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Abstract. This paper deals with the extraction of multiple models from
noisy, outlier-contaminated data. We build on the “preference trick” im-
plemented by T-linkage, weakening the prior assumptions on the data:
without requiring the tuning of the inlier threshold we develop a new
automatic method which takes advantage of the geometric properties of
Tanimoto space to bias the sampling toward promising models and ex-
ploits a density based analysis in the conceptual space in order to robustly
estimate the models. Experimental validation proves that our method com-
pares favourably with T-Linkage on public, real data-sets.
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1 Introduction

The extraction of multiple models from noisy or outlier-contaminated data is an
important and challenging problem that emerges in many Computer Vision appli-
cations. With respect to single-model estimation in presence of noise and outliers,
this problem is even more difficult since it must tolerate both true outliers and
pseudo-outliers (“outliers to the structure of interest but inliers to a different
structure” [15]). Among the wide variety of approaches developed for multi-model
fitting, it is possible to identify two mutually orthogonal strategies: consensus
analysis and preference analysis.

The consensus set of a model is defined as the set of data points that are close to
the model within a certain threshold. Consensus analysis can be traced back to the
popular RANSAC paradigm and its variants [17] and gave rise also to algorithms
tailored for the case of multiple structures estimation, e.g. [22]. Consensus-oriented
methods generate a pool of putative model hypotheses by random sampling, then
retain the models that explain better the data by inspecting their consensus sets.
The same idea can be found in the popular Hough transform [20] and its general-
ization, where multiple models are revealed as peaks in the hypothesis space after
it has been adequately quantized. Maximizing the consensus set of models can be
also encountered as the foundation of optimization algorithms [9] for geometric
fitting.

On the contrary, preference analysis reverses the role of data and models: rather
than considering models and examining which points match them, the residuals
of individual data points are taken into account [21]. In this way it is possible to
exploit the residual information for building a conceptual space in which points
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are portrayed by the preferences they have accorded to provisional models. For
example in [16] data points are represented as characteristic functions taking values
on the set of hypothesized models, whereas in [2] a data point is represented in a
Reproducing Kernel Hilbert Space by the permutation that arranges the models
in order of ascending residuals. T-Linkage [12] extends the ideas beyond [16] and
is mainly composed by two steps:

1. Conceptual representation: given an inlier threshold, points are represented in
the m-dimensional unitary cube endowed with the Tanimoto distance, accord-
ing to the preferences they grant to a set of m random hypotheses. We will
refer to this metric space as Tanimoto space.

2. Segmentation: data are segmented via a tailored version of average linkage.

It is worth to observe that a similar first-represent-then-clusterize approach is
also adopted by many state-of-the-art algorithms [7, 14, 11] for multiple subspaces
estimation that relies on sparse representation of points.

In this paper we elaborate both the conceptual representation and the segmen-
tation step introduced by T-Linkage, conceiving a new automatic method aimed
at multi-model extraction resistant to noise and outliers. In particular we present
an embedding in Tanimoto space of data points which does not require the tuning
of the inlier threshold and In addition we describe how a density based analysis
of the Tanimoto space can be used to simultaneously cluster point and identify
outliers. The main goal of this work is to gain some insights on the key advantages
provided by the use of Tanimoto distance in preference analysis.

2 Method

In this section we explore the geometrical properties of Tanimoto space, intro-
ducing a new method for clustering of multi-model data. We motivate and for-
mulate the algorithm using a working example (Fig. 1a) taken from [19]. In this
dataset three objects move independently each giving rise to a set of points cor-
respondences in two uncalibrated images: points belonging to the same object are
described by a specific fundamental matrix. Outlying correspondences are present.

2.1 Preference Trick

The first step of our method, like T-Linkage, consists in building a conceptual
representation of data points X = {x1, . . . , xn} in the Tanimoto space T =
([0, 1]m, dT), given a set of putative models H = {h1, . . . , hm}. We will denote
the Tanimoto distance, defined for every p, q ∈ [0, 1]m as

dT(p, q) = 1− 〈p, q〉
(‖p‖2 + ‖q‖2 − 〈p, q〉)

, (1)

whereas d : X × H → R indicates a suitable distance for computing the residual
between a point and a model. This step can be thought as a sort of “preference
trick”. Echoing the celebrated “kernel trick”, which lifts a non linear problem in an
higher dimension space in which it becomes easier, the Tanimoto representation,
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shifts the data points from their ambient space to a conceptual one, revealing
the multiple structures hidden in the data as groups of neighbouring points. The
preference trick can be formalized by defining a vector map

Φ : X → T = ([0, 1]m, dT) x 7→ (exp (−r1) , . . . , exp (−rm)) , (2)

where rj are the standardized residuals of data points with respect to H:

rj =
d(x, hj)

σ
, σ = var {d (xi, hj) , i = 1, . . . , n, j = 1, . . . ,m} . (3)

The rationale behind this construction is that Φ(x) expresses the preference granted
by x to the model hj with a vote in [0, 1] according to its residual. The Tanimoto
distance dT measures the agreement between the preferences of two points. In par-
ticular this distance ranges in [0, 1] and achieves its minimum for points sharing
the same preferences, whereas dT = 1 when points have orthogonal preferences.

Observe that Φ differs from the embedding Φτ proposed in T-Linkage in which
the inlier threshold τ is needed in order to cut off the preference of points too
distant from the models:

Φτ,j(x) =

{
exp

(
−d(x,hj)

5τ

)
if d(x, hj) < τ

0 if d(x, hj) ≥ τ .
(4)

In this formulation τ plays a crucial role: it implicitly controls the final number
of models because it affects the orthogonality between the conceptual representa-
tion of points and T-Linkage connects points until they are orthogonal in T.

On the contrary our segmentation step does not rely on orthogonality in T, but
exploits other geometric properties of Tanimoto space, such as densities and con-
centrations. For this reason we do not require a correct estimate of the threshold,
which indeed can be a difficult parameter to tune.

Biased Random Sampling in Tanimoto space. The pool of tentative hy-
potheses is generated instantiating a model on minimal sample sets (MSS), i.e.
a subsets of data points having the minimum cardinality (henceforth denoted by
k) necessary to estimate the model. Different sampling strategies can be used for
generating these models. If uniform sampling is employed, a large number of trials
is required for reaching a reasonable probability of hitting at least a pure (i.e., out-
lier free) MSS per model, as explained in [16]. Hence, many strategies have been
proposed in order to guide sampling towards promising models both in the case of
one model [5, 4] and in the multiple models scenario [3]. With localized sampling
[10] neighbouring points are selected with higher probability, thereby reducing the
number of hypotheses that have to be generated. However, depending on the ap-
plication, introducing a local bias can be difficult since different structures may
obey different distributions of data in the ambient space (think for example to the
case of motion segmentation of moving object with very different shapes).

In order to overcome this difficulty we propose to sample the hypotheses di-
rectly in the conceptual space. This can be easily done performing a preliminary
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uniform sampling of hypotheses, representing the data in the Tanimoto space ac-
cording to these putative models and then doing a biased sampling in T.

In particular if a point x has already been selected, then a point y such that
x 6= y has the following probability of being drawn:

P (x|y) =
1

Z
exp

dT (Φ(x), Φ(y))
2

α2
. (5)

where Z is a normalization constant and α controls the local bias.

Tanimoto distances are then updated on the fly based on the hypotheses already
sampled.

We illustrate the effectiveness of this sampling strategy on the biscuitbookbox
sequence. In Fig. 1 we compare our biased sampling in Tanimoto space with respect
to uniform sampling, localized sampling, and Multi-GS a method proposed in [3].
All these methods can be lead back to the conditional sampling scheme presented
here, substituting dT in (5) with an appropriate distance function: dU ≡ 1 for
uniform sampling, dL = ‖ · ‖ for localized sampling and the intersection kernel
dGS. We run these methods with different values of α; in particular we set α = qw
as the w-th quantile of all these distances, varying w ∈ [0.1, 1]. Our biased sampling
provides results comparable with localized sampling for more values of α (Fig. 1b)
and produces many pure MSS per model (Fig. 1c).
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(c) Pure MSS per model (α=q0.1)

Fig. 1: Comparison of guided sampling methods on biscuitbookbox sequence. Model
membership is colour coded; black crosses are outliers.

2.2 Density based analysis for model extraction

In this section we will see how to cluster the high dimensional cloud of points
Y = Φ(X) originated by the preference trick in order to extract the models that
explain the data. The desired segmentation is obtained by exploiting the geometric
properties of the discrete set of points Y induced by the topology defined in T. In
particular the notion of density-connected component will serve as the geometric
counterpart of the statistical notion of cluster. An analysis of points density is
performed using Optics [1], producing a reachability plot from which density-
connected components can be identified.
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Geometric insight. We recall that the Tanimoto distance measures the agree-
ment between the preferences of points: data sharing the same preferences, i.e.
belonging to the same models, are close according to dT. As can be appreciated
from Fig. 2a, points belonging to the same model are clustered in high density
region whereas outliers occupy region with low density.

(a) Points in T (with MDS)
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(b) Neighbourhoods in T

Fig. 2: Insights on the geometry of Tanimoto space. (a) the biscuitbookbox data in
Tanimoto space are projected using Multi-Dimensional Scaling for visualization
purposes. Outliers (x) are recognized as the most separated points. (b) Tanimoto
neighbourhoods with the same radius in [0, 1]2 have smaller Euclidean diameter if
the centre lies near the origin.

Some insight into this property of Tanimoto space can be reached considering
a system of neighbourhoods: Fixed some ε ∈ (0, 1) and some y ∈ T the Tanimoto
ball of radius ε and centre y is denoted by Nε(y).

As illustrated in Fig. 2b, the Euclidean diameter of Nε changes accordingly to
the position of the centre y. In particular this quantity tends to be smaller for
points lying near the origin of T, that corresponds to the region of T prevalently
occupied by outlying points. In fact outliers grant their preferences to very few
sampled hypotheses, they have small Euclidean norm and consequently tend to
lie near the origin. Hence the probability that two outliers live in the same ball
of radius ε is significant lower than the probability that two inliers (with higher
Euclidean norm) are contained in a ball with the same radius. For this reason
outliers can be recognized as the most separated points in T.

With this perspective as guide, we tailor the definition of density-connected
component [8] to Tanimoto space:

Definition 1. Given p, q ∈ T, the cardinality k of MSS and ε ∈ (0, 1)

– p is said a core point if |Nε(p)| > k;

– p is directly density-reachable from q with respect to ε if p ∈ Nε (q) and q is a
core point;

– p is density reachable from q with respect to ε if there is a chain of points
p1, . . . , p` s.t. p1 = p, p` = q and pi+1 is directly density reachable from pi;
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– p is density-connected to point q with respect to ε if there is a point o such
that both p and q are density reachable from o.

– a density-connected component is a maximal set of density-connected points.

Density-connectivity is an equivalence relation hence all the points reachable
from core points can be factorized into maximal density-connected components
yielding the desired segmentation. A crucial advantage of this definition is that
it deals directly with outliers which can be recognized as points not connected to
any core point. In topological words, outliers can be identified as isolated points
of Y , whereas inliers are either internal or boundary points of a density-connected
component. Moreover density-connected components may have arbitrary shape.
Note that, by definition, a density-connected component must contain at least
k+ 1 points; this is coherent with the fact that at least k+ 1 points are needed to
instantiate a non-trivial model (k points always define a model), and gives a very
natural choice of this parameter which in [8] is user defined.

Ordering points to identify the clustering structure. In Tanimoto space
clusters of inliers could have relatively varying density, though higher than outliers.
For this reason we do not fix a global value of ε for finding the density-connected
components. Instead we adopt the multi-scale approach offered by Optics (Or-
dering Points to Identify the Clustering Structure) [1]. Optics is a density-based
technique which frame the geometry of the data in a reachability plot thanks to
the notion of reachability distance.

Definition 2. Given the cardinality k of MSS,

– if p is a core point, the core-distance of p refers to the distance between p and
its k-nearest neighbour.

– if p is a core point, the reachability-distance of a point p with respect to a point
q is the maximum between the core distance of p and the distance dT(p, q).

After the data have been ordered so that consecutive points have minimum
reachability distance, Optics produces a special kind of dendrogram, called reach-
ability plot, which consists of the reachability values on the y-axis of all the ordered
points on the x-axis. The valleys of this plot represent the density-connected re-
gions: the deeper the valley, the denser the cluster.

Figure 3, where the biscuitbookbox reachability plot is shown, illustrates this.
Outliers have high reachability values, on the contrary genuine clusters appears as
low reachability valley and hence are density-connected components in T.

The points ordering originated by Optics resembles the classical single Linkage
clustering, in which at each iteration the closest points are linked together, however
the use of reachability distance, which exploits local density information, mitigates
the so-called chain effect.

Flooding. The final step of our method is aimed at automatically find the valleys
in the reachability plot produced by Optics in order to robustly extract clusters
and hence models. For this purpose we adapt the Meyer flooding algorithm [13],
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Fig. 3: Output of Optics. (a) The reachability plot of biscuitbookbox shows the
reachability distance of ordered points (model membership is colour coded accord-
ing to the ground truth). (b) Significant local minima are marked according to the
θ at which they are found.

originally developed for Watershed segmentation, to deal with the 1D reachability
plot:

1. Local minima of the reachability plot are found.
2. Those minima that are at least θ below their adjacent maxima are retained as

significant.
3. The reachability plot is flooded starting from the basin of significant local

minima.
4. The flooding of a basin stops when different water sources meet.
5. Points flooded with water coming from the same source are clustered together,

whereas points untouched by the water are labelled as outliers.

Once data points are segmented, models are fitted via least square regression on
points belonging to the same cluster, and outliers are reassigned to their nearest
model – if they have distance smaller than the furthest inlier. Finally, models
are re-estimated according to this new segmentation. Optionally, a final outlier
rejection, as the one proposed in [12], could be performed.

The threshold θ controls the significance of critical points in the reachability
plot, allowing us to dichotomize between significant minima and spurious ones
due to noise. It is found empirically that θ = 0.05 provides good local minima in
several applicative scenarios, consequently the generality of the preference trick is
not affected by the use of this fixed threshold.

Nevertheless it is interesting to investigate how θ affects the quality of cluster-
ing. In Fig. 3b the sets of significant minima are shown for θ = 0.05, 0.005, 0.001.
It is readily seen that as θ decreases the induced segmentation becomes finer, cre-
ating a hierarchy of models, which allows multiple levels of details to be captured,
as can be appreciated in Fig. 4, where points that at level θ = 0.05 obey a single
fundamental matrix are split in clusters described by homographies.

3 Experimental evaluation

This section is devoted to validate our methodology (henceforth called T-Optics)
in several real multi-model fitting problems. All the code is implemented in Mat-
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Fig. 4: Hierarchy of models at different levels of θ. Model membership is colour
coded, black crosses are outliers.

lab on a personal computer with 2.6 GHz Intel Core i7 processor. We use the
Optics implementation of [6] to produce reachability plots and the Matlab func-
tion peakfinder3 for finding significant minima. A quantitative measure of the
attained segmentation is obtained using the misclassification error (ME), that
counts the percentage of misclassified points.

Video motion segmentation. Given a video taken by a moving camera, motion
segmentation tries to identify moving object across the video. This aim is pursued
by fitting subspace of dimension at most 4 to the set of features trajectories in
R2F , where F is the number of frames in the video.

We use three video sequences taken from the Hopkins 155 dataset [18], 1RT2TC
from the chequerboard sequences, cars5 which belongs to the traffic ones and peo-
ple1 which is an example of articulated motion. All the trajectories are outlier free.
The cars5 and people1 videos, which are properly segmented by T-Linkage, are
correctly segmented also by our method. The 1RT2TC dataset is more challenging
for T-Linkage, as confirmed by the experiments conducted in [12]. The tuning of
a global inlier threshold τ turns out to be a thorny problem, since the subspace
describing the background (red) and the one representing the moving box (blue)
are close to each other with respect to their distances to the subspace of the mov-
ing glass (as can be also deduced by the reachability plot in Fig. 5d, where a small
jump separates the first two valleys and an higher one separates the last object).
This difficulty affects also T-linkage, which, indeed, under-segments the data (see

3 www.mathworks.com/matlabcentral/fileexchange/25500-peakfinder
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Fig. 8b in [12]). On the contrary, as presented in Fig. 5, our methods is able to
distinguish correctly the three moving objects.

(a) 1RT2TC result (b) cars5 result (c) people1 result
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Fig. 5: Video motion segmentation. Top row: segmentation results. Model mem-
bership is colour coded, no outliers. Bottom row: reachability plots.

Two views segmentation. In these experiments we are given a set of corre-
spondences across two uncalibrated images. When the scene is dynamic, as in
biscuitbookbox and in breadcubechips, we want to identify the moving objects by
fitting fundamental matrices. If the scene is static our purpose is to identify the
points belonging to 3D planar surfaces by estimating multiple homographies. The
latter is the case of elderhalla and sene datasets. All these datasets are contam-
inated by the presence of gross outliers. Segmentation results are presented in
Fig. 6. In motion segmentation T-Optics succeeds in extracting the correct fun-
damental matrices and outliers are correctly detected after the flooding step. As
plane segmentation is concerned the two dominant planes are correctly identified
both in sene and in elderhalla. In the latter two additional models are detected
composed by outliers which happen to lies in homographic configurations.

For each tested sequence the corresponding ME is reported in Tab. 1, where T-
Optics is compared to T-Linkage, showing that in some cases T-Optics increases
the performances of T-Linkage without requiring the tuning of the inlier threshold.
By collating the time elapsed (in seconds) for the clustering steps of these two
algorithms it is evident that T-Optics attains the best trade-off between accuracy
and computational time. In fact, in T-Linkage every time two clusters are merged,
Tanimoto distances need to be updated, whereas in Optics distances in T are
computed only once, considerably reducing the computational load.



10

(a) breadcubechips result (b) elderhalla result (c) sene result
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(e) elderhalla reachability plot
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Fig. 6: Two views segmentation. Top row: segmentation results. Model membership
is colour coded, black crosses are outliers. Bottom row: reachability plots.

Table 1: Segmentation result: comparison between T-Linkage and T-Optics

T-Linkage T-Optics

ME (%) Time (s) ME (%) Time (s)

cars5 0 11.50 0 1.09
1RT2TC 31.39 3.76 0.32 0.51
people1 0 23.92 0 2.35
biscuitbookbox 1.54 3.17 2.70 0.37
breadcubechips 0.86 2.20 3.09 0.25
elderhalla 7.51 1.65 5.14 0.15
sene 0.40 2.43 2.12 0.25

4 Conclusion

We have presented a novel approach to multi model fitting based on density anal-
ysis in Tanimoto Space. We leverage the property of Tanimoto space at different
levels: at first to guide sampling towards promising models, then to recognize
clusters as density-connected components in T and finally in order to robustly
extract models from the reachability plot of the data. With respect to T-Linkage,
T-Optics produces reliable segmentations in less time.
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