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PV module fault diagnosis based on
micro-converters and day-ahead forecast

Abstract—The employment of solar micro-converter al-
lows a more detailed monitoring of the PV output power at
the single module level; thus, machine learning techniques
are capable to track the peculiarities of modules in the PV
plants such as regular shadings. In this way it is possible to
compare in real-time the day-ahead forecast power with the
actual one in order to better evaluate faults or anomalous
trends which might have occurred in the PV plant. This
paper presents a method for an effective fault diagnosis;
this method is based on the day-ahead forecast of the
output power from an existing PV module, linked to a micro-
converter, and on the outcome of the neighbor PV modules.
Finally, this paper proposes also the analysis of the most
common error definitions with new mathematical formu-
lations, by comparing their effectiveness and immediate
comprehension, in view of increasing power forecasting
accuracy and performing both real-time and offline analysis
of PV modules performance and possible faults.

Index Terms—Fault diagnosis, micro-inverter, PV sys-
tem, day-ahead forecast.

I. INTRODUCTION

THE study of the effective configuration of photovoltaic
(PV) systems and their optimization has continuously

attracted scientific and industrial research in the last decade.
Moreover, since Renewable Energy Sources (RES) are inter-

mittent and variable, the availability of undisrupted operation
is extremely important, especially in view of operation and
maintenance (O&M), among many purposes.

Generally speaking, distributed module-converter layouts
lead to a higher energy yield by diminishing the effect of
mismatching and partial shading: recently, maximum power
point tracking (MPPT) efficiency was increased at the module
level by using DC-DC power optimizers [1] and sub-module
PV systems such as DC-AC micro-inverters connecting a
single PV module [2] to the electrical grid or in island mode
[3].

However, the study of PV systems, along with their spread,
has been facing also the problem of plants which were out
of service due to single components failure [4], and the
overall degradation of performance [5] may require a statistical
analysis of the real-time data for supervision and monitoring
[6].

Therefore, distributed electronics is also helpful, at module
and sub-module level, in monitoring the PV production and
for diagnostic purposes. In fact, the availability of micro-
converters directly connected to several PV modules, usually
with the same characteristics, would also allow an easy but
detailed comparison among their performance and working
status.

Furthermore, a suitable power forecast, performed in a
prognostic way, can be employed for the identification and
predictive maintenance of an equipment which will no longer
fulfill its intended function. Such prediction is usually executed
starting from the health state of the component (in particular
the PV module) and taking into account its past history and
future operation. Typically, these methods are largely classified
as model-based, data-driven [7] and hybrid [8], respectively.

In particular, model-based methods adopt mathematical
relationships of the degradation process in order to forecast
degradation state [9]. As a matter of fact, data-driven methods
are often used when an explicit model is not available, but
there are enough historical data. These are statistical based
models, learning trends from the amount of historical data
[10].

Among data-driven models can be included: Autoregressive
Moving Average techniques [11], Relevance Vector Machines
[12], and Machine learning techniques, such as Artificial Neu-
ral Networks (ANNs), which were often used in the prognostic
field [8], [12], [13]. In particular, feedforward ANNs have
been used for the prediction of rotating machineries [14] and
Lithium-ion batteries remaining useful life (RUL) [11], and
Echo State Network (ESN) have been used for the Fuel Cells
failure diagnostic [15]. Finally, hybrid approaches combine
physics-based models of the degradation process with the use
of historical data collected from degrading components [10].

Moreover, most of the available bibliographic sources for
prognostics deal with different methods, mainly focusing on
predicting and estimating the RUL of a specific system or
component. However, the number of problems and possible
faults of PV systems may depend also on different plant
layouts and typology of installation, i.e. building integrated
photovoltaics (BIPV) [1], [16] or large PV plants [17]–[20].

Given that the forecast horizon together with the temporal
resolution (time sampling) strongly affect the prediction ac-
curacy, forecasting models with prognostics purposes should
take into account the different sources of uncertainty affecting
predictions [21] such as:
• randomness in the equipment future degradation path, due

to the intrinsic stochastic nature of the degradation pro-
cess and the unknown future operation and environmental
conditions;

• inaccuracy of the forecasting model;
• measurement noise or offsets;
• reliability of the monitoring system (data transmission).

This paper aims to present a method for PV system
monitoring at the module-level, by adopting the day-ahead
output power forecast of existing PV modules, connected to
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Fig. 1. Flowchart for the “faulty samples” detection and the Diagnostic
Dashboard composition.

a micro-converter, for an effective fault diagnosis purpose.
Additionally, this paper proposes the analysis of the most
common error definitions employed in PV forecasting, by
comparing their effectiveness with new mathematical formu-
lations of performance indexes aimed to provide an immediate
comprehension of the faulty status at the PV module level.

This paper is structured as follows: first of all, in Section
II the Daily Diagnostic Dashboard is presented, where a
new strategy for the real time data analysis coupled with
the day ahead power forecast is showed with maintenance
purposes. Then, in Section III the day-ahead PV output power
forecasting method by means of ANN is presented. In Section
IV a list of error definitions usually adopted in PV forecasting
is presented and new ones are proposed in view of maintenance
purposes; Section V presents the real case study here consid-
ered for validation. Finally, results of the proposed method are
shown in Section VI and comments and conclusions are drawn
in Section VII.

II. THE DAILY DIAGNOSTIC DASHBOARD

The methodology which has been applied for monitoring
and diagnostic purposes entails two distinct steps concerning
the PV module output:

1) real-time monitoring analysis;
2) offline analysis of the recorded data.

In particular, the first step of this diagnostic method leads to
the “daily diagnostic dashboard” composition, which provides
an immediate information about the status of the monitored PV
modules by comparing in real-time the actual power with the
forecast and the actual trends of the neighbor PV modules.
Instead, the off-line analysis is performed at the end of the
day providing useful indicators both in determining a faulty
or anomalous trend and for the employment of reliable data
in the continuous training of the forecasting model, as shown
in Section VI.

A. The real-time monitoring analysis
The real-time monitoring analysis follows the flowchart

reported in Fig. 1 and it is based, first, on the comparison
between the measured power and its forecast, and secondly,
between the measured power of similar modules, named as
“neighbours”. In particular, a different power prediction is
computed for every PV module/converter: estimation of the
power forecast is presented in detail in Section III.

The implemented procedure includes the following steps:
1) The predicted power P i

p,t in the t−th time sample is
calculated for each i−th PV module/converter, with the
related sample standard deviation Si

p,t (as defined in
Section III, eq. 3).

2) The measured power P i
m,t of each i−th PV mod-

ule/converter is recorded: this is the mean power measured
in the t-th time sample (here a time resolution of 1 minute
is considered, but for the sake of generality, a different
sampling can be considered by averaging the measured
values over the specific time interval).

3) The actual power P i
m,t is compared to the correspondent

forecast P i
p,t for each i−th PV module/converter. When

a module is not working properly, usually its measured
power falls significantly below the forecast, and this may
indicate anomalies. Therefore, if the following condition
is verified for a single PV module/converter:

P i
m,t < P i

p,t − Si
p,t (1)

a “1st level” alert is set on the status of the relevant
module.

4) If the 1st level alert condition is verified, the following
check is performed between the given diagnostic indicator
ε calculated in the time interval ∆t of the i−th anomalous
module and the k−th neighbours:

εi∆t > εk∆t,∀k 6= i (2)

where ε is any of the diagnostic indicators defined in
Section IV and the here considered ∆t is 15 minutes;
if this last condition is verified a “2nd level” alert is set
on the status of the related micro-converter.

The status of all the PV modules is determined on the basis
of the flowchart which has been explained, and a different
color on the daily diagnostics dashboard is given according
to the level of the alert. If the 1st level alert is reached
the background of the relevant micro-inverter graph on the
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TABLE I
CONFUSION MATRIX OF THE POSSIBLE ALERTS COMBINATION

On-line Off-line analysis

analysis 3rd level 4th level

1st level No fault Soft fault

2nd level Soft fault Hard fault

dashboard is yellow colored, and the color is kept even if the
anomalous trend is subsided. In the case of a faulty situation
is ascribed to the PV module, a 2nd level alert is given and the
background of the related micro-inverter graph is red colored
on the diagnostic dashboard.

B. The off-line analysis

The off-line analysis is performed at the end of the day on
the basis of the diagnostics indicators presented in detail in
Section IV. It follows these steps:

1) daily diagnostic indicators calculation for each module, as
presented in Section IV;

2) mean values µi and standard deviation σi calculation of
the diagnostic indicators for all the PV modules, excluding
the i-th one, and setting of the related µi+σi and µi+3σi
thresholds;

3) if the diagnostic indicators of the i-th module are falling
below the µi + σi threshold, then the module/converter is
considered “healthy”;

4) if the diagnostic indicators of the i-th module/converter
are falling between the µi + σi and µi + 3σi thresholds,
then the i-th module is given a 3rd level alert;

5) if the diagnostic indicators of the i-th module are greater
than the µi + 3σi threshold, then the module will receive
the 4th level alert;

6) matching between the alerts given by the diagnostic indi-
cators (3rd and 4th level alert) and the generated real time
alerts (1st and 2nd level alert), according to the confusion
table reported in Table I:
• the combination of a 1st level alert and 3rd level

alert determines a “No fault” condition for the given
module/converter;

• the combination of a 2nd level alert and 4th level alert
determines the “Hard fault” condition for the given
module, requiring specific maintenance;

• the remaining combinations will result in a “Soft
fault” condition: the module has no need for main-
tenance yet, however recorded data are not reliable
for future uses in model training, as detailed later in
Section VI-C.

The faults description is provided in Section V; an example
of the real-time and off-line analyses will be presented later
in Section VI.

It is worth mentioning that the selected thresholds have been
defined and tested considering the behavior of the modules in
the whole year 2017, with particular reference to those days
presenting anomalies, as described later in Section V and VI.

Fig. 2. PHANN forecasting method.

III. FORECASTING METHOD

The day-ahead forecast of the PV output power can be per-
formed adopting several methods such as physical, statistical
or hybrid ones. Although it can be achieved in many ways,
hybrid methods proved their effectiveness because they merge
in a unique method the upsides of the others [22].

Statistical methods, i.e. based on Artificial Neural Network
(ANN), rely on the historical data measurements (weather
conditions and produced power) for building up a suitable
model of the plant. These have shown the main issue of
committing higher percentage errors in specific hours of the
day, in particular early in the morning and in the sunset hours
[23].

Moreover, the so called Clear Sky Solar Radiation Model
(CSRM) [24] is a physical model that computes the solar
irradiance available without clouds for any tilted surface,
whatever oriented, at a given location.

As shown in [23], when CSRM is included as an additional
input of the ANN, it significantly reduces the error by defining
the maximum hourly quantity of the solar irradiance and the
expected daily hours of sunlight available for any specific
location. This hybrid model, here adopted, is the Physical
Hybrid Artificial Neural Network (PHANN).

A. Physical Hybrid Artificial Neural Network forecasting
method

As shown in Fig. 2, PHANN forecasting method adopts
ANN ability to learn from historical data the existing rela-
tionships among the weather forecast and the measured output
power of the PV plant. Besides, in order to enhance the
forecasting abilities, the deterministic solar irradiance under
clear sky conditions (CSRM) is provided as an additional
input.

Table II shows the complete list of the parameters, provided
by the weather forecast service, which are employed as the
input neurons together with the CSRM. In the end of this table
also the DC output power, which is the forecast provided by
the output neuron of the PHANN, is reported.

Learning phase is a very important step in ANN-based
methods and many issues are related to it, as reported in
[25], [26]. In fact, PHANN method needs is trained with
the supervised learning. Supervised learning undergoes the
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TABLE II
PARAMETERS EMPLOYED IN THE ANALYSIS

Symbol Quantity Unit of
Measurement

d day of the year #

h hour of the day #

TDB dry-bulb air temperature ◦C

GHI global horizontal solar irradiance W/m2

GPOA global solar irradiance W/m2

on the plane of the array

Gcs
POA clear-sky global solar irradiance W/m2

on the plane of the array

Ws wind speed m/s

Wd wind direction degrees

Ap atmospheric pressure hPa

Rf rainfall mm

Cc cloud cover %

Ct cloud typology Low/Mid/High

Pout DC output power W

matching between the historical input (weather parameters
forecast and CSRM) to the actual output (measured DC output
power). Available historical data (days of measurements) are
divided into two sub-datasets, with different aims:
1) training set: used by ANN training procedure to learn

relationships between input and output;
2) validation set: used by ANN training procedure to check

if the model of the relationships is right.
The amount of data which have to be included in the

different subsets have to pass through a sensitivity analysis,
which has been previously performed by the authors, as
detailed in [26].

Therefore, assuming a database of historical measurements
continuously updated day by day, 90% of the available days
are picked randomly to be used during training and the re-
maining 10% are for the validation set. This approach allows a
continuous improvement of the prediction accuracy, as shown
in [25].

Moreover, since the real power measured in the previous
days is used to train the ANN, the forecasting model can be
employed either for the whole PV plant or for each single
module, as in the case described in this paper, where the use
of micro-converters provides the availability of detailed power
measurements from each single module.

B. Ensemble forecast

It has been proved in literature [27] that similar network
models can produce slightly different results even if trained
on the same dataset. This is due to the stochastic nature of
ANN. Therefore, it was demonstrated that it is possible to
reduce the forecasting error, by averaging the single output xj
of several parallel ANNs [28].

Thus, the above described process for PHANN training can
be repeated on a number NE of parallel networks (trials) in

Fig. 3. Ensemble forecast Pp,t of a single module output power with the
relative standard deviation Sp,t in a generic given day.

order to produce an average forecast x for each time sample,
which is the mean value of all xj samples.

Moreover, due to the stochastic base of the PHANN, also the
sample standard deviation Si

p,t of all the trials can be computed
(in each time sample t and for each module i) as:

Si
p,t =

√∑NE

j=1 (xj − x)
2

NE − 1
(3)

Eq. 3 has the expression of the sample standard deviation,
as the mean of the population of all the trials is not known a
priori.

In this paper, the daily time series of x represents the PV
output power profile Pp and it is referenced as the daily
“ensemble forecast”. In Figure 3, the violet area Pm,t is the
actual power of the PV module measured minutely by the
micro-inverter “A-02”; on the left top corner of the picture,
real time diagnostic indicators are reported. as detailed in the
next section IV.

IV. DIAGNOSTIC INDICATORS

Because of the above mentioned intents, a steadily com-
parison between the actual energy and the expected one is
extremely important in order to continuously check the system
operation. Hence some statistical indicators, gathering the
main features of the expected output power, provide an useful
support for a reliable comparison with the actual power. As
it is more likely to have a not null difference between the
expected power and the actual one, a simple formulation of
the error committed in the t-th sample of time is easy to
find. Things become harder in finding a usable error definition
which could be broadly used not only for diagnostic purposes
but also which could give an effective assessment on the
accuracy of the forecast at a glance. These indicators assess the
forecasts accuracy providing a mathematical relation between
the expected value and the actual value in the same sample of
time.
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The error et made in the t-th sample of time is the starting
definition given as the difference between the values of the
power measured Pm,t and the forecast Pp,t [29]:

et = Pm,t − Pp,t (W) (4)

From the expression of the absolute value |et|, most com-
monly used error definitions can be inferred [30] [31], such
as:
• the well-known Mean Absolute Percentage Error

(MAPE):

MAPE =
1

N

N∑
t=1

∣∣∣∣ et
Pm,t

∣∣∣∣ · 100 (5)

where N is the number of considered time samples: in
this analysis it is calculated for a single day;

• the Normalized Mean Absolute Error NMAE:

NMAE =

∑N
t=1 |et|
N · Pn

· 100 (6)

where the percentage of the absolute error is referred to
the rated power Pn of the PV module, instead of the
hourly measured power Pm,t.

• the Weighted Mean Absolute Error WMAE which is
based on total energy production:

WMAE =

∑N
t=1 |et|∑N
t=1 Pm,t

· 100 (7)

• the Normalized Root Mean Square Error nRMSE is
based on the maximum power output max(Pm,t):

nRMSE =

√∑N
t=1 |et|

2

N

max(Pm,t)
· 100 (8)

However, the daily evaluation indexes, expressed in (6), (7)
and (8), could significantly differ, with WMAE and nRSME
often showing values above 100%, thus being not able to
provide a complete information “at a glimpse” on the accuracy
of the prediction.

Starting from these assumptions, and in view of a more
useful summary evaluation, additional performance indexes
are proposed, aimed to provide a value between 0 and 100% of
the forecast accuracy [32]. Therefore, the Envelope-Weighted
Mean Absolute Error, EMAE is defined as:

EMAE =

∑N
t=1 |et|∑N

t=1max(Pm,t, Pp,t)
· 100 (9)

where the numerator is the same as WMAE, while the
denominator is the sum of the maximum between the forecast
and the measured power.

Additionally, a new diagnostics indicator is here introduced.
It draws from the Performance Ratio PR% coefficient as it is
expressed in the IEC 61724 norm [33]:

PR% =

∑N
t=1

Pm,t

Pn∑N
t=1

GPOA,t

GSTC

· 100 = (10)

=

∑N
t=1 Pm,t∑N

t=1GPOA,t

· GSTC

Pn
· 100 (11)

This indicator gives a good evaluation of the exploited energy
from the PV system, by comparing it with the solar irradiance
measured. Instead of the actual irradiance on the plane of
array (GPOA) which is not always an available parameter,
we adopted the following Objective Mean Absolute Error
(OMAE):

OMAE =

∑N
t=1 |et|∑N

t=1G
cs
POA,t

· GSTC

Pn
· 100 (12)

where:
• Gcs

POA,t is the solar irradiance on the plane of the array
given by the clear sky solar irradiance model (CSRM) as
it is described in [24];

• GSTC is the solar irradiance at standard test conditions
(equals 1000W/m2).

From (12) it is possible therefore to rewrite the OMAE
highlighting the existing relationship with the former indicator
NMAE:

OMAE = NMAE · GSTC∑N
t=1G

cs
POA,t

·N (13)

As it can be seen in (13), the relationship between NMAE
and the new diagnostic indicator OMAE is set. Finally, it is
noticeable how EMAE and OMAE are both limited between
0% and 100%, providing an immediate indication on the
magnitude of the daily diagnostic error, which is more likely
related to a fault occurrence.

V. CASE STUDY

In view of the validation of the proposed procedure, reported
in the next Section VI, here we will use experimental data
collected in the year 2017 at Solar Tech Lab, Milano, Italy.
The whole PV plant is constituted by 21 silicon modules with
different features; all the PV modules are facing South (0◦

Azimuth) and lay on fixed structures which are tilted at an
angle of 30 degrees, (see Fig. 5). The maximum power point
tracking is guaranteed by the micro DC-AC solar converters
which are installed under each module, as described in [26].
The electrical parameters of the PV modules are collected
remotely by the monitoring system; thus the maximum DC
power values are recorded minutely.

For example, if we consider Fig. 4, it is possible to notice
that the PV module connected to the micro-inverter “i85-87”
had some problems (the DC output power from the PV module
is constantly equal to 0 W). This faulty behavior can be either
related to a fault which occurred in the data transmitter or
to the DC-AC converter. On the other hand, regular partial
shadings occurring in the morning and in the afternoon can be
easily recognized in the different output of some PV modules.

VI. EXAMPLES AND DISCUSSION

In the previous Section II, a dual-step diagnostic method
was presented. Here we present and discuss the results ob-
tained by applying the proposed approach on measured data
from the experimental plant described in the previous section.
In particular, an example of the “daily diagnostic dashboard”
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Fig. 4. DC output power of 21 PV modules, recorded at Solar Tech Lab
during the 6th May 2017, with faulty samples for the converter i85-87.

Fig. 5. Solar Tech Lab picture on 13th April 2017 afternoon, with
shadings of the railings on the PV modules.

is presented, showing real-time alerts for 15 specific micro-
inverter PV-module status for a given day; then, the related off-
line analysis is presented for the same modules. In addition, we
will illustrate the acceptance criterion of the recorded sample
in view of the forecasting model training, on the basis of the
daily diagnostic indicators scored by each micro-inverter PV
module set.

A. Real-time monitoring
An example of the Daily Diagnostic Dashboard for 13th

April 2017 at 4:45PM is provided in Fig. 6. It can be noticed
that PV modules connected to micro-inverters “C-03” and
“A-05” are colored differently because of different alerts. In
the first case, the actual power of the PV module provisionally
differed from the forecast because of a temporarily shading,
but returned to normal later. In the second case, the measured

power constantly showed an anomalous lower trend compared
both to the forecast and to the neighbor PV modules.

This analysis brought to the following four scenarios for
each module:
1) “healthy” or “good day”: the online analysis gives no

alerts related to anomalous trend (see, for instance, Fig. 3);
2) regularly “partially shaded day”, that is, either the shading

has been properly forecasted or the neighbor PV modules
show the same trend. For instance, as shown in Fig. 7,
the partially shading in the morning is consolidated in the
historical data of the PV module and the related forecast
clearly shows this well-known trend. This condition still
gives no alert for anomalies;

3) unexpected partially shaded PV module. In this case the
power produced by the PV module diverges from the
forecast and its trend is not consistent with the neighbours.
For example, as shown in Fig. 8, the PV module connected
to micro-inverter “C-03” has been intentionally partially
shaded, starting from 11:45. As reported in Fig. 8, starting
from that moment the measured power differed from the
expected one sufficiently to generate a 1st level alert in
the on-line analysis. In addition, neighbor modules did not
behave in the same way and a 2nd level alert was generated.
Finally, as the shading suddenly stopped at 12:15, the alert
remained on the daily dashboard signaling the anomalous
trend of the system. In this case, for this module, data were
recorded as “soft fault”, as described in Section II and in
Table I.

4) “faulty day”. In this case the PV module output power
has a completely anomalous trend: it differs both from
the related forecast and from the neighbours’ trends. For
example, as shown in Fig. 9, the actual power of module
“A-05” is significantly below the predicted power, and the
computed diagnostic indicators are high: this means that
a 2nd level alert is still on in the current time when the
on-line analysis is performed.
This steep power loss is not associated to the regular ageing
of the PV module; hence this sudden behavior was not
predicted by the forecasting method. In fact, the regular
ageing usually occurs along the years, therefore it can
be predicted by the forecasting procedure described in
Section III, since this is continuously trained on measured
historical data for any specific module. In this case, as
shown later, the complete diagnostic analysis will provide
an “hard fault” alert. Indeed, after this alert, the PV module
was inspected and many cells showed micro-cracks [34] on
the surface, which brought the output power to decrease
20% within a few days.

B. Offline analysis

At the end of the day, given that in the on-line analysis
the alerts referred to possible faults have been already set,
the diagnostic indicators listed in Section IV are collected and
analyzed off-line, as explained in II-B. The mean diagnostic
indicators computed for the considered day are reported as an
example in Table III: the micro-inverters scoring the highest
daily values in all the indicators are “A-05” and “C-03”.
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Fig. 6. Daily Diagnostic Dashboard for real-time monitoring of 15 modules (current status on 13th April 2017, afternoon).

Fig. 7. Regularly “partially shaded” PV module in the morning.

The highest indicator is WMAE which exceeds 100%, while
NMAE is the lowest. Instead it is noticeable that OMAE
and EMAE are greater than the regular ones (the indicators
for the other micro-inverters are below 10% in all the cases),
but they are not exceeding 100% maximum cap even if they
are related to a probable faulty situation.

In particular, an example of nRMSE for the off-line analy-
sis is given in Fig. 10, highlighting the most critical anomalies
with respect to the thresholds defined in Section II-B.

Therefore, on the basis of the off-line statistical analysis, it
is now possible to point out the 3rd and 4th level alerts. By

Fig. 8. Unexpected partially shaded PV module.

means of the alerts combination which has been previously
described in II-B and Table I, the faulty day condition for the
“A-05” inverter is determined as an “hard fault”. Instead “C-
03” inverter is marked as a “soft fault”, which means that it is
not in fault condition yet, but it is likely to have problems in
the future if the same behavior is confirmed in the following
days: thus, if no additional alerts are found later, the module
can be considered healthy, while if a “soft fault” condition
is found for consecutive days, the module will need to be
carefully inspected by an operator in order to verify the cause
of this systematic performance degradation. For this reason,
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Fig. 9. “Faulty day” for the PV module connected to “A-05” micro-
inverter.

Fig. 10. nRMSE off-line analysis with respect to thresholds.

data measured from modules in “soft fault” condition will not
be considered for the training of the model for the next days,
as explained in the followings.

In order to define the method effectiveness based on experi-
mental data, we have considered the measurements of one full
year: in particular, in our analysis 307 days were available for
the whole year 2017 (considering only valid measurements and
removing incomplete data, related for instance to scheduled
maintenance); among these, 38 days turned out to have “soft
fault” alerts (including all the possible anomalies which could
be referred to the PV system, from the module to the PV
converter, before the connection to the grid).

To properly set the threshold for the off-line analysis, a ∆
value can be considered to classify each diagnostic indicator
for the i-th micro-converter, e.g. for the nRMSE it can be
defined as:

∆i =
nRMSEi − µi

σi
(14)

where µi and σi are the values defined in section II-B: as
reported in Fig. 11, the values of ∆ with respect to nRMSE
are usually defined in the range proposed in section II-B,
when a “soft fault” was identified (σ ÷ 3σ). However, the
alerts for these 38 days can be further analyzed ex-post,
as proposed above, to evaluate how many false positive the
method generated: in particular, the operator inspection con-

TABLE III
MEAN DIAGNOSTICS INDICATORS RECORDED ON 13th APRIL 2017

module NMAE nRMSE WMAE EMAE OMAE

A-01 2.83 6.07 11.27 10.15 8.65

A-02 2.27 4.82 8.55 7.91 6.92

A-03 2.25 4.83 8.51 7.86 6.87

A-04 2.28 4.87 8.63 7.97 6.98

A-05 15.78 52.07 132.14 56.93 48.18

B-01 2.83 6.08 11.25 10.14 8.65

B-02 2.26 4.85 8.54 7.89 6.90

B-03 2.17 4.75 8.19 7.59 6.64

B-04 2.22 4.78 8.36 7.74 6.77

B-05 3.33 6.94 13.66 12.03 10.18

C-01 2.84 6.10 11.31 10.18 8.69

C-02 2.26 4.75 8.50 7.86 6.89

C-03 4.29 12.80 17.53 14.96 13.10

C-04 2.25 4.74 8.51 7.86 6.88

C-05 3.33 6.98 13.62 12.00 10.16

Fig. 11. ∆ of the “faulty days” in 2017 with respect to nRMSE.

firmed that the “soft fault” alerts (marked in blue in Fig. 11)
were mostly related to maintenance and other experimental
activity conducted in the laboratory, which caused isolated
performance degradation similar to the one shown in Fig. 8.
On the other hand, the values highlighted in red in Fig. 11
represent the cases when the soft-fault alert was repeated
on the same module for consecutive days: in this case an
inspection was necessary to investigate the cause and, although
the power reduction was not so relevant to activate a hard-fault
alert, it was found that the module presented issues (hot spots)
that caused a permanent performance reduction.

It is worth mentioning that the module performance can also
be affected by the converter: indeed, each module is connected
to a micro DC-AC solar converters, as described in [26]; in
this case, it could be difficult to distinguish the real source of
degradation. In fact, the proposed method is aimed to highlight
possible faults based on the analysis of measured output power,
but it is not able to detect a specific kind of fault or to directly
identify the reasons. Therefore, as mentioned above, a careful
operator check would be needed to determine the cause of any
alert, but the proposed algorithm is able to locate where a fault
condition happens and its degree, providing proper information
to the system maintenance operators. In particular, with respect
to a possible failure of micro-converters, these generally have a
monitoring system of their status: thus, data will be completely
missing or null in case of a hard fault, which is easy to detect;
our analysis is based on measurements provided by healthy
converters: if a converter has a failure, this will be clear from
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TABLE IV
MEAN DIAGNOSTICS INDICATORS

NMAE nRMSE WMAE EMAE OMAE

C1 3.79 21.53 55.06 25.04 14.37
C2 8.41 727.96 1,893.1 58.13 29.89
C3 8.62 937.163 2,732.19 56.22 30.34

missing data.

C. Training data selection for diagnostic purposes
As reported in [26], the training approach and data selection

are critical aspects for the effectiveness of forecasting, in
particular when an online training is performed daily to
continuously update the forecasting model.

For this reason, here we investigated the effect of including,
in the training of the PHANN, the previously recorded mea-
surements of inverter with alerts: this evaluation is performed
by analyzing the resulting forecast accuracy.

In particular, we conducted an analysis based on forecasting
faulty modules by considering two different training datasets,
with previous “soft fault” condition either included or not; as
mentioned in section VI-B, out of 307 days available, 38 days
turned out to have “soft fault” alerts.

In Table IV the mean diagnostics indicators are reported
with respect to the following configurations:
C1) this subset contains the power forecast for 269 days,

based on a training dataset of 269 healthy days (data
from healthy modules);

C2) this subset includes the forecast of 38 days with mea-
sured fault conditions: forecast is here based on a mixed
training dataset composed by 231 healthy and 38 faulty
days;

C3) this subset includes the forecast of 38 days with measured
fault conditions: forecast is here based on a training
dataset of 269 healthy days (the same training dataset
as C1).

In all the three cases considered, the number of days consid-
ered in the training dataset was 269, for the sake of a fair
comparison.

Moreover, Fig. 12 shows the daily OMAE of the 38 faulty
days forecasted with approaches C2 and C3. As reported in
this figure, the forecast error is slightly lower when previous
“faulty days” are included in the training set (C2), while the
approach C3 is able to better highlight faults with respect to
normal condition. Since our target is to increase the general
forecasting accuracy and to emphasize fault conditions with
respect to the predicted outcome of the plant, results suggest
that it is better to exclude from training the previous days with
detected “soft fault” condition, in order to have worse error
indicators when fault conditions occur and to better detect
faults.

VII. CONCLUSION

An effective diagnostic method for fault detection at PV-
module level is here presented, based on monitored data by

Fig. 12. OMAE of the “faulty days” in 2017 with different training
datasets.

micro-inverter and day-ahead power forecasting. A suitable
procedure has been implemented for real-time monitoring
fault conditions by comparing neighbor PV modules and for
performing a final offline evaluation at the end of the day, by
means of properly defined diagnostic indicators. In particular,
this method is aimed to provide a useful help in the fault
detection at the PV-module level. The classification of faults
and suggestion of possible measures are beyond the scope of
this work and will be subject of further research.

The proposed method has been validated on 15 PV mod-
ules and the related micro-inverters in a laboratory facility,
considering also one year of measurements for the definition
of proper thresholds for the identification of different fault
degrees. Results showed that the proposed approach is able to
identify critical failures of PV modules, avoiding systematic
errors like ageing or regular shadows, by means of a ma-
chine learning based forecasting, specific for each module.
Moreover, the employment of specifically defined diagnostic
indicators can provide an immediate comprehension of the
fault status.

The proposed approach can be easily extended to optimizers
in view of future implementations, by adding the feature of
developing or the day-ahead forecast and the logic of the
comparison among different PV module output on board.
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