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Abstract

A comprehensive approach addressing identification and control for learning-based Model Predictive Control (MPC) for linear systems
is presented. The design technique yields a data-driven MPC law, based on a dataset collected from the working plant. The method is
indirect, i.e. it relies on a model learning phase and a model-based control design one, devised in an integrated manner.

In the model learning phase, a twofold outcome is achieved: first, different optimal p-steps ahead prediction models are obtained, to be
used in the MPC cost function; secondly, a perturbed state-space model is derived, to be used for robust constraint satisfaction. Resorting
to Set Membership techniques, a characterization of the bounded model uncertainties is obtained, which is a key feature for a successful
application of the robust control algorithm.

In the control design phase, a robust MPC law is proposed, able to track piece-wise constant reference signals, with guaranteed recursive
feasibility and convergence properties. The controller embeds multistep predictors in the cost function, it ensures robust constraints
satisfaction thanks to the learnt uncertainty model, and it can deal with possibly unfeasible reference values. The proposed approach is

finally tested in a numerical example.

1 Introduction

The idea of combining identification and control for effi-
cient and reliable control systems design, starting from data
collected on the plant, has a long standing history, see the
survey paper [10]. Indirect approaches are characterized by
an initial phase aimed at estimating the model of the plant,
while a following one concerns the model-based control
synthesis. In this framework different solutions have been
proposed, as thoroughly discussed in [10]. Specifically, in
dual algorithms, parameter estimation and control design
are posed as a combined problem, in optimal experiment
design methods, identification procedures suitably tailored
for the adopted control synthesis algorithm are developed,
while in robust algorithms the model is estimated together
with uncertainty bounds, to be properly used in the control
synthesis. With the cheap availability of large data-sets and
the advent of more and more powerful identification and
learning techniques, recent years have seen a renaissance
of research activity in this area, and in particular on ro-
bust methods. From the learning side, new and powerful Set
Membership (SM) identification methods, see [6,16,30,31],
have been developed to identify a model for the system
with guaranteed prediction error bounds, suitable for robust
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control design. From the control side, MPC algorithms, ro-
bust with respect to model disturbances, have been studied
from several standpoints, and considering different charac-
terizations of the model and its associated uncertainty, see
e.g. [2,4,7,8,12,14,18,22,25,28]. Among the most recent
contributions in learning-based control, we recall the dual
MPC algorithm described in [13] for systems characterized
by probabilistic parametric uncertainty and process noise,
and the MPC method developed in [1] guaranteeing both
robustness and performance by considering different mod-
els of the system. Another recent contribution is reported
in [16], where an MPC guaranteeing stability has been de-
veloped for nonlinear models estimated with the learning
method proposed in [5].

In this paper we present a unitary approach to learning-
based robust MPC, where we take a joint perspective on the
learning and the control design phases. The system gener-
ating the data is linear and time-invariant, an upper bound
on its order is known, it is subject to process disturbance
and measurement noise. In the learning phase, we identify
with SM different models, together with their uncertainty
bounds. Specifically, we compute from data p-steps-ahead
independent prediction models, p € [0, p], used to compute
the future evolution of the system outputs over the predic-
tion horizon p considered in the MPC cost function. The use
of different models, as previously suggested in [29], allows
one to achieve good prediction accuracy at different steps
ahead and to derive bounds on the process disturbance from
data in the least conservative way. In addition to the inde-
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pendent p models, we also estimate a perturbed state-space
model, together with its disturbance bounds, subsequently
used in the MPC design for enforcing state, input and out-
put constraints, as well as the robust stability property ac-
cording to the well known tube-based approach, see [21].
The robust MPC controller is designed, following the ap-
proach proposed in [15], for tracking piece-wise constant
reference signals, with guaranteed recursive feasibility and
convergence properties. A numerical example is finally re-
ported. Preliminary results on the learning and control syn-
thesis algorithms developed in this paper have been reported
in [31], and [32]. In this paper, we propose a novel offline
method to learn the uncertainty model to be used in the con-
trol design phase, together with a new MPC design to deal
with the tracking of (possibly infeasible) piecewise constant
reference signals, we derive the full proofs of all the theoret-
ical results concerning learning and control design, and we
merge our preliminary work into a unitary and holistic vi-
sion of the interplay between learning and control for MPC.
The paper is organized as follows: in Section 2 the problem
is stated and the proposed approach is described. In Sec-
tion 3 the SM identification algorithm is presented, Section 4
describes the robust MPC control scheme design, followed
by a numerical example in Section 5 and a concluding dis-
cussion in Section 6.

Notation

k is the discrete time index and Z is the set of non negative
integers. The transpose of matrix M is M”. We denote with
1, a column vector with all its elements equal to one and
of dimension x, and with O, , a matrix of zeros with x rows
and y columns, wheras I, denotes the identity matrix of
dimension x. Finally, |a|,a € R, denotes the absolute value
of real number a, ||v]| = v/ v denotes the 2-norm of vector

v, |[vlla = VvT Av denotes the 2-norm of vector v weighted
by matrix A, and the infinity norm of a generic matrix N €
R™¢, with element n, in position (r,c), is indicated by
[Nlleo = max ¥e_y[nye|-

re(l...7

2 Problem formulation: a unitary approach to
learning-based MPC

We consider a discrete-time, linear time-invariant (LTI),
single-input/single-output (SISO) system of order n de-
scribed by the following autoregressive exogenous (ARX)
structure:

{z(k—H) = 600" o (k) +v(k) 0
Z

where z is the output, v an additive process disturbance, y
the output measure, and d an additive measurement noise.

For a given integer p > 1, the regressor (pz(’7 ) (k) € R¥+p—1

is defined as:

P (k) = [z(k),...,2(k—n+1),u(k—1),...,u(k—n+1),
u(k),s . ulk+p— 17,

here u is the system input. In (1), 6() € R2Z"+7~1 i a vector
of unknown system parameters. The value of n is not known
a priori as well.

Assumption 1 (System and signals)

- The system (1) is asymptotically stable;

- The static gain from u to z is not zero;

-u(k) e UCR,Vk € Z, U compact and convex;

- |d(k)| <d,Vk € Z, d > 0 known;

- v(k)| < V,Vk € Z, v > 0 possibly not known. O

Remark 1

a) The problem is formulated in the SISO setting for the sake
of clarity and notational simplicity.

b) Our working assumptions are rather common in theo-
retical contributions concerned with system identification,
when an unknown-but-bounded assumption is considered for
process and measurement disturbances. They are valid in
many practical applications as well: a characterization of
the available sensors can be used to compute the worst-case
measurement error bound d, while for process disturbances
we just assume boundedness, without necessarily knowing
the worst-case value V. Indeed, the worst-case effect of the
signal v(k) on the system output will be estimated as part
of the uncertainty model in our approach.

In this paper we adopt an indirect approach to learning-
based control synthesis, i.e., based on a sequence of model
learning and model-based design phases.

The learning phase (Section 3) has a twofold role:

1. Identifying optimal (in the sense specified below) inde-
pendent p-steps ahead prediction models of the type

2(k+p) = 00" ") (k) ®)

where 2(k+ p) is the predicted output at time k + p, and
the model regressor (p)(,p )(k) is defined as

o (k) = [y(k),... . y(k—o+1)uk—1),... .ulk—o+1),

u(k),...,u(k+p—1)]".

3)
with o being the order of the prediction model. Models (2)
are also defined “multi-step” since they directly provide
the output prediction p steps ahead, without integrating
an underlying simulation model. These models, for all
p € [1, p], will be used in the MPC cost definition, thanks
to their optimal predictive properties, tailored on specific
prediction lengths.



2. Identifying a state-space model of the type

X(k+1)=AX(k)+Biu(k) +Mw(k)
z(k) = CX (k) (4)

(
y(k) = z(k) +d(k)

where X € R?°~! is the system state, w is the process dis-
turbance, and A, B1, M;, C are the system matrices. One
of the contributions of this paper consists also of a novel
approach for obtaining a non-conservative bound w on
the amplitude of the process disturbance w(t) from ex-
perimental data. This is fundamental, in a constrained ro-
bust design context, to limit the conservativeness of the
resulting control approach.

In the control phase (Section 4), we propose a scheme, to
be applied to the real system (1), that asymptotically steers
the variable z(k) towards the goal z,,, and that guarantees
the fulfillment of the following input and output constraints,
for all k > 0.

u(k) €U (52)
(k) ez (5b)

where Z is assumed convex. As already remarked, to this
purpose (i) the multi-step prediction models (2) are used for
the definition of the cost function and (ii) the perturbed state-
space model (4), with bounds d and w on d(¢) and w(¢),
respectively, are used for constraint satisfaction.

3 Learning linear prediction models for robust MPC -
a Set Membership approach

3.1 Model structure and preliminary considerations

In MPC with horizon p, at each step & the predictions of vari-
ables z(k+ p), p=1,..., p are needed. Many contributions
on robust MPC in the literature [12,19,20,22] assume that a
model of the system in the form (4) is available. A common,
but quite conservative, setup is to consider d(k) = 0, Vk, and
C =1, i.e. perfectly measurable state, and finally to assume
a known bound w on the worst-case additive process distur-
bance, such that ||w(k)|| <w, Vk. Such a model is then inte-
grated forward in time to predict the state and output values
at each future step k+ p.

However to learn, from experimental data, a model of the
form (4) with good prediction accuracy at different steps
ahead and with non-conservative bounds on the process
disturbance is a complex task. The parameter identifica-
tion problem is convex only when a 1-step prediction error
method is used, which may return models with poor predic-
tion accuracy over multiple future steps (i.e. poor simulation
performance), see e.g. [9,29]. On the other hand, the use of
a cost function that penalizes the multi-step prediction er-
ror, or simulation error, yields a nonlinear program (NLP)
in the parameters of the 1-step-ahead model, which, besides

the possible trapping in local minima, makes it difficult to
derive guaranteed disturbance bounds. Additionally, in prac-
tical applications the state might not be fully measured, the
system order is not known, and measurement noise and pro-
cess disturbances are present. These features make the iden-
tification problem even more challenging.

To deal with these problems, the approach taken in this pa-
per consists of learning a different (linear-in-the-parameters)
multi-step prediction model (2) for each value of p € [1, p].
Besides, as discussed, directly using models (2) in the MPC
cost function, we will employ their corresponding worst-
case error bounds to optimally compute the bound w in a
state-space realization (4), employed to robustly guarantee
stability and constraint satisfaction.

The choice of a model structure of type (2) is motivated
by the fact that, integrating over time a model of type (1),
the future system outputs are indeed affine in the regressor

(py<p )(k), containing noise-corrupted output measurements:

- T - -
dk+p) =67 9 (k) + 8P ¥ P (k) + 6

(6)
where ¥ (P)(k) = [v(k),...,v(k+ p—1)] and 2P (k) =
[d(k),...,d(k+ p—1)] are the sequences of output distur-
bance and measurement noise, respectively, values from k

6" and é;p ) are

polynomial functions of the true system parameters 6(!)
(possibly padded with zeros if the model order o is strictly
larger than the true system order n), readily obtained by
recursion of (1). In our approach, we will consider instead
a distinct parameter vector for each p, i.e. 6 in (2). A
first advantage in doing so is the possibility to efﬁc1ently
compute not only a nominal multi-step prediction model for
each p, but also a model set which is tight (i.e. the smallest
one compatibly with the available prior information and
data), through a Set Membership (SM) identification ap-
proach [23]. From such a model set, we can thus estimate
a tight worst-case prediction error bound Tp(é(”)) for any
given multi-step predictor, i.e.:

to k+ p — 1. The parameter vectors 6(r),

|z(k+ p) —2(k+ p)| < 7,(8P)). (7)

We term the bound 7,(8(P)) global, since it holds for any

regressor value (p}(,p ) within a suitable compact set ), in-
troduced in the remainder. A second advantage in using
the multi-step models is the possibility to rigorously define,
and then efficiently compute, a model optimality criterion
and related optimal models, which minimize the worst-case
guaranteed prediction error.

We describe next the considered data-set, followed by the
learning approach. An important assumption throughout the
paper is the following.



Assumption 2 (Model order)
o>n O

Assumption 2 can be easily satisfied in practice, on the basis
of physical considerations on the system at hand and/or by
estimating the system order from data [17].

3.2 Available data-set

For a given prediction step p, we denote with ®(P) the com-

pact set containing all the possible regressor vectors (p)(,p >,
i.e., such that for each p € [1, p]

0" (k) € V) c 27147 ke 7.

The set &) is not known explicitly in general, as it is a
complicated set that depends on the system input and distur-
bance trajectories and initial conditions of interest. Its com-
pactness is due to the fact that the system is asymptotically
stable and its input belongs to a compact set (Assumption
1). For any fixed regressor instance (py(p)(i) e ®), consid-
ering all possible disturbance sequences ¥ (#) (i) and all pos-
sible noise realizations 2(7)(i), there is a set ¥ ,,((py(p >) CR
containing all the compatible p-step ahead output measure-
ments y,(i) = z(i+ p) +d(i+ p). In view of Assumptions

1 and 2 and of the compactness of ®(?), also Yp((py(p)) is

compact. Let us then define the set

T
% — {[(pSP) ’yp]T yp € Yp((P}(p)),V(P}Em c q)(p)} CRZ()+’7.
®)
Now assume that a finite number N,, of data [(I)}(,p> OESAOE
is available, where q”)y(p )(i) are the available measured in-

stances of the regressor (py(p)(i) € @), and §,(i) = z(i +
p)+d(i+ p) the corresponding measured values of noise-
corrupted outputs. We can express our data-set as:

Ty = {1 @) 5, i=1,...N, } CR. ()

SN, . S .
The set .7}, 7 is countable and contained in its continuous
counterpart .7,. The following assumption is introduced:

Assumption 3 (Data-set) For any > 0, there exists a
value of N, < e such that d, (%,%Np) < B, where

SN\ . .
dy (%,Z, ”) = max min ||T — kl[> is the Haussdorff
T ‘Z’KEZNP

. =N,
distance between the sets J, and I, " . O

Assumption 3 implies that lim d (ﬂp, %N”) =0, ie. if
—

P
more points are added to the data-set, the underlying set of
all trajectories of interest will be densely covered. This is
essentially an assumption on the persistence of excitation

of the inputs used for the preliminary experiments, together
with an assumption of bound-exploring property of the ad-
ditive disturbances d and v, such that the bounds ¢ and v in
Assumption 1 are actually tight.

3.3 Learning procedure

The proposed estimation procedure consists of the following
steps:

1. Define an optimality criterion to evaluate the model
estimates and the corresponding optimal (i.e. minimal)
error bound.

2. Derive a procedure to estimate the optimal error bound.

3. Based on the available data and the error bound esti-
mate, build the set of all admissible model parameters
(Feasible Parameter Set, FPS).

4. Using the information summarized in the FPS, for any
given model of the form (2) compute the related guar-
anteed error bound 7, see (7).

5. Select a nominal model with minimal guaranteed error
bound.

3.3.1 Optimal parameter set and optimal error bound

For any p € [1, ], consider a given value of §(). From (2)
and (6), the error between the true system output and the
predicted one is, for all k € Z:

£, (01, 0\ (), P (k), 2P (k) = z(k+ p) —£(k+ p)

Thus, from (1) and (2) we have:

y(k+p) = z(k+p) +d(k+p)
=60 ") (k) +d(k+ p) (11)
+&,(6%, 0" (k)7 P (k), 2P (k)

The quantity &,(-,-,-,-) accounts for the quality of the es-

timate 9(1’), for possible model order mismatch, and for
the disturbances v and d. In view of Assumption 1, g, is
bounded. Moreover, from (11) :

y(ktp) = 60" 9Py(k)]| <
£(07), 9" (1), 7)), 27) (k) |+ < £,(07)) +d
. (12)
where é,,(G(p)) is the global error bound with respect to all
possible regressors of interest and all feasible disturbance
sequences in the compact set ®P):

g (0P = mi
£,(0'7) min )

T
Y@y [0y, ] €7
(13)

)T

st |y, — 0 (p>(,p>| <e+d



We can now define the optimal parameter values (i.e. op-
timal models) as those that minimize the bound &,(8(?)).
As a technical assumption, we consider parameters within
a compact set Q) ¢ R2*+P~1 Q(P) can take into account
application-specific prior information on the model parame-
ters or, if no such information is available, it can be chosen
as a large-enough set (e.g. by considering box constraints of
+10" on each element of the parameter vector). This tech-
nical assumption allows us to use maximum and minimum
operators instead of supremum and infimum. The set ®(?)
of optimal parameter values is:

@w{mm5wm min @wwﬁ, (14)

0P cqp)

and we denote with &, the corresponding optimal error

bound: .

er=8,(0")= min £,(6W)). (15)
0P eQ(p)

Considering (13)-(15) we can alternatively write:
"o <&+,

e — {5@) cQ) |y, — 4
(») <p> T (16)
W) [, € 7}

3.3.2 Estimating the optimal error bound

The optimal models and optimal error bound cannot be com-
puted in practice, since the solution to (14) would imply the
availability of an infinite number of data and the solution to
an infinite-dimensional optimization program. However, we
can compute an estimate A » = &, from the available exper-
imental data, by solving the following linear program (LP):

A = min A
0P eQP) LeR+
subject to
o =N,
55— 00 @ <+ a W@ 5,): [)5,] € 7

(17)
The following result shows that, under the considered work-
ing assumptions, the value of A , converges to the optimal
one, E‘;.

Theorem 1 Let Assumptions 1-3 hold. Then:

(1) A, <&y
(2) Vp € (0,€)] AN, <o 1 A, > &, —p O
Proof 1 See the Appendix. |

Theorem 1 implies that lim (&, —A,) =07, i.e. that the
Np—reo

solution of (17) converges to the optimum from below. This
is a consequence of the considered problem settings, where

a finite data-set is available. In practice, one can increase the
number N, of experimental data and observe the behavior
of A p»» Which converges to a limit provided that the data are
informative enough. Then, a practical approach to compen-
sate for the uncertainty caused by the use of a finite number
of measurements is to inflate the value A P

gy =0aA,, 00> 1. (18)

With sufficiently large number of and exciting data points,
a coefficient & ~ 1 can be chosen. We show an example of
such a procedure in Section 5, and consider the following
assumption in the remainder:

Assumption 4 (Optimal error bound)
The chosen value of o is such that €, > E;. |

3.3.3 Feasible Parameter Set

We exploit the estimated optimal error bound to construct
the tightest set of parameter values consistent with all the

prior information, i.e. the FPS ©(7):

oP — {9(17) el |y, (,3; +d,

by
(19)
vv@k%%[@” }

The set ©®?) is non-empty by construction, since under As-
sumption 4 we have (see (16) and (19)) that W coeWw. 1t
the FPS is bounded, it results in a polytope with at most N,
faces. If it is unbounded, then this indicates that the avail-
able measured data are not informative enough to derive
a bound on the worst-case model error, and that N, must
be increased until a bounded FPS is obtained. This situa-
tion usually occurs when very few data points are used (e.g.
Np <20+ p—1) or the preliminary experiments are not in-
formative enough.

3.3.4 Error bound computation for a given model

Consider now a given parameter vector #”) and any
o" (k) € ®P). From (6), (10), and (16) it follows that

ek -+ p) —2(k+p)| < (87— 8) 9" (k)| + &5 (20)
In view of Assumption 4, the global worst-case prediction
error bound for model 6(?) is then:

7,(0”) = max max |(6 — 8" g |+8p (21)
(p)(.”)eb( p) 0cOP)

This bound cannot be computed exactly with finite data un-
der the considered assumptions, and its computation would
be intractable also if the set ®(”) were known precisely. The
complexity may be reduced only if additional assumptions



are made, e.g. that ) is a polytope, which however may
result in a high conservativeness. However, we can approx-
imate 7, by computing the outer maximization in (21) over

. =N,
the finite data-set .7, *:

Ip(é(p)): max  max |(6 — 8P ¢ p)(i)|+§,, (22)

i=1,....Np gc@P)

The following result shows convergence from below of
IP(G(P)) to 7,(8().

Lemma 1 Let Assumptions 1-3 hold. Then, for any 8P) e

Qp).

(1) © ( )<rp(é( ))

(2) Vp €(0,7,(8P)] AN, < oo : 7,(6) >1,(6)—p
O

Proof 2 See the Appendix. |

Considerations similar to those reported after Theorem 1 for
A, hold also for the bound gp(é(p)), i.e. it is possible to
monitor its behavior for increasing values of N, in order to
evaluate convergence. As done in (18), we inflate this bound
to account for the uncertainty deriving from our finite data-
set:

2,(0V) =y7,(8)), y> 1, (23)

and we assume that the resulting estimate is larger than the
true bound:

Assumption 5 (Error bound for a given 6(r)
The chosen value of 7 is such that £,(8")) > 7,(6()). O
The bounds zp(-) are computed independently for each
model, and they are inflated according to the same fac-
tor y for simplicity. A more general alternative is to
consider a different amplifying factor for each step, i.e.
() = %x,(-);p=1,...,p. To tune each value of y,, the
same considerations based on the trend of convergence of
7,(+) hold.

Remark 2 Assumptions 4 and 5 are necessary in view of
the fact that a finite data-set is available in practical appli-
cations to derive the uncertainty bounds A » and Ip(-). Note
that, in the robust control literature, some prior assumptions
on the uncertainty affecting the system are always neces-
sary, e.g. the knowledge of the set where the disturbance
lies. However, the problem of how to formulate and check
these assumptions is seldom treated, since the system and
uncertainty models are taken as ground truth. In the present
work, the uncertainty models and bounds are instead com-
puted from data, and Assumptions 4 and 5 are then intro-
duced for theoretical consistency. Remarkably, the proposed
procedure has two main benefits:

(1) A sensible quality criterion is provided, i.e., the conver-
gence of the estimated uncertainty bounds to the cor-
responding theoretical quantities. Indeed, it is always
possible to monitor the trend of convergence of the es-
timates with growing portions of the available dataset.

(2) Though it is not possible to verify Assumptions 4 and
5, our method allows to check if they are falsified, e.g.
through a validation dataset or by means of online
monitoring.

3.3.5 Selection of nominal multi-step models

The last step in the proposed estimation algorithm is to select
a nominal multi-step model for each prediction step p. The
most common approach is probably based on least-squares
estimation: in this case the results of Section 3.3.4 can be
applied to obtain an estimate of the resulting global error
bound. Since our final goals are to employ the multi-step
models in a robust MPC algorithm and to estimate bound w
for the perturbed model (4) in a non-conservative manner,
we rather seek the model that minimizes the worst-case error
bound for each p value. Specifically, considering that the
tightest set that contains the optimal parameter values (i.e.
with minimum error, see Section 3.3.1) is the FPS G)(p), we
search within this set for a parameter value that minimizes

the resulting bound £,(6():

A

6P =arg min Tp(é(p)). (24)
6P co)

The resulting nominal model reads
2k+p) = 07" of" (k) (25)

and the associated error bound estimate is f'p(é(l’)*). Note

that term §p, see (22), does not depend on 6(P* and it con-
verges to the optimal error bound &} as the number of data
points N, increases (Theorem 1).

Remark 3 6(")* in (24) reads

max =max |(6 — é(P))T¢y(p)(i)|.
L,...Np ge@(P)
(26)

This problem can be solved by reformulating it as 2Ny + 1
LPs [3], [24].

6P —arg min
0P cep) i=

3.4 Derivation of the state-space model realization and
estimation of the corresponding process disturbance
bound

In this section we describe the derivation of the state-space
model (4) and of the bound w of the corresponding distur-
bance w(k).

First of all, we define the equations of the state-space model
(4) based on the nominal 1-step ahead predictor, i.e., (25)

with p = 1. To do so, recalling the structure of w;p ) (3), note



that we can partition the parameter vector () of a predic-
tion model as follows:

R R R R T
6 =[on" o 0" ], 27)

where é/glzje) €Re, é;]p ) e Ro-! and éép ) € RP are the param-
eters pertaining to the past o output values, the past o — 1
input values, and the current and future inputs, respectively,
up to p— 1 steps ahead. We define the state vector of the
model (4) as

X (k) = [z(k),....z(k—o+1),u(k—1),...,u(k—o+1)]T,

(28)
Denoting the process disturbance as w(k) € R (accounting
for both the disturbance v and prediction error stemming
from the learning phase), the state X (k) evolves according
to (4) with the following matrices:

AT ()T N
Y Oy 657)
A= I, 0()71,1 00—1,0—1 ,Bl _ 0(,,]71
01,0-1 1
Oofho ’
1572 0072J _0072J
1 -
M1 = 3 C= |:1 01,2072
02(0-1),1 ;

(29)

Remark 4 The model (29) of order 20 — 1 is considered to
be in minimal form

Secondly, we need to define the bound w on the amplitude
of w(k). As anticipated, to this aim we will use the com-
puted FPSs ®(P), More specifically, the following approach
is proposed.

Starting from a noise-corrupted initial state at step k and
by iteration of the state-space model (4) (discarding process
disturbance), we can compute a p-steps ahead prediction
20 (k+ p) of the variable z(k+ p) as follows:

p—l
20 (k+ p) = CAPX, (k) +C Y AByu(k+p—i—1) (30)
i=0

where

Xy (k) = [y(k),...,y(k—o+ 1), u(k—1)...,u(k—o+1)]"
(€20
We can write (30) equivalently as

50 (k4 p) = 6@ o) (k). (32)

This is a multi-step prediction model whose parameter vec-
tor 61 in view of (30), is composed of polynomial com-
binations of the entries of the 1-step ahead prediction model

parameter vector 8(1*. Clearly, (P! is in general different
from 6(P)* used in (25), and therefore 2(k+ p) # 21 (k+p).
At this point, we can use the FPSs derived in Section 3.3.3 to
estimate the associated worst-case prediction error bounds,
fp(é(p)’l ):

lz(k+ p) — 2V (k+ p)| < £,(8P) (33)

On the other hand, by initializing the state-space model with
the true (i.e. without measurement noise) initial state (28),
and including the presence of process disturbance w, we can
also write:

2(k+p) = CAPX (k) +CYl ) Al(Byu(k+p—i—1)

(34)
+Miw(k+p—i—1))

Then, taking the difference between (34) and (30), we obtain:

2(k+p) =2V (k+p) = CLL) AMyw(k+p—i—1)
—CA? (X, (k) — X (k)),

(35
which highlights the prediction error due to the process dis-
turbance w, and the one due to the measurement noise on
the initial condition, X, (k) — X (k). Note that the latter is
equal to zero for all state components pertaining to the past
input values, and it is at most equal to d for all compo-
nents pertaining to the past output values. Thus, recalling
that [w(k)| <w, we have:

p—1 ) B
|z(k+p) — 2D (k+p)| < ¥ |CATM; |+ ||CAPE||..d (36)
i=0

where E = [I(, 0(0_1%0} "' The idea proposed here is to com-
pute w as the minimum value such that the bounds (36) do
not violate the (tight) bounds (33) for all p € [1,p]:

W = arg min w
weRT
st Y |CAM |w+ ||CAPE |d > £,(6W11), p € [1, 7]

(37
Note that problem (37) always admits a finite feasible solu-
tion thanks to the boundedness of £,(8")!),Vp € [1, ]. By
definition w is an upper bound to the error between the real
system trajectory and the one obtained using the state-space
model, and it considers all sources of uncertainty and noises,
including those deriving from the identification phase.

4 MPC for tracking with learned models

As anticipated in Section 2, the MPC controller devised in
this paper uses, in the cost function optimized at each time
instant k, the optimal p-steps ahead models (2) to predict
in the best possible way the future evolution of the output
variable, while the perturbed state-space model (4) is used



to rigorously define the constraints and ensure recursive fea-
sibility. For notational convenience, we rewrite the predic-
tions (25) as outputs of model (4) (where matrices A, B,C
are defined in (29)), as follows:

zp(k) = CpX (k) +DpU (k) (38)

A pvsT A ()T
whete U(K) = [u(k) ... u(k+p)| Cp = |05 6],

A ()T N
D, = [9[(717) 01 541 7p} and we denote z,,(k) = Z(k+ p) for
brevity. For later use we also define Cy = C and Dy = 01 541

such that we can write z(k) = zo(k) = CoX (k) +DoU (k).

4.1 State observer and tube-based control approach

Since z(k) is measured with some noise, the state X (k) of
the system (4) cannot be perfectly reconstructed as a suitable
collection of the past available outputs and inputs. For this
reason, a Luenberger state observer is employed. To design
the observer on the basis of the model (4), it is beneficial
to introduce an estimate w(k) of the disturbance w. The
term W(k) will result from a suitable optimization problem
introduced later on, in Section 4.2. The observer takes then
the following form:

X(k+1) = AX (k) + Byu(k) +Mpw(k) + L(y(k) — CX (k))
(39)
where X (k) is the estimated state and the matrix L is chosen
such that the closed-loop matrix (A — LC) is Schur stable.
Furthermore, for application of a tube-based robust control
method inspired by [21], we define the nominal dynamic
system related to (4), where again the disturbance estimate
w(k) is included, i.e.

X (k+1) = AR (k) + Byia(k) + M (k) (40)

The input u(k), to be applied to system (4) at time instant
k, is defined as the sum of two components as follows.

u(k) = (k) +K(X (k) — X (k)) 41)

The second component (i.e., K(X (k) — X (k))) is given by
a suitable proportional control law, aiming to reduce the
displacement of the state X (k) of (40) with respect to the
state estimate X (k), available at time k. The gain K is defined
in such a way that the closed-loop transition matrix A + B K
is Schur stable, e.g. by pole-placement or LQR design. The
corresponding nominal outputs are, for all p € [0, p

Zp(k) = CpX (k) + DU (k) (42)

where U (k) = [ﬁ(k) ok ﬁ)r. We finally define
7(k) = C()X(k) = Zo(k).

4.2 Definition of the cost function

The goal is to steer variable z(k) in order to track the (pos-
sibly piece-wise) constant goal z,,,. However, tracking this
value could lead to infeasibility problems: to avoid them,
inspired by [15], we introduce an output reference z. to
be used as a further degree of freedom in the optimization
problem.

Assuming that a reliable estimate I of the system gain is
available (see the following Remark 5), we can now com-
pute W as a function of a generic z.(k) as follows. We first
compute the constant input and state values u,.; and X, cor-
responding to the reference output z..:

uref(k) = (.a)ilsz(k)v Xref(k) = NZref(k) 43)

1()

AN —

10—1 (.U)
in such a way that

where N =

] . The value of W can now be defined

Xt (k) = AX (k) + Brueer (k) + M (k) 44)
i.e., as a linear function of z.;. In short we write
W(k) = NawzZeer (k) (45)

where 1, = M{ [(Io—1 —A)N — B, (f1)~']. Moreover, for
consistency, the term w(k) is forced to be bounded, so that
()] < .

Remark 5 Since the long-term prediction capabilities are
commonly more accurate with model (25) with the longest
possible prediction horizon, i.e., p = p, one suitable option
for the gain estimate [l is to choose [l = uP, where

A (5)4T ~(5)4T
P ( l(7) 113+91(Jp) 10—1)
= AT
1- 60"y,

is the gain of the optimal p-steps-ahead model .
Last we can define, Vp € [1, p], the reference for the p-steps

ahead model, i.e.,

24k = [c, D] (46)

Xref(k) ‘|
uref(k)1ﬁ+l

and 22,(k) = zur(k) = CoXeer (k) + Dottrer (k) 151

The cost function to be minimized at each (sampling) time
k is therefore

p
10 =Y, (1200 = L), + lalk+ p) e (K13, )
p=0
F IR+ P+ 1) = X R34 O 2 (K) — 2ol
“47)



where X (k+ p+ 1) is obtained by iterating the unperturbed
state equation (40) p+ 1 times, i.e.,

X(k+p+1)=AP"X (k) +TU (k) + Tylpi(k)  (48)

with F:[ApBl Bl},rw:[Ale
pute the weights Q,,, R),, and P in order to guarantee closed-

Ml} . To com-

loop stability, we must first define B = [31 0201, ﬁ} and

C D
CA CB+DH,
V= : : W= C; Dj |
CsA C3B+DjH,; APTL T
_0]7+1.,2()71 Iﬁ+1_

[0 T
0 01,

Also, we writt 2 =diag(Qo,...,05), and

2 =diag(Q1,...,0p,In, %), where Ty is a positive def-
inite matrix to be used as a further tuning knob and
X =diag(Ro/2,R1 — Ry, ...,R; —Rp_1). Then, the weight-
ing matrices are computed such that the following con-
straints are satisfied:

(A+B\K)"P(A+B 1K) —P=—Ty—K'R;K  (49a)
¥ ov < ¥ 29 (49b)
>0, 2>0, 2>0, P>0 (49¢)

Finally, the scalar ¢ > 0 (47) must be chosen sufficiently
large to provide converge properties, its quantitative evalu-
ation is discussed in the Appendix.

4.3 Definition of the tightened constraints

As common in tube-based control, see e.g., [21,27], we
enforce the input and output constraints (5) with suitable
tightened bounds on the nominal input and output (k) and
Z(k) = CX (k) respectively. For their definition, we first have
to define the state estimation error é(k) = X (k) — X (k). We
obtain, from (4) and (39), that

o(k+1) = (A—LC)e(k) + M, (w(k) — w(k)) — Ld(k) (50)

Denote now with & a robust positively invariant (RPI) set
[26] (minimal, if possible) for the system (50) containing
é(0) = X(0) — X (0), where |w(k) —w(k)| <2 . This guar-
antees that, for all k >0, é(k) € k.

We also define the displacement between the estimated state
and the nominal one as &(k) = X (k) — X (k). From (39) and
(40) we derive

e(k+1) = (A+BK)é(k)+LCe(k) +Ld(k)  (51)

Since the equivalent disturbance LCé(k) + Ld (k) is bounded
for all k > 0, we can define as [E the (minimal, if possible)
RPI set for (51).
Then, the input and output constraints can be defined with
reference to the model (40) in a tightened fashion:
ik)eU, z(k)eZ, wk)eWw, (52)
where W = {w € R : |w| < W} and the sets U and Z are
closed and satisfy:

NS
NN

UcKE (53a)
ZoC(EaR) (53b)

Finally, to define the terminal constraint set we consider the
following auxiliary control law

(k) = thoa (k) + K (X (K) — Xer(K)) (54)

To compute an invariant set where (X(k),z.;) must lie in
order to guarantee that constraints (52) are verified for all
k, we need to define the Maximal Output Admissible Set
(MOAS, see [11]) O for the system

X(k+1)
Zrcf(k+ 1)

A+B1K BiM>+ Mg,
01201 1

X (k)
Zrcf<k)

(55)

that is subject to the auxiliary control law (54), where M, =
Q' —KN. The triplet (ii(k),z(k),w(k)) is computed as

Z(k) C 0 [X ®) ~|
K M (56)

N Zref k
W(k) 0120-1 Mew
—_———

<€

An invariant, polytopic inner approximation Qg to the
MOAS can be computed in a finite number of steps as
shown in [11]. Specifically, O is defined as follows

O = {(X,2er) : €. 7" (X, 2er) € Xzuwy for all k>0
and_lim € F (X, zu) € Xguw(€)} (57)

—foo

where Xzyw(€) is a close and compact set satisfying
Xzuw(e) ® 2(0) C Xzuw, with Z2(0) a ball in R? con-
taining the origin and with radius € arbitrarily small. Note
that, see again [11], O C O and if (#,%) is observable,
then O is bounded.



4.4  The optimization problem and main result

The optimization problem, to be solved at each time instant
k > 0, reads

J(klk)=_ min

J(k
X(k)vU(k)vzref(k) ( )

(58a)

subject to the dynamical system (40), (42), (43), (44), (46)
and

X(k)—X(k) e E (58b)

Also, Vp € [0, p]

i(k+p)eU, z(k+p)eZ, Wwk) eW (58¢)

Finally, as a terminal constraint, the following must be ful-
filled

X(k+p+1)

€ O
Zref(k)

(58d)

If available, the solution to the optimization problem (58) is
denoted X (k|k),U (k|k) = (a(k|k),...,a(k + P|k)), zer(k|k),
and u(k) in (41) is applied to the system according to the
receding horizon principle. Also, we denote with X (k+ p|k)
the future nominal state predictions generated using (40)
with input U (k|k). The following result holds.

Theorem 2 [f the optimization problem is feasible at time
step k = 0 then it is feasible at all time steps k > 0 and, for
all k > 0, the constraints (5) are satisfied. Also, if o is suffi-
ciently large, the resulting MPC control law asymptotically
steers the nominal system output 7(k) to the admissible set-

point Zgoh"'F, where

FEASIBLE
Z

goal :arg{nin ”E — Zgoal ”2
Z

T T . (59)

sm[zﬁaﬂ =[avﬁ“nml ze Xpuw(e)
Finally, dist(z(k), zgen ™" ®C(E@R)) — 0as k — oo, where
dist(a, B) denotes the distance from point & to set . O

Proof 3 See the Appendix. |

5 Simulation example

The proposed approach for learning-based predictive control
has been tested on a simulation example. The considered
system is of third order, and it corresponds to the discretiza-
tion of the system with continuous time transfer function:

160
(s +10)(s2+1.65+16)

(60)

10

8 10 12 14 16 18
Time
Figure 1. Open loop response of the system to a unitary step at

time 10. Solid line: nominal z (v(k) = d(k) = 0), dashed line:
output z, dotted line: output measure y

0.25
021 /’m
0.15 %ﬁ
01 e
0.05

| | | | | | | |
10 20 30 40 50 60 70 80 90
% of the dataset

100

Figure 2. Trend of A p against the employed percentage of the
dataset. Dotted line: p=2, solid line: p=7, line with circles: p = 15

characterized by dominant complex poles with natural fre-
quency @, = 4 and damping factor & = 0.2, and with uni-
tary gain. Figure 1 shows the open loop step response of
the system under analysis. The input and output samples are
collected with sampling time 7y = 0.1, the output z(k) is cor-
rupted by an additive disturbance v(k) such that |v(k)| < v =
0.01, while the bound on the measurement noise is d = 0.1.
The multistep models and bounds are computed up to p =20
steps ahead, while the chosen model order is 0 = 4. The col-
lected dataset is composed overall of 1000 input-output data
samples, where the input is a step-wise sequence taking a
random value in {—1,0,1} every 5 time units.

Following the approach of Section 3.3.2, we compute A,
and monitor its trend against the percentage of dataset used
to compute it. This procedure enables one to assess the con-
vergence rate of A, to a limit value, presumably equal to &,
according to Theorem 1. Figure 2 shows this trend. Param-
eters ?:,,,p € [L, p] are then computed with a conservative
factor o¢ = 1.1 to account for the finite dataset employed,
see (18), and the FPSs are then built independently for each
step as in (19). The parameters of the nominal one-step pre-
dictor §(V* are computed by solving (24). In order to learn
the uncertainty bound w, the given predictor 6+ is jterated
and rewritten in form (32) and the estimated value £,(8(")")
is computed exploiting the FPSs previously introduced. Fi-
nally the optimization program (37) is solved leading to the
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bounas

step p

Figure 3. Trend of bounds against step p. Solid line: bounds
learned as in (36) after optimizing W, dashed line: multistep bounds
associated to the iterated 1 step model f'p(é(p)*l), dotted line:

multistep bounds associated to the multistep predictors fp(é(m*)

35
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Figure 4. Trend of bounds against step p. Dotted line: bounds
with the approach adopted (see [31] [32]) line with circles: current

bounds for the additive disturbance ):f;ol |CA My W
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Figure 5. Controlled system trajectories. Solid dark line: z(k),
dashed line: reference value z,,, dotted red line: z(k) with the
alternative control scheme, dashed dot line: tightened constraints,
dotted dark line: tightened constraints with the alternative control
scheme.

minimizer w = 0.107. It is larger than v as expected, but it
must be noted that the two have different nature and are re-
ferred to two different state space models. In fact it can be
computed that the v — z gain of the real system is 11, while
the w — z gain in the identified model (4) is 3.5.

11

The multi-step guaranteed bounds £,(8(P):!) are compared
with the bounds (36), pertaining to the state-space model
with matrices (29) in Figure 3. The multi-step bounds are
smaller, as expected, however they are decoupled in time,
and therefore not directly usable to guarantee recursive fea-
sibility within the proposed robust MPC law.

To clarify the advantage of our approach, in Figure 4 we
compare the guaranteed bounds computed by iterating the
obtained state-space model as described in this paper with
those achieved by considering the uncertainty bound w =
2(0(V*) 44, i.e. the one-step-ahead guaranteed prediction
error bound, iterating it over time with the same model ma-
trices, and eventually adding d. This alternative bound has
been proposed in our previous works [31] and [32]. It can
be noted that the proposed approach achieves a guaranteed
bound on the prediction error that is much smaller the one
obtained from the integration of £;(6(1)*) 4 d, thus reducing
conservativeness significantly.

In the control design phase, the constraint sets U = 7Z =
[—10,10] are considered, while the prediction and control
horizon is p = 10. The Luenberger observer and the auxil-
iary control law are chosen thanks to optimal control the-
ory and the weighting matrices are tuned according to (49).
The reference to be tracked is piece-wise constant and takes
value {0,—5,12}, thus including an unfeasible setpoint as
well. The trajectories of the closed-loop system are reported
in Figure 5, where we also report the comparison with the
control scheme proposed in [32], exploiting directly the one
step prediction error bound %; (6(1*) 4 d without the further
refinement (37). It is apparent that the proposed algorithm
entails a conservativeness reduction resulting in a smaller
constraint tightening. As visible from the simulations, the in-
feasibile reference is handled successfully by the controller
as well as the transients with respect to the open loop re-
sponse of the system.

6 Conclusions

The proposed unitary approach to learning-based MPC for
linear systems allows one to design a control law based on
a dataset collected from the working plant. The obtained
data-driven controller is able to effectively deal with con-
straints and track desired output references. The method re-
lies on two phases: model learning and model-based control
design, that are conceived to limit conservativeness while
still robustly guaranteeing constraint satisfaction. To achieve
this result, multi-step predictors and the related uncertainty
bounds are derived and exploited to compute the state-space
model employed in the MPC design.

We are currently extending this approach to multi-input
multi-output systems: this extension is rather straightfor-
ward provided that the model regressor vectors are prop-
erly defined. Future directions are also concerned with the
extension to classes of nonlinear systems, the online (adap-
tive) computation of the prediction models and disturbance



bounds, and the direct use of multi-step predictors also in
the constraint tightening scheme.

Appendix

Proof of Theorem 1
Proof of claim 1). The solution to (15) must imply a regressor,

(p)

denoted with P> and a corresponding output value, y, o, satis-

fying:
&5 = lypo— 0" %Ol—d so that, see (14)
: T
& = vy~ 00" 9| -d V(@ yp): [0y, | €T

(61)
From the definition of 7}, and Z,N” it holds that %N” C D,
thus, from (17) neglecting the trivial case l =0, we have

A,= min max 5, — 6 \—d<
0P eQ(p) (P N
[(P\ ] 2"
min max lyp — o)’ (p}(,p)\ —d =&, thus we have
0P eQ(r) (P)T
0| e

a%
then &p <§,.

Proof of claim 2). Starting from (17), with standard properties of
absolute values, we compute

= 5o P _ gl
A, () max{O eoﬂ‘?ﬁ oo )TmaxT N I9p \ d} >
5]
i v (p)T B
9<,f>11613<m{‘y1’(N) ( )| } where
(62)

=(P) (p) ~(p)

(N,

e ( p) =arg min ?y0 _ Py

5, (N o s, ~

¥p(Np) [(py(p) yp] e || [ Ypo 5,

Adding and subtracting y,, o and g(P)" (p;f(’))

ing the trivial case A, = 0:

from (62), and neglect-

A (N,) > (N
(p) Q(I{ggwﬂ()’p p) —

0?)" (o) — 9" (N, >>+ypo—e<">’<p;f;}\—ai}
> min {|ypO*9(p (Py |*|( yp(Np)*F)’pﬁO)*

o) cQp)
0?) (pf) — o (N,)| — d}

)’p,O)"‘

_ _ o) Py 5
9(,3;1613(pﬂy 0— 0" o5l} r)ngg(p){l( Ip(Np) +¥po)+
0" (—o%) + 6" (V)| - d}
:8p+d—6(g1§3(m{\(— Ip(Np) +yp0)+
6" (—) + 3" (N,))| - d}
(63)
Then, simplifying d, we compute
Ry(Np) 2 85— max {|(=5p(Np)+p0)
0 (64)

+00" (—g) + 5P ()1}
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Considering Assumption 3, we know that for N — oo

~ (P(I’)( ) (P(l’)
VB >0,3N,(B) : d Y0 |l < B,in particular  (65)
y[’(N[?) Yp,0
167 (V) — o8| < B and [[55(N,) ~ypol <B (66)

and thus, using the inequality |a b| < ||al|2||6]l2

A, (Np(B)) = ;e(ggém{u 55 (Wp(B)) +yp0)]
0P 2|0k — @ (W, (B))]l2}

>&,-p <1+ max |6 1’>H2)

0P cQ(p)
Finally, choosing f < ———2— concludes the proof.
1+ max 6@,
o(P)eq(p)

Proof of Lemma 1

The proof of claim 1 is very similar to that of claim 1 of Theorem
1 and thus omitted for brevity. Regarding the second claim, we
note that the definition of rp(e(P>) must imply a vector, denoted

(P)(/.,I())) € ®(P), that satisfies

7,(00) — 8, = [max |(6— 67 o(h)|

Let us denote q‘)y(p)(Np) =arg ( )TminT N H(f)y(p) 7%(%)”2 and
{‘pyp fp} S
p(e(!’))_gp = Tmax 6€S§)|(9—6(P))T¢§P)‘
o5, <57
> max |(0—9(p>)T(I_)}(vp)(Np)|
0cO®)

By adding and subtracting (6 — 9(1’>T)(py(%), one can write

7,(07)—&,>
(p) (p) _ =(p)
Jmax (0607 9] — (8- 0 (g~ 9" (Ny))] >
Jmax (007 o] — max |(6-00) (9 " (Ny))

Recall from Assumption 3 that for N, — oo

VB > 0,3N,(B) : |9\ (N, (B)) —

and, using the property laTh| <

o)<

l|al|2]|6]l2, also replacing

max_|(6 — 6 )(p 0 \ =1 (6(”)) — &, we eventually obtain:
ECIY

z,,<e<ﬂ)>zrp<e<f’>>—9rgag§ (05— 9" W) a6 — 07
> 1p(67)) B max |6 61|,
0cOP)
Now, taking any p € (0, Tp(G(p>)) and choosing f§ < W

— max
colp
we have zp(e(m) > T,,(Q“’)) — p, which concludes the proof.

Proof of Theorem 2
The proof of Theorem 2 is here divided into the following steps:



e Proof of recursive feasibility of the optimization problem (58).
e Proof that constraints (5) are satisfied.

e Proof of convergence.

Recursive feasibility.

The proof is conducted by induction. Assume that, at instant k, a
solution to the optimization problem (58) exists. All constraints
(58b)-(58d) are therefore verified by z.(k|k), the trajectories
X (k+ plk), and U (k|k) = (ia(k|k),...,a(k+D|k)). The input u(k),
actually applied to the system at time step k, is defined according
to (41).

Atstep k+1, X (k+1) =AX (k) +Byu(k) + Myw(k) and X (k+1) =
AX (k) + Byu(k) + Mw(k) 4+ L(y(k) — CX (k)). We can show that a
feasible, although possibly suboptimal, solution to (58) at step k+ 1
can be defined as z.(k+ 1|k) = z.(k|k), X (k+ 1]k),0(k+1]k) =

(@(k+11k), ..., a@(k+Plk), e (k|k) + K (X (k4D + 1]k) — Xer (k[K))).

First of all, in view of the invariance of E, X (k4 1) =X (k+1|k) =
(A + BiK)(X(k) — X(k|k)) + LCé(k) + Ld(k) € (A+ BIK)E ®
LCE®D C &, where D = [~d,d]. Also, a(k+ plk) € U in
view of (58¢c), for all p=1,...,7; also, u.(k|k) +K(X(k+p+
1k) — X¢(k|k)) € U in view of (58d) and of the definition of
Qg. Last w(klk) € W at time k ensures w(k+ 1|k) € W since
Zer(k+ l‘k)_: Zer (k|K) ar_1d (45).

Thirdly, CX (k+ plk) € Z for all p=1,...,p in view of (58c) and
CX(k+p+1|k) € Z in view of (58d) and of the definition of Q.
Finally, it holds that

X(k+p+2lk)
Z(k+ 1]K)

X(k+p+1]k
| ferrn) o

Zref(k‘k)

in view of (58d) and of the positive invariance of Q. Since
feasibility holds by assumption at time k = O then, by induction,
it is guaranteed also for all k > 0.

Constraint satisfaction.

In view of the feasibility of the problem (58) at any time instant
k > 0, it results that constraints (58b)-(58c¢) are verified. Therefore,
for all k > 0, from (41) u(k) = a(klk) +K(X (k) — X (k|k)) € U
KE C U, proving (5a). Also, z(k) = CX (k) = CX (k|k) + C(X (k) —
X (klk)) +C(X (k) — X (k|k)) € ZO CoE@® Colk C Z, proving (5b).

Convergence.
We compute, from (47), that

X (k[k)
U (k|k)
Ha(k+ plk) — u (k)|

X (k+ P+ 11k) = Xeer (k[ &) |3+ O || 2ies (k) — Zgoa |
(67)
At step k+ 1, the optimal cost function is J(k+1|k+1) <J(k+
1|k), where J(k+ 1|k) is the cost obtained if the feasible solution
X(k+1]k),U (k+1|k),z.c(k|k) is applied. We compute that

J(klk) =P | [c,, D,,] —zu(klk)[I3,

_ X(k+1]k)
J(k+1lk) =¥0_o 1l |Cp Dyl | - — 2 (klk) |17
p=0 [" ”] Ok+1lk)| ™ e

ik +p+ 11k) — e (k1K) [ &,

HIX (k+ 7+ 2[k) = X (k[) |3 + 0 12 (k1K) = 20>
(68)
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where i(k+ P+ 1|k) = e (k[k) + K (X (k+ P+ 1|k) — X (kK)).
From (67) and (68), J (k+ 1]k 1) —J (k|k) < J(k+ 1|k) — J (k|k) <
— (1120 (k[k) = zeer (k[K) ([, + (k1K) =t (KIK) [, )

R (k+1]k)

+  oadle, by Dl

LK),

X(k|k) p+1 2 -
Il [Cpi1 Dpei] D | RN, + e 1+ )~
X(k+1]k)
2 i _ 2 ~
ta (kI =k + p-+ 1K)~ (KO, )+ 1| [C5 D5 Dl

eR)IIG, + llatk + p + 1k) — wea(klk) |7, — X (k + 1+ plk)
XK + (A + BUK) Rk + 1+ PIK) — X (KI))3), where
we used X (k+ p+2|k) — X (k|k) = (A+ B K)(X(k+ 1 +plk) —
Xeor(k|K)).

We can write that U (k+ 1|k) = H U (k|k) + Hy (urer (k| k) + K (X (k+
D+ 1|k) — X.(k[k))) and that 15 u(klk) = Hilpqque(klk) +

T —
H2Mra‘(k|k), being Hp; = |:01.ﬁ 1:| . Also, X(k+ 1 +ﬁ|k) _
X (klk) — X.cc(k|K)

X (k|k) = [APH] B
U (k) — 154 1 tes (K| k)

I . In view of this

we can write

X (k+ 1K) = Xur(klK) | _

U(k+ 1|k) - 1ﬁ+1uref(k‘k)
(69)
A B X (k|k) — X (k|K)

HyKAPHY Hy + HyKT | | U (k[k) — 154t (KK)
For notational simplicity, we define

X (klk) — Xoi (klk)

E (k|k) =
& (klk) U(k'k)—1ﬁ+1uref(k|k)

Defining p > 1, AR, =R, —R),_| and recalling that D,H; = 0,
forall p=1,...,p, we can write that J(k+ 1|k+1) — J(k|k) <
= (120 (klk) =z (k1) 1, + ll(K[K) — s (kIR) I, /)

g0 (e oy | ERIIG, -
ICprs Dpor] EWNR, ) =11 [0 1pr] &G0

11 [ CpB+ Dyt | ERINIR,

+ |X(k+1+plk) — X,c((k|k)||§<TR]7K+(A+BIK>TP<A+BIK>7P. From
(49a) we obtain that J(k+ 1|k + 1) — J(k|k) < —(||zo(k|k) —
Zus (K[ I, + | (k|K) — s (KIK)IR, )

g0 (e oy | E0IIG, -
ICpr Dpor] EWINR,. ) = 1 [op120-1 1per] €GO

I [cra CoB+ Dty | EKIKII, ~ 1R K+ 1+ B1k) — X (k1K) I3,
We can write the latter in compact form as

2

Z+

Jk+ 1k 4 1) = J(k|k) < —(||Z0(K|k) —z,cf(k\k)néo

. (70)
[l (K[K) = st (K[|, /o) + 1€ (KIK) [



where Q = ¥T 2% — 9T 9¥. In view of (49b)
J(k+ 1k +1) = J(klk) < —([|Zo(k|%) —zref(k\k)l\zgo
+[(kk) — weer (K| K) HIzeO/z)

|20 (klk)

(71

In view of (71) then, asymptotically,
Hﬁ(k|k) - Mref(k|k)||[2€0/2 —0ask— oo,

- er(’(klk)”zQO +

In the final part of the proof we show that, similarly to [15] the
only asymptotic solution compatible with ||Zy(k|k) — z..(k|k) HZQO =
0 and |a(k|k) —u,ef(k|k)\|12e0/2 =0 is the one corresponding to
Zur(K|k) = z5ea®™™*. Similarly to [15] we proceed by contradiction.

Preliminarly we highlight a property of the MOAS, specifically
that the definition (57) implies, for all X, klim CTHX ,2) =
—rtoo

lim (éjf ( mf,Zm) %(erhzref):

k——+oo0 (Zl‘eﬁ Urery wref) where

T 1 T
{chr Urer Wref:| = [N n nzw} Zref

_ T
and so lim ‘fﬁk(X,zm-) = [CN ol nzw} Zeet
k—r+o0 )
Therefore, we assume by contradiction that 27y, # z5t4>®%, where

T _
CN p~! lew] Zor € Xzpw (€)

is the steady-state solution where the output Zo(k|k) converges. In
steady state, Zo(k|k) = 23, corresponding to the state and input
values

X (k) X -

i(k) Uy at
Note that such steady-state condition is feasible for (58), since all
constraints are verified, i.e., (58b)-(58c). The corresponding value
of the cost function (67) is J; = & |25 — zZyou|*-
Consider now an alternative solution (starting, at time k, from the
previously-defined steady-state) to problem (58), i.e., the triple
(X (k),U(k),z.(k)) where the initial condition X (k), compatible
with constraint (58b), is X (k) = X% and the reference output is

ref
Zeet = Zogh (1 = A)z (72)

that, in passing, corresponds to the following reference values

Xref N

T Aot
Unef u

sequence is given by ii(k+ p) = u; + K (X (k+ p) — X.r). Note that,
importantly, the latter alternative solution to (58) is feasible (i.e.,
also verifies (58¢)) if (1 —A) is sufficiently small (with A # 1).
The corresponding cost function J;, reads:

FEASIBLE
50:11

for X and i, Zor- Finally, the alternative input

X(k)
i
+[X(k+p+1)—X

- ch(

b =xll[c, 13, + Ntk + p) —u

1pg1 1t
il 4 O 12t = Zoul|®

=30l (¢ D) Gualez— 2,

I [KA+BIK)? 01p51] Gua(zZ — 2 [k,

I [A+BIK)PT 01 pit] Gra(2 — zer) |3+ O 2rer — Zoul| |

= HZE *me“% + G”Zref *Zgom”z
(73)

2
w3,
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where
G — Dho1 02p-11 N
xu — ”_
051120-1 1p41 p!
and where P = GT AT diag(Qy, ..., 05,Ro,...,Rp, P)AGy, with
[ Co Dy 1
Cp Dj
A= |KA+BiK)" 01541 (74)
K(A+BK)? 01541
_(A‘f'BlK)ﬁ+1 020—1,5+1 |
From (72), 2% — zer = (1 = 2)(23% — 2oed™™F) and Zer — Zgou =

Az — zoen ™) + 2pn S — z0u. If 0 is sufficiently large, i.e. if

0 > Amax(P) we compute that

J1/O'

:‘LI;AQIBLI: H2 + HZ:‘::fAS]BLE

Hsz 7ZrefH2

+2( FEASlBLE — Zgoal ) T ( 7

FEASIBLE )
ref

goal

—Z
h/o

IN

11255 = Zet1* + 1| Zeer — Zeom [
(1=2)2+22) Iz —

+HZFEASIBLE

ref

+2A(7

IN

ZFEASIBLE ” 2
goal

— Zuu)?

FEASIBLE

FEASIBLE)
goal

T/ oo
- Zgoal) (zref ~ Zgoal
By subtraction we get

> (1 (1-2)° A%l
+2(1 _ l)G(ZFEASIBLE

goal

FEASIBLE ‘ | 2
ref — goal

~Zgoa) " (G~ 2 )

J1—J:
1—J (75)

Since 2(ZFEAsBLE 7z T (23— 2 SPF) > 0 by optimality, we ob-

tain that 11 > J,. This shows that the second (non-steady state)
solution, associated to the cost J, is more convenient than the one
associated to Ji, and so zj; = zgoy ™" is the only possible steady-
state solution where the output Zo(k|k) converges, contradicting

the assumption. This entails that, as k — oo, Z(k|k) — z5es ™"~
Finally, in view of (53b) we obtain that dist(z(k),z gfa’l‘S'BLE @C (Ee
1)) = 0 as k — oo,
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