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ABSTRACT: We present a detailed investigation of local dynamics of linear and cyclic poly(dimethylsiloxane) (PDMS) covering a 
wide range of molar masses. To aid interpretation of the experimental data, QENS measurements in the time scale from 2 to 200 ps 
and at Q = 0.3 to 1.8 Å−1 are complemented by theoretical calculations. These make use of a methodology developed by us 
elsewhere applicable to both simple chain models and real chains and applied here, for the first time, to cyclic PDMS. Analysis of the 
incoherent dynamic structure factor at T < Tm shows that the rotational motion of the methyl groups is unaffected by polymer 
topology. At higher temperatures, the QENS data are described by a model that consists of two dynamic contributions: methyl 
group rotation and segmental motion, the latter described by a stretched exponential function. Relaxation times of both linear and 
cyclic PDMS increase with increasing molar mass.

Several features predicted by theory are also reproduced by the experimental data. We show, unambiguously, that rings have higher 
relaxation times for the segmental motion compared to linear chains of the same number of monomer units. Theoretical calculations 
support the idea that such slowing down of local dynamics is due to the topological constraint imposed by the ring closure, a 
constraint which becomes negligible for very large molar masses. Our calculations suggest that due to its albeit small conformational 
rigidity, cyclic PDMS undergoes an additional constraint which further increases the relaxation time, producing a shallow maximum 
for N ≈ 50 repeat units. A similar feature is also observed in the experimental QENS data. Values of activation energy, Ea, are derived 
from analysis of the temperature dependence of the quasi-elastic broadening and are found to be in agreement with viscosity 
measurements reported in the literature. Although the pronounced molar mass dependence of Ea for linear PDMS is certainly linked 
to the presence of mobile chain ends, for the cyclic polymers the behavior appears to be more complex than anticipated.

1. INTRODUCTION

Cyclic polymers differ from linear chains by one single bond 
that links the chain ends. This apparently trivial topological 
constraint has a profound effect on many polymer properties.1
For example, it has been shown to influence crystallization,2−4
thermal properties such as heat capacity5 and glass tran-
sition,4,6−9 bulk viscosity,10−12 and diffusion coefficients.13−16

Early theoretical studies focused on the effect of polymer

topology on conformation and radii of gyration,17−20 glass 
transition, and dynamics.21 Extensive work has also been carried 
out using computer simulations.22−29 Experiments on well-
characterized cyclic molecules have made it possible to confirm 
theoretical predictions of chain dimension in solution17,19,30−35

and in bulk,36−39 leading to a good understanding of their 
structural properties. Recently, good agreement between theory 
and experiments was reported by us for cyclic poly-
(dimethylsiloxane)s (PDMS) in the undiluted state. Our results 
showed that highly flexible cyclic polymers in the melt adopt an 
even more compact conformation than that of unperturbed
rings, leading to that Rg ∝ Mw

0.4.36,37

In this work we make a comparison between linear and cyclic 
PDMS dynamics. Although macroscopic properties such as bulk
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viscosity10−12 and diffusion coefficients13−16 have been well 
documented in the literature, fewer studies have addressed 
microscopic behavior. Here, using quasi-elastic neutron 
scattering (QENS), we aim to provide a microscopic insight 
into the different dynamic behavior of linear and cyclic 
molecules, within length scales that are sensitive to molecular 
structure.
Experimental and theoretical studies of melt dynamics have 

focused on the extent to which chain ends, or better the 
absence of, affect the dynamic behavior of a polymer.21 Chain 
motion in a dense solution or melt of entangled linear or 
branched chains is well understood in terms of the reptation 
model.40−43 However, the concept of reptation is strictly 
correlated to the existence of chain ends, and for this reason this 
type of motion should be strongly suppressed in nonlinear 
polymers such as stars or closed ring molecules.21,44

Generally, theoretical predictions of significant differences 
between the melt dynamics of linear and cyclic polymers have 
not been fully supported by experiments. Early viscoelastic 
measurements of cyclic polystyrene produced contradictory 
results, particularly with regard to the molecular weight 
dependence of the viscosity.32,45,46 By carrying out measure-
ments of the recoverable compliance for several cyclic 
polystyrene (PS) fractions from different sources, McKenna et 
al. were able to demonstrate that discrepancies between results 
were primarily due to the presence of linear chains and/or 
formation of knots.47 As shown by these authors, the molecular 
weight dependence of the zero-shear rate viscosities in the 
molten state shows similar features for the cyclics and the linear 
chains. In the case of PS, over the entire range of molecular 
weights (above Mw = 11000 g mol−1) and at constant T − Tg, 
the
rings exhibit a lower viscosity compared to values measured for 
linear chains of the same Mw. At relatively low molecular 
weights the ratio between the viscosity of linear chains and rings 
was found to be ≈2, as expected from differences between their 
radii of gyration (the ratio between the squared radii of gyration 
of linear chains and rings should be equal to 2).17−20 A similar 
result was reported by Bras et al.38 for low molecular weight 
linear and cyclic poly(ethylene oxide) (PEO). However, for 
PEO, linear and ring polymers were reported to have the same 
activation energy, indicating that the temperature dependence 
of the segmental friction does not depend on polymer topology. 
The authors noted that this result is consistent with an earlier 
observation of the same shift factors for entangled linear and 
ring polymers.48

On the basis of the rheological data, diffusion should be faster 
for rings than linear chains. This is supported by computer 
simulations which indicate that topological interactions greatly 
influence melt dynamics leading to faster diffusion for melts of 
rings and shorter relaxation times compared to linear chains of 
equal mass.22−29 Interdiffusion experiments of bilayers consist-
ing of cyclic PS and deuterated cyclic PS have shown faster 
mutual diffusion compared to equivalent bilayers of linear 
chains, providing experimental support for simulations.49 In 
addition to this, qualitative agreement between atomistic MD 
simulations and neutron spin-echo (NSE) measurements has 
been reported for PEO, with diffusion coefficients that are faster 
by a factor of 2 for the rings.38
Perhaps one of the most surprising observations is that for 

both cyclics and linear molecules the molecular weight 
dependence of the viscosity exhibits two power law regimes. 
Because the change in power law dependence has been 
attributed to a transition from unentagled to entangled behavior,

it is somewhat unexpected for cyclics. In a recent review, 
Richter et al.50 compared viscosity data at the same distance 
from the glass transition temperature, i.e., at isofrictional 
conditions, for a number of systems including polystyrene,47,33 

polybutadiene,51 and PEO.52 In all cases, two regimes can be 
identified: (a) at low molecular weights, for unentangled chains, 
the ratio between the viscosity of linear chains and rings, ηl/ηr, 
is constant and equal to 2, but (b) above the entanglement 
molecular weight it increases above this value depending on the 
number of entanglements. As shown by recent work on high 
molecular weight cyclic polymers, understanding the relaxation 
mechanisms of melts of rings is challenging and requires high 
molecular weight cyclics, free from contamination.53,50,54

In this paper, following previous studies including our own 
work,55−58 we present a systematic investigation of the influence 
of topology on local chain motion by comparing QENS data of 
linear and cyclic PDMS. As reported in our paper, QENS is 
used to observe length scales up to a few statistical segment 
lengths. In this case, molecular motion (very local motion of 
side chains, monomers, or short segments of the polymer 
chains) is largely determined by intramolecular potentials and, 
due to the limited length scale of observation, independent of 
the nature of the entangled or unentangled chains. Our QENS 
data differ considerably from the neutron spin-echo (NSE) 
coherent scattering results recently reported in the literature.50 

This is because spin-echo at small angles is designed to explore 
length scales close or above to the entanglement length where 
reptation dominates. Thus, NSE data are crucially dependent 
on interchain interactions such as entanglements. Here we 
focus on relatively small molecular weight PDMS samples, 
largely below the entanglement molecular weight (reported to 
be equal to 12293 g mol−1 by Fetter et al.59 but much higher, Me 
= 34500 g mol−1, according to data of Dvornic et al.60).
The local dynamics of PDMS has been investigated 

extensively by neutron scattering57,58,61 and other experimental 
techniques such as dielectric spectroscopy62−65 as well as 
simulations.66 Most of these studies have dealt with linear high 
molecular weight chains, and there is little in the literature on 
the comparison between cyclic and linear PDMS dynamics, 
except for QENS measurements reported by Allen et al.56,67 For 
samples with degree of polymerization <20 (equivalent to Mn ≤ 
1500 g mol−1), these authors reported effective diffusion 
coefficients (extracted from the quasi-elastic broadening) 
which were greater for linear chains compared to rings. This 
indicated that short linear PDMS chains are faster than the 
small rings, the difference becoming more pronounced with 
decreasing molecular weight.
The QENS results of Allen et al.56,67 

find support in the bulk 
viscosity data of Semlyen and co-workers,10−12 indicating that 
the viscosity of cyclic PDMS is higher than that of linear PDMS 
at comparably low molecular weights, but the opposite behavior 
is observed in the high molecular weight region. The existence 
of a crossover region in the Mw dependence of the viscosity 
could not be simply attributed to chain end effects and was still 
evident even after scaling at constant segmental mobility. 
Semlyen et al. argued that configurational restrictions in the 
ring molecules would be responsible for a reduction in 
segmental mobility, resulting in higher viscosity at low 
molecular weight.10−12
The main motivation of the work presented in the following 

sections is to characterize the molecular weight dependence of 
the local dynamics of relatively short chains and small rings. 
Compared to previous measurements, we cover a wide range of 
molar masses, and we present a detailed analysis of the



incoherent dynamic structure factor, including temperature and 
Q dependence. The experimental data are supplemented by 
theoretical calculations using a methodology developed by us 
elsewhere applicable to both simple chain models and real 
chains.55 The same methodology is extended here, for the first 
time, to cyclic PDMS.

2. EXPERIMENTAL METHODS AND THEORETICAL
APPROACH
2.1. Materials. Table 1 gives a list of samples used for the neutron

scattering measurements. The linear PDMS samples, with trimethylsi-

loxy terminal groups, are commercial materials from Dow Corning Ltd. 
The molecular weights of these linear samples, except for L162 and 
L237, were obtained from the manufacturer and are consistent with 
values reported by Cowie et al. for silicone fluids of comparable 
viscosity.68 Cyclic PDMS samples were provided by Dr. J. A. Semlyen 
and Prof. P. Griffiths except for C370 and C445 that were purchased 
from Sigma-Aldrich. L1400 was also kindly supplied and characterized 
by Dr. J. A. Semlyen and co-workers. Number-average molar masses, 
Mn, and polydispersities (Mw/Mn) of the cyclic siloxanes as well as 
values for L1400 were obtained by Semlyen and co-workers using gel 
permeation chromatography calibrated using standard siloxane 
samples.
2.2. Thermal Properties: Tg and Crystallization. To determine 

the lower temperature at which QENS experiments can be performed, 
the melting temperatures, Tm, of the linear and cyclic samples were 
measured using a TA Instruments differential scanning calorimeter 
(DSC 2010) with both heat flow and temperature scales calibrated 
against indium metal. DSC measurements were performed under a 
nitrogen flow at a heating rate of 10 °C min−1. Tm values for 
semicrystalline samples are reported in Table 1. Our results are in good 
agreement with the work of Clarson et al.,4 who demonstrated that 
cyclic siloxanes with number-average repeat units, Nn, in the range 12 ≤ 
Nn ≤ 40 (890 ≤ Mn ≤ 2930) as well as linear chains with 6 ≤ Nn < 21 
(530 ≤ Mn ≤ 1645) do not crystallize.
We note that for L3780, L9430, and C19000 two melting peaks were 

observed in the DSC trace. This characteristic feature of PDMS 
samples has been reported by others and attributed to melting of two 
different crystalline forms of the polymer.69,70
The molecular weight dependence of the glass transition temper-

ature, Tg, of both linear and cyclic PDMS has been reported in the 
literature.4,68 A linear relationship between Tg and Mn

−1 was observed 
for both linear and cyclic PDMS, but while the former has a negative
slope (−6.5 × 103 K g mol−1) the latter displays a positive slope (3.6 × 
103 K g mol−1).4 Similar trends were determined from dielectric 
measurements of cyclic and linear PDMS fractions by Goodwin et al.65

Glass transitions listed in Table 1 have been derived from the known 
molar mass dependence reported in the literature.4,68 For amorphous 
samples, experimental Tg values (not shown) are consistent with this 
trend (within 2−3 K).

As shown in Table 1, in agreement with experiments4,68,65 as well as 
theoretical predictions,6 for chains of similar length, the Tg of the rings is 
always at higher temperature compared to that of linear chains. The
molecular weight dependence of Tg for cyclic PDMS was explained by 
Di Marzio and Guttman in terms of their configurational entropy 
model.6

2.3. Neutron Scattering Measurements. Quasi-elastic neutron 
scattering experiments were performed on the high energy resolution 
backscattering spectrometers IRIS and OSIRIS (ISIS, Rutherford 
Appleton Laboratory, UK) using the PG002 (offset) analyzer 
configuration, which gives energy resolutions (measured as fwhh) of 
17.5, and 24.5 μeV for IRIS and OSIRIS, respectively. This energy 
resolution affords access to a temporal range spanning ca. 2−200 ps. 
The energy range covered in all experiments was −0.2 to 1.0 meV, and 
the Q range varied from 0.5 to 1.8 Å−1. Hollow cylinders were used to 
contain the liquid samples during the IRIS and OSIRIS measurements. 
The sample’s thickness was less than 0.25 mm, corresponding to a 
transmission of more than 90% of the incident neutron beam. At this 
level multiple neutron scattering effects were deemed negligible.

For each sample, at least one set of QENS data were collected at 110 
deg above the respective Tg. To explore the temperature dependence of 
the dynamics, one of the linear siloxanes (L550) and all of the cyclic 
samples were measured at selected temperatures above their Tg. In 
addition to this, for a few cyclics, QENS spectra were recorded below 
the polymer Tg.

In a QENS experiments, the scattered intensity is measured as a 
function of both energy and momentum transfer, Q (= (4π/λ) sin(θ/ 
2), where λ is the neutron wavelength and θ is the scattering angle). 
The dynamic incoherent structure factor, S(Q,ω), is determined from 
time-of-flight data, after removing empty cell contributions and 
correcting for absorption, using standard software available at ISIS.

S(Q,ω) is related to the double differential scattering cross section, 
∂
2σ/(∂E ∂Ω) which represents the probability that a neutron is 
scattered with energy change ΔE into the solid angle ΔΩ. For neutrons 
scattered incoherently
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where N is the number of atoms, and k and k0 represent the magnitude
of the scattered and incident wave vectors (k = 2π/λ), respectively. The
term Δb2 depends on fluctuations of the scattering length b due to the
presence of different isotopes, and it is related to the incoherent cross
section (σinc = 4πΔb2).

For PDMS, σinc = 481.6 b, which is much larger than the coherent
cross section of the repeat unit, σcoh(H) = 28.4 b. As a result, coherent
scattering is negligible, and as stated by eq 1, the total scattering cross
section is approximated to the incoherent scattering cross section,
hence the subscript “inc”.

The incoherent scattering law, Sinc(Q,ω), is defined as the time-
Fourier transform of the intermediate scattering function Iinc(Q,t):

∫ω
π

ω= −S Q I Q t i t t( , )
1

2
( , ) exp( ) dinc inc (2)

which describes correlations between the positions of the same
scattering nuclei at time zero and t:

∑= ⟨ · − · ⟩I Q t
N

iQ R t iQ R( , )
1

exp( ( )) exp( (0))i iinc (3)

where the brackets indicate a thermal average and Ri(t) and Ri(0)
represent the position of the ith nucleus (i = 1, 2, ...,N) at time t and t =
0, respectively. Thus, Sinc(Q,ω) gives dynamic information about self-
correlations, rather than collective correlations, in the system under
study.

Generally, the measured dynamic incoherent structure factor is a
convolution of different processes

Table 1. Molar Mass and Thermal Transitions of Linear (L)
and Cyclic (C) PDMS

code ηk
a (cSt) Mn (g mol−1) Mw/Mn Tg (K) Tm (K)

L162 0.65 162 110 210
L237 1 237 125 190
L550 3.0 550 136
L1400 1430b 1.02 145
L2000 20 2000 148
L3780 50 3780 149 220, 235
L9430 200 9430 149 220, 235
C370 370 165 227
C445 445 157 270
C1200 1218b 1.08 152
C2700 2675b 1.03 151
C19000 19000c 150 229, 239

aKinematic viscosity in cSt, as reported by manufacturer at 25 °C.
bSupplied and characterized by Dr. J. A. Semlyen and Prof. P.
Griffiths. cAverage number of repeat units, Nn = 257.
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i.e., vibrations (vib), rotations (rot), and translations (trans) of the
scattering centers. Similarly, the intermediate scattering function can be
written as the product of the different dynamic contributions:

= · ·I Q t I Q t I Q t I Q t( , ) ( , ) ( , ) ( , )inc inc
trans

inc
rot

inc
vib (5)

Simplifications are possible, depending on the temperature and
experimental energy range.
2.4. Theoretical Calculations. The single-chain dynamics in a low

molar mass melt can be described by the stochastic Langevin equation
in the absence of the hydrodynamic interaction, screened by the
surrounding chains. We closely follow the method described in ref 55,
where we theoretically investigated the dynamics of both linear PDMS
and of some coarse-grained models (freely jointed and freely rotating
chains) with different degrees of local stiffness for a comparison. As a
result, here we only briefly mention the basic differences due to the
constraint of ring closure. We consider chains comprising N repeat
units connected by harmonic springs of length l. Consequently, the
linear chain and the ring have the samemolar mass for a givenN, but the
number of connecting springs isN− 1 andN, respectively. In the freely
jointed (FJ)model the spring comprises a few chemical repeat units and
corresponds to the statistical segment devoid of any conformational
correlation with the adjacent ones. On the other hand, in realistic
PDMS the spring encompasses a single chemical repeat unit, or
monomer, such that the length l is given by the distance between two
sequential units and the conformational correlation is dictated by the
preferred rotational states around the individual Si−Obonds within the
RIS scheme. The elastic force matrix acting among the directly
connected units is obtained as described in ref 55 and, in the absence of
excluded-volume interactions (which are also screened in a melt), only
depends on the topologically short-range correlations imposed by the
local stiffness in PDMS and by the constraint of ring closure.
Diagonalization of the elastic force matrix decouples the dynamics
equations and produces both the dynamical normal modes through its
eigenvectors and the (adimensional) intramolecular relaxation rates
through the eigenvalues. The elements of the eigenvector matrix, Vjp,
and the eigenvalues for the linear chain are reported in eqs 1−4 of ref
55, while in the case of the ring they are given by

= i
k
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where i is the imaginary unit and the Fourier coordinate qp is

π
= = −q

p
N

p N
2

, 0, 1, 2, ..., 1p (7)

The eigenvalues are then given by μp/Cp, where

μ = q4 sin ( /2)p p
2

(8)

formally the same as in the linear chain. Cp is the generalized
characteristic ratio embodying the conformational features of the chain
model. For the FJ chain with no short-range correlation among the
bond vectors Cp≡ 1, while in real chains, within the RIS scheme Cp can
be written as71,72
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2
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Note that with a single term within the sum, and with αh ≡ 1, the above 
expression applies to a freely rotating chain model, with g = −cos θ, θ 
being the fixed “bond” angle formed by adjacent “bond” vectors. Using 
the RIS scheme,73 the values for some real polymers, including also 
PDMS, are reported in ref 72, with ν in principle equal to three (i.e., the 
space dimensionality) times the number of rotational energy minima 
around a single bond. However, in practice, only 4−5 nonvanishing 
terms are required in the sum of eq 9, provided the chemical repeat unit 
is effectively treated as a whole. In this case, l is simply equal to the 
distance between corresponding atoms in adjacent monomers, and it is

equal to 2.9 Å as an average value for the Si···Si and O···O separation in 
PDMS. It should be noted that in a ring polymer the cyclic symmetry 
imposes a 2-fold multiplicity to the spectrum of the relaxation rate 
between the modes characterized by the indices p and N − p, as it can 
be seen through eqs 8 and 9. The intramolecular relaxation times τp, p 
= 1,  2, ..., N − 1, are then given by

τ σμ= C /p p p (10)

where σ−1 is the time unit

σ ζ= k T l3 /B
2 (11)

with ζ being the friction coefficient of the repeat unit.
By assuming a Gaussian distribution of Rj(t) − Rj(0), in view of the 

stochastic Brownian forces due to the random impulses of the 
surrounding molecules, the dynamic structure factor for incoherent 
scattering is obtained from eq 3 as
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where we separated the contribution of the zeroth mode with p = 0 that
yields the diffusion coefficient D, given by the Einstein formula

ζ σ= =D k T N l N/ /3B
2 (13)

from the intramolecular contribution described by the internal modes
embodied by the time-dependent mean-square distance of the jth
repeat unit from itself at different times

⟨ ⟩ = ⟨[ − ] ⟩ −r t t DtR R( ) ( ) (0) 6jj j j
2 2

(14)

irrespective of the position of the center of mass. Consequently, we have
(see also ref 74)
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Note that in view of the cyclic statistical symmetry of the ring ⟨rjj
2(t)⟩

turns out to be independent of the j index of the repeat unit.
The calculated line shapes of Iinc(Q,t) for the FJ chain and the PDMS

rings, and for the corresponding linear chains (calculated as described
in ref 55), were then fitted by the KWW stretched exponential function
for relatively short times before diffusion of the center of mass sets in

τ= − βI Q t
I Q

t
( , )
( , 0)

exp( ( / ) )inc

inc (16)

Here, both the characteristic time τ and the β exponent (<1) are
assumed to depend both on Q and on N in the theoretical approach.
The calculations were performed for linear chains and rings with a
number of repeat units, 10 ≤ N ≤ 200 (beads for the freely jointed
model and monomers for real PDMS), in the range of the experimental
samples choosing aQ range of 0.2≤Q·l≤ 1.0. From the nonlinear fit of
the calculated line shape using the stretched exponential of eq 16, the
correlation coefficient R turned out to be larger than 0.9999 for the FJ
chain and 0.9997 for PDMS, while the mean-square residual χ2,
normalized by the number of degrees of freedom, was smaller than 2.5
× 10−6 for the FJ chain and 3.5 × 10−5 for PDMS.

3. RESULTS
3.1. Analysis of Low-Temperature Data of Cyclic

PDMS. In our previous studies,57,58,61 we have shown that the 
QENS data of PDMS melts are described by a model that 
consists of two dynamic contributions: methyl group rotation 
and segmental motion. To test whether changes to methyl group 
dynamics needed to be accounted for in cyclic polymers, we 
performed a series of measurements on a cyclic sample with Mw 
= 2675 g mol−1 (C2700) in the temperature range 158−208 K. 
Although this corresponds to temperatures above Tg, segmental



dynamics are slower than the temporal range probed by the IRIS 
and OSIRIS instruments and thus do not contribute to quasi-
elastic broadening.57,58,61 Bearing this in mind, the incoherent 
dynamic structure factor can be expressed in terms of the 
rotational scattering law of the side groups:

ω δ ω ω= [ + ]S Q A Q S Q( , ) DWF ( ) ( ) ( , )inc 0 inc
qel

(17)

where DWF is the Debye−Waller factor75 and A0(Q) is the
elastic incoherent structure factor (EISF), which represents the
space-Fourier transform of the final distribution of the scattering
centers, averaged over all possible initial positions. For a 3-fold
jump rotation, A0(Q) is given by

= + ·A Q j Q r( )
1
3

(1 2 ( 3 ))0 0 (18)

j0(x) being a zero-order spherical Bessel function and r the 
distance between the moving protons and the rotation axis. 
Within the rotational rate distribution model, RRDM, the quasi-
elastic component is described by a log-Gaussian distribution of 
Lorentzian lines Li(ω):76,77
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with σΓ being the width of the distribution of rotational
frequencies and Γ0 the most probable width of the quasi-elastic
component. For side group motion, the temperature depend-
ence of the quasi-elastic component is described by the
Arrhenius equation:

Γ = Γ −∞
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where Ea is the activation energy barrier for rotation, R the gas
constant, and Γ∞ the attempt to escape frequency or jumping
frequency at infinite temperature.

Figure 1.QENS spectra of cyclic PDMS (C2755) at 158, 183, and 208 K (from front to back) andQ = 1.31 Å−1. Symbols represent experimental data
and lines are calculated S(Q,ω) curves using eqs 18−22 with Γ∞ = 0.635 meV, σE = 1.1 kJ mol−1, and Ea = 4.5 kJ mol−1 and fixed EISF values. The only
adjustable parameters are F(Q) and B(Q).

Figure 2. QENS spectra of cyclic PDMS (C445) at 240 K and Q = 0.73, 1.27, and 1.76 Å−1 (from front to back). Symbols represent experimental 
data, and lines are calculated S(Q,ω) curves using eqs 18−22 with Γ∞ = 0.635 meV, σE = 1.1 kJ mol−1, and Ea = 4.5 kJ mol−1 and fixed EISF values. 
The only adjustable parameters are F(Q) and B(Q) (eq 22).



The above equations are used to fit the experimental data,
after convolution with the instrumental resolution, R(Q,ω), and
addition of a flat background, B(Q):
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where the term F(Q) is a temperature and Q dependent scaling 
factor. The flat background B(Q) represents any fast process 
outside time window of instrument.
For the purpose of this study, we note that the low-

temperature data of cyclic PDMS (C2755) are well represented 
by eq 22, using parameters reported by us for linear PDMS57,58 

(Γ∞ = 0.63 ± 0.06 meV, Ea = 4.5 ± 0.5 kJ mol−1, and the width 
of the distribution of activation energies, σE = 1.1 ± 0.1 kJ mol
−1) and fixed EISF values for the 3-fold methyl group dynamics. 
The agreement between calculated and experimental values is 
shown in Figure 1 for Q = 1.31 Å−1 at 158, 183, and 208 K.
Perhaps more surprisingly, good agreement between 

calculated S(Q,ω) values and experimental data is also found 
for very small cyclics. As shown in Figure 2 for C445 for T = 
240 K, calculations closely match the Q dependence of the 
quasi-elastic broadening. However, deviations are observed at 
the lowest and highest Q values. Fits using eqs 18−22 are 
shown in the Supporting Information. We note that the fitting 
parameters and the corresponding values of Γ∞,, σE, and Ea (see 
the Supporting Information) are sufficiently close to those 
reported by us previously,57 and so these will be used again here 
to fit the high-temperature data.

3.2. Theoretical Results.As previously pointed out and also
noted in ref 55 for linear chains, the fit of the calculated Iinc(Q,t)
using the KWW function was in all cases excellent. The fitted β
exponents are reported in Figure 3a as a function of Q·l for the
various cases. As a general trend, we find that (i) β increases with
the local stiffness of the chain, (ii) β decreases somewhat with an
increasing molar mass in particular at small Q values, and (iii)
while β is slightly larger for the linear chain than for the ring at
very small molar mass, this difference becomes quickly negligible
with an increasing molecular length, tending to a value close to
about 0.65 as found in ref 55 for linear chains only.
As already done in ref 55, the characteristic time τ depends on

Q through the power law

τ τ= α−Q0 (23)

Also in this case, eq 23 describes very accurately the Q 
dependence of τ, as shown by the correlation coefficient larger 
than 0.9990 for the FJ chain and 0.9986 for the PDMS chain 
model obtained by the fit of τ vs Q.
The fitted values of α plotted as a function of N are shown in 

Figure 3b. The α exponent is larger for the FJ chain than for the 
more realistic PDMS chain model having a local stiffness, and it 
is larger for the ring than for the linear chain. While this 
difference is very small for the PDMS chain model, unlike for 
the FJ chain, in both cases α increases monotonically with N, 
hence with molar mass, to an asymptotic constant value very 
close to 4 for the latter and most likely independent of the 
molecular topology. On the other hand, the asymptotic value 
for the PDMS chain model is smaller, tending to a value close 
to 3.4 as obtained for much larger linear chains in ref 55.
The τ0 values obtained from eq 23 are plotted as a function of 

N in Figure 4. The characteristic time shows an interesting 
difference between the linear chains and the rings at relatively 
small molar mass, whereas the asymptotic value for very large N

Figure 3. (a) The β exponent plotted vsQ·l for the FJ chainmodel and for the PDMS chainmodel with the topology and the selectedN values shown in
the legend. (b) The α exponent plotted as a function ofN for the FJ chainmodel and for the PDMS chainmodel with the topology shown in the legend.
In both panels, the error bars obtained in the fitting procedure are shown, although in most cases they are smaller than the symbol size.

Figure 4. Effective characteristic time τ0 in σ−1 units (see eq 11) plotted as a function of N for (a) the FJ chain model and (b) the PDMS chain 
model. In both panels, the error bars obtained in the fitting procedure are shown, even though they are smaller than the symbol size.

http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.8b00397/suppl_file/ma8b00397_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.8b00397/suppl_file/ma8b00397_si_001.pdf


is independent of molecular topology, as could be expected. In 
particular, the ring shows a larger τ0 both in the FJ and in the 
PDMS chain models. However, this difference becomes 
negligible for very large N, hence for very large molar masses, so 
that asymptotically the same τ0 is achieved for both topologies. 
Moreover, the results obtained for the more realistic PDMS 
chain model, accounting for the (albeit limited) 
conformational rigidity related to the preferred rotational states 
around the Si−O, show a further slight increase of τ0 in small 
rings with N ≈ 50 compared to the linear chains, thus 
producing a shallow maximum in Figure 4b. A discussion of the 
physical origin of these theoretical results is deferred to the later 
discussion in comparison with the experimental results.
3.3. Analysis of QENS Data at Constant T. The molecular 

weight of the chain dynamics shows features that are consistent 
with the theoretical calculations. As shown in Figure 5 and Table

1, QENS measurements were performed on a series of linear and
cyclic PDMS samples at ≈110 deg above the sample’s Tg. For 
all samples, full broadening of the elastic line is observed but 
changes with molecular weight appear to be more pronounced 
for the linear than for cyclic PDMS.
A qualitative indication of the dynamic changes due to 

topology is given in Figure 6 where we compare, at the same 
temperature (280 K), a cyclic (C1200) and a linear PDMS 
(L1400) sample with similar average number of monomers (Nn 
= 16.4 and Nn = 19.3, respectively).

To extract quantitative information about the molecular 
weight dependence of the segmental relaxation, we follow our

previous QENS analysis of high molecular weight linear 
PDMS.57,58 In that work, we showed that for PDMS CH3 
rotations make a non-negligible contribution to the QE 
broadening (at least within the time scale of the IRIS 
spectrometer). Thus, the dynamic incoherent structure factor 
is described by the convolution of two functions: one 
representing the local segmental relaxation and the other one 
the rotational motion of the CH3 groups.
As discussed in refs 57 and 58, the segmental motion can be 

expressed by the Fourier transform of the KWW function or 
equivalent expressions such as the Havriliak−Negami equa-
tion.78,79 The S(Q,ω) contribution from methyl group rotations 
is obtained by extrapolation of data acquired at T < Tm to the 
desired temperature. This procedure assumes no substantial 
change, i.e., similar energy landscape,80 for the methyl group 
motion across Tg and Tm. Hence, the model function is given by
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where SKWW(Q,ω) is the Fourier integral of the KWW function 
(eq 16).
All experimental data collected at temperatures above Tm are 

well described by eq 24, irrespective of molecular weight and 
topology. The quality of fits is shown in Figures 7 and 8 for 
linear (L1400) and cyclic (C2700) PDMS samples of 
intermediate molecular weights.
At first, the S(Q,ω) data were fitted at each Q value to 

determine the Q dependence of the KWW parameters, i.e., the 
stretched exponent β and the characteristic time τ. As shown in 
Figure 9, even for very small chains, a unique Q dependence can 
be identified for Q values above 0.5 Å−1. In this Q range, β 
values were found to be Q independent (Figure 10). This 
finding is consistent with our earlier study of linear high 
molecular weight PDMS.57,58

To account for differences in the distribution of relaxation 
times, effective times, τeff, were calculated using the relationship

Figure 5. QENS spectra at Q = 1.45 Å−1 of (a) L237, L2000, L3800,
and L9430 (from top to bottom) and (b) C370 (red ○), C1200 (△),
and C2700 (●) at ca. 110 deg above the sample’s Tg. Note: the small
upturn for energy transfer values above ca. 0.9 meV is a result of data
reduction artifact due to normalization.

Figure 6. Comparison between QENS spectra of linear and cyclic
polymers with similar number of monomers at 280 K and Q = 0.73,
1.27, and 1.76 Å−1: (red ○) C1200 and (△) L1400. For clarity, error
bars are only shown for the cyclic data.



τ τ
β

=
Γ

β( )
eff

1

(25)

Values of τeff are also plotted in Figure 9 and compared to the 
trend obtained by fitting simultaneously at all Q’s using eqs 23
−25.
However, analysis of OSIRIS data for L550 revealed a sharp 

increase in β values toward unity (β ∼ 0.8) at the lowest Q 
(Figure 9). This is attributed to contributions from center-of-
mass diffusion which, at small Q values, is expected for small 
molecules. Diffusion of the whole molecule can be described by 
a single-exponential function corresponding to a Lorentzian line 
in the frequency domain. In our analysis, this corresponds to a 
stretched exponent β = 1.
The OSIRIS data of L550 (Figure 10b) confirm that at Q > 

0.5 Å−1 β is within experimental error, independent of the 
momentum transfer, Q.
The molecular weight dependence of the stretched exponent 

β (Figure 11) seems to suggest a decrease in β values with 
increasing molar mass for both linear chains and cyclics, 
reaching a constant value at high Mn which is equal to 0.56 and 
0.52 for linear and cyclic polymers, respectively. This seems 
consistent with the predicted trend (Figure 3) that β increases 
with decreasing molar mass, and it is lower for cyclics compared

Figure 7. QENS spectra of L1400 at 298 K and Q equal to 0.92, 1.42, and 1.76 Å−1 (from front to back). Symbols represent experimental data while 
full lines are fits using eq 24. The dashed and dotted lines represent the two dynamic contributions: segmental dynamics (dashed) and methyl 
rotations (dotted). For clarity, error bars are only shown for one set of data (Q = 0.92 Å−1).

Figure 8. QENS spectra of C2700 at 283 K and Q equal to 0.92, 1.42, and 1.76 Å−1 (from front to back). Symbols represent experimental data while 
full lines are fits using eq 24. The dashed and dotted lines represent the two dynamic contributions: segmental dynamics (dashed) and methyl 
rotations (dotted). For clarity, error bars are only shown for one set of data (Q = 0.92 Å−1).

Figure 9. Q dependence of the characteristic time, τ (○) and τeff (●)
(eq 25), as obtained from fitting data of L237 at 235 K using eq 24. The
lines represents values obtained by simultaneous fits using eqs 23−25.



to linear chains of the same molecular weight. However, 
experimental errors on the β values are relatively large, and 
differences between rings and chains are not statistically 
significant (Figure 11).

Very few studies of local chain dynamics have been published,

and the results are somewhat contradictory. For example,

dielectric spectroscopy (DS) measurements performed by Krist

et al. found β = 0.485 for both linear and cyclic polymers,

Figure 10. Q dependence of the β parameter as obtained from fitting data of (a) L237 at 235 K (IRIS data) and (b) L550 at 235 K using eq 24. The 
lines represent a guide to the eye.

Figure 11.Molar mass dependence of the stretched exponent as obtained from fits of the S(Q,ω) data at ca. 110 deg aboveTg for (○) linear PDMS and
(●) cyclic siloxanes. The line is a guide to the eye.

Figure 12.Molar mass dependence of τeff for linear (○) and cyclic (●) PDMS at ca. 110 deg above the corresponding glass transition. The dotted line
is a guide to the eye. Error bars are shown for all data.



suggesting no change in the distribution of relaxation times with 
topology.62 Similar work by Goodwin et al. reported a slightly 
lower β average value (β = 0.48) for linear compared to cyclic 
(β = 0.53) PDMS.65 This result was taken as an indication that 
relaxation is more cooperative in linear PDMS.
Here we note that although average β values are lower for 

cyclics, changes are within experimental error (Figure 11).
To be able to make quantitative comparison between the 

time scales of the segmental relaxation in PDMS samples, we 
calculated effective times, τeff, from τ at Q = 1 Å−1, i.e., τ0, using 
eq 25. τeff values are plotted in Figures 12 and 13 as a function 
of molecular weight for both linear and cyclic PDMS.
As shown in Figure 12, differences in the glass transition 

temperature of the samples are not sufficient to account for the 
molar mass dependence of the relaxation times. For linear 
siloxanes, τeff increases, i.e., molecular motion slows down, with 
increasing molar mass. A similar trend has been reported for 
polyisobutylene (PIB) by Frick et al.81 These authors noted that 
Tg differences and contributions from center-of-mass diffusions 
at low molar mass could not fully account for the observed 
dynamic changes with chain length. It was suggested that the 
discrepancy was due to faster motion of near chain-end groups. 
This idea was supported by experiments in the glassy state.
Values of τeff plotted in Figure 12 refer to either 

measurements performed at Tg + 110 °C or values scaled to this 
temperature using experimentally determined activation 
energies (see the following section). The τeff value reported by 
us previously for a linear PDMS sample with Mw = 91700 g mol
−1 (= 47.5 ps), also shown in Figure 12, compares well with the 
value for the highest
Mn sample investigated here.
The QENS data reported here were collected at Q values 

above 0.5 Å−1, and as discussed earlier, little or no contribution 
from center-of-mass diffusion is expected even for small chains. 
Therefore, having accounted for Tg changes, the observed trend 
supports the idea that mobile chain ends are responsible, at low
Mn, for the faster dynamics.
The closed structure of rings implies no contribution from 

fast chain ends. Therefore, one might expect that once Tg 
changes are accounted for, relaxation times are independent of 
molar mass. This is not the case for our data (Figure 12), and 
although τeff values for cyclic PDMS are higher compared to 
those of

linear samples, there is a clear Mn dependence. In particular, τeff 
increases with increasing degree of polymerization, passes 
through a maximum value, and for Mn = 19000 g mol−1 

approaches values characteristic of linear chains. On the other 
hand, this trend is consistent with theoretical predictions in 
terms of τ0 (eq 23 and Figure 4). To understand this behavior, 
it should be noted that the local segmental relaxation proceeds 
through the conformational rearrangements around the 
chemical bonds of the main chain. Thus, the ring shows a 
lengthier relaxation due to the topological constraint imposed 
by the ring closure: this feature slows down the local dynamics 
compared to the linear chain whose dynamics is faster thanks to 
its free ends. This effect is already evident in the FJ chain model 
devoid of any local rigidity and corresponding to the familiar 
bead-and-spring chain. Moreover, it is further enhanced in the 
PDMS chain model by the additional constraint of the (limited) 
conformational rigidity related to the preferred rotational states 
around the Si−O bonds, as anticipated, producing a shallow 
maximum (Figure 4b). Qualitatively, a similar trend is displayed 
by our experimental results (Figure 12).
Figure 12 suggests that the dynamics of small rings is not that 

different from motion of very short chains. However, one 
should bear in mind that τeff values reported in Figure 12 were 
obtained in some cases at considerably different temperatures. 
For example, there is a 40° difference between τeff of C370, 
measured at 275 K, and the corresponding value for L237, 
measured at 235
K. To appreciate how τeff changes with molar mass and 
topology, we have reported in Figure 13 values at a common 
temperature of 280 K. Greater changes with topology can be 
observed in this case since differences in Tg are not accounted 
for.

Finally, we note that the exponent, α, obtained by assuming a 
power law dependence of the characteristic time (eq 23) was 
found to vary in the range 1.86 ± 0.05 for L162 to 2.5 ± 0.1 for 
L1400. These values are lower than those obtained by us for 
linear high molecular weight PDMS (α ca. 2.3),55,57,58 suggesting 
a very weak, if any, molecular weight dependence. We note that 
larger values are obtained if methyl group rotations are not 
accounted for with α in the range 3.0−3.3 for high molecular 
weight PDMS, depending on temperature. It is also interesting to 
point out that the values of α in the latter range nicely agree with 
the theoretical ones reported for the PDMS

Figure 13.Molar mass dependence of τeff for linear (○) and cyclic (●) PDMS at 280 K. The dotted line is a guide to the eye. Error bars are shown for
all data.



chain model in Figure 3b where the methyl group rotation is 
also ignored. Similar observations were made by Frick et al.,81 

who studied the molecular weight and Q dependence of the 
relaxation times of PIB at 368 K from 0.2 to 1.9 Å−1. In that 
work, a change from τ ∝ Q−2/β at low Q to τ ∝ Q−2 at high Q 
was observed for samples with Mw ranging from 680 to 73000 g 
mol−1. Our data samples relatively high Q values, and such 
crossover is not evident.
For cyclic PDMS similar α values were obtained within a 

relatively narrow range from 2.1 to 2.8, depending on molar 
mass and temperature (the error in all cases is estimated to be 
ca. 0.2).
3.4. Temperature Dependence of Segmental Motion 

for Linear and Cyclic PDMS. As briefly mentioned in the 
previous section, in addition to measurements performed at 
equal distance from Tg, QENS data were also collected for 
selected linear and cyclic samples at a series of temperatures 
above Tm. To simplify data analysis, the S(Q,ω) spectra were 
fitted simultaneously using a constant β and τ = τ0Q−α. Example

of fits are shown in Figure 14 for C2755 at T = 258, 283, and 
308 K.
The temperature and molar mass dependence of τeff for all 

samples investigated is shown in Figure 15. As shown by us 
elsewhere for PDMS samples at T above Tm, both viscosity and 
relaxation times follow an Arrhenius temperature depend-
ence:55,57,58

τ τ= ∞eE RT
eff

/a (26)

where Ea is the activation energy, R the gas constant, and τ∞ is
the relaxation time at infinite temperature.
As shown in Figure 15, eq 26 applies to all QENS data,

irrespective of molar mass and topology. The variations in τeff 
values mimic the trend reported earlier (Figures 12 and 13). 
For linear chains relaxation times are strongly dependent upon 
molar mass, increasing as Mn increases. However, for cyclic 
PDMS, τeff increases from C370 to C2700 and consistently 
lower values are obtained for C19000, at all temperatures (even 
below those of the linear samples).

Figure 14. QENS spectra of C2755 at Q = 1.45 Å−1 and three temperatures above Tg: 258, 283, and 308 K (from front to back). Symbols represent 
experimental data while full lines are fits using eq 24. The dashed and dotted lines represent the two dynamic contributions: segmental dynamics 
(dashed) and methyl rotations (dotted).

Figure 15. Temperature dependence of τeff for linear and cyclic PDMS samples. The lines are fits to the experimental points using the Arrhenius
equation. Error bars are shown for selected data: L237, L550, and C2700.



Activation energies can be calculated from the slope of ln τeff
versus 1/T (Figure 15). Ea values are plotted in Figure 16 for 
both cyclic and linear PDMS and compared to literature data 
from bulk viscosity measurements of Dodgson et al.10−12

At first inspection, agreement with viscosity measurements 
appears to be closer for linear than for cyclic PDMS. For linear 
chains, Ea increases with increasing molar mass from 9.3 ± 1.0 
kJ mol−1 for L237 to 14.6 ± 0.3 kJ mol−1, the value reported by 
us for L91700 in ref 49.
Viscosity data of Dodgson et al.10−12 show that for cyclic 

PDMS activation energies decrease with increasing molar mass, 
contrary to the increase of Ea values observed for linear PDMS 
with increasing Mn. For both cyclic and linear PDMS a constant 
value is reached at high molar mass which is equal to ∼14.8 kJ 
mol−1 for the linear samples. For cyclics, a higher value (∼15.5 
kJ mol−1) was obtained.
Although our data provide clear evidence that activation 

energies are higher for cyclics compared to linear chains, there 
is no unambiguous trend with molar mass. Values range from 
17.4± 0.7 kJ mol−1 for C370 to 16.2 ± 0.9 kJ mol−1 for C19000. 
The relatively high value recorded for C370 is not unexpected 
based on QENS measurements of small rings carried out several 
years ago by us where a value of 21 kJ mol−1 was reported for 
hexamethylcyclotrisiloxane (Mn = 222.5 g mol−1). However, the 
reason why there is such a discrepancy between Ea values of 
C370 and C445 (15.2 ± 0.1 kJ mol−1) is at present unclear.

4. CONCLUSION

A detailed investigation of local dynamics of linear and cyclic 
PDMS as a function of molar mass has been presented. QENS 
experiments in the time scale from 2 to 200 ps and at Q = 0.3 to 
1.8 Å−1 were complemented by theoretical calculations 
performed (a) within the framework of a freely jointed (FJ) 
chain model devoid of any local correlation among the 
rotational states and equivalent to a fully flexible bead-and-
spring chain and (b) for a realistic PDMS chain within the 
rotational isomerical
state approach considering the monomeric −Si(CH3)2−O− as
the repeat unit.

At low temperature, the experimental results show that the 
rotational motion of the methyl groups provides the main

contribution to the quasi-elastic broadening. The S(Q,ω) data 
of cyclic PDMS can be represented by the same model used for 
linear chains.57,58 Our findings show that the methyl group 
rotation is described by the same parameters reported for a 
linear PDMS sample with Mw = 91700 g mol−1, irrespective of 
molar mass and topology.
To extract information about segmental motion, a series of 

QENS measurements were performed at temperatures above 
Tm, i.e., in the melt state. Using the same procedure established 
for high molecular weight PDMS, we used a model function 
that explicitly accounts for contributions from methyl group 
rotation and segmental motion.57,58 For the segmental 
relaxation, measurements performed at a constant distance 
from Tg show that the stretching exponent slightly decreases 
from β ∼ 0.6 at low molar mass to values approaching 0.56 for 
linear chains. No clear evidence for differences between β values 
of linear and cyclic chains was found, within experimental error. 
We note that β values higher than 0.5 are predicted by theory 
and attributed to chain stiffness effects that increase with 
decreasing chain length.
Several features predicted by theory are also reproduced by 

the experimental data. Specifically, relaxation times of both 
linear and cyclic PDMS at temperatures equally distant from 
their Tgs increase with increasing molecular weight. Perhaps 
more importantly, rings display higher relaxation times for the 
local segmental motion, i.e., relax at a slower rate, compared to 
linear chains of the same molar mass. This is true even when 
differences among glass transition temperatures are accounted 
for.
Theoretical calculations support the idea that the topological 

constraint imposed by the ring closure slows down the local 
dynamics compared to a linear chain. For very large molar 
masses, this constraint becomes negligible and so the same τeff is 
achieved for both topologies. Interestingly, it is suggested by 
our calculations that due to its conformational rigidity, PDMS 
undergoes an additional constraint which further increases τeff, 
thus producing a shallow maximum for N ≈ 50 (Figure 4b).
Evidence for a broad maximum in τeff is also observed in the 

experimental QENS data (Figures 12 and 13).
Furthermore, the activation energy of cyclic PDMS is higher 

than that of linear chains, values being in reasonable agreement

Figure 16. Molar mass dependence of the activation energy for segmental motion as determined from data in Figure 15 using eq 26: linear PDMS 
(solid squares) and cyclic PDMS (solid circles). Experimental data are compared with activation energies of linear (open squares) and cyclic (open 
circles) PDMS from the rheological measurements reported in ref 10. Lines are guides to the eye.



with viscosity measurements.10−12 The pronounced molecular 
weight dependence of Ea for linear PDMS is primarily linked to 
the presence of mobile chain ends.
In light of recent work on the dynamics of cyclic and linear 

chains,38,50,82 our finding that cyclic PDMS is slower compared 
to linear PDMS chains may seem at first surprising. This is due 
to the very low molecular weight samples studied in this work 
and the fact that using QENS, we are probing dynamics on a 
short length scale of the order of a few statistical units. We 
would also would like to stress that the anomalous behavior 
observed for cyclic PDMS occurs within a molecular weight 
region that is unaffected by contamination from linear chains.
The cyclic PDMS fractions investigated in this work were 

prepared by ring−ring equilibration process.83 As noted by 
Kricheldorf, equilibrations of polysiloxanes and cyclosiloxanes 
have been studied by several research groups.1 At high dilution, 
data show that “equilibration of cyclic monomers or oligomers 
allows for preparation of polydisperse cyclic polymers almost 
free from linear chains”.1 Ring−ring equilibration is an 
equilibrium process, and so calculation of the ring and chain 
fractions for each Mw is possible. Using data reported by 
Semlyen, we estimate that there is ≈8% contamination by linear 
chains in samples with Mw = 17000 g mol−1. This reduces to 1%
for Mw = 8400 g mol−1, and it is vanishingly small for Mw = 3990 
g mol−1.83

As shown by the τeff versus Mw data (Figure 12), local chain 
dynamics is unaffected by the presence of entanglements: τeff
approaching constant values at higher Mw. As expected, τeff
values mimic the Tg dependence upon Mw rather than the 
molecular weight dependence of the viscosity or long time 
dynamics. It is therefore reasonable to expect that within the 
time and distance scale of our experiments the dynamics of 
large cyclics cannot be distinguished from that of linear chains 
(Figure 12). In this regime, contamination by a small amount of 
linear chains has no effect on the outcome. Obviously, linear 
chain contamination of cyclic fractions crucially affects terminal 
relaxation behavior84 and long chain dynamics as observed in 
NSE experiments above the entanglement molecular weight.
Our experiments and calculations based on siloxanes show 

changes with topology that are not only in agreement with 
previous QENS data56 but also support findings from bulk 
viscosity measurements10−12 as well as self-diffusion and spin− 
spin relaxation measurements15 according to which rings have 
slower dynamics (higher viscosities or smaller diffusion 
coefficients) compared to linear chains at low molar mass. As 
noted earlier, the viscosity data of Semlyen et al. exhibit 
opposite behavior in the high molar mass range, above the 
entanglement molecular weight, Me. Such a crossover from 
slower to faster dynamics has been reported by Ozisik et al.85
and Hur et al.25,26 in their computer simulations of cyclic and 
linear polyethylenes. We note that experimental studies of ring 
dynamics have often been performed on high molar mass 
samples, above Me,

38,50,82 and therefore no direct comparison 
can be made with our experimental data. However, for 
poly(oxyetheylene)s, Nam et al.52 measured self-diffusion, 
NMR spin−spin relaxation, and zero shear rate viscosities of 
monodisperse, low molecular
weight cyclic (400−1500 g mol−1) and linear samples, reporting
slower dynamics for poly(oxyethylene) rings.
As discussed in previous sections, the faster motion of linear 

chains cannot be simply attributed to chain end effects; 
dynamic differences are still evident even after scaling at 
constant segmental mobility. Other effects such as frustration 
of segmental rotational diffusion in small rings and the 
configura-

tional entropy of rings, which is generally much smaller than 
that of the linear chains,62 also need to be considered. As noted 
earlier, molecular motion observed by QENS is due to 
conformational rearrangements along the polymer backbone. 
This, being essentially an intramolecular process, is affected by 
the closure constraint in cyclic molecules which slows down the 
segmental relaxation. The smaller the ring, the more 
pronounced is this effect. It remains to be seen whether this is a 
feature of the PDMS samples investigated here or it is 
applicable to other cyclic systems such as cyclic PEO or alkanes.
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