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Abstract Specialized accelerators can exploit spatial parallelism on both operations
and data thanks to a dedicated microarchitecture with a better use of the hardware re-
sources. Designers need to describe such components (including the resources, their
interconnections, and the control logic) in proper hardware languages compatible
with synthesis tools. This process requires hardware design skills that are uncommon
in software programmers. To boost the use of spatial accelerators, software program-
mers need automated methods, like high-level synthesis (HLS), to specify hardware
blocks with high-level languages and automatically translate their specifications into
the corresponding hardware descriptions ready for synthesis. While HLS is a key
enabling technology for the design of complex hardware/software architectures, de-
veloping efficient spatial accelerators requires efficient HLS methods to co-optimize
performance and hardware cost with a hardware/software co-design approach. In this
chapter, we present the current state of the art in high-level synthesis, covering all
steps to create the specialized microarchitecture of an accelerator. We also discuss
outstanding challenges that can be addressed with the use of HLS.

1 Introduction

Technology scaling is coming to an end due to physical limitations on building
smaller transistors and keeping all of them active inside the chip (dark silicon prob-
lem) [1]. Designers need novel solutions to increase the performance and reduce
the power consumption of computing systems [2]. Modern workloads, such as Big
Data and machine learning applications, exacerbate these issues because they need
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to process an increasing amount of data to identify hidden relationships and extract
valuable knowledge [3]. Traditional computing systems are not able to satisfy the
performance requirements of these applications, while the large and frequent data
transfers lead to unsustainable power consumption. Single, complex, hyper-pipelined
processors are thus replaced by parallel architectures with simpler processors (mul-
ticore architectures) and/or specialized components (heterogeneous architectures).
This allows designers to significantly reduce power consumption: a specialized ac-
celerator is tailored to execute specific functions, activated only when needed, and
can be turned off to save additional static power when unused [4].

Designing specialized accelerators is complex, expensive, and time consuming.
Designers have to determine the proper microarchitecture to achieve the desired
performance with minimal resources. The microarchitecture is usually designed for
spatial computation, i.e., to execute operations on multiple data in parallel. The
resulting design must be described with a hardware description language (HDL)
for enabling the actual hardware implementation. However, this process requires
specific hardware design skills that are uncommon in application designers. Finally,
implementing a specialized accelerator as an Application-Specific Integrated Circuit
(ASIC) allows designers to achieve the best energy efficiency but limits the reusability
of the components and, in turn, the sustainability of the architecture design process.
Field-Programmable Gate Array (FPGA) devices are becoming attractive to reduce
the cost of accelerator development by reusing the same resources across multiple
components after reconfiguring the device.
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Fig. 1 Example of heterogeneous platform: CPUs and auxiliary elements are predesigned compo-
nents, while accelerators can be designed with HLS. The FPGA can host the entire system or only
some accelerators.

To cope with the increasing complexity of such heterogeneous architectures,
designers need to raise the abstraction level for both system and component design.
At the system level, custom design flows are replaced by more reusable architectures
based on the concept of “platform”, like the one shown in Fig. 1. A platform template
is progressively refined to obtain the final architecturewith proper customizations [5].
This approach operates at the system level, describing the component functionalities
and their interactions above the register transfer level (RTL), and uses automated
methods for component synthesis and integration [6]. This enables the reuse of the
same high-level components across multiple projects, significantly reducing design
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time and costs [7]. At the component level, manual design is replaced by automated
methods based on high-level synthesis (HLS), which is the process of automatically
translating a behavioral specification into the corresponding RTL description ready
for synthesis [8, 9]. This process is similar to the generation of machine code with
compilers. HLS can be divided into three phases: the analysis of the input description
to extract relevant information regarding the functionality to implement, the creation
of the optimized micro-architecture that implements the given functionality, and the
generation of the final RTL descriptions for the subsequent synthesis steps. This
requires the introduction of hardware-oriented concepts (like timing, parallelism,
and concurrency) that might not be present in the initial description. In addition,
the possibility of customizing the target architecture requires a trade-off between
performance and use of resources, and the evaluation of the effects of local decisions
on the entire design.

This novel boost in accelerator-rich architectures is pushed by an increas-
ing number of different computing domains including from datacenters, high-
performance computing, reconfigurable embedded systems, and Internet-of-Things
devices [10, 11, 12] with stringent requirements that cannot be met either with
processor-based architectures or pre-designed components. So, designers must be
able to specify the functionality along with its non-functional requirements, derive
the final microarchitecture of the components, and create a system that is able to
use it with limited changes to the original application. Software and hardware engi-
neers are still speaking different languages with a significant gap even when using
HLS [13, 14]. Although the available HLS tools have a similar organization [15],
there are several differences in the approaches used for each phase, potentially leading
to very different results. Since HLS is mostly application-dependent, it is impossible
to determine an optimal flow for every algorithm and computing system. On the
contrary, it is crucial to understand algorithms and methods for the different phases
to better understand the results and, eventually, how to guide or improve the tools.

This chapter discusses several aspects that leads to create a successful HLS
engine, including the specification of the input functionality, the optimization of the
microarchitecture, and the system-level integration. It also discusses problems that
are still open along with challenges that can be tackled with proper HLS tools. For
example, it describes how HLS can enable the creation of more secure components
in an era of increasing cyber-attacks [16].

2 Background: Technology and Models

2.1 Target Technology

When selecting the processing elements for an architecture, designers have to face
the never-ending challenge of trading off performance and flexibility, as shown in
Fig. 2. While performance is the main optimization goal for many applications,
flexibility allows them to reuse the same system for different applications. The tra-
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Fig. 2 Trading off performance and flexibility by using different target technologies (adapted
from [17]).

ditional Central Processing Unit (CPU) is the most flexible component, able to
execute any kind of application, sacrificing performance and energy efficiency. A
specialized processor, like a Digital Signal Processor (DSP), Graphical Process-
ing Unit (GPU), or a Tensor Processing Unit (TPU), offers better performance for
application-specific workloads (e.g., audio, video, or machine-learning applications)
while maintaining a certain degree of flexibility. A Field-Programmable Gate Ar-
ray (FPGA) device is an array of elements that can be configured by the user to
execute a specific functionality even after fabrication, as shown in Fig. 3. For this
reason, the elements are called configurable logic blocks and their configuration is
called a bitstream. FPGAs have the flexibility of processor-like architectures since
they can be reused (after reconfiguration) to execute different workloads but they
can achieve performance comparable to ASICs thanks to the possibility of imple-
menting specialized microarchitectures on the configurable blocks. Some FPGA
devices also offer the possibility of changing their functionality during the execu-
tion through partial dynamic reconfiguration. Designers create all partial bitstreams
statically (i.e., partial configurations only for the specific FPGA region where the
accelerators will be placed). The reconfiguration loads the proper partial bitstream
into the corresponding region through a specific port, called an Internal Configura-
tion Access Port (ICAP). This process is time-consuming and used only when the
benefits of hardware accelerators are much greater than the reconfiguration time.
A Coarse-Grain Reconfigurable Array (CGRA) is a network of specialized data
processing units. Executing an application requires to create only a configuration of
the interconnections. It can achieve better performance than FPGA devices but it is
more application specific. In an Application-Specific Integrated Circuit (ASIC),
the microarchitecture of the component is tailored to execute only the given func-
tionality. Specialization allows the circuit to achieve the best performance but limits
the reuse and therefore the flexibility of the component. Also, since the functionality
of an ASIC cannot be changed after fabrication, manually tuning and verifying the
design leads to high design costs. In all cases, it is important to understand how the
operations are implemented in hardware to better understand the use of resources.
For example, ASIC designs are mapped onto standard cells or hard macro blocks
(like memories) and the silicon area is a good metric to characterize the implemen-
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Fig. 3 High-level FPGA organization: The device contains an array of configurable elements and
heterogeneous resources (e.g., DSP and Block RAMs). It may also feature dedicated engines that
are designed and optimized for AI processing.

tation. On the contrary, FPGA designs can use a heterogeneous set of resources, like
configurable logic cells, Block RAMs, and DSP blocks. In this case, comparing two
designs is much harder.

2.2 Accelerator Models

Designers have several alternatives for creating the microarchitecture of the special-
ized accelerators, especially due to different execution modes [18]. Configurable,
extensible processors have specific accelerators integrated into the pipeline of the
given CPU to improve the execution of specific code portions. The selected code to
be accelerated is represented with a new instruction and, for this reason, the com-
ponents are commonly referred to as custom instruction set extensions [19]. After
selecting the kernel instructions and extending the compiler to target them [20],
HLS can create the RTL microarchitecture of the accelerator to be integrated in the
processor datapath [21]. Commercial products like Synopsys ARC and Cadence
Xtensa feature complete toolchains to profile the application, identify hot-spots to be
accelerated, and integrate the corresponding RTL modules. Accelerator-rich archi-
tectures feature, instead, several stand-alone components that are designed to provide
peak performance for selected large kernels or even complete applications. Large
data sets are usually stored in an external memory (e.g., DRAM) that is accessed
with specific interfaces. Such accelerators can be configurable with parameters that
the user can specify (usually through input ports) to select a specific functionality of
the component. While components can be extremely complex, many modern appli-
cations can be reduced to operations on large streams of data. This is, for example,
the case of machine-learning applications that need to perform simple operations
(e.g., convolutions) on many data. Control constructs and synchronization can be
introduced to reuse the same hardware resources to iteratively operate on new data
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Fig. 4 An accelerator is composed of submodules hierarchically organized, andmay contain private
local memories to store local data and be connected to the external memory.

using the same concepts as software loops. To reduce the complexity of large designs,
designers can create dataflow architectures as a collection of components communi-
cating with latency-insensitive protocols [22]. The specialization of the components
can target the composition of the block [23], the memory architecture [24], or
the communication primitives [25]. Modern machine-learning applications benefit
from architectures with simple accelerators that are fed with streams of data and
reused across multiple cases, like modular accelerators for neural networks [26]
and dataflow systolic arrays for matrix multiplications [27]. For these applications,
modern FPGAs are implementing specific vector processor cores, like the AI engines
in the Xilinx Versal AI Core Series [28].

2.3 Accelerator Template

Each specialized accelerator is composed of two fundamental blocks: a datapath and
a controller [29]. The controller can be modeled as a finite-state machine (FSM)
that determines which operations execute in each clock cycle and sends control sig-
nals to trigger the operators and the interconnection in the datapath to perform the
computation. The datapath is a collection of interconnected hardware resources that
can execute in parallel (spatial computation). Additional components include local
and external memories for data storage. Internal memories are accessed directly
by the datapath resources, while external ones are accessed through pre-defined
components like memory controllers. When the complexity increases, modules are
organized in submodules with the same structure, like in software functions. Usually
common functions are replicated at different levels of the hierarchy, like uniquifi-
cation in logic synthesis, although solutions attempt to reuse the same hardware
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blocks with special proxies to eliminate those function copies and reduce resource
requirements [30]. Accelerators are usually encapsulated in an infrastructure to in-
teract with the system, as shown in Fig. 4. They can be also interconnected with
each other for direct communication. This architecture is often used for dataflow
applications, where data are streamed from one component to the next [31]. The
processor core (CPU) executes a software application to prepare the data in memory
and configure the accelerator through the interconnection system (e.g., a bus or a
network-on-chip) with memory-mapped operations on the configuration registers
that are connected to the input ports [4]. The data stored in the external memory
(DRAM) are accessed through one or more memory controllers [32]. DMA mecha-
nisms allow accelerators to exchange large data blocks with DRAM [18, 24]. When
moved inside accelerators, the data are stored in private local memories (PLMs) for
fast access. PLMs can also store data for the entire execution of the accelerator [33].
Accelerators access PLM data with known latency (e.g., one or two cycles) while
the latency of external accesses is usually unpredictable. While PLM accesses make
the scheduling of memory operations and the controller creation simpler, accelera-
tors must implement a latency-insensitive memory interfaces to guarantee execution
correctness when accessing external data. An FPGA can host the entire system or
only the accelerator part. In the latter case, the FPGA is combined with a hard-core
processor through an interconnection fabric or is a stand-alone component, like in
the IBM cloudFPGA project [34]. IP and technology vendors provide intellectual
property (IP) blocks for common functions. For example, Synopsys and Cadence
offer soft IPs for high-speed communication (e.g., SerDes IPs) like Ethernet physical
layers. Similarly, FPGA vendors offer a list of configurable IPs for common periph-
erals like DMA controllers to exchange data with external memory banks, to access
USB ports and PCIe bridges, and to display data through video controllers.

3 Introduction to High-Level Synthesis

The design of specialized hardware accelerators requires a design flow that allows
designers to generate the register-transfer level (RTL) microarchitecture associated
with the desired functionality. High-level synthesis is a key technology in this context.
It automatically translates an input high-level specification into the corresponding
RTL implementation ready for logic synthesis (either for ASIC or FPGA technolo-
gies). High-level synthesis is, indeed, a collection of methods and algorithms to
automatically define the RTLmicro-architecture of a hardware module starting from
the specification of its functionality at a higher level of abstraction. This process is
similar to the generation ofmachine code for programmable processors by compilers.



8 Christian Pilato and Stephanie Soldavini

High level description

Synthesizable code 

Software IR

Software code 

Hardware IR

Parsing
IR Analysis
IR Transformations

Software compiler

Module/Data Allocation
Scheduling
Binding
RTL Generation 

Front-end Compiler

Mid-level HLS engine

RTL design

Back-end Code Generation

OS drivers

Host program

TestbenchInterfaces

Verification and debugging
System-level integration

Hardware/software partitioning

Fig. 5 Overall organization of a classic HLS flow.

3.1 A Traditional High-Level Synthesis Framework

Figure 5 shows the overall organization of a classic HLS flow. The high-level code
represents the input functionality to implement. The designer can start from an
existing algorithm described in software-like languages (e.g., C, C++, or Python),
hardware-oriented languages (e.g., SystemC), or domain-specific languages (e.g.,
Chisel). Each language targets specific application domains or designer cases
(see Section 4.1 for more details). First, the input code is split into two parts
(hardware/software partitioning): the code to be executed by a software pro-
cessor and the part to be implemented in hardware. The former follows a classic
compilation flow to create the binary executables, while the latter must be translated
into the corresponding hardware description and integrated with the CPU.

This input description is processed by a front-end to remove language-dependent
details and extract the essential semantics, which is represented through a more
generic intermediate representation (SW IR). Since the IR impacts the following
steps, the front-end phase includes several IR transformations to obtain a more
hardware-oriented representation.

In the mid-level phase, the core of the HLS engine creates the accelerator micro-
architecture, i.e., the list of hardware submodules and their interconnections. The
HLS engine is composed of several steps. Scheduling defines when each operation
can start its execution to satisfy dependencies and maximize hardware parallelism.
Allocation and binding, instead, determine where and how each operation is exe-
cuted. For example, module allocation determines the number of functional units,
whilemodule binding assigns each operation to the proper resource to avoid conflicts.
The same applies to data and memories. Data allocation includes the definition and
specialization of the memory architecture to efficiently store and move the data to
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reduce bottlenecks, i.e., the situations where computation resources are stalling be-
cause data are not available. Finally, RTL generation creates a representation of the
resulting micro-architecture (HW IR), along with the logic to control the execution.

Finally, the back-end phase produces the artifacts for the subsequent design steps.
First, code generation produces the target RTL description in the desired hard-
ware description language (HDL) (RTL design). Similarly, testbench generation
and interface generation produce elements to support system-level integration and
verification of both the component and the system, respectively. This entire process
can be part of a larger design-space exploration framework to trade-off the different
design objectives within the final system.

3.2 A Bit of History on Commercial Products and Academic Projects

The first HLS projects targeted ASIC with so-called silicon compilers [35, 36],
used especially for simple, data-intensive applications. For example, Chippe [36]
included layout constraints during behavioral synthesis. As the complexity of the
hardware modules started increasing, designers shifted towards high-level languages
and compiler-based HLS frameworks [37]. Also, since FPGA devices allow for a
fast turn-around time to achieve a solution while ASIC requires extensive fine tuning
of the designs, HLS tools have been mostly developed for FPGA [6], with several
academic prototypes and commercial solutions [15] (see Chapter on “FPGA-Specific
Compilers” for more details on FPGA HLS tools).

Commercial tools are more oriented to a horizontal approach, simplifying coding,
porting, and analysis of the solutions. In most of the cases, such tools are offered
by FPGA vendors to simplify the use of their devices, in some cases free of charge.
For example, Xilinx Vivado HLS targets Xilinx FPGA devices and Intel HLS
Compiler produces RTL code for Intel FPGA devices. Other tools, like Siemens
EDA Catapult HLS orMicrosemi LegUp HLS Compiler, are not vendor specific
and can target a broader range of devices. Some HLS tools also target ASIC, like
Cadence Stratus, Siemens EDACatapult HLS, andNECCyberWorkBench. All
these tools have graphical user interfaces or TCL scripts to automate the steps, with
good estimators for performance and resource usage. Indeed, they are often tightly
connected to logic synthesis tools to provide accurate resource characterizations,
especially in case of ASIC. Most HLS tools also provide synthesizable libraries of
communication and synchronization protocols for building more complex systems
by focusing only on computational aspects [25].

Academic projects, instead, are usually more focused on research and experimen-
tation with a vertical approach. For example, Spark [38] was the first public HLS
framework, where the designer could set constraints on the resources to show the
relevance and impact of compiler transformations.GAUT [39] was a framework for
DSP applications. GAUT introduced the concepts of memory mapping, communica-
tion modules, and I/O timing to create pipelined architectures. xPilot [5] was the first
project to provide a complete framework for the synthesis of application-specific con-
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Fig. 6 Example of code (a), its corresponding static single assignment (SSA) form (b), and the
optimized IR after strength reduction and dead-code elimination (c).

figurable processors and heterogeneous multi-core architectures, focusing on FPGA
targets. xPilot had been later acquired by Xilinx to become the base of Vivado
HLS, becoming one of the most complete and easy-to-use HLS tools on the market.
LegUp [40] was an open-source HLS framework based on LLVM that allowed the
creation of complete SoC architectures for Altera (now Intel) FPGA devices. Thanks
to its modular organization, it has been widely used to prototype different types of
solutions for HLS problems, like bit-width analysis [41], profiling-driven optimiza-
tion [42] and the effects of compiler optimizations [43]. It is now discontinued as
it became a commercial product, Microsemi LegUp HLS Compiler. Bambu [44] is
one of the remaining open-source HLS frameworks. It allows designers to experi-
ment with HLS solutions thanks to a modular and dynamic compilation framework
based on both GCC and LLVM [45]. It focuses on the problem of understanding
how to synthesize C/C++ semantics. To do so, it offers a unique memory microarchi-
tecture that supports most of the C constructs without semantic changes (including
dynamic pointer resolution and memory allocation [33]). It has been also used to
integrate solutions for hardware and hardware-assisted security, like intrinsic dy-
namic information flow tracking [46], IP watermarking [47], and algorithm-level
obfuscation [48]. There are also projects that focus on specific accelerator models
(like dataflow compilers) or application domains (like deep learning), especially for
FPGA targets. The interested reader can refer to the Chapter on “FPGA-Specific
Compilers” for more details.

4 From Input Specification to Intermediate Representation

This section discusses the transition from the input high-level specification into a
language-agnostic representation that is optimized for hardware generation. One of
the first major challenges in HLS is the right choice of input language and compiler
(with associated transformations) based on the characteristics and requirements of
the given application (e.g., the expected latency).
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4.1 Input Specification and Intermediate Representation

Most pre-existing algorithms are described with traditional languages (like C, C++,
Fortran, etc.). Therefore, modern HLS tools are mostly built on top of state-of-the-art
software compilers, like LLVM and GCC [49, 43]. These compilers have support
for many input languages and can support the porting of legacy code into hardware.
Also, they can leverage many years of research in compiler construction to extract,
analyze, and optimize a representation that is more suitable to hardware implemen-
tation. To simplify compiler optimizations, the IR is usually translated into a static
single assignment (SSA) form where multiple assignments to the same variable cre-
ate different versions, as shown in Fig. 6. Source-to-source compilers can rewrite
existing code into a more hardware-friendly format and expose more “knobs” for op-
timization [50]. For example, since commercial HLS tools use directives to optimize
the input code, source-to-source transformations can automatically insert identifiers
(e.g., loop labels) and transform the code to better apply synthesis directives.

Modern machine-learning applications make heavy uses of operations on multi-
dimensional arrays, also called “tensors”. These applications are often extremely
parallel and suitable for hardware acceleration. In such systems, the creation of the
memory architecture demands efficient methods to describe the operations and the
data access patterns. Many languages have been proposed as the frontend to HLS
frameworks to better expose such details. Halide [51] simplifies the descriptions of
high-performance image and array processing code, while Halide-HLS [52] is an
extension to target FPGAs. Machine-learning applications are built almost exclu-
sively with Python-based frameworks like PyTorch, Tensorflow, Caffe, etc. Python
is a popular language that hides many details from the programmers. Compilers
translate Python representations into code that can be processed by HLS tools based
on traditional IRs.

Traditional compilers progressively transform the IR into simpler operations that
are later mapped on machine instructions. This process loses important information
for hardware generation, like information of the size of the data structures and the pat-
terns across operations that help define thememory system. Designers are working to
extend these representations to pass more information over the compiler passes until
it reaches the HLS flow. For example, Google recently proposed LLVMMulti-Level
Intermediate Representation (MLIR) [53] to create a customizable compilation
framework that provides information at different levels. Similarly, Heterogeneous
Parallel Virtual Machine (HPVM) [54] is a representation for a parallel compiler
that aims at simplifying the code implementation of parallel hardware. These rep-
resentations are often combined with domain-specific languages where the designer
can abstract specific hardware details. For example, Spatial [55] is a recent language
to describe hardware accelerators at a higher level. Such descriptions are later com-
piled and translated into Chisel and then into Verilog. These frameworks can be
considered more as “hardware generators” rather than complete HLS tools. Indeed,
they operate more as “translators” from the input to the output descriptions, with
limited optimizations.
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4.2 Analysis and Optimization of the Intermediate Representation

The next phase analyzes and transforms the IR extracted from the source code to cre-
ate amore hardware-friendly representation and optimize the component to generate.
Applying IR-level transformations simplifies the following HLS steps, improving the
accelerator’s performance or reducing its hardware cost. Some transformations are
borrowed from traditional compiler optimizations, while others are specific for hard-
ware. This is another motivation for which it is convenient to base HLS on stable
and mature compiler frameworks.

Constant propagation and strength reduction are classic compiler transfor-
mations that can simplify or even eliminate arithmetic operations in the code. For
example, the instruction “x_2 * 2” of Fig. 6 can be transformed into “x_2 « 1” (see
Fig. 6(c)): a left shifter is much more hardware efficient than a multiplier. Design-
ers may replace some variables with constants representing their average values to
leverage these optimizations. These transformations are usually referred as software
approximation techniques and allow designers to obtain efficient hardware despite
minor errors in the results.Dead-code elimination removes unnecessary code,which
will be otherwise translated into unnecessary hardware (see, for example, instruction
“w_1 = y_1” in Fig. 6(c)). This applies, for example, when control code depends
on input parameters that, in specific accelerator instances, are always set to constant
values. HLS is often limited by control constructs, like if-then-else statements.
Operations in the true/false branches cannot start their execution until the con-
dition is evaluated. Code speculation moves some operations before the condition
evaluation so that they can be executed in parallel [56]. Results are temporarily stored
in registers and, after evaluating the condition, the values of the “wrong” operations
are discarded. This optimization increases the available parallelism, leading to better
performance.

Compiler analyses and transformations can also reduce data dependencies and
increase hardware parallelism. For example, pointers are widely used to create effi-
cient software code. However, their implementation in hardware is complex because
a pointer-based operation must be connected to all the memory locations (either in-
ternal or external) where the corresponding information is potentially stored. Alias
analysis helps determine if two pointers in the source code can ever refer to the
same memory location. If it can be proven that two pointers never refer to the
same object, there is no dependency, enabling more memory optimizations. Static
pointer resolution determines the exact variable accessed by a pointer operation,
eliminating the need for an explicit pointer. This information can be later used to
optimize the creation of the memory architecture (see Section 5) because the two
operations can potentially run in parallel when proved to access different data [33].
Additional memory analyses determine the list of data structures to allocate in
memory and their characteristics (e.g., size and bit-width) for determining whether
the corresponding memories fit inside the area constraints of the accelerators. Other
transformations operate on the data structures to expose more parallelism. Indeed,
arrays are generally stored in memories with limited ports. Designers can apply
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array partitioning and scalar replacement of aggregates to reduce the number of
memory dependencies.

While software developers can overestimate the bit requirements for some data,
many applications do not use the full range of the corresponding variables. Since a
processor’s hardware is already built with pre-defined registers and arithmetic-logic
units, the execution with overestimated variables has almost no extra cost. Hardware
specialization requires, instead, to determine the minimal resources needed for the
computation to trim unnecessary logic. Therefore, the front-end phase also performs
bit-width analysis to determine the required precision of each operation to maintain
execution correctness and bit-width transformations to propagate the information
through the design with iterative methods. Similar transformations include also
numerical conversions (e.g., from floating-point to fixed-point representations) to
reduce hardware cost but maintain a certain level of accuracy of the results. In this
context, many HLS tools, for example Xilinx Vivado HLS andCadence Stratus, allow
library extensions to manually specify the precision of input/output data or to specify
particular bit-level operations on the signals. This feature is particularly useful when
HLS is used to generate components to be integrated in larger specialized systems like
industrial machines. Synthesizable C++ libraries, likeHLSLibs have been proposed
to extend existing HLS tools with custom precision.

Especially in data-intensive applications, loops account for most of the accelerator
execution and it is complex to extract parallelism from their representations. Most
of the parallelism is often between consecutive iterations. While spatial execution
can create multiple parallel instances of the loop body, hardware synthesis is usually
limited by the loop boundaries. Therefore, loop transformations are widely used to
expose more hardware parallelism. For example, loop unrolling replicates multiple
instances of a loop body to execute in the same iteration. Therefore, the number of
operations between control branches is increased, potentially leading to more paral-
lelism. However, this transformation requires a careful analysis of the dependencies;
otherwise the multiple iterations in the same loop body are serialized without an
effective speed-up. Artificial dependencies can also be due to conflict on resources,
like in the case of limited memory ports, forcing the serialization of the operations.
Another important transformation is loop pipelining: consecutive loop iterations
are partially overlapped. This optimization follows the same principles of instruction
execution in pipelined processors, when an instruction can start before the termi-
nation of the previous one. In this case, the initiation interval (II) is an important
parameter: it represents the number of cycles required by the loop to start a new
iteration. A perfect pipeline starts a new iteration after each cycle (� � = 1). In case
of large data sets, loop vectorization aims at executing operations on multiple data
in parallel, increasing the demand of memory bandwidth. Other transformations like
loop fusion and loop switching optimize consecutive loops. The interested reader
can refer to [57] for more details on these loop-related HLS transformations.

Most of the information extracted in this phase is passed to the next steps as extra
annotations or directly embedded into the IR. These transformations aim at gener-
ating optimized hardware but are often strictly interdependent. For example, loop
transformations are not able to expose much parallelism if not properly supported by
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memory optimizations. Similarly, constant propagation can enable further dead code
elimination. Some HLS tools, for example Bambu, implement dynamic compilation
flows that re-execute passes whose outcome invalidates previous results or activates
further optimizations [45].

5 Creation of the Microarchitecture

To create the microarchitecture of the accelerators, the HLS middle-end requires
both the temporal and spatial distribution of the operations to be determined. In the
former case, HLS determines when to execute each operations, i.e. in which clock
cycle, to satisfy any dependency. In the latter case, HLS determines where to execute
the operations, i.e. on which hardware resources, to minimize the hardware cost
while avoiding any conflict.

5.1 Scheduling and Performance Optimization

After defining and optimizing the intermediate representation of the functionality to
synthesize, the first step is to determine a set of available resources and introduce the
concept of timing. This process is highly dependent on the previous compiler phase,
so they are often executed in an iterative way until the designer reaches a good trade-
off between latency and resource usage. Allocation determines how many resources
will be used for the given component. Since operations executed in the same clock
cycle require different resources for the execution, allocation can limit the number of
operations that can execute in parallel, i.e., in each clock cycle. Scheduling assigns
operations to the clock cycles to balance performance and resource usage. Also,
schedulingmust take into account technology-dependent information like the latency
of the hardware modules where the operations are assigned for execution. Temporal
assignment must also respect several types of dependencies among operations. HLS
dependencies include real dependencies, like data dependencies, but also artificial
dependencies that do not carry real values but are needed for the correct execution of
the specification. The result of an operationmust be served to the following operation
(if feasible in the given clock period) or stored in a register for use in the next clock
cycle. This requires the latency of the circuit to be analyzed and compared with
the clock period (the available timing budget for each synchronous event), i.e. by
estimating the slack of each clock cycle [58]. The slack is the margin between the
delay of the circuit and the given timing requirement. Negative slack means that the
timing constraint is violated, while a positive slack means that an extra delay could
be tolerated. There are multiple situations during scheduling:

• the operation terminates much earlier than the clock period (i.e., the slack is
positive and high); in this case, it might be possible to execute another operation
provided that it fits in the remaining time (operation chaining);
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• the operation terminates right before the end of the clock period; the result will
be then used in a subsequent cycle and it must be stored in a register;

• the operation takes more than one cycle and its result shall be saved only when
finished (multi-cycling); in this case, if the functional unit is pipelined (i.e., it
contains internal register to create computational stages), another operation can
start on the same resource even before the current one is completed.

Scheduling is an NP-complete problem and considers different aspects to generate a
valid implementation (i.e., a circuit that does not produce computational errors). It is
usually applied at the basic block1 level to extract more parallelism. Each operation
must start its execution only after its predecessors have produced the corresponding
results. Then, there must be a physical resource that is able to implement the given
operation and is not already in use. So, common HLS tools use heuristic methods
to obtain efficient solutions in a reasonable amount of time. Common scheduling
algorithms include list-based scheduling [59], which maintains a list of “ready”
operations and progressively assigns them to the clock cycles, and system of dif-
ference constraints (SDC) scheduling [60, 61], which operates on a rich set of
scheduling constraints. List-based scheduling is simpler, faster, and more efficient
on pure datapath descriptions, while SDC scheduling achieves better results for loop
descriptions [56].

Exact methods are still applied in case of control-based designs, where the
scheduling problem is combined with code motion to execute part of the function
speculatively even before a control condition is evaluated (code speculation) [62].
An alternative approach includes the use of exploration algorithms (e.g., genetic al-
gorithms and particle swarm optimization) to evaluate a variety of solutions. These
methods are more efficient since they can find a combination that is more specific
for the application but are time-consuming [63].

Executing memory operations in the same clock cycle requires that such opera-
tions are independent and there are no conflicts when accessing the data. Conflicts
can be avoided by accessing different memory resources or by having memory re-
sources with multiple ports. However, the latency of memory operations depends
on where the data are allocated. Accesses to local data have fixed latency (one or
two cycles depending on the latency of the memory) and the corresponding memory
operations can be considered as other operations.When the data are allocated outside
the accelerators, the HLS engine must follow safe assumptions to guarantee correct
execution in all cases: the corresponding data could be allocated off-chip or multiple
accelerators can access the same memory creating contention and additional latency.
Therefore, the scheduling algorithm must assume the external memory operations
have unknown latency [64]. The same case applies to operations corresponding to
unpredictable components, like data-dependent submodules. In case of operations
with unknown latency, the scheduling uses latency-insensitive protocols [22] to
guarantee that the computation proceeds only when the operation is completed.
However, executing multiple operations with variable latency in the same clock cy-

1 A basic block is a sequence of instructions with a single entry-point and no internal branches.
The basic block definition is induced by the control constructs contained in the code.
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cle is complex. Therefore, these operations are generally serialized by most of the
HLS engines. This serialization may become inefficient when trying to optimize the
latency or guarantee the worst-case execution time. Designers proposed approaches
for dynamically scheduling the operations. While this concept is highly efficient, the
area overhead for implementing the control logic is high and the dynamic scheduling
is usually limited to specific cases, like memory-related operations [65, 66].

5.2 Binding and Resource Optimization

After introducing timing inside a functional specification, it is necessary to determine
which physical resources are effectively used in the target microarchitecture. The
following binding phases aim at reducing the amount of hardware modules by
defining the possibilities of resource sharing [67]. This process includes also the
definition of thememory architecture, including the partitioning of the data.However,
this aspect is discussed in Section 5.3. The binding phase includes the following steps:

• functional-unit binding defines which functional unit is used to execute each
operation of the specification. It must ensure that each operation is assigned to a
functional unit without conflicts, i.e., different operations are not executed by the
same functional unit in the same clock cycle.

• register allocation and binding determine which data values cross the cycle
boundaries and must be stored locally into temporary registers. It also determines
how many physical registers must be effectively used (exploiting reuse whenever
possible) and how the data values are assigned to them [68].

• interconnection binding determines how to connect the datapath resources, which
resources are needed to multiplex the signals in case of different paths coming
to the same input port of a resource (either functional unit or register), and the
corresponding control signals to generate in each clock cycle to correctly route
the signals based on the operations to execute.

Several aspects may impact the final implementation, demanding specific ap-
proaches. For example, in case of process variation, scheduling and binding must be
considered together with statistical approaches. Execution paths in the specification
may have a different probability of execution, and most-executed paths could be
more optimized in terms of latency and resource usage. Operations executing in
the same clock cycle require distinct functional units to avoid conflicts. Conversely,
operations executing in different clock cycles are compatible and, if they are of the
same type, they can share the same functional units to reduce resource usage. The
resource binding problem requires the definition of this set of compatibilities.

Register binding is similar to the process of assigning temporary values to pro-
cessor registers. The main difference is that, in HLS, there is the possibility of
customizing the microarchitecture to add more registers when needed. So, register
spilling is not necessary. However, it is still necessary to compute the liveness of each
variable to determine when different values are compatible and can share the same
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register. Liveness analysis determines in which points each variable contains a valid
value that must be stored in a register. The liveness of a variable E is defined as the
interval of time (and, thus, the corresponding clock cycles) between the definition of
E and its final use. This interval defines the time for which the value must be stored in
a register. Given this definition, two variables D and E are compatible if their liveness
times are not overlapping. Compatible variables can be stored in the same register
because there will be never amoment when both values are needed. Liveness analysis
is thus a critical step in register binding. In SSA-based representations, each version
can be considered a new variable and the liveness intervals of these new variables
have no interruptions. The register binding can be definedmore easily and efficiently.
Register binding must also consider the technology for implementing the registers
and their impact on the final power consumption of the circuit. For this reason,
architectures with multiple supply voltages have been proposed and register binding
has been adapted for these cases. Special registers, like razor flip-flops [69], are used
to tolerate variations in the latency of the operations to avoid timing violations.

Both these problems are usually represented with a compatibility graph. Two
operations or two values are compatible (i.e., they are connected with a compatibility
edge) when the following two conditions are verified: 1) the two operations can be
executed by the same functional unit or the two variables can be stored in the
same register, and 2) there are no timing conflicts. A compatibility graph is dual to a
conflict graph, and the approach to generate themmust be conservative to guarantee
correctness in every circumstance. Analyses and transformations can remove an edge
from a conflict graph or add an edge to a compatibility graph when the property holds
in every case. A compatibility problem described with a compatibility graph can be
easily solved with clique covering formulations, while the dual conflict problem is
solved with coloring formulations.

This phase must also consider the effects of scheduling on all combined resource
binding problems. For example, executing multiple operations in parallel improves
the execution time but usually requiresmore functional units (since operations cannot
share the same resources) and registers (since multiple values are produced in the
same clock cycle). In addition, resource sharing usually creates multiple paths to the
input ports of both functional units (since different operations may require values
from different sources) and registers (since different variables could be produced
by distinct functional units). When a port receives signals from multiple sources,
HLS engines introduce multiplexers to determine the path active at any given time
and drive the signal values. The controller FSM generates control signals to activate
the proper paths from source to destination in each clock cycle (see Section 5.4).
Resource binding has a huge impact on the number of multiplexers to add. Several
methods have been proposed to consider the impact of interconnections during HLS.
For example, register binding can be combined with port swapping [70]. This
optimization swaps the inputs of commutative operations, aiming at reducing the
number of paths to each port of the units. This reduces, in turn, the number of
multiplexers that are needed.
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5.3 Definition of the Memory Architecture

Nowadays, memory optimization is one of the most important aspects of accelerator
design since these components need to process a huge amount of data. However,
the accelerators can store on chip only a limited amount of data, usually orders of
magnitude less than the total amount. When accelerators operate on more data than
can be stored on-chip, they also need to interface with an external memory (e.g.,
DRAM). This must be taken into account when defining the microarchitecture to
avoid executing operations when the data are not available yet but also to hide the
communication latency. Latency-insensitive protocols in the interfaces guarantee
correct execution in case of unpredictable latency. Multiple memory channels and
ping-pong buffers can hide the latency in accessing the data by parallelizing the
data transfers and partially overlapping computation and communication. In case of
predictable computation, pre-fetchers can anticipate data transfers. These solutions
are especially applied in specific application domains, like DNN accelerators, where
the structure of the layers can provide information to optimize the architectures. For
example, having information on the layers allows optimizations to share buffers and
reduce resource utilization with liveness and time span analysis.

CPU

DMA 
Engine PLM

TLB

DRAM

LLC

Cache
Cache

Acc. Logic

Fig. 7 Memory architecture for specialized accelerators: It can feature caches (with the same
principles as CPUs) and private local memories (for fast and deterministic accesses). The elements
can share a last level of cache for better performance.

The huge latency from external memory access can be mitigated using special-
ized memory architectures inside the accelerators, such as caches or private local
memories, as shown in Fig. 7. These components, however, must be co-designed
accordingly with the algorithms and optimizing the corresponding architectures re-
quires a in-depth analysis of the memory behavior of the application. For example,
solutions have been proposed to include specialized caches where each array of the
input specification that is mapped to external memory has its own cache. But the
designers need to apply them only to accesses that can guarantee a certain degree of
temporal and spatial locality. In this way, the accesses to different arrays are executed
in parallel and the caches mitigate the memory access latency as the memory hier-
archy in traditional CPUs. A private local memory is a memory that resides on chip
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and offers fixed-latency data accesses since it has no logic to support misses. Critical
or frequently-accessed data can be placed in private local memories to ensure low
latency access. Thememory behavior of an algorithm is application-dependent, rang-
ing from statically predictable patterns (e.g., stencils for multimedia applications)
to irregular memory accesses (e.g., pointer chasing for graph analytics). Compiler
transformations based on polyhedral models can optimize the memory accesses in
case of predicable patterns. Representing operations with polyhedral models allows
designers to apply affine transformations to make the iterations independent and
extract more hardware parallelism. However, to provide enough memory bandwidth,
these transformations must be combined with propermulti-port memory architec-
tures. Memory IP blocks, like Block RAMs for FPGA or Static RAMs for ASIC,
have a limited number of ports. Such architectures provide the requested data in a
fixed amount of cycles when the accesses are distributed to different ports, i.e. there
are no conflicts. By partitioning memory into separate physical memories, more
data can be accessed simultaneously as more ports are available (memory banking
– see Chapter on “FPGA-Specific Compilers” for more details). The designer must
decide how to partition the data structures at design time and determine where to
store each of them. This is usually a trade-off between predictable memory accesses,
which are possible when the given structure is stored in the local PLM, and size of
the accelerator, which can be reduced by storing more data structures in DRAM.
Then, the design of the private local memories of an accelerator comes with many
other decisions such as how many memory blocks, what sizes should the blocks
be, how can they be arranged to reduce resource usage, and what bandwidth should
be used. It is time consuming for designers to make these decisions manually, so
they increasingly rely on automated design space exploration methods to predict or
estimate the effects of their decisions. For example, the gem5-Aladdin simulator can
be used to explore the design space and inform many memory design choices, such
as to use private local memories, scratch-pads with DMA or caches, or the local
memory size and bandwidth. FPGA prototyping with ESP can be used to explore
and evaluate full systems before ASIC implementations [4].

The cost of memory elements has a significant impact on hardware resources,
limiting the amount of data that can be stored on-chip. However, if two data structures
have non-overlapping lifetimes, the physical memory banks used to store these
structures can be shared as they will be never accessed concurrently. Similarly, if
it can be guaranteed that two data structures, while they may exist at the same
time, are never written concurrently or read concurrently, these structures can be
placed in the same memory bank (but in different memory spaces) and there will
not be port contention. This memory bank sharing can greatly reduce the resource
usage.Mnemosyne is a tool designed to generate an optimized memory architecture
based on a set of characteristics of the data structures and the access patterns that
can be provided by the designers [24]. The tool analyzes such compatibilities and
applies automatic technology-aware transformations (supporting both FPGA and
ASIC technologies) to select the proper physical banks in the given technology
and determines how to share these physical banks when the data structures mapped
on them have disjoint lifetimes. Mnemosyne encapsulates the memory banks in
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Fig. 9 Daisy-chain memory architecture to support the dynamic resolution of memory addresses
in Bambu [33, 44].

lightweightmemory interfaces that translate the logical requests to the data structures
into physical requests to the generated bank configuration (see Fig. 8)z.

Irregularmemory accesses are often data dependent or require dynamic resolution
of the pointers. These operations are complex when executed in hardware because
of the limited flexibility and only few HLS tools support memory architectures with
dynamic pointer resolution. For example, Bambu builds a daisy-chain architecture
on top of alias-analysis results, as shown in Fig. 9. The memory allocation step
resolves the pointers, i.e. converts them into classic memory operations, when the
set of possible target data structures is limited to one. Such operations are later
directly connected tomemory that stores the corresponding data structure, potentially
increasing the parallelism on memory operations. Operations with pointers that
cannot be “resolved” are connected in daisy-chain with the potential memories.
At design time, the HLS engine assigns a specific memory address to every data
structure and, in turn, the associated memory space both on-chip and off-chip.
At run time, when an address is propagated through the daisy-chain, only one
memory will be activated by the request. In particular, when the address refers
to data allocated off-chip, the request reaches the external memory interface and
is sent to the corresponding memory controller. The scheduling phase can further
distribute the memory accesses to hide the latency of memory transfers especially
when accessing the data off-chip.

Latency-insensitive protocols enable the creation of latency-tolerant architec-
tures, called elastic circuits [71] or dynamically-scheduled architectures [72]. These
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architectures can parallelize memory accesses in a way similar to CPU out-of-order
execution of the instructions [73] but may have high hardware costs.

Multithreaded software using libraries such as Pthreads or OpenMP can be syn-
thesized into parallel hardware [74]. However parallel hardware often attempts to
access the same memory at the same time, resulting in contention and delay. To
hide the latency of memory requests and reduce the resource usage of the “hardware
threads”, designers can interleave the hardware execution of different functions as
done in software threads when resources are busy [75]. Each hardware thread can
have its own private memory with a banked architecture.

Memory allocation techniques can map data onto private local memories and
caches based on the dynamic memory requirements. Designers propose overlay
components to increase the flexibility of the FPGA-based systems. For example,
Intel recently proposed an FPGA overlay for Neural Network (NN) inference that
can support different NN architectures without reconfiguring the logic cells but
changing only the configuration of the component. Supporting these components
requires additional HLS compilation steps to generate the overlay configurations
as a set of software-like microinstructions. These configurable layers can also help
isolate the computation and the outstanding memory requests for security reasons.

Other flexible approaches include systolic array architectures. These architec-
tures are becoming popular for deep neural networks thanks to their flexibility and
scalability. Gemmini is a representative example of such architectures [76]. It in-
cludes an array of “simple” processing elements, which perform MAC operations
and rounding bitshifts. The PE array can be configured statically or dynamically
to execute different dataflows. The surrounding memory architecture enables full
utilization of the MAC units and can be customized with information coming from
HLS.When performing operations on the PE array, the data are moved from themain
memory to the on-chip memories, and the array is configured to execute the given
dataflow. Ping-pong buffers are used to overlap computation and communication.
The same optimizations described above (multi-port memories and distribution of
the accesses to avoid conflicts) can be applied to optimize the architecture. Designers
must explore similar trade-offs between more banks for higher throughput and fewer
banks for better wiring and physical constraints.

5.4 Creation of the FSM Controller

After defining the complete microarchitecture of the accelerator, the HLS engine
must define the control part, i.e. the component that determines the control signals
for the datapath in each clock cycle. This part is modeled as a deterministic finite-
state machine (FSM). An FSM is a directed graph where each node represents a
control state and the edges are the transitions from one state to another. Each control
state contains the set of operations to be executed in the corresponding clock cycle,
along with the control signals for the datapath resources (e.g., multiplexer selectors
and register write-enable signals). For each operation to execute on a given functional
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unit, the FSM determines the paths for providing the input values to the functional
unit and the results to the next resource (either another functional unit in chaining
or a target register). Based on the scheduling and the evaluation of the conditions in
the datapath, the control state determines which transition to activate, i.e. which is
the next control state to execute.

The controller FSMmanages not only the execution inside the accelerator but also
the system-level synchronization with external components. This aspect is relevant
especially for control-dominated applications (where the accelerator’s execution can
vary based on external signals) and streaming architectures (where data availability
can change the accelerator dynamics). In these cases, the controller must receive
additional control signals from the rest of the system to determine which specific
transitions must be activated inside the FSM.

6 RTL Generation and System Integration

After the HLS engine defines the microarchitecture of the accelerator (both datapath
and controller), the last phase produces the HDL descriptions for the subsequent
logic synthesis and the auxiliary files for system-level integration.

6.1 Code Generation, Evaluation, and Verification

Code generation produces common HDL languages like Verilog, SystemVerilog,
and VHDL. Some components may require target-dependent descriptions to be
compatible with synthesis tools. For example, Bambu generates slightly different
descriptions of the internal memories when targeting different FPGA vendors. FPGA
synthesis tools may infer these components in different ways. Similarly, targeting
ASIC technologies requires to instantiate the vendor-specific descriptions of the
proper Static RAMs. For example, Mnemosyne provides an abstraction to low-level
details. The designer is only required to provide a wrapper around the specific
SRAMs to match the standardized signal descriptions.

In this phase, many tools (e.g., Xilinx Vivado HLS and Bambu) provide early
estimations on the hardware cost of the design. While complete synthesis can pro-
vide more accurate results, this process is time-consuming and not feasible when the
designer needs to explore many alternatives before finding the most favorable imple-
mentation. These estimations are based on different methods, including cumulative
costs of single resources, linear regressions, and graph neural networks to include
feedback from actual synthesis steps [77].

Once the design has been finalized, the designers also need to verify that the hard-
ware execution produces the expected results. Indeed, errors can be caused by incor-
rect language specifications, misuse of synthesis directives, wrong connection of the
components, or bugs in the HLS tools.While formal verification is a well-established
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step in logic and physical synthesis, this approach requires reference and current de-
signs to be described in hardware languages. However, in case of HLS, the input
code is usually a software-level, untimed specification. Therefore, simulation-based
approaches remain the preferred solution for HLS verification [78]. Heterogeneous
architectures exacerbate these verification issues for the application programmers,
especially when the computation is distributed across software and hardware tasks,
and the accelerators are generated with different methods (e.g,. pre-existing IPs,
manually-designed components, andHLSmodules createdwith different toolchains).
Hardware/software debugging allows designers to backtrack the origin of a bug to
the exact point of failure. Since the complexity of architectures is increasing, bugs
could be exercised after a long execution time. Therefore, in case of system-level
verification, simulation-based approaches have been progressively replaced by on-
chip debugging. Many FPGA vendors, for examples, provide automated methods to
trace internal signals, exposing them to the user to identify execution anomalies. Ad-
vanced methods automatically identify discrepancies between hardware execution
and the expected behavior (precomputed in software), restricting the area where the
error originated [79]. These approaches are particularly efficient in FPGA thanks to
the reconfiguration of the logic. The designer can implement a design with on-chip
monitors, execute it directly on the target system to verify the behavior, and modify
the functionality in case of problems. For this reason, FPGA prototyping is largely
used also in ASIC design flows to emulate the functionality of the entire chip and
test the interaction with the software, including the Operating System (OS) [80].

6.2 System-Level Integration and Optimization

The HLS-generated components require integration with other pre-existing com-
ponents and the rest of the system. For example, accelerators that interact with
off-chip memory require an interface to the physical memory controller. Many
vendors provide synthesizable IPs that hide the specific details of the controllers,
exposing a standard interface to the accelerators. Such interfaces are usually based
on standardized protocols, like AXI4, OpenCAPI, or Wishbone.

Hardware/software integration requires the proper software stack to be designed
to invoke the accelerator from the software code and exchange data with it. The ESP
platform is a paradigmatic example of seamless integration of HLS-generated com-
ponents with a standard Operating System (OS) [4]. From the application viewpoint,
the user interacts with the accelerator through two functions for memory allocation
and deallocation, and one function to start the accelerator’s execution. At a lower
level, the interaction is based on standard OS device drivers that are automatically
generated during the accelerator design flow. The drivers perform I/O operations
on memory-mapped registers to configure the input ports of the accelerators and
control the execution. An accelerator’s termination signal is connected to a standard
interrupt line. When the accelerator completes its execution, it triggers the interrupt
routine that reads the output results from the shared memory or the I/O registers.
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This software stack simplifies the integration of accelerators, minimizing the changes
required to the original application.

Domain-specific libraries can provide abstractions to efficiently create FPGA
systems. For example, Xilinx Vitis AI provides optimized IP cores, tools, libraries,
and models to deploy AI algorithms on the Xilinx FPGA devices. Such abstrac-
tions include interfaces to machine-learning frameworks like Caffe and TensorFlow,
internal model representations for efficient HLS implementations, specific AI opti-
mizations (e.g., model quantization), runtime libraries, and configuration overlays
for the Deep Learning Processing Unit (DPU).2

7 Open and Modern Challenges

This section discusses open challenges that still need to be addressed in HLS and
modern challenges in hardware design that can be efficiently addressed and tackled
with the support of HLS.

7.1 Creation of Domain-Specific Architectures

So far, most of the optimizations focused on improving the computational part of
an accelerator to extract more parallelism and reduce the execution latency, leaving
the memory latency to dominate in the overall execution time. DRAM speed is not
increasing with the cumulative speed of all components (especially in the case of
parallel and/or heterogeneous computing), leading to the so-called memory wall:
the overall performance becomes limited by the latency of the memory accesses.
To address this memory bandwidth bottleneck, specialized and carefully-crafted
memory architectures can help to hide or reduce the latency when accessing the
data. However, this process is complex as it requires several details that are currently
lost in the compilation process. Software programmers usually need little to no
thought to be put into memory management, where hardware optimizations (e.g.,
complex cache hierarchies, bypassing, etc.) hide the latency. In case of accelerators,
the specialization of the memory architectures adds effort to the development time,
both at the software and hardware levels [81]. At the software level, algorithms
need to be reworked to reap the full benefits of a custom memory architecture.
Domain-specific languages, like Spatial, incorporate hardware abstractions to ease
the description of common memory operations and speed up the development of
these accelerators. For example, operations on arrays, tensors, and matrices are
common in scientific and machine-learning applications. Such operations must be
translated into efficient operations regardless of the allocation of the data and the
location/implementation of the memories. At the hardware level, deciding how to

2 The DPU is a configurable engine optimized for convolutional neural network modules.
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partition a software data structure requires many considerations. On one hand, larger
memories are slower, use more power, and use more resources. On the other hand,
the external routing and address calculation logic for a collection of many smaller
memories have the same issues. A middle ground between one large memory and
many small memories exists which minimizes these issues, but finding the right
compromise can be difficult. Automated high-level synthesis can be useful to perform
rapid design space exploration to find a desired trade-off point. Specialized modules
for pre-fetching the data from external memories can hide the communication latency
but require global information on the use of the data. In case of systolic array
architectures, the designers have to carefully define the local memories and the
buffers between themand the processing elements to also coordinate the data transfers
with the off-chip memory. However, this process requires more information than is
available in current HLS flows.

Emerging technologies will play a key role in the design of efficient, secure,
and reliable accelerators. First, integrated voltage regulators will enable fine-grained
power management with dynamic voltage-frequency scaling, while dual-rail mem-
ories will help reduce the static power consumption. In addition, some applications,
like graph analytics, require frequent but irregular memory accesses to off-chip
memory, whose I/O circuitry and refresh activities are responsible for up to 30%
of the system energy consumption (power wall). The specialization of memory ar-
chitectures, in this case, must include emerging memory technologies. However,
many novel technologies, like Hybrid Memory Cube and High Bandwidth Memory
technologies are 3D solutions that can store only few gigabytes of data while DDR4
can store up to hundreds of gigabytes (capacity wall). Architectures that combine
DRAM with non-volatile memory technologies (NVM), which require no refresh,
can store up to terabytes of data but require a careful co-design that involves the
entire stack [82].

Finally, all specializations require modifications to the HLS input languages to
embed more domain-specific information. Domain specific languages (DSLs) will
be used by application engineers to specify the algorithmic core of the computation.
They will be increasingly used to provide rich information to the compiler and
lower-level tools about the high-level semantics of the algorithms. While DSLs can
help describe functional requirements (like the operations among data structures),
additional annotations allow designers to express non-functional requirements or
constraints. For example, Bambu already supports the specification of custom data
allocation via XML files to specialize the creation of the accelerator’s memory
architecture and the simplification of the logic to compute the addresses. However,
a co-design of the accelerators with the algorithm description would allow the
automatic configurations of these steps (see Section 7.2). However, DSLs are usually
hard to be accepted by software programmers and they may create integration issues.
An interesting approach is to use DSL only for specific application kernels embedded
in traditional languages, e.g., with template meta-programming in C++, or for high-
level specifications of specific workloads (e.g., machine learning algorithms)—See
Chapter on “FPGA-Specific Compilers” for more details.
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7.2 Programmability and System-Level Optimization

Hardware/software integration has open challenges for data allocation in the case
of large data sets. Current solutions allow users to allocate data at the software side
and transparently access them from the accelerators; these solutions are processor-
centric. Data are allocated in the memory hierarchy of the processors (see, for exam-
ple, the Intel HARP prototype system) or the accelerator requires efficient methods
not only to manage the data locally but also to hide the latency to access them. The
design of domain-specific accelerators requires the approach to be changed and the
components to be co-designed with the domain-specific memory architecture and
the corresponding allocation policy. To do so, designers need a unified representation
of the software code and the HLS specification to apply holistic transformations at
both sides. Modern compiler representations, like MLIR [83], are gaining attraction
but require specific customization within HLS frameworks. These representations
will enable and ease the integration of specific memory-specific transformations
in the front-end phase. For example, loop transformations will be coordinated with
transformations in the data structures to improve the data accesses based on the
technology of the memories and the location of the data. Rich information about the
data access patterns of the algorithm allows the compiler to extract more parallelism
and embed more intelligence in the memory controllers.

Finally, design space exploration will become more and more important to
offer alternative solutions to the designers. Indeed, a fully-automated approach is
almost impossible to achieve also because the effects of compiler optimizations
and transformations are often application dependent. Therefore, HLS tools have
limited view or control on the synthesis process and no well-established flows or
sequence of passes. Designers must apply transformations, analyze and understand
the results, and derive knowledge for further optimization. This process is the same
as in software compilers for code optimization, where machine-learning approaches
have been proposed for compiler autotuning [84].

7.3 Hardware Security and Data Protection

FPGA-based systems are typically used in applications and algorithms, like machine
learning, that are rapidly changing. The flexibility of FPGA systems is also used
by Cloud Service Providers to reuse the resources across multiple users (tenants).
However, this opens up the possibility that malicious providers can copy the design’s
intellectual property or users can steal sensitive data of other applications [16].
While protection methods exist for specific cases, their manual application becomes
unfeasible for large systems due to their cost or for non-expert designers due to their
complexity. Also, the heterogeneity of the system can introduce new vulnerabilities
due to the interaction of components that are not designed at the same time. For
example, accelerators have fixed functionality, therefore it is not possible to perform
code injection. However, a malicious attacker can launch software-based attacks
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by providing configuration parameters or system configurations that exploit known
vulnerabilities in single components or their interactions.

Physical attacks can exploit the weaknesses of a given hardware implementation
for stealing private data (information leakage). For example, side-channel attacks
can extract secret data by analyzing non-functional effects (like power consumption
and timing characteristics) of the device execution. Accelerators can mitigate side-
channel attacks by scrambling the execution to make a uniform power consumption
or ensuring constant execution time to thwart timing attacks [85]. The modular HLS
flow can accommodate additional passes to automatically integrate these extensions
and co-optimize them with the accelerator logic.

Another critical issue is IP theft: designing heterogeneous systems is a complex
and expensive process. The outcome should be protected from reverse engineering
and unauthorized copying, which can create billions of dollars of economic damages
for the semiconductor design houses. While designers are more sensitive to this
problem for ASIC, it is finding an increasing interest also in the FPGA and HLS
community. First, designers must guarantee that outsourcing the execution of their
designs to third-party cloud providers does not leak details about their algorithms
or implementations. Then, embedded FPGAs are also used in several integrated
circuits to host specific functions to hide, where HLS identifies and implements such
functions to fit into the given logic [86]. Such security features, like watermarking
and obfuscation can be introduced on the top of theHLS results [48, 47]. For example,
TAO applies semantic obfuscation during HLS to the design of an accelerator that
is able to thwart reverse engineering.

8 Conclusion

Thanks to the possibility of reusing logic resources across multiple applications
and users, FPGA-based systems are becoming a de facto standard to implement
rapidly changing workloads, like modern machine learning applications. High-level
synthesis is a key enabling technology for the creation of such systems. Non-expert
designers can use HLS to create specialized accelerators directly from high-level
specifications, focusing only on the algorithmic development. HLS then creates and
optimizes the hardware components based on the user’s requirements hiding most
of the effort from the designers. This chapter provided an overview on the HLS
process, describing the existing approaches for the different HLS phases: the analy-
sis of the input specification, the creation of the accelerator microarchitecture, and
the generation of the output files. It also discussed open challenges, like the cre-
ation of domain-specific architectures and the programmability issues, and modern
challenges, like security concerns, that can be addressed with the support of HLS.
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