the SVD and QR outcomes, see e.g. [3]. It has been also shown that the measurement 

noise can substantially affect the performance of these methods, especially when the duration 

of the moving time-window is assumed short. 

To alleviate the issues attributed to modelling and measurement uncertainties in online 

system identification, recursive Bayesian estimation methods are usually exploited. The online 

and real-time estimation of the state of a system and of the relevant unknown model parameters 

is usually obtained by augmenting the state, namely by joining the state to be tracked and the 

parameters to be tuned into a vector of unknowns, whose dynamics needs to be appropriately 

modelled. The mentioned unknown model parameters can be the mechanical properties of the 

system, that for instance vary in time due to variations in the ambient temperature, see [5]. In 

the literature of online Bayesian estimation, a considerable effort has been devoted to this joint 
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state-parameter estimation problem, whose results are affected by the type of system evolution. 

For instance, an extended Kalman filter (EKF) has been adopted in [6] for the identification of 

constitutive parameters of composite materials, to detect possible delamination/damage events. 

The unscented Kalman filter has been applied in [7] for the parameter identification of a 

hysteretic model, see also [8]; a parallel implementation scheme for the same unscented 

Kalman filter has been proposed in [9], still to deal with impact-induced vibrations and 

delamination of composite materials. A hybrid extended Kalman particle filter (EK-PF) for the 

identification of nonlinear structural systems has been offered in [10], in order to better catch 

the evolution of the statistics of the state variables in the mentioned nonlinear frame. A particle 

filter with mutation schemes has been applied in [11] for the estimation of time-invariant 

parameters of structural models. Recursive Bayesian filters have been recently considered also 

for the online and real-time estimation of fatigue damage [12]. For a review of the literature on 

this topic, readers are referred to [13, 14].  

In this work, to detect damage in real-time a joint estimation of state and stiffness 

parameters is proposed, by making use of recursive Bayesian filters. As the number of degrees 

of freedom (DOFs) of the structural model increases, a bias has been already shown to rapidly 

pollute the estimates furnished by these filters, see [13]. To cope also with this problem, we 

provide a scheme for the reduced-order modeling of the system; the joint estimation of state 

and parameters is then carried out on the obtained reduced-order model (ROM) of the structure, 

and not on the original full-order one [15]. Unlike the identification of the full-order model, 

estimating stiffness components related to the ROM does not allow to obtain explicit 

information concerning the intensity and location of the damage state. However, it is known 

that the proper orthogonal modes (POMs) of a structure, as provided by the model order 

reduction technique, contain data concerning the location and intensity of a possible damage, 

see e.g. [16-20]. This feature of POMs can potentially compensate for the aforementioned 

shortcoming of the joint estimation at the ROM level, and is here specifically exploited. To this 

end, we therefore discuss an algorithm for the joint estimation of state and parameters of the 

ROM, accompanied by an online update of the damage-sensitive POMs of the structure. At 

each recursion of the (discrete time) Bayesian procedure, a Kalman filter is adopted to update 

the subspace spanned by POMs retained in the ROM; an EKF, or a hybrid EK-PF is instead 

used to estimate the joint state vector of the ROM. While the EKF-based approach was already 

discussed in [20], the EF-PF-based approach is newly proposed in this work. The two 

approaches are comparatively assessed to ascertain whether the superior performance of the 

EK-PF in tracking the nonlinear evolution of system statistics can actually deliver a SHM 

system more sensitive to the state of damage. The offered framework is shown to be able to 

effectively detect the severity of damage in shear type buildings; the efficiency of the 

methodology is testified through pseudo-experimental data relevant to a multi-story frame, 

obtained from direct numerical analyses polluted with ad-hoc measurement noise terms. 

The remainder of the paper is organized as follows. In Section 2, the state-space 

formulation of structural dynamics is reviewed, followed by highlights on the key features of 

the proper orthogonal decomposition (POD)-based model order reduction technique. In Section 

3, peculiarities of the joint estimation of the ROM of a damaging structure are discussed; next, 

the proposed methodology is presented and the intricated formulation to allow for model update 

is discussed. In Section 4 the efficiency of the approach is numerically assessed by tracking the 

damage state in a shear type building; some results are also reported for the full-order structural 

model, to discuss the detrimental effects of a large number of unknown model parameters on 
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the accuracy of the estimates, and to also compare the performance of the proposed 

methodology with those based on the EKF or a standard PF. Some concluding remarks on the 

work done, and suggestions for future developments are then gathered in Section 5. Since the 

available EKF-based approach is here adotped as a term of comparison, in Appendix A the 

scheme relevant to this further approach is briefly discussed for completeness, and to provide 

a uniform notation for the two formulations. 

2. STRUCTURAL DYNAMICS: STATE-SPACE FORMULATION AND 

REDUCED-ORDER MODELING 

Let us consider a space-discretized structural system, whose dynamics is governed by the 

vectorial equation: 

𝑴�̈� + 𝑫(𝑡)�̇� + 𝑲(𝑡)𝒖 = 𝑭(𝑡)       (1) 

where: 𝒖, �̇� and �̈� are the vectors gathering relevant (nodal, in case of e.g. finite element 

discretizations) displacements, velocities and accelerations; 𝑴 is the mass matrix; 𝑫 is the 

damping matrix; 𝑲 is the stiffness matrix; 𝑭 is the external load vector. If the system is 

supposed to be continuously monitored to sense possible drifts in its response to the external 

actions due to the inception or growth of a damage process, the mass matrix can be assumed to 

be time-invariant. On the other hand, since geometrical and/or stiffness characteristics of some 

structural members can be affected by the aforementioned damage, 𝑲 varies in time. In the case 

of a Rayleigh damping as considered in Section 4, for which the damping properties of the 

structure are proportional to the stiffness and mass ones, coefficients in 𝑫 turn out to be 

damage- and also time-dependent too, see also [21]. 

With a focus on two-dimensional models of shear type buildings, the mass matrix is a 

diagonal one with non-zero entries corresponding to the story masses, whilst the stiffness 

matrix has a characteristic tri-diagonal banded structure, ruled by the properties of the interstory 

columns. The damping matrix might have a more complex structure, depending on the 

mechanisms inducing dissipation, see e.g. [22]. The external load vector in this case gathers the 

horizontal loads acting at each single story level. 

To move to a state-space formulation, a time discretization and a stepping scheme are 

needed for the solution of Eq. (1). Through a Newmark explicit time integration procedure, 

within a generic time interval [𝑡𝑘−1  𝑡𝑘] the solution can be updated in accordance with: 

 prediction stage: 

 �̃�𝑘 = 𝒖𝑘−1 + 𝛥𝑡 �̇�𝑘−1 + 𝛥𝑡2(
1

2
− 𝛽)�̈�𝑘−1 (2) 

 �̇̃�𝑘 = �̇�𝑘−1 + 𝛥𝑡(1 − 𝛾)�̈�𝑘−1                       (3) 

 explicit integration stage: 

 �̈�𝑘 = 𝑴−1(𝑭𝑘 − (𝑫𝑘−1 �̇̃�𝑘 + 𝑲𝑘−1 �̃�𝑘)) (4) 

 correction stage: 

 𝒖𝑘 = �̃�𝑘 + 𝛥𝑡2𝛽�̈�𝑘 (5) 
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 �̇�𝑘 = �̇̃�𝑘 + 𝛥𝑡 𝛾�̈�𝑘   (6) 

where: ∆𝑡 = 𝑡𝑘 − 𝑡𝑘−1 denotes the time step size; 𝒖𝑘−1, �̇�𝑘−1  and �̈�𝑘−1 provide the solution 

at the beginning of the time step; 𝒖𝑘, �̇�𝑘  and �̈�𝑘 is the solution to be computed at the end of 

the same time step; when stiffness and damping are time-varying properties of the system, 𝑲𝑘−1 

and 𝑫𝑘−1 denote their values at time 𝑡𝑘−1, so at the beginning of the time step in compliance 

with the adopted explicit approach, wherein everything is assumed to be known except the 

parameters defining the kinematics of the structure at 𝑡𝑘; 𝛽 and 𝛾 are algorithmic parameters 

defining the method, see [23]. To avoid numerical instabilities, for linear systems ∆𝑡 must not 

exceed a critical threshold 𝛥𝑡𝑐𝑟 depending on the shortest vibration period of the structure. 

By introducing an extended state vector 𝒛𝑘 to collect 𝒖𝑘, �̇�𝑘  and �̈�𝑘 at the same time 

instant 𝑡𝑘, we get: 

𝒛𝑘 =  [

𝒖𝑘

�̇�𝑘

�̈�𝑘

]      (7) 

It was already detailed in [8, 13] that 𝒛𝑘 has to collect all the parameters describing the 

kinematics of the system, otherwise in the nonlinear regime some information would be missed 

in terms of the statistics of the state evolving according to Eqs. (2)-(6). The relevant fully 

discretized state-space form of Eq. (1) is thus obtained as: 

𝒛𝑘 = 𝑨𝑘 𝒛𝑘−1 + 𝒃𝑘      (8) 

where: 

𝑨𝑘  =

[
 
 
 𝑰 − 𝛽 ∆𝑡2𝑴−1𝑲𝑘−1 ∆𝑡 𝑰 − 𝛽 ∆𝑡2𝑴−1(𝑫𝑘−1 + ∆𝑡 𝑲𝑘−1) −𝛽 ∆𝑡2𝑴−1(∆𝑡2(1 2⁄ − 𝛽)𝑲𝑘−1 + ∆𝑡(1 − 𝛾) 𝑫𝑘−1) + ∆𝑡2(1 2⁄ − 𝛽) 𝑰

− 𝛾 ∆𝑡 𝑴−1𝑲𝑘−1 𝑰 −  𝛾 ∆𝑡𝑴−1(𝑫𝑘−1 + ∆𝑡 𝑲𝑘−1) − 𝛾 ∆𝑡𝑴−1(∆𝑡2(1 2⁄ − 𝛽)𝑲𝑘−1 + ∆𝑡(1 − 𝛾) 𝑫𝑘−1) + ∆𝑡(1 − 𝛾) 𝑰

−𝑴−1 𝑲𝑘−1 − 𝑴−1(𝑫𝑘−1 + ∆𝑡 𝑲𝑘−1) −𝑴−1(∆𝑡2(1 2⁄ − 𝛽)𝑲𝑘−1 + ∆𝑡(1 − 𝛾) 𝑫𝑘−1) ]
 
 
 

  

(9) 

𝒃𝑘 = [

𝛽 ∆𝑡2𝑴−1 𝑭𝑘

𝛾 ∆𝑡 𝑴−1𝑭𝑘

𝑴−1𝑭𝑘

]      (10) 

If we further assume that the structural system is at least partially observable, the 

corresponding observation equation at time 𝑡𝑘 reads: 

𝒚𝑘 = 𝑯𝒛𝑘      (11) 

where: 𝒚𝑘 is the vector of observations; 𝑯 is a Boolean matrix of appropriate dimensions, that 

links the whole state 𝒛𝑘 of the system to the observations 𝒚𝑘 with no time delay. As 𝑯 is time-

invariant, it is implicitly assumed that measurements are always collected at the same locations 

and with the same kind of instrumentation. 

In [13], the use of Eqs. (8) and (11) for identification purposes was extensively discussed, 

especially in terms of the expected accuracy of model calibration and updating (if necessary). 

It was shown that, by increasing the number of unknown parameters in the structural model, 

the tracking of the time-varying parameters gets more and more affected by biases. In an effort 

to reduce the number of model DOFs and, accordingly, of the mentioned state parameters to be 

tracked in time, in [15] component mode synthesis was adopted: the re-analyses required by 
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inverse analysis were so efficiently performed in a reduced-order space of generalized 

coordinates, using exact component modes and characteristic interface modes computed only 

once for a reference model. In the present study, since the focus is on reducing also the number 

of damage-driven characteristic model parameters, POD is adopted as already proven 

successful for surrogate system modelling. Witih similar approaches, in [24] radial basis 

functions were adopted to interpolate the relevant POMs retained in the ROM for varying 

parameter values; in [25], POD was used to enable fast and reliable evaluations of aerodynamic 

fields. In [26], the errors induced by such POD-based surrogate modelling approach were 

investigated too. 

To cope with the mentioned issue of identification accuracy spoiled by an increasing 

number of state vector components, a ROM of the structural system thus proves useful. As 

detailed also in [20, 27], in our study we assume that damage and, in turn, stiffness terms in 

𝑲(𝑡) and damping terms in 𝑫(𝑡), evolve smoothly and slowly in time, with a characteristic 

time-scale much larger than the ∆𝑡 value adopted in the analysis. Accordingly, standard model 

order reduction methods for linear systems can be adopted also in the present non-linear case 

with limited errors, provided that some additional model updating strategies are allowed for to 

continuously track the evolution of damage and also the projection of the full-order model 

dynamics onto the reduced-order subspace [28]. 

The state vector 𝒛𝑘 is made of displacement, velocity and acceleration components, so a 

multiplicative decomposition of the solution into space and time variations is handled. The 

displacement field 𝒖 ∈  ℝ𝑚, where 𝑚 is the number of DOFs of the system, can accordingly 

be decomposed as: 

𝒖(𝒙, 𝑡) = ∑ 𝝋𝑖(𝑥)𝛼𝑖(𝑡)
𝑚

𝑖=1
     (12) 

where the orthonormal vectors or modes 𝝋𝑖(𝑥), 𝑖 = 1,… ,𝑚, catch the mentioned space 

variation of the solution, whereas the scalar variables 𝛼𝑖(𝑡) provide the corresponding time 

variation. In many applications, it has been shown that major variations in the structural 

response to loading occur in a rather small subspace of 𝜱 = [𝝋1  … 𝝋𝑚]; the evolution of the 

system can be therefore estimated by employing the first 𝑙 modes only, with possibly 𝑙 ≪ 𝑚, 

via: 

𝒖(𝒙, 𝑡) ≈ ∑ 𝝋𝑖(𝑥)𝛼𝑖(𝑡) = 𝜱𝑙  𝜶
𝑙

𝑖=1
    (13) 

where 𝜱𝑙 is the matrix collecting the 𝑙 modes to be retained in the ROM. Due to the 

approximation (13), the equation of motion (1) cannot be satisfied exactly. By projecting the 

relevant residual onto the same space spanned by the modes in matrix 𝜱𝑙, we then obtain the 

reduced-order equation of motion as: 

𝓜𝑙�̈� + 𝓓𝑙(𝑡)�̇� + 𝓚𝑙(𝑡)𝜶 = 𝓕𝑙(𝑡)    (14) 

where, in compliance with the space-time multiplicative decomposition of the solution: 

𝓜𝑙 = 𝜱𝑙
T𝑴𝜱𝑙

𝓓𝑙 = 𝜱𝑙
T𝑫𝜱𝑙

𝓚𝑙 = 𝜱𝑙
T𝑲𝜱𝑙

𝓕𝑙 = 𝜱𝑙
T𝑭     

     (15) 
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are the reduced-order mass, damping and stiffness matrices, and external load vector, 

respectively; readers are referred to [28] for further details on the considered Galerkin 

projection. 

As anticipated, within the present frame matrix 𝜱𝑙 can be computed with any strategy 

applicable to linear systems. By employing POD, and specifically the snapshot version of POD 

[29], the structural ROM is built in an initial training stage of the analysis. Within this offline 

stage, the solution, in terms of displacements, is collected for a certain number 𝑛 of time 

instants; such sequence of snapshots of the response is then assembled in the matrix 𝑼 =

[𝒖1 𝒖2  … 𝒖𝑛]. Care must be devoted to the sampling procedure during training and to the 

duration of the training itself, or in other terms to the time spacing between subsequent 

snapshots (not necessarily exactly equal to ∆𝑡) and to the number 𝑛: it is in fact important that 

each snapshot brings new information about system dynamics, featuring minimal correlation 

with the other snapshots otherwise information becomes unnecessarily redundant. In [30], it 

was suggested to parametrize the duration of training through the fundamental vibration period 

of the structure, also checking the convergence of the retained POMs towards a steady state-

like solution; in [31, 32], an automatic procedure was instead adopted to update the POMs 

whenever new information is brought by partially uncorrelated snapshots, then attaining a 

reduced computational burden. 

The current snapshot matrix 𝑼 can be decomposed according to, see [33]: 

𝑼 = 𝑳𝚺𝑹T      (16) 

where: 𝑳 is an orthonormal matrix, whose columns are the left singular vectors of 𝑼; 𝚺 is a 

pseudo-diagonal and semi-positive definite matrix, whose pivotal entries Σ𝑖𝑖 are the singular 

values of 𝑼; 𝑹 is an orthonormal matrix, whose columns are the right singular vectors of 𝑼. 

The whole basis set 𝜱, i.e. the POMs, is given by 𝑳, see [34]. If the singular values Σ𝑖𝑖 are 

sorted in a decreasing order and the columns of 𝑳 and 𝑹 are accordingly arranged, the 

decomposition (16) provides through the first 𝑙 columns of 𝑳 the optimal basis subset. 

Additional reasoning concerning the relationship between singular values and oriented 

energies, see again [34], allows setting the number 𝑙 of POMs to be retained in 𝜱𝑙 on the basis 

of the required accuracy of the ROM, measured by the energy fluxes taking place inside the 

original system. The required accuracy index 𝑝 ≤ 1 of the reduced-order solution, intended as 

a fraction of the total oriented energy of the full-order model, is assigned and the order 𝑙 of the 

ROM is provided by fulfilling: 

  
∑ Σ𝑖𝑖

2
𝑙

𝑖=1

∑ Σ𝑖𝑖
2

𝑚

𝑖=1

≥  𝑝 (17) 

so through the ratio between the sum of the singular values (squared) of the modes in the ROM 

and the sum of all the singular values (again squared). Additional details on the procedure 

within the present context can be found in [13]. 

In the current reduced-order representation of system evolution, the state vector is built by 

mimicking Eq. (7) and it thus reads: 

𝒛𝑟,𝑘 = [

𝜶𝑘

�̇�𝑘

 �̈�𝑘

]     (18) 
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The corresponding state-space time evolution and observation equations are given by: 

𝒛𝑟,𝑘 = 𝑨𝑙,𝑘𝒛𝑟,𝑘−1 + 𝒃𝑙,𝑘     (19) 

  𝒚𝑘 = 𝑯𝑪 𝒛𝑟,𝑘      (20) 

where: 

𝑨𝑙,𝑘 =

[
 
 
 𝑰 − 𝛽 ∆𝑡2𝓜𝑙

−1𝓚𝑙,𝑘−1 ∆𝑡 𝑰 − 𝛽 ∆𝑡2𝓜𝑙
−1(𝓓𝑙,𝑘−1 + ∆𝑡 𝓚𝑙,𝑘−1) −𝛽 ∆𝑡2𝓜𝑙

−1(∆𝑡2(1 2⁄ − 𝛽)𝓚𝑙,𝑘−1 + ∆𝑡(1 − 𝛾) 𝓓𝑙,𝑘−1) + ∆𝑡2(1 2⁄ − 𝛽) 𝑰

− 𝛾 ∆𝑡 𝓜𝑙
−1𝓚𝑙,𝑘−1 𝑰 −  𝛾 ∆𝑡𝓜𝑙

−1(𝓓𝑙,𝑘−1 + ∆𝑡 𝓚𝑙,𝑘−1) − 𝛾 ∆𝑡𝓜𝑙
−1(∆𝑡2(1 2⁄ − 𝛽)𝓚𝑙,𝑘−1 + ∆𝑡(1 − 𝛾) 𝓓𝑙,𝑘−1) + ∆𝑡(1 − 𝛾) 𝑰

− 𝓜𝑙
−1𝓚𝑙,𝑘−1 − 𝓜𝑙

−1(𝓓𝑙,𝑘−1 + ∆𝑡 𝓚𝑙,𝑘−1) −𝓜𝑙
−1(∆𝑡2(1 2⁄ − 𝛽)𝓚𝑙,𝑘−1 + ∆𝑡(1 − 𝛾) 𝓓𝑙,𝑘−1) ]

 
 
 

 

(21) 

𝒃𝑙,𝑘 = [

𝛽 ∆𝑡2𝓜𝑙
−1 𝓕𝑙,𝑘

𝛾 ∆𝑡 𝓜𝑙
−1𝓕𝑙,𝑘

𝓜𝑙
−1𝓕𝑙,𝑘

]             (22) 

In the above equations, the subscript 𝑟 is used to denote the vectors related to the ROM, whereas 

the subscript 𝑙 is used for the structural properties to explicitly highlight that they do depend 

also on the order of the ROM and not only on the structure itself. It must be then emphasized 

that different loads in the training stage may lead to different subspaces identified through POD 

and so to different ROMs, even if all related to the same original full-order model. In Eq. (20), 

matrix 𝑪 reads:  

𝑪 =  [

𝜱𝑙

𝜱𝑙

𝜱𝑙

]          (23) 

and is introduced in order to allow sampling out from the structural state the actually observed 

(full-order) variables. Although the presence of 𝑪 entails an additional computational burden, 

matrix multiplication 𝑯𝑪 can be carried out once and for all at the end of training, when 𝜱𝑙 has 

attained convergence. 

3.JOINT ESTIMATION OF ROM STATE AND PARAMETERS 

3.1. Joint estimation for time-invariant damage states 

Having established the equations governing the reduced-order representation of the 

evolution of a partially observed structural system, we now move to the model identification 

task. We first consider the case of an undamaged structure, or of a damaged one characterized 

by a time-invariant damage state. Accordingly, the stiffness and damping matrices do not vary 

in the on-line stage of the analysis following the training; further to that, the POMs already 

established do not have to be updated if the envisioned kind of external loading does not change 

in time. 

Within a stochastic frame we assume that the structural properties of the model are known 

only up to a certain degree of fidelity, or in other terms that they are (partially) unknown and 

must be estimated. The evolution and observation equations (19)-(20) are therefore rearranged 

as: 

𝒙𝑟,𝑘 = 𝒇
𝑟,𝑘

(𝒙𝑟,𝑘−1, 𝓕𝑙,𝑘) + 𝒗𝑘              (24) 
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𝒚
𝑘

= 𝑯𝑳 𝒙𝑟,𝑘  + 𝒘𝑘                   (25) 

where: the augmented state vector 𝒙𝑟,𝑘 = [ 𝒛𝑟,𝑘 𝜽𝑘]T collects both the state 𝒛𝑟,𝑘 of the ROM 

and the parameters  𝜽𝑘 linked to the unknown features of the structural system; matrix 𝑳 =

 [𝑪 𝟎] is used in place of 𝑪 to account for the additional terms in the state vector 𝒙𝑟,𝑘 that 

cannot be physically observed; 𝒇
𝑟,𝑘

 is the nonlinear map within the current time step that 

describes the joint evolution of 𝒛𝑟,𝑘−1 and  𝜽𝑘−1, based also on the random walk followed by 

model parameters; 𝒗𝑘 and 𝒘𝑘 respectively stand for the process and measurement noises, which 

are assumed to be zero mean white Gaussian processes with associated covariance matrices 𝑽 

and 𝑾. The uncertainty term 𝒗𝑘 is also due to the reduced accuracy of the ROM in comparison 

with the full-order counterpart; the relevant probability distribution was thoroughly 

investigated in [13], and shown to be far from providing a white noise term in the evolution 

equation in case of small 𝑙 values. In this study we anyway assume that standard assumptions 

of recursive Bayesian inference can be adopted. The uncertainty term 𝒘𝑘 is instead related to 

the precision of the measurement devices, and can be reasonably assumed as a white Gaussian 

process. 

The joint estimation of a partially observed system can be pursued through different 

techniques. In this work, two discrete Bayesian filters are compared: the extended Kalman filter 

(EKF), and the hybrid extended Kalman particle filter (EF-PF). The former one has been 

already discussed in [8] and is here reported in appendix A for a time-varying damage state to 

be discussed next; in what follows we specifically focus on the EK-PF approach only, trying to 

highlight its strengths and weaknesses. Dealing with joint estimation problems, the inherent 

nonlinearities of mapping 𝒇
𝑟,𝑘

 in Eq. (24) are know to become a potential source of filter 

instability, resulting in divergent or, even worse, biased estimates, see e.g. [35-37]. Since we 

handle a linear full-order structural model within each time step, such filter instability issues 

are seldom encountered, see [38, 39] for a theoretical analysis. Therefore, the use of alternative, 

more stable procedures like, e.g. the unscented Kalman filter [40] and Gaussian mixture 

algorithms [41], does not look compulsory for the situation under study. It would be rather 

different in the case of damage growth leading by itself to instability or failure of the structural 

system, or in the case of parameters of the constitutive model describing damage evolution to 

be tuned on-line. In the literature it has been already reported that, in such cases, the EKF may 

loose any capability to provide feasible estimates [8]. Since the same linearization scheme is 

adopted for the EKF and for the hybrid EK-PF, the same kind of instability-induced issues may 

be encountered. On the other hand, as pointed out in [10] for the nonlinear dynamics of simple 

systems, the superior performance of the EK-PF over a standard PF allows to largely reduce 

the number of particles to handle and so the computational costs. Since this latter feature looks 

particularly appealing for the framework here presented, wherein a ROM of the structure is 

continuously updated to obtain a real time detection of damage, issues related to the 

aforementioned linearization step of the filter are considered as possible negative side effects 

and checked not to spoil the solution. Further details on other filtering procedures can be found, 

e.g. in [11]. 

To deal with general problems, not necessarily featuring Gaussian probability distributions 

of the state variables in 𝒙𝑟,𝑘, sequential Monte Carlo methods can be adopted, see e.g. [42]. 

Such methods make no explicit assumptions concerning the probability distribution type, and 
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approximate the Chapman-Kolmogorov integrals behind the prediction stage of the filtering 

procedures through finite sums, adopting a sequential importance sampling over an adaptive 

stochastic grid. With particle filtering, a set of particles 𝒙𝑟,𝑘
𝑖 , with 𝑖 = 1,… ,𝑁𝑃, supposed to be 

drawn from the (yet unknown) posterior distribution, is used to map the integrals. The estimate 

of 𝒙𝑟,𝑘 is next provided by weighting the contributions of all the particles, that have evolved 

according to the real dynamics of the system. Hence, no approximations linked to 

linearizations, or truncations of a Taylor series expansion of the evolution equation need to be 

introduced at this stage; as the particles sample the probability distribution to be computed, the 

approximation rests instead on substituting such unknown distribution with an arbitrarily 

chosen one, called importance function. Although mathematical details are not provided here 

for the sake of brevity, it must be noted that unbiased estimates have to be guaranteed, see [43]. 

The associated evolution of the weights 𝜔𝑘
𝑖  adopted to finally merge the information conveyed 

by all the particles are so computed through [44]: 

𝜔𝑘
𝑖 =

𝑝(𝒚1:𝑘|𝒙𝑟,0:𝑘
𝑖 )𝑝(𝒙𝑟,0:𝑘

𝑖 )

𝜋(𝒙𝑟,𝑘
𝑖 |𝒚1:𝑘)

 (26)
 

and subsequently normalized. In Eq. (26): 𝑝(𝒚1:𝑘|𝒙𝑟,0:𝑘
𝑖 ) is the conditional probability density 

function (PDF) of the observation for a given state, which is often linked to the observation 

errors; 𝑝(𝒙𝑟,0:𝑘
𝑖 ) is PDF of the system state; 𝜋(𝒙𝑟,𝑘

𝑖 |𝒚1:𝑘) is the aforementioned importance 

function. Allowing also for the properties of Markov processes and for the obvious fact that the 

current state cannot depend on future observations, which are assumed conditionally 

independent, the recursive formula for the update of weights becomes, see [43, 45]: 

 𝜔𝑘
𝑖 = 𝜔𝑘−1

𝑖 𝑝(𝒚𝑘|𝒙𝑟,𝑘
𝑖 ) (27) 

In [46], it was shown that the variance of these weights increases stochastically over time: 

after a few time steps, one of the normalized weights tends to one, while all the remaining ones 

tend to zero. To address this rapid degeneracy phenomenon, a resampling stage may be used to 

eliminate samples with low importance weights and duplicate samples with high weights. 

Resampling somehow allows the filter to condense the cloud of particles around the peak 

probability zone(s), see [44]. If the systematic resampling scheme is adopted, see [47], this 

stage is performed by drawing a random sample 𝜁𝑗 from the uniform distribution over the 

interval (0,1]; next, a generic 𝑀-th particle is duplicated if 𝜁𝑗 is bounded by the values of the 

empirical cumulative distribution related to the 𝑀 − 1-th and the 𝑀-th particles, see [48]. 

As the dimension of the state vector increases, the computational costs associated with this 

procedure increase drastically, see [49]. To alleviate this issue still using the same sampling 

distribution, the quality of the ensemble of samples must be improved. Once the samples are 

drawn, they are pushed by an EKF toward the zones of higher probability, in order to better 

incorporate data from the latest observations.   
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Table  provides all the steps of this EK-PF strategy, where: the index 𝑖 is adopted for the 

current values of state covariance matrix   𝑷𝑘
𝑖  and Kalman gain  𝑮𝑘

𝑖 , as they become particle-

dependent too; a hat denotes the estimate provided by the filter at the end of the time step, or 

the initial guess at time 𝑡0; 𝔼 stands for expected value; 𝑭𝑟,𝑘 denotes the Jacobian of mapping 

 𝒇𝑟,𝑘 computed at  �̂�𝑟,𝑘−1, as before in accordance with the adopted explicit time integration 

procedure. If compared to a standard particle filter approach, this filtering scheme allows to 

dramatically reduce the number 𝑁P of particles to handle in order to attain a given accuracy of 

the estimates; this is obtained with the additional burden of computing the Jacobian 𝑭𝑟,𝑘 at each 

time step. In the specific case of structural dynamics, it has been already shown that the 

additional EKF-driven step of the prediction stage, which comes along with the computation 

of the Jacobian 𝑭𝑟,𝑘 and with all the relevant matrix products listed in the same step of Table 

1, may allow reducing by orders of magnitude the number 𝑁P of samples necessary to attain 

the required accuracy of the estimations, see [10]. 
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Table 1: the EK-PF algorithm for time-invariant damage states 

- Initialization at time 𝑡0, for  𝑖 = 1,… , 𝑁P: 

�̂�𝑟,0 = 𝔼[𝒙𝑟,0]

𝑷0 = 𝔼 [(𝒙𝑟,0 − �̂�𝑟,0)(𝒙𝑟,0 − �̂�𝑟,0)
T
]

𝒙𝑟,0
𝑖 = �̂�𝑟,0

               ω0
𝑖 = 𝑝(𝒚0|𝒙𝑟,0)

 

 

- At time 𝑡𝑘, for 𝑘 = 1,… ,𝑁𝑡 and 𝑖 = 1,… , 𝑁P: 

 Prediction stage: 

1. Draw particles: 

   𝒙𝑟,𝑘
𝑖 ∼ 𝑝(𝒙𝑟,𝑘|𝒙𝑟,𝑘−1

𝑖 ) 

2. Push the particles toward the region of high probability through an EKF: 

𝑷𝑘
𝑖− = 𝑭𝑟,𝑘𝑷𝑘−1

𝑖 𝑭𝑟,𝑘
T + 𝑽       

                     𝑮𝑘
𝑖 = 𝑷𝑘

𝑖−𝑳T𝑯T(𝑯𝑳𝑷𝑘
𝑖−𝑳T𝑯T + 𝑾)

−1

                𝒙𝑟,𝑘
𝑖 = 𝒙𝑟,𝑘

𝑖− + 𝑮𝑘
𝑖 (𝒚𝑘 − 𝑯𝑳𝒙𝑟,𝑘

𝑖− )

  𝑷𝑘
𝑖 = 𝑷𝑘

𝑖− − 𝑮𝑘
𝑖 𝑯𝑳𝑷𝑘

𝑖−
           

 

 Update stage: 

1. Evolve weights: 

  ω𝑘
𝑖 = ω𝑘−1

𝑖  𝑝(𝒚𝑘|𝒙𝑟,𝑘
𝑖 )  

2. Systematic resampling, for 𝑗 = 1,… , 𝑁𝑃: 

 draw a random sample 𝜁𝑗 from uniform distribution over (0, 1] 

 find 𝑀 that satisfies: 

∑ ω𝑘
𝑖

𝑀−1

𝑖=1

< 𝜁𝑗 ≤ ∑ω𝑘
𝑖

𝑀

𝑖=1

 

 𝒙𝑟,𝑘
𝑗

← 𝒙𝑟,𝑘
𝑀  

3. Compute expected value (and other required statistics): 

�̂�𝑟,𝑘 = ∑ω𝑘
𝑖 𝒙𝑟,𝑘

𝑖

𝑁P

𝑖=1

 

 

3.2. Joint estimation for time-varying damage states 

At variance with the former case, since damage evolves and the characteristics of the 

response of the structure to the external loads change as well, the ROM needs to be re-trained 

while the damage itself is identified. To purposely avoid a time consuming re-training stage 

whenever damage evolves, so potentially within each time window between two subsequent 

observations, the same observations can be exploited to tune the already available POMs. In 

fact, according to the introduced principle of time-scale separation (applicable when damage 

grows with a dynamics much slower than the structural system’s one) we can assume that 

POMs slowly evolve, and the (supposed small) differences between their shapes at the 

beginning and at the end of each time step can be tracked with the use of a KF. Whenever the 

output of the ROM shows a degraded capability to match the response of the observed structure, 

instead of moving back to the full-order model, updating the damage state on the basis of any 

available forecast and finally training a new ROM, in this study we only adjust the shapes of 

the handled POMs and simultaneously foresee damage evolution. This additional last task has 

therefore to be trackled by further enlarging the set of variables to be estimated online by the 

filters. Within the proposed frame, the joint estimation problem thus consists in tracking the 
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ROM state, estimating the unknown system parameters and then online updating the damage-

related subspace of the ROM. 

Like for the time-invariant case, the EK-PF can be used for the standard joint estimation 

task; besides this, an ad-hoc KF is used for the update of the subspace initially provided by 

POD, in terms of the retained POMs. The iterative procedure is initialized at time 𝑡0 also in 

terms of an initial guess of the POMs, whose shapes are provided from the previous offline 

training stage carried out for the healthy structure, or for the structure assumed to be 

characterized by a non-evolving damage state. Within a stochastic environment, the variability 

of POM components induced by damage has to be estimated too, in order to later allow the KF 

to track the POMs in real-time or, at least, with minimal delay. 

Within the time step [𝑡𝑘−1  𝑡𝑘], the state-space model now reads: 

  𝒙𝑟,𝑘 = 𝒇
𝑟,𝑘

(𝒙𝑟,𝑘−1, 𝓕𝑙,𝑘) + 𝒗𝑘       (28) 

𝒚
𝑘

= 𝑯𝑳𝑘 𝒙𝑟,𝑘  + 𝒘𝑘                   (29) 

where the index 𝑘 is used also for the 𝑳 matrix, as POMs 𝜱𝑙,𝑘 have to be tracked and may 

continuously change in time. 

To handle ROM updating, all the POMs are arranged in vector form according to, see [20, 

27]: 

𝝋
𝑙,𝑘

= [

𝜱1,𝑘

⋮

𝜱𝑙,𝑘

]         (30) 

and their evolution is modelled as a random walk: 

𝝋
𝑙,𝑘

= 𝝋
𝑙,𝑘−1

+ 𝝇
𝑘
         (31) 

where 𝝇𝑘 is a purposely introduced zero mean, white Gaussian noise with covariance matrix ϒ. 

As for any filtering/identification procedure, POMs can be tracked if observations are 

exploited. A further observation equation is thus introduced along with the evolution equation 

(31), and it reads: 

𝒚
𝑘

= 𝑯𝑠𝑠𝝋𝑙,𝑘
+ 𝒘𝑘     (32) 

where: 𝑯𝑠𝑠 (where index 𝑠𝑠 stands for subspace) is a stationary matrix used to link observables 

to the subspace spanned by POMs; 𝒘𝑘 still accounts for measurement uncertainties, since 

vector 𝒚
𝑘
 is the same handled in Eq. (29). Eq. (32) is accordingly a different way of representing 

the link between the observations and the varying ROM state, since the equations governing 

structural dynamics are the same furnished by the ROM.   
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Table 2: the EK-PF-KF algorithm for time-varying damage states 

- Initialization at time 𝑡0, for  𝑖 = 1,… , 𝑁P: 

�̂�𝑟,0 = 𝔼[𝒙𝑟,0]

𝑷0 = 𝔼 [(𝒙𝑟,0 − �̂�𝑟,0)(𝒙𝑟,0 − �̂�𝑟,0)
T
]

�̂�𝑙,0 = 𝔼[𝝋𝑙,0]

𝒙𝑟,0
𝑖 = �̂�𝑟,0

               ω0
𝑖 = 𝑝(𝒚0|𝒙𝑟,0)

𝑷𝑠𝑠,0 = 𝔼 [(𝝋𝑙,0 − �̂�𝑙,0)(𝝋𝑙,0 − �̂�𝑙,0)
T
]

 

 

- At time 𝑡𝑘, for 𝑘 = 1,… ,𝑁𝑡 and 𝑖 = 1,… , 𝑁P: 

 Prediction stage: 

1. Draw particles: 

   𝒙𝑟,𝑘
𝑖 ∼ 𝑝(𝒙𝑟,𝑘|𝒙𝑟,𝑘−1

𝑖 ) 

2. Push the particles toward the region of high probability through an EKF: 

𝑷𝑘
𝑖− = 𝑭𝑟,𝑘𝑷𝑘−1

𝑖 𝑭𝑟,𝑘
T + 𝑽       

                     𝑮𝑘
𝑖 = 𝑷𝑘

𝑖−𝑳𝑘−1
T 𝑯T(𝑯𝑳𝑘−1𝑷𝑘

𝑖−𝑳𝑘−1
T 𝑯T + 𝑾)

−1

                𝒙𝑟,𝑘
𝑖 = 𝒙𝑟,𝑘

𝑖− + 𝑮𝑘
𝑖 (𝒚𝑘 − 𝑯𝑳𝑘−1𝒙𝑟,𝑘

𝑖− )

  𝑷𝑘
𝑖 = 𝑷𝑘

𝑖− − 𝑮𝑘
𝑖 𝑯𝑳𝑘−1𝑷𝑘

𝑖−
           

  

3. Evolve subspace and predict covariance: 
𝝋𝑙,𝑘

− = 𝝋𝑙,𝑘−1

𝑷𝑠𝑠,𝑘
− = 𝑷𝑠𝑠,𝑘−1 + ϒ

 

 Update stage: 

1. Evolve weights: 

  ω𝑘
𝑖 = ω𝑘−1

𝑖  𝑝(𝒚𝑘|𝒙𝑟,𝑘
𝑖 )  

2. Systematic resampling, for 𝑗 = 1,… , 𝑁𝑃: 

 draw a random sample 𝜁𝑗 from uniform distribution over (0, 1] 

 find 𝑀 that satisfies: 

∑ ω𝑘
𝑖

𝑀−1

𝑖=1

< 𝜁𝑗 ≤ ∑ω𝑘
𝑖

𝑀

𝑖=1

 

 𝒙𝑟,𝑘
𝑗

← 𝒙𝑟,𝑘
𝑀  

3. Compute expected value (and other required statistics): 

�̂�𝑟,𝑘 = ∑ω𝑘
𝑖 𝒙𝑟,𝑘

𝑖

𝑁P

𝑖=1

 

4. Compute subspace Kalman gain: 

𝑮𝑠𝑠,𝑘 = 𝑷𝑠𝑠,𝑘
− 𝑯𝑠𝑠

T (𝑯𝑠𝑠𝑷𝑠𝑠,𝑘
− 𝑯𝑠𝑠

T  + 𝑾)
−1

 

5. Update subspace and covariance: 

𝝋𝑙,𝑘 = 𝝋𝑙,𝑘
− + 𝑮𝑠𝑠,𝑘(𝒚𝑘 − 𝑯𝑠𝑠𝝋𝑙,𝑘

− )

𝑷𝑠𝑠,𝑘 = 𝑷𝑠𝑠,𝑘
− − 𝑮𝑠𝑠,𝑘𝑯𝑠𝑠𝑷𝑠𝑠,𝑘

−  
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Eqs. (31) and (32) respectively provide a linear time evolution for the POMs, and a linear 

relationship between the observation vector 𝒚
𝑘
 and the subspace 𝝋

𝑙,𝑘
: so, a KF (which is an 

optimal estimator for linear state-space models) can be used for the online update of the 

subspace. The joint estimation algorithm discussed for the time-invariant case is accordingly 

modified as reported in Error! Reference source not found., where account has been taken 

of the variability of POMs during the two stages of filtering. For the sake of completeness and 

to also provide a clear comparison between the EF-PF-KF procedure here considered and the 

EKF-KF one already proposed in [20], the latter approach is briefly described in Appendix A. 

Since the KF is run in parallel with the EK-PF, and matrix 𝑳𝑘 and vector 𝝋
𝑙,𝑘

 are to be 

continuously updated, a step-by-step linearization has to be properly designed to compute 𝑭𝑟,𝑘 

at step 2 of the prediction stage. In the proposed approach, we adopt again a purely explicit 

linearization and allow for POMs updated up to time 𝑡𝑘−1, as collected in matrix 𝑳𝑘−1. Possible 

effects of estmation time delays are again supposed to be marginal in the present context, since 

∆𝑡 is bounded from above by structural vibrations. With the proposed algorithm, the further 

update step is centered on the computation of the Kalman gain 𝑮𝑠𝑠,𝑘, which then drives the 

online tracking of all the POMs in 𝝋
𝑙,𝑘

. 

4. NUMERICAL RESULTS  

In this Section, simulated experiments are used to validate the proposed methodology. In 

doing so, results are provided for the shear building considered in [22], see also [20]: this 

structure consists of eight storys, with floor mass of 625 t and interstory stiffness of 106 kN/m. 

To make the model more realistic, the values of the floor masses and of the interstory stiffnesses 

were randomized by adding a scattering characterized by a standard deviation of 5% of the 

aforementioned values for masses and stiffnesses. As far as damping is concerned, in [22] a 

non-classical one was allowed for; here, following [20], a standard Rayleigh damping (𝑫 =

𝑎 𝑴 + 𝑏 𝑲 ) with a 2% ratio for the first two structural modes is instead assumed. To provide 

an overview on the dynamic characteristics of the structure, the relevant undamped vibration 

frequencies are collected in Table . 

Althoug in [20] it has been shown that, for the structural models adopted for shear type 

buildings under a non-stationary excitation, ROM features are slightly depedent on the 

excitation itself, the results gathered in this study have been obtained by exciting the system 

with a harmonic force 𝐹 =  5 ∙  107 sin(30𝜋𝑡) applied to the top floor. The outcomes to be 

discussed next can be easily generalized to allow for multiple non-stationary input loadings; 

anyhow, this generalization would not increase the complexity and capability of the proposed 

identification procedure, provided that loading features can be conveyed into the initial full-

order model, see e.g. [50]. To avoid issues related to the identifiability of damage in case of 

damped vibrations, see e.g. [35], if not otherwise stated the load is assumed to act on the 

structure for the entire duration of the analysis. 

Pseudo-experimental data have been generated to mimic real system observations collected 

at all the floors. Results of a direct analysis, in terms of lateral story displacements, have been 

thus corrupted with an uncorrelated zero mean Gaussian noise featuring a reference value of 1 

mm for the relevant standard deviation. This level of precision could be obtained by 

interferometric radars (e.g. see [51]) or, alternatively, by dual frequency GPS sensors [52]. The 
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algorithm can also perform rather well with higher noise levels, as shown in what follows, 

however an increase in the noise level can deteriorate the convergence rate of the filtering 

scheme. 

Before moving to the analysis of method performance when a ROM is handled, in Section 

4.1 the outcomes of the EK-PF and of the EKF are compared in terms of system identification. 

To also get further insights into the efficiency of the EK-PF, when compared to a standard PF, 

results relevant to this latter filtering approach are also included. Two model classes are 

considered: a first one featuring 1 unknown stiffness parameter only, and another one featuring 

all the interstory parameters unknown. It is shown that EKF and EK-PF outperform the PF 

when dealing with the former model class. Subsequently, EK-PF and EKF are applied to system 

identification of the latter model class, and it is observed that an increase in model complexity 

adversely affects their performances, with the EK-PF providing marginal advantage over the 

EKF. In Section 4.2, the performances of EK-PF and EKF are then compared for system 

identification of a single DOF ROM of the case study. 

Table 3: undamped vibration frequencies of the 8-story shear building 

Mode frequency (Hz) 

1 1.187 

2 3.481 

3 5.678 

4 7.734 

5 9.434 

6 10.920 

7 11.910 

8 12.647 

 

 

4.1 Full-order model of a shear building: system identification 
As anticipated, we first benchmark the EK-PF-KF approach against the alternate EKF-KF 

one and a simplified PF-KF method, which does not require the computation of the state 

mapping gradient in the prediction stage. To assess the effects of filters’ tuning parameters on 

estimation accuracy and rate of convergence towards steady-state solutions, the stage of 

updating of the ROM is deactivated: hence, for a time-invariant damage state (e.g. the virgin 

one), we attack the problem by handling the full-order model of the structure. 

Two different problems or model classes are considered. The first one handles the 

interstory stiffnesses all featuring the same value; besides this parameter, also the two Raleigh 

damping coefficients 𝑎 and 𝑏 need to be estimated. The second one handles instead the 

interstory stiffnesses independently; therefore, the number of the unknown parameters to be 

estimated grows to 8. To catch the effects of damping on the structural response, the harmonic 

load applied to the top floor is assumed to get stopped at 𝑡 = 25 s. 

In the analyses, the covariance matrices relevant to the state process noise and to the initial 

guess are respectively set as 𝐕 = 10−20𝑰 and 𝐏0 = 10−20𝑰, where 𝑰 stands for the identity 

matrix; the said values represent the magnitudes of the diagonal entries corresponding to 

displacements, velocities and accelerations, so the relevant measurement units are respectively 

m2, (m/s)2 and (m/s2)2. The pivotal entries of the other process and tuning noise matrices, 
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relevant to the interstory stiffness 𝑘 and to the damping coefficients 𝑎 and 𝑏, are reported in 

Table 4 for the three procedures adopted. 

In Figure 1 the corresponding results of parameter estimation are presented and compared. 

In the analysis, the values of V𝑘 and P0
𝑘 terms reported in Table 4 have been adopted. The time 

evolution of each estimate is given in a nondimensional form, namely as the ratio between the 

current value furnished by the filter and the target value; accordingly, with this representation 

all the plots have to converge to 1 to testify the accuracy of the results. To also assess the 

possible effect of the initialization on the filters’ performance, evolutions departing from two 

different starting values at 𝑡 = 0 are reported; similar trends are provided by other initial 

guesses, but are not shown in the graphs. It can be observed that the three methods can estimate 

𝑘 with a good accuracy. However, although difficult to see at the graph scale, the estimates 

related to EKF and EK-PF are more stable in the final stage of the analysis, when the vibrations 

are damped; some (small) fluctuations show up instead in the time evolution provided by the 

PF. Regarding the two damping coefficients, when the initial guess for 𝑎 is larger than the target 

value, the EKF and EK-PF provide again accurate estimates of both of them; the other way 

around, when the initial guess for 𝑎 is smaller than the target, a bias is found in the relevant 

steady-state solution while 𝑏 is still estimated correctly. It must be remarked that, in the forced 

vibrations stage of the analysis, the damping parameters are not identifiable by any method; 

this is linked to low sensitivity of the response to variations in 𝑎 and 𝑏 in this initial phase. 

After 𝑡 = 25 s, when the loading is stopped and the structural vibrations are progressively 

damped out, the estimates of 𝑎 and 𝑏 soon converge towards the aforementioned asymptotic 

solutions.  

It should be also highlighted that only 𝑁P = 100 particles have been handled with the EK-

PF, whereas 𝑁P = 2000 particles have been generated at each recursion of the PF. Hence, the 

EK-PF outperforms the PF not only in terms of accuracy but also of computational effort. 

Similar performaces are obtained for higher noise levels, and relevant results are here omitted 

for the sake of brevity. 

 

Table 4: full-order model class 1: pivotal covariance values for the parameters 𝑘, 𝑎 and 𝑏 to be 

estimated, and for the three adopted filtering procedures. 

 V𝑘 (MPa2) V𝑎  V𝑏  P0
𝑘 (MPa2) P0

𝑎 P0
𝑏 

EKF 109 10−11 10−10 1015 10−9 10−7 

PF 1012 10−10 10−8 1015 10−8 10−6 

EK-PF 1011 10−9 10−8 1015 10−10 10−6 
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Figure 1: full-order model class 1: comparison among the estimated (continuous lines) non-

dimensional time evolutions of model parameters 𝑘, 𝑎 and 𝑏, obtained starting from two 

initializations and using the EK-PF (green lines), the EKF (blue lines), and the PF (orange lines). 

As far as model class 2 is concerned, in Figure 2 the results of parameter identification 

provided by the EKF and EK-PF are presented for a noise level equal to 1 mm as for model 

class 1; the PF, which has already shown poor performance indices, is not considered any 

longer. At variance with the previous case and due to the number of unknown parameters to be 

estimated increased from 3 to 8, with the EK-PF method 𝑁P = 1000 particles have been drawn; 

negligible improvements are displayed by increasing this value up to 𝑁P = 5000. Graphs show 

that both filters lead to convergence to the target values, although the EK-PF features a faster 

convergence rate. In this case, for both EKF and EK-PF methods the covariances of parameter 

process noise and parameter initial guess were set 𝐕𝒌 = 1012𝑰 MPa2 and 𝐏0
𝒌 = 1015𝑰 MPa2, 

respectively. In Figure 3 the results of parameter estimation are presented for a value of the 

measurement standard deviation increased till 3 mm. Even if neither of the methods provides 

convergence to the target for the parameters, the solutions are always stable (namely, do not 

diverge) and are affected by a discrepancy amounting to around 25% at most, independently of 

the initialization values (though not shown in these graphs). 

Overall, it can be concluded that the observation noise terms can lead to biased estimates 

of the parameters, and the issue is obviously more pronounced when dealing with structural 

models that feature a large set of unknowns. Next, a thorough parametric study is performed 

for a ROM of the case study and it is shown that, even for large noise to signal ratios, the 

identification is performed with a reasonable level of accuracy due to the reduced number of 

model parameters to be tuned. 
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(a) 

 
(b) 

Figure 2: full-order model class 2, noise level equal to 1 mm: comparison between the estimated 

non-dimensional time evolutions of the stiffness terms, obtained using (a) the EK-PF, and (b) the 

EKF. 

 

 
(a) 

 
(b) 

Figure 3: full-order model class 2, noise level equal to 3 mm: comparison between the estimated 

non-dimensional time evolutions of the stiffness terms, obtained using (a) the EK-PF, and (b) the 

EKF. 
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4.2 Reduced-order model of a shear building: damage detection and ROM 

update 
Allowing for the results of Section 4.1, the PF-based approach is not considered when 

handling a ROM of the structure. Accordingly, to assess the capability of the proposed EK-PF-

KF approach, a comparison is made again with the EKF-KF method given in [20]. 

A time-varying damage state is now allowed for. The damage itself is assumed to be 

induced by effects not explicitly covered by the considered equation of motion; hence, stiffness 

degradation is not induced by the harmonic force 𝐹 applied to the top floor. Although unknown 

during the filtering procedure, damage consists in the following sequence of piece-wise (time) 

constant reduction by 50% (or 25% in the last case considered in this Section) of the original 

(undamaged) interstory stiffness terms: at 𝑡 = 180 s, at the story #1 level; at 𝑡 = 240 s, at the 

story #8 level; at 𝑡 = 300 s, at the story #3 level; at 𝑡 = 360 s, at the story #7 level. 

   

 

Figure 4: from left to right, target POM shapes for the healthy state and at each of the four stages 

of damage growth, for 50% damage events. 

 

In all the analyses to follow, we set that only one POM is retained in the ROM, i.e. that 

𝑙 = 1 (see Section 2); the relevant minimum accuracy of the model accordingly gets 𝑝 = 0.8 −

0.9, see Eq. (17), depending on the damage stage. The shapes of the POM for the healthy state 

and for each stage of damage growth are all reported in Figure 4. For different settings, allowing 

for additional POMs retained in the ROM but with a time-invariant state of damage after its 

inception, readers are referred to [20]. As already remarked in [13, 20], whenever damage 

occurs a kink (or an additional kink) shows up in the fundamental vibration mode of the 

structure, which has been formerly smoother due to the properties of the structure. Because of 

the frequency of excitation and of the evolution of damage here considered, multiple kinks are 

shown by the POM shapes in Figure 4; therefore, a detection or identification of the damage 

location might not be a simple task, see also [27]. 

Concerning the identification task and its initialization, in all the analyses we have assumed 

to move from the former ROM training stage. Accordingly, �̂�𝑙,0 (see Tables 2 and A.1) is the 
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trained POM at the beginning of SHM. Even if obtained from the said offline training stage and 

so optimized to track the actual system dynamics at 𝑡 = 0, to allow for the uncertainties in the 

stiffness properties of the structural members the initial value 𝑷𝑠𝑠,0 of the covariance matrix is 

set to let each component of 𝝋𝑙 to subsequently vary, especially when the damage changes. 

Due to the intricate methodology here proposed, a robust and case-independent initialization of 

𝑷𝑠𝑠 does not prove simple to establish; a trial-and-error method has thus provided a quasi-

optimal solution as 𝑷𝑠𝑠,0 = 10−12𝑰 m2. Matrix ϒ, allowing instead for the effects of the 

Gaussian noise related to the ROM update, see Eq. (31), has been set as ϒ = 10−10𝑰 m2. With 

the EKF-KF approach, vector �̂�𝑟,0 is typically determined by considering the amplitude 

characteristics, at time 𝑡 = 0, of the POM (or POMs in general) retained in the ROM, and of 

the target or design values of the unknown stiffness terms. As far as this latter aspect is 

concerned, a parametric analysis has been also performed to check the sensitivity of the 

proposed approach to the initial uncertainties in the stiffness properties of the structure; as 

discussed below, results are not shown here for brevity, but the method results to be quite 

insensitive to such uncertainty source at the system level. 𝑷0 has been accordingly set to allow 

a variation of all the variables in 𝒙𝑟,𝑘, keeping also in mind that the sub-vector 𝒛𝑟,𝑘, see Eq. 

(18), collects the model DOFs in the ROM sub-space with 𝝋𝑙,𝑘 being normalized. More 

importantly, matrix 𝑽 has to permit the stochastic variation of the components of 𝒙𝑟,𝑘, see 

Error! Reference source not found., and has been therefore set diagonal, with pivotal entries 

relevant to 𝒛𝑟,𝑘 featuring a dimensionless amplitude on the order of 10−1 − 10−4, and with an 

entry relevant to the POM stiffness 𝓚𝑙 (which is actually a scalar in the present one-POM case) 

on the order of 1012 MPa2. The same settings have been adopted also for the matrices shared 

with the EKF-KF approach. In the present work, the process and observation noise covariances 

are assumed a-priori known; however, in practical cases these covariances should be 

appropriately estimated to ensure that an optimal prediction is furnished by the filters, see [53, 

54]. 

The number of particles adopted in the analyses has been set now to 𝑁P = 100, as marginal 

improvements have been displayed by increasing it up to 𝑁𝑃 = 2000. Such small number of 

samples helps attaining a speedup (see below) when tracking the ROM dynamics instead of the 

full-order one; the other way around, some pollution or fluctuations are shown in the time 

evolution of the estimates provided, which can be somehow reduced by increasing 𝑁P. 

The performance of the EKF-KF and EK-PF-KF procedures in tracking the shape evolution 

of the retained POM is reported in Figure 5, in terms of the estimated (and not trained or re-

trained) solutions at the end of monitoring at 𝑡 = 600 s. Due to the collected observations of 

each story displacement, both methods perform rather well and the only discrepancy shown, in 

comparison with the target solution, is actually induced by the considered measurement noise. 

The time evolution of the estimated POM is also depicted in Figure 6 for the exemplary EK-

PF-KF case, starting at 𝑡 = 0 from the initial shape foreseen for the healthy state; remarkably, 

although not explicitly shown, this time evolution is marginally affected by the initial guess 

concerning the structural properties to be estimated. 

The estimated time evolutions of all the components of the POM, namely of all the lateral 

story displacements, are gathered in Figure 7. Even if the final estimations in Figure 5, relevant 

to 𝑡 = 600 s, look similar and both of the same accuracy, these graphs show that the EK-PF-

KF procedure reacts (slightly) faster than the EKF-KF one to the changes induced by the sudden 

drops of the stiffness terms, not necessarily leading to an increase of each components of the 
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POM. The solution provided by the filters looks polluted by fluctuations of small amplitude, 

possibly leading to instability and so divergence or biases in the estimates in the long term 

range. Such fluctuations, already shown in [10] and in [55] for a single DOF case, can be 

somehow reduced with the EK-PF-KF procedure by increasing the number 𝑁P of particles, so 

reducing the computational gain with respect to the full-order case. In these graphs, once again 

evolutions are provided for different initialization values for the POM components, so as to 

assess the robustness of the methods against possible initial inaccuracies related to the ROM 

state. 

The reported incapability to match all the step-wise stiffness changes close to real-time, 

may also lead to biases in the estimates of the damage state or to a delay in the monitoring of 

drifts of the structural state. To address this issue, in Figure 8 a comparison is shown regarding 

the forecasted time variations of the unknown scalar ROM stiffness term computed according 

to Eq. (15), on the basis of the current estimate of the POM retained in the analysis. In each 

plot, the two time evolutions are related to initializations of the stiffness value affected by an 

error of ±50% with respect to the target one; besides the current estimate, also the 

corresponding 99% confidence interval is reported. As for the expected values, the two 

approaches lead to very similar trends, and the finally predicted values are both free from biases 

though the EK-PF-KF procedure shows a faster convergence rate each time the stiffness drops. 

Concerning the uncertainty level of estimations, the confidence interval provided by the EKF-

KF approach never decreases in time, since it is continuously propelled by relevant terms in the 

covariance matrices, to allow appropriate stiffness variation anytime damage evolves. The very 

narrow confidence interval provided instead by the EK-PF-KF approach is primarily due to the 

beneficial effects of the EKF adopted in the prediction stage; the same trend was already shown 

in [10] right after this stage, whereas samples (and the corresponding parameter confidence 

intervals) were rather scattered before it, similarly to what reported for the EKF-KF case.  
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          (a)                                                            (b)  

Figure 5: comparison between target (dashed lines) and estimated (continuous lines) POM shapes 

and at the end of monitoring. Results obtained for 50% damage events, with (a) the EKF-KF 

approach and (b) the EK-PF-KF approach. 

    

 

 

Figure 6: EK-PF-KF approach, 50% damage events, time evolution of the estimated POM shape. 
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(a) 

(b) 

 

Figure 7: comparison between target (dashed lines) and estimated (continuous lines) time 

evolutions of POM components. Results obtained for 50% damage events,with (a) the EKF-KF 

approach and (b) the EK-PF-KF approach. 
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 (a) 

 
(b) 

Figure 8: comparison between target (dashed lines) and estimated (continuous lines) time 

evolutions of the single-DOF MOR stiffness, and relevant 99% confidence intervals. Results 

obtained for 50% damage events, with (a) the EKF-KF approach and (b) the EK-PF-KF approach. 

  

 

Some additional results are reported in Figure 9, in terms of the time evolutions of the 

tracked lateral story displacements compared to the target (noise-free) ones. Like for the 

identification/update tasks, it is shown that the two methodologies similarly perform. Story 

displacements are estimated without any drift or time delay, even if high frequency oscillations 

are obviously filtered out having considered one POM only in the analysis. 
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(a) 

(b) 

Figure 9: comparison between target (dashed lines) and estimated (continuous lines) time 

evolutions of the lateral displacements (from top to bottom) at stories 2,4,6, and 8. Results 

obtained for 50% damage events, with (a) the EKF-KF approach and (b) the EK-PF-KF approach; 

right panels provide close-up views of the results in the left panels, relevant to the whole 

monitoring phase. 
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The effect of the tuning noise for the subspace components on filter performance, as 

parametrized by ϒ (see Eq. (31) and the discussion to follow), is now investigated. In Figure 

10, two settings respectively featuring ϒ = 10−9𝑰 m2 and ϒ = 10−11𝑰 m2 are cross-compared. 

While ϒ marginally affects parameter estimation, it can be seen that, as far as model update is 

concerned: a relatively smaler tuning noise can reduce the convergence rate of the filter; a 

relatively larger tuning noise can lead instead to estimates affected by a consistent degree of 

uncertainty.  

To assess next the sensitivity of the proposed approach to the damage level, in Figure 11 

the EK-PF-KF estimates of POM components and ROM stiffness variation for a case featuring 

a damage level of 25%, instead of the 50% considered so far, are gathered. It can be observed 

that the filter performance is not affected by the amount of damage. It is also worth stressing 

that these results have been obtained without changing the values of the filters’ tuning 

parameters, hence the robustness of the method is testified. For this specific case characterized 

by smaller damage values, the outcomes of a parametric study is reported in Figure 12 to show 

once more the effects of a varying signal to noise ratio, so to assess the interplay between 

sensitivity to damage and measurement accuracy. Three levels of the RMS of the noise to signal 

ratio equal to 6%, 18% and 60% have been handled, which respectively correspond to standard 

deviations of the measurement error equal to 1, 3 and 10 mm. Figure 12 testifies that, while an 

increase in the noise level does not affect the ROM stiffness estimate (time histories can be 

hardly distinguished in the graph, as they are almost perfectly superposed to each other), it can 

drastically modify the convergence rate of subspace estimates. 

Concerning the capability to track system evolution in case of incomplete measurements, 

namely if lateral displacements are not collected at all the storys, in Figure 13 an exemplary 

solution is reported for measurements not available at the 4th and 7th floors. While such 

incomplete measurements have again a marginal effect on the estimates of the ROM stiffness, 

they may lead to unidentifiability, or to a biased identification of the unobserved subspace 

components. Even though such outcome is rather expected from the system observability/ 

identifiability point of view, it must be stressed that the most important feature of the SHM 

approach, namely the capability to detect damage close to or in real time, is still preserved. 

One final aspect to be discussed for the proposed coupled identification/tracking and model 

update technique, is linked to the computational gain attained. As partially reported in [20] the 

speedup, computed as the ratio between the time required to work on the full-order model (so, 

without any online update stage) and the time required to work instead on the ROM (including 

now the online update stage), is on the order of 1.5 − 2, depending on whether the EKF-KF or 

the EK-PF-KF procedure is used. Although this value may depend on the features of the CPU 

running the procedure implemented in a (Matlab) code, the small reported values are due to the 

limited number of DOFs of the original full-order model of the structure, but still testify the 

positive trend toward SHM of shear type buildings close to real-time. 
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(a) 

 
(b) 

Figure 10: EK-PF-KF approach, 50% damage events: comparison between target (dashed lines) and 

estimated (continuous lines) time evolutions of (a) POM components and (b) MOR stiffness, at 

varying tuning noise covariance ϒ. 
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(a) 

 
(b) 

Figure 11: EK-PF-KF approach, 25% damage events: comparison between target (dashed lines) 

and estimated (continuous lines) time evolutions of (a) POM components and (b) MOR stiffness. 
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(a) 

 
(b) 

Figure 12: EK-PF-KF approach, 25% damage events: comparison between target (dashed lines) 

and estimated (continuous lines) time evolutions of (a) POM components and (b) MOR stiffness at 

varying noise level. 
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(a) 

 
(b) 

Figure 13: EK-PF-KF approach, 25% damage events: comparison between target (dashed lines) 

and estimated (continuous lines) time evolutions of (a) POM components and (b) MOR stiffness 

obtained with incomplete measurements (i.e. no measurements at 4th and 7th floors). 

 

 

 

5. CONCLUDING REMARKS 

In this paper, the joint estimation and reduced order modelling of a damaging structure has 

been investigated. As far as the reduced order modelling task is concerned, the proper 

orthogonal decomposition has been adopted to obtain a subset of the original full-order model 

DOFs that optimally represents the dynamics of the whole system. As far as the joint estimation 
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purpose is concerned, a hybrid extended Kalman particle filter has been proposed to track the 

ROM dynamics and identify the relevant stiffness properties online. In case of a time-varying 

damage state, instead of re-training the handled ROM a further Kalman filter has been adopted 

to exploit once more the available system observations and tune the components of the ROM 

mode(s) retained in the analysis. 

Although the intricate procedure here proposed does not allow to easily set all the 

algorithmic parameters of the filtering procedures, it has been shown for a 8-story shear type 

building that the method can satisfactorily tune on-the-fly the ROM characteristics and also 

identify the varying stiffness properties of the structural ROM. Compared to an extended 

Kalman filter-based approach already proposed by the authors in [8] and to a standard particle 

filter-based one, the current methodology has shown interesting features in terms of stability of 

the estimates, and robustness against inaccuracies in the initialization values of the resulting 

Bayesian procedure. 

In future works, the localization and quantification of the actual structural damage, which 

is spatially smeared or averaged by the ROM in the proposed procedure, will be further and 

better investigated. For this additional task, an artificial neural network (ANN) can be trained 

in the initial offline stage. In this regard, the reduced stiffness parameters and the components 

of the POMs can be used as input for the ANN. In a similar fashion, in [56] the variations of 

coefficients of an auto regressive model fitting the acceleration response of the structure, were 

adopted as damage sensitive features providing a means to successfuly identify the damage 

itself. 
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APPENDIX A 
 

Table A.1: the EKF-KF algorithm for time-varying damage states 

- Initialization at time 𝑡0: 

�̂�𝑟,0 = 𝔼[𝒙𝑟,0] 𝑷0 = 𝔼 [(𝒙𝑟,0 − �̂�𝑟,0)(𝒙𝑟,0 − �̂�𝑟,0)
T
] 

�̂�𝑙,0 = 𝔼[𝝋𝑙,0] 𝑷𝑠𝑠,0 = 𝔼 [(𝝋𝑙,0 − �̂�𝑙,0)(𝝋𝑙,0 − �̂�𝑙,0)
T
]
 

- At time 𝑡𝑘, for 𝑘 = 1,… ,𝑁𝑡: 

 Prediction stage: 

1. Evolve state and predict covariance: 

𝒙𝑟,𝑘
− = 𝒇𝑟,𝑘(𝒙𝑟,𝑘−1,  𝓕𝑙,𝑘)

𝑷𝑘
− = 𝑭𝑟,𝑘𝑷𝑘−1𝑭𝑟,𝑘

𝑇 + 𝑽
 

2. Evolve subspace and predict covariance: 

𝝋𝑙,𝑘
− = 𝝋𝑙,𝑘−1

𝑷𝑠𝑠,𝑘
− = 𝑷𝑠𝑠,𝑘−1 + ϒ

 

 Update stage: 

1. Use 𝝋𝑙,𝑘
−  to estimate 𝑳𝑘 and compute state Kalman gain: 

𝑮𝑘 = 𝑷𝑘
−𝑳𝑘

T𝑯T(𝑯𝑳𝑘𝑷𝑘
−𝑳𝑘

T 𝑯T + 𝑾)
−1

 

2. Update state and covariance: 

𝒙𝑟,𝑘 = 𝒙𝑟,𝑘
− + 𝑮𝑘(𝒚𝑘 − 𝑯𝑳𝑘𝒙𝑟,𝑘

− )

 𝑷𝑘 = 𝑷𝑘
− − 𝑮𝑘𝑯𝑳𝑘𝑷𝑘

−  

3. Compute subspace Kalman gain: 

𝑮𝑠𝑠,𝑘 = 𝑷𝑠𝑠,𝑘
− 𝑯𝑠𝑠

T (𝑯𝑠𝑠𝑷𝑠𝑠,𝑘
− 𝑯𝑠𝑠

T  + 𝑾)
−1

 

4. Update subspace and covariance: 

𝝋𝑙,𝑘 = 𝝋𝑙,𝑘
− + 𝑮𝑠𝑠,𝑘(𝒚𝑘 − 𝑯𝑠𝑠𝝋𝑙,𝑘

− )

𝑷𝑠𝑠,𝑘 = 𝑷𝑠𝑠,𝑘
− − 𝑮𝑠𝑠,𝑘𝑯𝑠𝑠𝑷𝑠𝑠,𝑘

−  

 

In this Appendix, we briefly discuss the EKF-KF approach that can be used in place of the 

EK-PF-KF one described in Section 3.2 for time-varying damage states, see [20]. 

The whole algorithm is detailed in Table A.1. Likewise the EK-PF-KF algorithm of Table 

2, it consists in two filters running in parallel, one handling the update of the ROM state vector 

and the other one continuously tuning the POMs of the ROM itself. The former filter, which is 

centered on a linearization of the state transition providing on-the-fly the matrix 𝑭𝑟,𝑘, may still 

lead to the mentioned biases or divergent estimates already discussed in the text. 
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