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1. INTRODUCTION

Generating 3D indoor models from point clouds is an active
research topic, with several applications in fields such as nav-
igation, emergency response, building maintenance and moni-
toring (Zlatanova et al., 2013). Since manual reconstruction of
indoor environments is an expensive and time consuming pro-
cess, in the last years several procedures have been proposed for
the automated generation of indoor models from data acquired
by terrestrial or mobile laser scanners (Wang et al., 2017, Pre-
vitali et al., 2018b).

The core of any method for indoor scene reconstruction is rep-
resented by the robust extraction of multiple geometric prim-
itives from noisy and outlier-contamined measurements deriv-
ing from the presence of furniture causing clutter and complex
walls arrangements that determine occlusions.

Among the works dealing with indoor modelling, three differ-
ent classes can be identified, according to the searched primi-
tives (Previtali et al., 2018a): linear, planar or volumetric. The
method presented in (Magri and Fusiello, 2018) falls in the
first category, where the overall structure of the environment
is extracted by fitting lines to the main building features, using
Min-hashed J-Linkage as a multi-model fitting technique. The
aim of this work is to propose an improved version of (Magri
and Fusiello, 2018), taking into account the points distribution
along the vertical axis, avoiding the usage of several manually
tuned thresholds and leveraging on a cell-complex subdivision
of the plane to enhance the topological correctness of the result.

2. PROPOSED METHOD

The first part of the method closely follows the procedure pro-
posed in (Magri and Fusiello, 2018). The algorithm reduces
the 3D point cloud to a set of sampled planar points, referred
to as wall samples, enriched with information about their local
orientations. An histogram of point heights is computed and
the floor/ceiling bins are identified as the bottom-most and top-
most local maxima. Planes are fitted via Iterative Reweighted
Least Squares on the points belonging to these bins, the corre-
sponding inliers are labeled as floor and ceiling respectively and
are then discarded from further analysis (and the histograms are
updated accordingly). The rest of the 3D points are projected
onto the floor plane which is uniformly discretized in a grid of
ground-cells.

If enough points (default is 10) fall inside a ground-cell, their
median position is taken as a wall sample representative for that
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Figure 1. Lines extracted by Min-hashed J-Linkage, depicted
with their inlier band.

cell and a normal vector is locally estimated using Principal
Component Analysis.

The next step consists in organizing the wall samples into linear
structures, exploiting the Min-hashed J-Linkage algorithm and
taking into account also their normal vectors. An example of the
result is illustrated in Fig. 1. This stage requires the definition
of an inlier threshold ε: a point belongs to the supporting set of
a fitting line if its residual is below this threshold.

From this point we depart from (Magri and Fusiello, 2018) and
propose the following procedure.

The lines yielded by Min-hashed J-Linkage are associated to
wall samples that come not necessarily from actual wall, but
also from furniture and clutter, which can negatively affect the
results. For this reason, we exploit the point heights histogram
associated to each wall sample to cluster them into three classes
corresponding to uniform (U), low-thicker (L) and high-thicker
(H) histograms (see Fig. 3), and prune the J-Linkage result.

The histogram is first binarized (empty cell→ 0) then clustering
is performed using Hamming distance and k-means with three
seeds corresponding to the classes archetypes (result is shown
in Fig. 3). Then, we deem as outliers those lines that are sup-
ported by a majority of L or H samples. The remaining lines are
scrutinized for outliers with a inward testing procedure (Davies
and Gather, 1993): samples that are classified as L or H are
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Figure 2. Results of the vanishing point clustering. Lines that do
not conform to the dominant orientations have been discarded.
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Figure 3. Classification of the wall samples (a) into U/L/H with examples of histograms (b).
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Figure 4. Blueprints obtained with (a) the proposed method and (b) the method by (Magri and Fusiello, 2018).

removed one at a time and the line is fitted on the remaining
ones. If the residual of the removed sample is greater that ε, it
is considered as an outlier and removed from the supporting set
of that line.

Subsequently, we discard the lines that do not conform to the
so called Manhattan Word assumption. Following (Magri and
Fusiello, 2018), lines are grouped by fitting vanishing points
with J-Linkage and retaining only the lines that belong to the
two clusters with the larger cardinality, as shown in Fig. 2.
Aligning the dominant directions with the axes greatly simpli-
fies subsequent computations.
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Figure 5. Cell-complex determined by the line arrangement.

To finally group wall samples into segments, it is convenient to
exploit the subdivision of the plane induced by the arrangement
of the detected lines, formally defined as a 2D cell-complex and
stored in a Doubly Connected Edge List (DCEL), a structure
commonly used in computational geometry that consists of ver-
tices, edges, and faces (see Fig. 5). To each edge of the DCEL
we assign the wall samples that i) are included in the supporting
set of the line to which the edge belongs and ii) whose coordi-
nates fall in the interval defined by the edge’s endpoints. Then
we project these wall samples onto the corresponding edge and
order them.

In this stage, in order to fill gaps caused by the presence of fur-
niture and clutter, we consider the outlier lines previously dis-
carded (because mainly supported by H or L samples) that are
aligned with the dominant orientations. Their samples are then
projected onto the closest edge along the direction orthogonal
to the line itself, within a threshold of 60 cm.

Following the linear order along an edge, a new segment is in-
stantiated when the distance between two consecutive points
exceeds a threshold, computed for each line l as follows:

t(l) = d̄+ 3.5 medi|di − d̄|

where di is the distance between consecutive points belonging
to the supporting set of the line l and d̄ = medi(di).

In this way, we constructed a hierarchy: point → segment

→ edge → line where all the maps are injective. As a re-
sult, thanks to the subdivision of the wall segments induced by
the cell-complex, the topological correctness of the segments
is guaranteed, i.e., there are no intersections other that at the
endpoints (like T-junctions or overlaps). Moreover, topological
relations can be fruitfully exploited in subsequent steps, e.g.,
to identify internal and external spaces or to group cells into
clusters that represent rooms.

3. PRELIMINARY RESULTS

In Fig. 4(a) we show the blueprint generated with the proposed
pipeline for the first dataset of the ISPRS benchmark (Khoshel-
ham et al., 2017). Comparing the result with the one obtained
by (Magri and Fusiello, 2018), illustrated in Fig. 4(b), one can
notice the higher accuracy and completeness reached by the
novel method.



4. DISCUSSION

We proposed a variation of the method presented in (Magri
and Fusiello, 2018), that has the merit of producing more ac-
curate results (in particular by increasing completeness), and
greatly reducing the need for user-defined thresholds. With re-
spect to this issue we have been following these principles, in
cascade: i) to avoid free parameters at all; ii) to make them
data-dependent; iii) to make user-specified parameters intelli-
gible and subject to an educated guess. This guarantees the
processing to be completely automatic in the majority of cases.

REFERENCES

Davies, L. and Gather, U., 1993. The identification of mul-
tiple outliers. Journal of the American Statistical Association
88(423), pp. pp. 782–792.

Khoshelham, K., Dı́az-Vilariño, L., Peter, M., Kang, Z. and
Acharya, D., 2017. The isprs benchmark on indoor modelling.
International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences 42, pp. 367–372.

Magri, L. and Fusiello, A., 2018. Reconstruction of interior
walls from point cloud data with min-hashed j-linkage. In: 2018
International Conference on 3D Vision (3DV), IEEE, pp. 131–
139.

Previtali, M., Dı́az-Vilariño, L. and Scaioni, M., 2018a. In-
door building reconstruction from occluded point clouds using
graph-cut and ray-tracing. Applied Sciences 8(9), pp. 1529.

Previtali, M., Dı́az-Vilariño, L. and Scaioni, M., 2018b. To-
wards automatic reconstruction of indoor scenes from incom-
plete point clouds: Door and window detection and regulariza-
tion. International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences 42(4), pp. 507–514.

Wang, R., Xie, L. and Chen, D., 2017. Modeling indoor
spaces using decomposition and reconstruction of structural
elements. Photogrammetric Engineering & Remote Sensing
83(12), pp. 827–841.

Zlatanova, S., Sithole, G., Nakagawa, M. and Zhu, Q., 2013.
Problems in indoor mapping and modelling. International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences 42(4/W4), pp. 63–68.


