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Abstract Due to the increasing size of HPC machines, dealing with faults is
becoming mandatory due to their high frequency. Natively, MPI cannot han-
dle faults and it stops the execution prematurely when it finds one. With the
introduction of ULFM (User Level Fault Mitigation), it is possible to con-
tinue the execution, but it requires complex integration with the application.
In this paper we propose Legio, a framework that introduces fault resiliency
in embarrassingly parallel MPI applications. Legio exposes its features to the
application transparently, removing any integration difficulty. After a fault,
the execution continues only with the non-failed processes. We also propose a
hierarchical alternative, which features lower repair costs on large communica-
tors. We evaluated our solutions on the Marconi100 cluster at CINECA with
benchmarks and real-world applications, showing that the overhead introduced
by the library is negligible and it does not limit the scalability properties of
MPI.

Keywords MPI · ULFM · Fault Tolerance · HPC

1 Introduction

The high demands of computational science applications are leading the evo-
lution of the current high-performance systems, increasing the complexity of
HPC systems to satisfy the need for more performance. As a result, the compu-
tation capabilities are growing and will reach the exascale performances (1018

FLOPS) in the next years [1, 2]. This evolution introduces new challenges in
the field since problems that were overlooked before are now limiting the per-
formance of the systems. Among these problems, there is system reliability.

Modern HPC architectures are featuring millions of cores and components,
and the probability that at least one of them is the victim of a fault rises with
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these numbers. The mean time between failures of current systems is measured
in days [3], and probably in the future systems will be measured in minutes [4].
With this high frequency of faults, the MTBF of the system can be lower than
the application run-time. Without any explicit management, an application
would have to be restarted several times up to when it is capable to reach
the end of the computation without any problem. Most applications based on
MPI [5], the de-facto standard for inter-process communication, lack reliability
management since the standard assumes that the application executes in a
controlled environment, where all the system components work properly. This
implies that applications must feature some sort of reliability management to
reach the end of the execution.

This problem has been solved mainly by leveraging Checkpoint-and-Restart
(C/R) techniques, but with the reduction of the MTBF new solutions are
needed, because the time needed for the checkpoint can easily exceed the
MTBF value [6]. To avoid relying purely on C/R, during the years several
MPI implementations featuring reliability methodologies has been developed,
such as MPICH-V [7], rMPI [8], or FT-MPI [9]. These efforts try to introduce
reliability methodologies directly in MPI, creating new functionalities in the
existing standard. While remarkable, they received only limited support and
did not solve entirely and efficiently the problem. The last effort among those
is the User-Level Fault Mitigation (ULFM) [10] MPI extension: it’s a collection
of functions that allow the user to repair and continue its MPI execution. This
work is receiving a lot of attention, mainly due to the focus on the integration
in the MPI standard: the next version of MPI (4.0) will focus on reliability,
and ULFM is one of the candidates to be introduced in the standard.

Various efforts (such as Fenix [11], CPPC [12], LFLR [13]) have been de-
veloped on top of ULFM since it provides an interface to handle a fault and
to repair the related data structures. These frameworks couple ULFM with a
method to restore the execution (typically C/R based) and create an all-in-one
tool improving the reliability of an MPI application. While these frameworks
enhanced the reliability of an MPI application, their usage is not transparent
and the application code has to be adapted accordingly. This solution is ac-
ceptable when designing a new application, but it becomes problematic when
targeting an already developed one. This aspect is limiting the impact of those
frameworks and led us towards the development of a solution that does not
need changes in the application code.

In this work, we present Legio1, a framework that introduces fault re-
siliency in MPI applications without requiring any integration effort from the
application developers, in terms of lines of code to be changed. The main dif-
ference between fault resiliency and C/R solutions provided in other efforts
(called fault tolerance) is that in the former there is no focus toward the re-
covery of a consistent state but the application continues without recovering.

1 The name Legio comes from the Latin word that represents a military unit of the Roman
army. The name was inspired by the fact that soldiers will keep fighting even after some
of their fellows perish: analogously, the library aims to make MPI processes continue their
execution, despite the failures of some of them.
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This means that, upon noticing an error, the failed processes are discarded
and the execution continues only with the non-failed ones. This approach is
faster compared to the standard C/R proposed in the other frameworks, but
impacts the correctness of the application result: an acceptable trade-off for
applications producing an approximate result, like for example Monte Carlo
solvers [14], or high-throughput in-silico virtual screening applications [15].

We can achieve this goal since we target embarrassingly parallel MPI ap-
plications, a very common and scalable type of parallel program that reduces
to the minimum the interactions between the processes. Embarrassingly par-
allel applications are also envisioned to be among the first ones capable to
fully exploit an exascale system. Typically, they use MPI I/O to maximize the
data transfer between computation nodes and the file-system, while avoiding
as much as possible explicit synchronization between them.

Legio supports most used MPI calls in embarrassingly parallel applica-
tions together with one-sided communication and file support, features not
yet included in ULFM. We also provide an alternative solution, capable of
constructing a networking layer transparent to the application to reduce the
impact of a fault to a few processes, reducing the time to repair in larger com-
municators. We evaluate Legio on the Marconi100 cluster at CINECA [16] to
measure the introduced overhead. Those analyses demonstrated that the pro-
posed framework introduces fault resiliency with only a very limited impact
on the performance of the application.

To summarize, the contributions of this paper are the following:

– We propose the Legio framework able to transparently introduce fault re-
siliency in embarrassingly parallel applications;

– We implemented an alternative organization of MPI communicators to
improve scalability;

– We experimentally evaluate the overheads and performance impact of the
proposed solutions considering both the single MPI calls and full applica-
tions;

The remainder of the paper is organized as follows. Section 2 analyzes the
previous works that tried to solve the problem and introduces some definitions
and knowledge useful for the following sections. Section 3 covers the initial ex-
ploration of the ULFM behaviour in presence of faults. Section 4 exposes the
design process of the Legio framework. Section 5 analyzes the hierarchical al-
ternative of the framework. Section 6 goes through the experimental evaluation
of our work by showing the overhead at the MPI call and application-level.
Section 7 discuses some potential improvements of the produced implementa-
tions. Lastly, Section 8 concludes the paper.

2 Background and related work

When an MPI process detects a failure in another process, e.g. a segmentation
fault, the default behaviour is to propagate this information and to stop all
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the processes that compose the application. However, if we are willing to react
to a failure, we can proceed in two main directions. On the main hand, we can
adapt and continue to execute with fewer processes, i.e. fault resiliency. On
the other hand, we can try to replace the faulty process with a new one and
continue the elaboration, i.e. fault recovery.

ULFM [10] is one of the most relevant efforts in the field since it allows to
continue the execution past the detection of a fault. Indeed, it specifies a set
of functions to enable fault tolerance in MPI applications. The main ULFM
features that we use in our approach are the following: (a) the possibility to set
a communicator as out of order (revoked), (b) the possibility to remove failed
processes from a communicator and obtaining a working one, (c) the possibility
to agree on a result even in presence of faults, and (d) the possibility to identify
failed processes.

Many frameworks have been built on top of ULFM functionalities by
adding different recovery strategies. In particular, the integration of a C/R
framework with ULFM provides an all-in-one framework to manage the in-
surgence of faults in a generic MPI application [11,13,17,18]. These solutions
opted for the recovery of a consistent state: by loading a previous checkpoint,
the execution restarts from a valid point. They usually provide a simple inter-
face to the user but require changes in the application code. While obtaining a
similar result to our proposed solutions, these frameworks usually do not pur-
sue transparency and, rather than opting for fault resiliency, they recreate the
failed processes. Among those efforts, the ones presented in [12,19] do not need
code changes in the application: those adaptations are made automatically by
the framework using a heuristic analysis. While their solution achieves trans-
parency, they are different from the proposed approach since they do not opt
for fault resiliency. All these frameworks achieve a solution that can work with
any MPI application, but our proposed approach can obtain better results in
terms of performance overhead for embarrassingly parallel applications.

A completely different perspective is the one presented when applying
algorithm-based fault tolerance (ABFT) [20], which exploits the possibility
to obtain the data of a failed process using the information of the others.
This solution is very application-specific since it leverages data redundancy to
implement a resilient method with reduced overhead. Examples are shown in
the context of matrix-multiplication and LU factorization kernels, but cannot
be taken into consideration for a generic MPI program. In particular, ABFT
should not be exploitable in embarrassingly parallel applications, like the one
we are targeting with Legio, due to the high data independence across the
processes.

A method tackling transient fault has been presented in SLIM (session
layer intermediary) [21]. The solution reduces the impact of transient faults
by repeating the operations. Despite SLIM works for any MPI application, it
cannot be considered a valid solution in case of permanent faults.

An approach that does not involve the recreation of the failed processes
has been explored in two previous work [22,23] that propose a solution similar
to Legio. For example, [22] discussed in detail the need for rank mapping
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between the communicators pre- and post-failure, while [23] adopted a network
topology that is very similar to the one discussed in Section 5, with the only
difference being the presence of reliable nodes. However, both of them tackle
a very specific problem and it is not trivial to generalize their approach.

An effort that shares many concepts with the approach we are proposing
has been presented in [14]. It uses the functionalities introduced by ULFM
to manage the presence of faults in a Monte Carlo application, a typical em-
barrassingly parallel MPI application. The authors implemented resiliency by
removing the faulty processes from the execution and continuing only with
the non-failed ones. The concept behind this solution is similar to the one pro-
posed in this paper. However, it has been achieved by directly modifying the
application code since the focus of the authors was on a specific application.
With Legio, we are proposing to generalize this approach by implementing a
transparent framework capable to tackle all the embarrassingly parallel ap-
plications. A more in-depth analysis of the current state-of-the-art solutions
leveraging ULFM can be found in [24].

3 Preliminary analyses

In this section, we will discuss some issues of the ULFM implementation of
the MPI standard in presence of faults [18, 25]. Before proceeding with the
analysis, we want to provide some definitions of key terms for the remaining
part of the paper:

– A process notices a fault when it receives the error code
MPIX ERR PROC FAILED after an MPI call;

– A faulty communicator is a communicator in which at least a participating
process is failed, but no process noticed it yet;

– A failed communicator is a communicator in which (at least) a participating
process noticed the presence of a fault;

Using these definitions, we sum up our considerations on the MPI standard
in points to better refer to them in the next sections.

P.1 Some MPI functions work in faulty and failed communicators. Some re-
markable functions that expose this behaviour are MPI Comm rank and
MPI Comm size, but also many operations that deal with MPI Groups. These
operations are labelled as local in the MPI standard and do not require
communication to complete successfully.

P.2 Point-to-point communication works in a faulty communicator, as long as
the processes involved in it are not failed. They do not work in a failed
communicator.

P.3 Collective communications will not work in a failed communicator but may
partially work in a faulty communicator. This behaviour comes from the
fact that only some of the processes may notice the fault, while the others
can complete without problems. In particular, the MPI Bcast operation ex-
poses this behaviour, unlike MPI Reduce, MPI Barrier, and MPI AllReduce,
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since those may need a feedback from the receiver on the correct reception
of the message. This behaviour will be called the ”Broadcast Notification
Problem” (BNP) from now on.

P.4 File and remote memory access operations are not supported by ULFM and
are likely to fail in a faulty environment (rather than raising an error, they
throw a segmentation fault making the execution impossible to recover).

P.5 Communicator management functions like MPI Comm dup or MPI Comm split

will not work in a faulty communicator. This includes also all the Inter-
communicator related ones.

These points are used in the next Sections to justify some of the choices
done while designing the proposed framework.

4 The Legio framework design and architecture

The basic idea behind the Legio framework is that it has to provide fault
resiliency functionalities in embarrassing parallel applications without code
intrusiveness. To achieve our purpose, we designed a library that behaves like
an intermediary between the application and the MPI implementation by ex-
ploiting the MPI profiling interface (PMPI), which is in the standard and it
allows us to intercept every MPI call made in the parallel program. Originally
thought for profiling, it can be used to inject code of different types around
the target MPI call. In our work, we used PMPI to introduce fault resiliency
using ad-hoc code and ULFM methods.

The proposed solution consists of the substitution of the MPI structures
used (and created) by the application with others managed by Legio. In this
way, when a fault happens, it affects only the Legio structures, making the
repair process easier and controllable by the framework. The MPI operations
performed by Legio are the ones called by the applications, but with different
MPI structures and ranks of the involved processes. In particular, the MPI
structures that are involved in the Legio repair process are communicators,
windows, and files. The structure substitution introduces many problems that
must be addressed, all referring to the possible differences between the original
and the substitute. For what concerns communicator substitution, the ranks
of the processes may raise some problems: the application is expecting its
rank not to change during the execution, but we may have to change the
communicator due to faults and, as a consequence, ranks. Our solution must
be able to transparently map ranks from the original structure to the substitute
one.

Another problem that arises in this situation is the fact that faults may
heavily affect the correctness of the application result. While we expect an
accuracy loss as a consequence of a fault, the impact of such a loss depends on
the role of the failed process within the application. Working transparently at
the application level implies that Legio has no way to know the importance of
a process within the application, and neither the application has any way to
tell Legio that information. Legio infers the importance of a process from the



Legio: Fault Resiliency for Embarrassingly Parallel MPI Applications 7

communication patterns observed and adapts its behaviour based on these
considerations. In particular, processes that are not the root of a collective
call are assumed less important than the root and their fault does not alter
the completion of the operation: after repairing the communicators, the calls
are repeated. On the other side, when a failed process is involved in the
communication, either by being the root of a collective call or by participating
in a point-to-point operation, there are two possible courses of action. Legio
can ignore the failure, for example when the failed process was gathering data
from the others, or it can stop the application execution, for example when
the failed process is spreading important data. The choice is done at Legio
compile-time and we provided ways to the user to configure this behaviour to
better fit the application.

The presence of a fault is checked after the execution of the operation
with the substitute structures: if it is confirmed, then the structures must be
repaired and the operation must be repeated. Since ULFM supports commu-
nicator repair only if all the processes participate in the procedure, the error
checking routine is not performed in non-collective calls. The error checking
routine suffers from the BNP (property P.3): since all the processes need to
participate, the fact that only some processes notice the fault can block the
repair process, resulting in a deadlock. To avoid this problem we perform an
agreement operation that combines the results obtained by all the processes
into a single one equal for all, so that either all the processes notice the fault
(and can proceed with the repair procedure) or none, avoiding deadlocks.

While communicators management is enough to support many MPI func-
tions, there are many more that do not base on them. All the operations re-
ferred to in property P.1 are left unchanged, while others need some additional
structures. File operations and one-sided communication ones, in particular,
leverage other structures not yet supported by ULFM so any fault may cause
the program to behave indefinitely (property P.4). Any operation that uses
one of these structures must be sure of the absence of faults because we cannot
repair those structures and the execution would stop. The solution adopted
up to now faces the problem of having to ensure that the substitute structure
is fault-free before executing the operation. To achieve this requirement, we
added a call to a barrier operation before the actual function: in this way the
eventual presence of a fault will be recognised by the barrier and it will be
possible to proceed with the repair.

These solutions allow us to support most of the MPI calls, but other func-
tions like the gather and scatter operations rely on the value of the rank to
provide correct behaviour, and simply running them on a substitute communi-
cator would produce a wrong result. We decided to implement those functions
as a combination of others that do not suffer from the same problem.

By following these concepts, we managed to create an implementation of
our library that features support for many MPI operations2. This solution is

2 The source code of the Legio framework can be found here, together with a list of all
the MPI calls currently supported: https://github.com/Robyroc/Legio.
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Fig. 1: An abstraction of a MPI application. Processes are depicted as small
circles containing their rank in the target communicator. Each rounded square
represents a communicator. The black one is the target communicator. The
orange ones are the local comms, while the green one is the global comm.

transparent: the application needs no strict code change to support the library
because it is integrated only in the linking phase. However, the application de-
velopers must be aware that an MPI operation may be skipped, due to the rank
translation problem. Therefore, they must perform all the operations required
to avoid undefined behaviour, such as buffer initialization. We evaluated our
solution to measure the overhead it introduces and its ability to handle faults:
we will present the results in a later section.

5 The Hierarchical Extension

The ULFM standard requires that all the repair procedures involve all the pro-
cesses, limiting the development of local recovery solutions where each process
could repair itself independently [11,18]. This is a well-known issue, analyzed
by the same authors, that leads to worse than linear scaling when we increase
the number of nodes involved in the computation. Given the modern trend to
increase the experiment size, the impact of this limit increases as well.

To solve this issue, we propose an alternative and novel solution that avoids
the MPIX Comm shrink usage on the entire communicator. In particular, we
developed a hierarchical approach. At first, we split the target communicator
into a set of disjoint sub-communicators (local comms). Then, we create a new
communicator (global comm) that contains one process (named master) per
sub-communicator. The master process of a sub-communicator is the one with
the lowest rank. Figure 1 shows the topology of the hierarchical approach.

This solution has some major properties: (a) the number of communicators
created scales linearly with the number of processes; (b) each process can reach
anyone else in the network (if not directly, via forwarding), and (c) there
is only one path from a process to another one that crosses the minimum
amount of nodes. The new communicator resembles a star topology, avoiding
any communication across different local comms outside the global comm. On
the main hand, this feature reduces the impact of a fault: only the processes
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Fig. 2: Example of POV s communicators in the MPI application depicted
in Figure 1. Each POV is represented as a dashed exagon. For simplicity we
depict only the POV of which the process with rank 3 is part.

directly communicating with the failed one will have to participate in the
recovery, while the others can continue their execution seamlessly. On the
other hand, it complicates the repair procedure which depends on the role of
the process.

When the faulty node is not a master, then the repair procedure is bounded
within the local comm. Otherwise, the framework needs to assign the master
role to a new process and include it in the global comm. In particular, every
time the user creates a communicator (of size s), Legio creates local comms
of max size k. The framework assigns each process to a local comm accord-
ing to its rank r i.e. a process will be assigned to the i-th local comm (lo-
cal comm i) if i = r/k. Moreover, we define local comm (i+1) as the suc-
cessor of local comm (i), while we define local comm (i-1) as its predecessor.
We consider the last local comm the predecessor of the first local comm. The
assignment of a process to a local comm is final.

Due to property P.5, when Legio manipulates a communicator, it must be
fault-free. Therefore, the framework needs to create additional communicators
to complete the repair procedure, named POV s (short for Partially OVer-
lapped). Each POV includes all the processes of a local comm and the master
of the successor. Thus, Legio creates a POV for each local comm. Legio uses
these communicators only for the repairing procedure. Figure 2 highlights two
POV communicators in the example depicted in Figure 1.

Figure 3 summarizes the required steps when we repair a failure on a
master. The failure is noticed only by the processes in its local comm and by
the ones in the global comm (Figure 3a). However, the failed process belongs to
four different communicators and all of them must exclude the failed process to
proceed. The local comm, its POV, and the global comm can shrink to exclude
the failed master process. However, the master of the predecessor needs to
notify the processes in its POV before shrinking, since they were unable to
notice it directly. In this phase of the repair procedure, the processes in the
local comm of the failed master can communicate with the other processes
only by using their POV through the master of the successor. Legio uses this
connection to include the new master node, i.e. the process with lower rank
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(a) (b)

(c) (d)

Fig. 3: Overview of the repair procedure when a master fails. The communi-
cators and processes follows the notation rules of the previous images. The red
cross highlights the failed node. The exclamation marks highlight the nodes
that notice the failure. The arrows that originate from a process represent the
inclusion of the process in a communicator. The arrow color represents the
target communicator. The arrow border color represents the communicator
used to perform the operation.

among the ones in the local comm of the failed master, to the global comm
(Figure 3b). Then, it can use the global comm to update also the predecessor
POV (Figure 3c) and complete the repair procedure (Figure 3d).

Even if this procedure is composed of several steps, it reduces the cost of
the repair operations because it lowers its complexity. If we refer to S(x) as
the computational cost of the shrinking operation over x processes, we can
define the shrink complexity as follows:

RH(s, k) =

{
S(k) + 2S(k + 1) + S(s/k) if failed master

S(k) otherwise
(1)

where s is the size of the entire communicator and we assume for simplicity
that it is multiple of the maximum size of the local comms k. For the master
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fault case, the three terms refer to the shrinking of the local comm (S(k)),
the two POV s (2S(k + 1)), and the global comm (S(s/k)). The complexity
depends on the role of the process, as described previously, and on the value s.
When s increases, the complexity of the hierarchical approach improves with
respect to S(s), i.e. shrinking the entire communicator. In particular, there
might be a minimum value of s such that the hierarchical approach will be
less expensive than the normal one (for some value of k). Formally:

∃s0(∀s > s0(∃k|RH(s, k) < S(s))) (2)

To answer this question we need the complexity of S. Even if we do not have
a formal definition, the authors of Fenix [11, 18] have empirically estimated a
more than linear complexity. Under the assumption that all the processes
have an equal probability of failure, it is possible to continue the analysis by
combining the two parts of the Equation 1. In particular, given s as the size
of the entire communicator and k as the size of the local communicators, we
can state that the probability of a process to be master is 1

k (one process per

local) and, as a consequence, the probability of being non-master is k−1
k . From

this, we can obtain:

RH(s, k) =
1

k
(S(k) + 2S(k + 1) + S(

n

k
)) +

k − 1

k
S(k) =

= S(k) +
2

k
S(k + 1) +

S(s/k)

k
(3)

Equation 4 and Equation 5 provide the relationship between the commu-
nicator size and the value of k that minimizes the overall repair complexity for
the linear (S(x) = cx) and quadratic (S(x) = cx2) case respectively. The two
equations can be obtained by deriving Equation 3 with respect to k, putting
the result equal to 0 and by substituting S(x) with the chosen hypothesis. The
actual relationship lies between the bound highlighted by the two equations.

s =
k(k2 − 2)

2
(4)

s =

√
2k2(2k2 − 1)

3
(5)

Even if we consider the linear case when s > 11 the hierarchical approach
has a lower complexity. However, the split nature of the network introduces
communication overheads since not all the processes are directly connected.
This forced us to rethink the way each operation is performed, eventually
splitting the execution across the smaller communicators. In particular, we
divided the supported operations into various classes, that share the same
data movement characteristics:

– One-to-one operations are the simplest ones since they involve only two
processes. Following property P.2 and the fact that they do not need the
error-checking part, we decided to run them on the entire communicator.
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Fig. 4: The propagation steps in one-to-all and all-to-one operations. In both
cases, the root process is the one with rank 2.

– One-to-all operations (like MPI Bcast) involve all the processes and may
cause repair. The data must go from a process to all the others, needing
some sort of propagation. To execute the operation, we run it on the dif-
ferent parts in sequence: firstly in the local comm of the root, then in the
global comm, and lastly in all the other local comms in parallel. Figure 4
shows the direction of the information within the network.

– All-to-one operations (like MPI Reduce) are similar to one-to-all but the
data travels in the opposite direction. We followed the same propagation
plan as in one-to-all but in reverse order, as shown in Figure 4.

– All-to-all operations (like MPI Allreduce) move data from and to all the
processes within the network. We decided to represent them as a combina-
tion of an all-to-one and a one-to-all operation executed sequentially.

– Comm-creator operations generate new communicators. We cannot exe-
cute the operation on a local comm or global comm since there is the need
for a unique communicator. These operations are executed on the entire
communicator and may cause inefficient repairs. Nonetheless, the trade-off
may be acceptable since their frequency is usually lower than the other
operations.

– File operations do not involve data movement between processes directly:
we can use this property to make each process execute the operation on
their local comm without the need for any propagation mechanism.

– Local only operations are executed by a process on its structures: no
data movement is needed, so it is possible to execute the operation on the
local comm as done in file operations.

– Windows operations involve data movement and all the windows must
be accessible from all the processes within a communicator. These opera-
tions are executed on the entire communicator.

The implementation of this solution exposes to the user two knobs: the maxi-
mum size of the local comms and a threshold value for using the hierarchical
communicator. Since this solution is an alternative to shrinking the entire
communicator, we evaluated both solutions in the experimental campaign.
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6 Experimental evaluation

To prove the validity of our solutions, we conducted some experiments using
different benchmarks. The purpose of these experiments was to quantify and
evaluate the impact of the Legio library usage on various applications. We
conducted these experiments on the Marconi100 cluster at CINECA, featuring
nodes with 2 x IBM POWER9 AC922 16 cores 3.1 GHz processors and 256
GB of RAM. In all the experiments done we adopted an MPI configuration
featuring 32 processes per node, 1 process per physical core. The Legio library
has been configured considering the maximum size of the local comms set
to the closest optimal value following the relation obtained with the linear
complexity hypothesis (Equation 4).

The experimental campaign aims to evaluate the execution overhead of an
application using Legio in a fault-free scenario. This choice has been done since
the problem solved by the application after a fault is different because it does
not include the part handled by the failed process. Moreover, the survivor pro-
cesses can complete their execution usually faster than before since there will
be one less process competing for the resources. This means that computing
the overhead in a faulty environment is not trivial, but can be simplified by
considering that the operations performed in presence of a fault are almost the
same done before its occurrence, the only difference is the repair procedure.

Our experiments evaluate the temporal overhead of the Legio introduction
since the cost in terms of accuracy depends on the application, the problem
and the rank of the failed process. The experiments can be divided into two
groups, different for their purpose and the information they produce: the first
ones involve the per-operation measurement of the overhead introduced, while
the second group consists of more general applications in which we will analyze
the overall impact of the library. For the first group, we used mpiBench [26] to
measure the overhead of the library when increasing the communication load
and we used an ad-hoc code to evaluate the same parameters when increasing
the network size and to measure the time needed to repair the execution.

The experiments involving mpiBench were run on a 32 processes network
and we analyzed the time needed to complete broadcast and reduce opera-
tions under increasing message sizes. The mpiBench application will repeat
the calls 1000 times for each message size and for each of the three versions: at
first, we linked the initial Legio implementation, then the hierarchical solution,
and lastly we just compiled the application with ULFM without additional li-
braries. Figures 5, 6 and 7 show the average values of the execution times
for each call. The overhead can be seen in the difference between the last con-
figuration (an execution without fault management techniques) and the other
two. This will also apply to all the tests featuring the ”ULFM only” dataset.

It is possible to see how the three values share similar behaviours in terms
of growths: this implies that our solutions do not damage the scalability of the
MPI library with the increase of the message size.

The experiments involving the ad-hoc code have a different structure: we
time each call and we compare it with the same call without the use of any
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Fig. 5: Execution time to complete a MPI Bcast by varying the message size.
Each line represents a different MPI implementation.
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Fig. 6: Execution time to complete a MPI Reduce by varying the message size.
Each line represents a different MPI implementation.

Legio feature. The calls have been done using small messages (1 char) to
show the overhead in the worst case when the time needed to complete the
operation is the lowest. Each call is repeated 100 times, to reduce the impact
of measurement noise. Figures 8, 9, and 10 show the results obtained. We also
evaluated the cost of the repair procedure by injecting a fault and completing
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Fig. 7: Execution time to complete a MPI Allreduce by varying the message
size. Each line represents a different MPI implementation.
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Fig. 8: MPI Bcast overhead by varying the network size. Each measure accu-
mulate 100 repetitions of the operation.

an operation. Figure 11 shows the results of this latter analysis: from that,
it’s possible to see that the non-linearity of the shrink theorized by [18] is not
present in our tests. Despite this fact, the average time to repair on a 256 core
machine is lower in the hierarchical case, since the probability for a master
node to fail is contained (1/8). Using the ad-hoc code we checked also the
overhead for file operations: running those tests in the same configurations as
the previous ones, we noticed that the execution time of a single call is heavily
influenced by the load of the file-system rather than from other aspects. The
overhead measured was affected by the load too and, despite being contained,
it cannot be considered meaningful.

The second group contains experiments run on two embarrassingly par-
allel applications. The first application is part of the NAS parallel bench-
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Fig. 9: MPI Reduce overhead by varying the network size. Each measure accu-
mulate 100 repetitions of the operation.

32 64 128 256

0.5

1

1.5

2
·10−2

Network Size [processes]

O
v
er

h
ea

d
[s

]

Legio Legio H

Fig. 10: MPI Barrier overhead by varying the network size. Each measure
accumulate 100 repetitions of the operation.
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Fig. 11: Communicator repair time by varying the number of processes in-
volved in the operation. The combined value summarizes both the values of
the Hierarchical approach by assuming equal probability of faults across all
nodes.

mark [27] and it generates independent Gaussian random variates using the
Marsaglia polar method. The MPI calls performed by the applications are
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Fig. 12: Execution time distribution of the EP benchmark by varying the
number of processes involved and the MPI implementation.
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Fig. 13: Execution time distribution of the molecular docking application by
varying the number of processes involved and the MPI implementation.

mainly MPI Allreduce operations. We use the “C” size workload and the
measurements refer to the successive execution of 7 runs. We ran the tests in
various configurations in terms of the number of MPI processes and MPI im-
plementation. In particular, we use 32, 64, 128, and 256 processes and choose
between one of our implementations or only ULFM. For each configuration,
we repeat the experiment 10 times, extracting all the execution times. The
results can be seen in Figure 12.

The second experiment uses the skeleton of a molecular docking applica-
tion, which estimates the strength of the interaction between two molecules.
In this context, we have a target molecule and a database of smaller molecules
that we need to evaluate to find the most promising ones. The application uses
a wide range of MPI calls, from file operations to point-to-point and collective
functions. As a workload, we use a database with 113K molecules. We ran
the executions using the same configurations used in the previous experiment,
repeating each one 10 times and extracting the execution times. The results
can be seen in Figure 13.
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From the experimental results, it is easy to notice how the overhead is
negligible and the usage of Legio does not impact heavily the execution times
in both cases. This is also related to the reduced use of communication in em-
barrassingly parallel applications. Nevertheless, those experiments validate
our approach since they respect the requirements of low overhead introduc-
tion and transparency. Moreover, both the prototypes proved effective for the
embarrassingly parallel applications tested and can continue the execution in
presence of faults in a manner of seconds. Despite the plots being limited to
256 processes, we do not expect that the trends shown in figures 12 and 13
to change significantly, except for an increment of the overhead following the
trend shown in figures 8, 9 and 10.

In both cases, the functional effect of a fault leads to an accuracy loss in
the result computation. In particular, the accuracy loss can be estimated a-
priori given the uniform data split across the n processes: if the system suffers
from faults of f processes, the application will base its evaluation only on n−f

n
times the problem data. For the EP benchmark, this fraction represents the
number of processes contributing to the final reduction, while in the molecular
docking application it represents the lower bound of the overall molecules that
will be screened.

7 Ongoing work on introducing the C/R feature

Not all embarrassing parallel applications relies on the fact that they can
produce useful results even in presence of a failed process. In these cases, the
current version of Legio cannot be employed. However, we already evaluated
the possibility to introduce a C/R feature in the library thus obtaining the
possibility to recover failed processes transparently.

As discussed in Section 2, many other efforts combined C/R frameworks
with ULFM [11–13,17,18]. Most of them do not focus on transparency, asking
for explicit application-level intrusiveness. Since Legio has in transparency
one of its key features, we moved towards system-Level C/R frameworks that
guarantee a transparent approach at the cost of a large overhead for both
check-pointing (all the system status has to be saved) and restart phase.

Considering the type of application we are targeting, the characteristic
that we want to take out from a C/R framework is not to restart the en-
tire application, but only the failed processes. The possibility to restart only
a part of the network is not a common feature in system-level C/R frame-
works. Usually, these frameworks are designed to consider the absence of fault
mitigation mechanisms inside the application, so they assume that in case of
fault all the processes must be restarted. Moreover, they tend not to split the
checkpoint information of the various processes because they would lose sig-
nificance without all the others. The restart part may also lead to problems:
without knowing the details about the application, it may be difficult to load
a system-level checkpoint on a process created by the application.
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Among all the efforts produced in literature, recently we found in MANA
[28] support in that direction. It provides system-level checkpointing (no ap-
plication intrusiveness), the possibility to migrate processes (implying the di-
vision of the data per process), and flexibility on MPI versions upon restart.
Our idea is to exploit the per-process data checkpointing offered by MANA
to restore only the failed process. While everything seems ready for integra-
tion, MANA is still designed for global recovery and the steps towards local
recovery are part of our ongoing work.

8 Conclusion

This paper presents Legio, a framework designed to offer resiliency to embar-
rassing parallel MPI applications. The work makes the absence of intrusiveness
in the target application one of the key elements. Indeed, the library makes
use of ULFM and the PMPI interface to wrap the MPI call and to implement
all the required actions to manage failed processes. In the paper, an extension
towards a hierarchical implementation has been also presented to reduce the
overhead of the repair process in case of a large number of nodes involved. The
experimental evaluations considering both per-MPI-call and application-level
evaluations demonstrate the efficiency of the implemented framework, proving
how the solution can be used in embarrassingly parallel applications without
affecting the overall performance.
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