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REPRESENTATION CHALLENGES
Augmented Reality and Artificial Intelligence in 
Cultural Heritage and Innovative Design Domain

Abstract

This paper aims to test algorithms for 3D reconstruction from a single image specifically for building 
envelopes. This research shows the current limitations of these approaches when applied to classes 
outside of the initial distribution. We tested solutions with differentiable rendering, implicit functions, 
and other end–to–end geometric deep learning approaches. We recognize the importance of gener-
ating a 3D reconstruction from a single image for many different industries, not only for Architecture, 
Engineering, and Construction (AEC) industry but also for robotics, autonomous driving, gaming, 
virtual and augmented reality, drone delivery, 3D authoring, improving 2D recognition and many 
others. Henceforth, engineers and computer scientists could benefit, not only from having the 3D 
representations but also from the Building Information Model (BIM) at their disposal. With further 
development of these algorithms it could be possible to access specific properties such as thermal, 
physical, maintenance, cost, and other parameters embedded in the class. 
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Introduction

Currently, we mainly capture reality around us with static 2D media, such as pictures, or 
videos, in case we add the temporal component to it. For instance, architects represent their 
work with iconic pictures or render that convey their styles [Yoshimura et al. 2019], losing 
the sense of immersion provided by volumetric representations that can allow the user 
to explore the environment thanks to real–time rendering. Furthermore, when architects 
perform surveys, they capture the environment with methods that are prone to errors, 
motionless pictures, expensive laser scanners, or other methodologies for classifying and 
streamline workflows [Grilli et al. 2019; Matrone et al. 2020; Xia et al. 2018; Chang et al. 
2017]. Today technologies aim to create a more immersive experience that can help in the 
long term to fill the gap between a 2D representation and the 3D physical space (in this 
paper, we won’t consider temporal representations and others related to higher dimen-
sional spaces [Rempe et al. 2020]). Thanks to depth sensors, lidar sensors, stereo imagery, it 
is possible to capture more information that helps us obtain 3D representations from 2D 
media like videos, panorama pictures, or even single 2D pictures. State–of–the–art (SOTA) 
algorithms are democratizing how we generate 3D objects from a multi–view or single 
view representation. For example, the so–called 3D photos produce a more immersive and 
dynamic representation [Kopf et al. 2020], allowing users and consumers to interact with 
their media thanks to the engineering use of the gyroscope in the devices.
The multidisciplinary inherited advancements in these technologies will provide better ma-
chine perception, a more immersive environment, and instant geometrical representations of 
objects and space [Keshavarzi et al. 2019; McCormac et al. 2016]. For example, nowadays, AR/
VR experiences require an initial calibration process for the headsets. This is not instantaneous 
and requires an accurate scanning of the environment creating an adoption barrier for new 
users. Allowing an instantaneous representation of the environment from a single picture can 
benefit many applications, not only for AR/VR, but also indoor robot/drone navigation, espe-
cially within the building environment, where the environment is dynamic and subject to con-
tinue transformations. Such methods will allow easy authoring of 3D content, users will be able 
to obtain the 3D reconstructions of objects after taking a picture. The obtained reconstruction 
could be modiufied further as desired and would serve as a good, realistic starting point sav-
ing lot of effort. After presenting the importance of converting a monocular image instantly 
into a 3D model, we need to analyze the output formats produced: the file format [Ahmed 
et al. 2018], geometric representation, and dataset format [Gao et al. 2020] . Approaches like 
Mesh–RCNN [Gkioxari et al. 2019] produce 3D meshes by first identifying the objects in the 
image (Faster RCNN/ MaskRCNN [Gkioxari et al. 2019; Ren et al. 2017; Girshick 2015]) and 
then predicting coarse voxelized object, which is further refined to pr duce meshes. These 
meshes can later be sampled to point clouds where metrics such as chamfer distance and 
EMD can be applied. Other procedural methods have been taken into consideration and ex-
amined [Nishida et al. 2018; Liu et al. 2017]. Unfortunately, they lack flexibility, and they require 
considerable efforts during the initial stages to define a shape grammar that can produce the 
desired output. In this research, we tested and compared different approaches explaining their 
potential and current limitations in the Architectural Heritage. We tested: Mesh–RCNN, (figs. 
0-1) Occupancy Networks [Mescheder et al. 2019], Pix2Mesh [Wang et al. 2018] and other 
solutions into the wild. These AI–powered techniques can blend digital and reality in a much 
more democratic way without expensive and bulky HMDs with multiple cameras. This paper 
experiments with new functional differentiable rendering frameworks like Pytorch3D (used in 
MeshRCNN) to explore 2D–3D neural networks. Moreover, working with 3d embedded se-
mantics [Zhang et al., 2020], hierarchical graph network [Chen et al. 2020], it could be possible 
to encode shapes into images and learning their 3D part assembly from a single image [Li et 
al. 2020]. For example, after taking a picture of a façade, it would be possible to recognize its 
parts and regenerate a 3D model with windows, doors, balconies, and other sub–parts with 
associated information (BIM), and semantic properties ontologies. In this paper, an extensive 
review of state–of–the–art methods is presented to better understand current limitations and 
opportunities specifically for architecture. 
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Related Work

Methods for 3D reconstruction from single–image are complicated by the fact there could 
be many possible reconstructions when the object is not entirely visible; hence, most of them 
need to rely on strong supervision. Therefore, they use datasets such as ShapeNet or Mod-
elNet [Wu et al. 2015] Other methods learn from images paired with aligned 3D meshes or 
require keypoint annotations on the 2D training images [Wu et al. 2016] and/or multiple views 
for each object instance, often with pose annotations. Shading becomes an important cue for 
3D understanding, explored in numerous works over the years [Henderson et al. 2020]. Dif-
ferent methods have been explored in the past: mesh based such as N3MR [Kato et al. 2018], 
or voxel based like 3D–R2N2 [Choy et al. 2016] and MVD [Smith et al. 2018], or point based 
like PSG [Fan et al. 2017] and many others [Aubry et al. 2014]. These have issues in performing 
a complete task with objects not within the training distribution, so we wanted to confirm our 
hypothesis and stress these limitations [Henderson et al. 2020; Wang et al. 2019]. 

3D Reconstruction From a Single Image

Learning–based 3D reconstruction works are based on different 3D representations as pre-
sented before. While voxel representations prove to be computationally expensive, point 
cloud representations are demonstrated to be rotation and translation invariant, and compu-
tationally more efficient than voxels [Liu et al. 2019]. Moreover, mesh representations, better 
preserve the connections between distinct parts and are more suitable for fine–grain detailed 
representations. Modern implicit functions not only prove to be extremely efficient with their 
continuous and differentiable representation of the iso–surface with a binary value indicating 
whether a point is within the volume, but also more accurate for tasks such as reconstruction 
and 3D shape completion [Gu et al. 2020]. Nerf, Occupancy Network, DeftTef [Gao et al. 
2020] have recently followed for this task.
Within the AEC, 3D shapes and objects preserve a common grammar and they are com-
posed by a fixed set of components such as windows, doors, roof, floors, walls, and others. 
While the typology can change, the main elements in the building stay the same for most 
cases (except for some iconic buildings and pavilions). The philosophy of Hoffman and Rich-
ards influenced this research. In fact, they viewed object recognition tasks as a visual system 
decomposition of shapes into parts with their descriptions and spatial relations. In the same 
way, we propose that the best way of representing a building reconstruction is to assemble 
each component together, orienting their quaternions to perfectly fit an initial picture which 
was inspired by the CompoNet work [Schor et al. 2019]. In contrast to the approach, we aim 
to translate the assembly algorithm, specifically for an an architectural task. They used a gener-
ative neural network for generating 3D shapes from a 2D image, based on a part–based prior, 
where the key idea was for the network to synthesize shapes by varying both the shape parts 
and their compositions. Treating a shape not as an unstructured whole, but as a composable 
set of deformable parts, adds a combinatorial dimension to the generative process to enrich 
the diversity of the output, encouraging the generator to venture more into the “unseen”. 

Fig. 1. Original from 
Facebook MeshRCNN – 
Adaptation to 
Architectural Field.
(Testing Mesh–RCNN on 
the pictures of building 
envelopes).
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They generated a plethora of shapes compared with baseline generative models using their 
custom metrics. The assembly–based synthesis was inspired by 3D shape assembly research 
that generates new shapes from a combination of various parts [Huang et al. 2020; Li et al. 
2019] from a single image.

Conclusion

We saw that projects such as Mesh–RCNN lack the ability to perform well with unseen 
classes. This limitation of generalizing to unseen classes make these approaches challeng-
ing to adopt. Furthermore, the training of these algorithms required multi–GPU training(8 
GPUs V100, for Mesh–RCNN) that not all the researchers can access. The current lack of a 
common balanced dataset (with intra and inter–class variance), or pre–trained models that 
generalize well to unseen data, are missing in the research community, and with this research 
we hope to stress the importance of the creation of such datasets and models. Another 
limitation is embedded in the metrics used to evaluate the performance of these algorithms: 
chamfer distance, EMD (earth moving distance), mAP and others offer good quantitative 
results distant from a recognizable representation that follows qualitative results. Finally, the 
creation of such dataset could provide new research on 3D shape explorations for archi-
tects using Generative Adversarial Network in 3D like ShapeGAN and 3DGAN [Kleine-
berg et al. 2020; Freeman et al. 2016]. 
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Augmented Reality (AR) and Artificial Intelligence (AI) are technological domains 
that closely interact with space at architectural and urban scale in the broader 
ambits of cultural heritage and innovative design. The growing interest is per-
ceivable in many fields of knowledge, supported by the rapid development and 
advancement of theory and application, software and devices, fueling a perva-
sive phenomenon within our daily lives. These technologies demonstrate to be 
best exploited when their application and other information and communication 
technology (ICT) advancements achieve a continuum. In particular, AR defines 
an alternative path to observe, analyze and communicate space and artifacts. 
Besides, AI opens future scenarios in data processing, redefining the relation-
ship between man and computer. 
In the last few years, the AR/AI expansion and relationship have raised deep 
trans–disciplinary speculation. The research experiences have shown many 
cross–relations in Architecture and Design domains. Representation studies 
could arise an international debate as a convergence place of multidisciplinary 
theoretical and applicative contributions related to architecture, city, environ-
ment, tangible and intangible Cultural Heritage. 
This book collects 66 papers and identify eight lines of research that may guide 
future developments.
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