System-Level Performance Estimation Strategy for Sw and Hw

A. Allara (1), C. Brandolese (2), W. Fornaciari (2,3), F. Salice (2,3), D. Sciuto (3)

(1) ITALTEL, Central Research Labs, CLTE, 20019 Castelletto di Settimo m.se (MI), Italy.
(2) CEFRIEL, via Fucini, 2 - 20133 Milano, Italy. salice@cefriel.it
(3) Politecnico di Milano, P.zza L. Da Vinci, 32 - 20133 Milano, Italy. {fornacia, sciuto}@elet.polimi.it

Abstract respectively, before to evaluate and back-annotate the results
on the system description.

The design of_ an embedded system is_ a process where the tuning Moreover, these evaluation steps have to be carried out
of the architecture should take into account both the gach time the technology is modified (e.g., hw/sw partition,
functionality and the timing performance while considering the i, tion set, technological libraries, ...) making onerous the
heterogeneity of the hw and sw components. The goal of this, . . .
paper is to present the new modeweloped during the SEED design space t_axplorat|on. To overcome these d_rawbacks it is
Esprit project, to estimate the software and hardware Valuable to estimate the performances by operating as much as
characteristics for cosimulation and profiling within the TOSCA Possible at system level.
codesign framework. The impact on the design space In literature some proposals are emerging to cope with the
exploration of such an high-level cosimulation strategy has beenproblem of estimating hw/sw performance. In [3], each
tested by considering as a benchmark the reengineering of arprocessi, whose specification is captured in LOTOS, is

industrial device. characterized in time by performing a preliminary
. transformation in PCG (Process Communication Graph)
1. Introduction followed by an appropriate expansion in blocks of data-

The TOSCA project [1] [2] aims at defining a complete dependent and/or deterministic operations; then, each new
methodology and the related CAD environment covering block is described through a CDFG. Successively, in the hw
different aspects of embedded system codesign [7] including?@se, an ASAP algorithm is applied twice (non resource
uncommitted system-level specification, design spaceconstrained and a single component of each type) on a pre-
exploration and cosynthesis. optimized graph providing the timing estimation (the target
A key point in such an activity is the possibility to take technology is an input). In the sw case, once the assembly
most of the decisions at the architectural level during thecode is produced, the response time of a CDFG can be
earlier stages of the design, in order to avoid as much agstimated from a technology file (a description of the
possible design loops including time-consuming synthesisinstruction set including the execution time for each
activities. In facttime to markepressure faces the designers instruction type).
with the necessity to adopt hw/sw partitioning or to reshape [N CoWare [4], system simulation is implemented by
the system architecture in a short time to conform the projecgoftware: one UNIX process runs the instruction set simulator
with the application requirements. A top level cosimulation is (armdbx) for the processes assigned to the sw partition, one
the ideal platform where the designer validates the systenVNIX process runs the VHDL debuggethdidbx) for the
functionality and tradeoff alternatives. To speedup the theProcesses assigned to the hw partition while communication is
design process, TOSCA improves the simulation performancdmplemented over UNIX IPC. After the assignment, all
with acceptable detriment of accuracy by the use of a built-inProcess instances assigned to the same simulation-processor
cosimulator, based on estimations of the hw and sw executio@re merged. As a consequence of this model, the simulation
times, starting from an internal Occamll model. The allows to verify only the functional behavior of the system.
simulation engine is event driven and considers the intrinsicSince no timing estimation is performed at higher abstraction
execution times of both hw and sw components according tdevels, no consideration about real-ime behavior can be
ana priori analysis whose results are back-annotated onto théXtracted.
system-level description. In POLIS [5], each element of a network of CFSMs (Co-
Under the designer's point of view, this last activity is the design Finite State Machines) describes a component of the
cornerstone to take synthesis decisions and normally it implie$ystem without specifying if it will belong to the hardware or
a high computational overhead: each sw and hw process ne&ftware partition. Hw and sw modules are characterized by

to be compiled, producing object code and synthesized hvflifferent delays even if each CFSM transition performs the
same computation. System level hw-sw Co-simulation allows

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 08,2021 at 17:44:06 UTC from IEEE Xplore. Restrictions apply.

the designer to evaluate design choices that, at this levethe Instruction Sets (IS) and compiling environment and it is
include hw-sw partitioning, CPU selection, The timed co- parametric in the clock period.
simulation is based on software synthesis and performance Due to space limitation only an overview of the theoretical
estimation techniques. In the software synthesis each CFSM tmodel of hw and sw timing models will be discussed in this
be implemented via sw is mapped into a software structure (gaper; more details on the general top level cosimulation
procedure for each CFSM together with a simple Real-timestrategy can be gathered from [8] [9] [1].
Operating System) by means of a two-step process: first of all, The paper is organized as follows. Sections two and three
each CFSM_sw is implemented and optimized in a high-leveldescribe the models for the computation of the execution
processor-independent representation, similar to a CDFGtimes of the Occam Il system specification, for the sw and hw
then the CDFG is translated into C code. Successively, such domains, respectively. Due to space limitation, details are
code is compiled and optimized in a specific instruction set. Areported only for some Occamll statements. Section four
timing estimatoranalyzes the program and reports code sizedraws some conclusions and in particular discusses the
and speed characteristics. The algorithm [6] uses a parametrigotential benefit from the user point of view, obtained through
formula, with parameters obtained from benchmark programsthe design space exploration activity performed during the
to compute the delay of each node in the CDFG for differentSEED project.
micro-c_ontroller architec_:tu_res. The estimator allqws t_he user, The Software Estimation Model
to obtain accurate predictions of program execution times for
any characterized target processor. This timingIn the TOSCA environment, a priori timing
characterization is calculated by compiling the CDFG characterization of each Occamll sw-bound process
representation in C and by executing the resulting code on @erformed by estimating the process execution time as
host workstation where an instruction level simulator is CPl * Tck where Tck is the clock of the target processor
running. and CPJ s represented by the following relation:

In summary, the timing estimation problem (when a a .
contemplated) is afforded either by translating the description CPh = CPlinin” * CPhyn with alJ[0.1]
at system-level into a finer grain, where each component ofGiven the characterization of the processor and compiler, it is
the system is accurately detailed and results arepossible to compute, for each procgsthe value of CRhn
back-annotated, or by associating to the system leveland CP},. The best case, GR), is associated with a
components some coarse grain information. processor with unbound number of registers on which

The former approach is characterized by a good accuracyariables are pre-loaded; in such a case, the access to variables
in the estimations. Unfortunately, it is time-consuming and yalues requires no load/store steps. In the worst casg;,CP!
suffers of some drawbacks such as a strong sensitivity to théne architecture is merely composed by 2 registers, thus
considered developing environment (e.g., the compiler) andrequiring an intensive use of load/store operations. Note that
architectural parameters, requires cooperation among differenhe execution time of each procgssn a given executor falls
analysis tools and it is computed off-line with respect to thein the range [CRhn, CPlmad- Since such a range depends not
what-ifanalysis loop for hw/sw partitioning. only on the intrinsic process but also on the JGRIf the

The latter approach, working at higher level, is fairly target processor (for example, the MC68000 needs 4 CPI to
independent of the technology and fast, frequently iNnmove a word from memory to a data register), it is
detriment of accuracy. It does not take significantly into representative of a group of Compatible Instruction Sets
account the differences among target architectures. Usually,C|S). To make the estimation function as general as possible,
such a class of estimation methodologies are computeq|s has been obtained by intersecting the relevant instructions

on-line, within the inner loop of the hw vs sw analysis. sets and then by calculating the upper and lower bounds, that
Our approach is ameeting in the middlewhere the s

estimation is performed on-ine at system-level, based on U-CIS ={CPlye| MAX(n; IS of processor J)

information coming from a performance model considering L-CIS ={CPlye| MIN(n; IS of processor J)

low level characteristics of code execution. The adopted o parametam, introduced in the CRl computation, allows
timing estimation methodology consists of evaluating, run-, maqel different configurations of processor and compiler.
time, the timing behavior of each process involved in the g, example, by increasing the data register count and by
system level simulation. In such a way, is easier to take intQmproving the compiler efficiency, CR} tends towards

1 V/

account the unpredictable data dependent conditions such p},.. . Furthermoregt depends on the executed code. By
. . min - .
branches, alternatives, The accuracy is pretty gOOdfixing processor and compiler can be estimated by

sufficient to take most of the decisions driving the hw/sw compiling different code segments, evaluatindor each of

partitioning and behavioral analysis of the system. . . o
Furthermore, it is flexible since it considers the variability of them, and, finally, by computing the average, that is:

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 08,2021 at 17:44:06 UTC from IEEE Xplore. Restrictions apply.

a=avg{ aijmin z[(Cpl_earcplmnﬂi*cmwnax(lﬂi))mu codel systerh In the best caseCPln, depends on the instruction
yOcode architecture. If a three operands instruction architecture is
Such a value represents the characterization of theconsidered, since the target architecture has as many registers
processor-compiler pair that must be considered by theas necessary, the GRlis only related to both the number of
software execution time estimator. algebraic operators and the overhead caused by arrays (the
The CPJmin and CPRhay Of @ single process are efficiently address register has to be computed).
computed by considering the same characterization of the

primitives composing it. For instance, the Occamll process /®\
StateBitCondition := (bitval=1)AND(contONE<5) /\ © ©
is composed by thassignmentprimitives and alogical D (vo) \C> Ef \Q
expressiorcomposed of two comparison operators. @/ i E ‘ \ @ i
Let us now give the flavor of the methodology, by rys O
evaluating CRkin and CPRhe for some of the Occamll Ef E
primitives. More details concerning the rest of Occamll Temp := (c-d+((a+b)c)*(are)
statements used in TOSCA, can be found in [9]. Figure 1. @) the considered model and b) an example of algebraic
2.1 Assignments expression graph.

If the instruction set contemplates algebraic instructions with

less than three operands, further overhead has to be
tvpes of possible assignments: con_5|dered. In the case of_ two operand mstructlons some
yp P g variables have to be moved in temporary registers to save their

1.Var := Var; in the best case a value stored in a register X .
is transferred to another one while, in the worst case, avalue. In general, M variables have to be moved from their

value stored in memory is copied to another location. registers to temporary Iocat!on.s. : .
2.Var := ConstantValueiit represents the case where a In the case of algebraic instructions with one operand,

pre-load constant is copied in a register (best case) or gt’_Oth partlgl resul.ts 5!”0' some yarlableg .have to be, moved,
number is moved to a specified location (worst case). since the !nstructlon |ts_elf implicitly specifies one register to
3.Var := Exp; it identifies the case where the expression store partial computations. In general,||Wariables and

result is loaded in a register or in a memory location. [Viel-1 partial resuits have to be moved.

The best case CR4 depends on the considered CIS: for In. the worst case because of the target architecture is
two or three operand instructions, the eXpressionconstltuted by only two data registers, the worst casg,{CPI

evaluation consists @ompute and saveperations (the does not depend on the considered CIS. Let us consider the
worst case needs to explicitly save the result), foralgebraic expression (b*c)+(d*e). The partial result

; . : N
instructions with one operand both worst case and besgorrespogdlng to (IJ(ne gimal cqr?putatlon.l(bt;c ofr d fr)l hastk':o
case need to save the computational result. e stored to make data registers avaliable for the other

product; then, the stored value has to be re-loaded to compute

The assignment process, :=, modifies the variable content
The following table reports CR} and CP/. for the three

#0 , . :
P v v v gp'a"ff YT SY; = the final result. In general |y results are involved in load-
ar ;= var ar := constantvValu¢ ar ;= eX] . . .
. le 2 summarizes th ibl .
Tor2CPim o ST 0 store opgratlons Tab e. summarizes the possible cases
1 |CPhin | CPluoverr CPhuoverR CPhuoverR 2.3 Logical Expressions
CPImax Cpioad + Cplstore CleoveImmedialeMem Cpktore

A logical expression is a combination of symbols, logical
operations (AND, OR and NOT), comparison operators
2.2 Algebraic Expressions (=, <>, <, >, >=, <=), constant, and parentheses; logical

An algebraic expression is a combination of SymboB,expressions produce boolean values. A logical expression

algebraic operators, constants, and parenthesesc@n be represented by an OBDD (Ordered Binary

expressions follow the conventional rules of algebra. An Decision Diagram), representing a set of binary-valued

algebraic expression can be easily represented by a DAcEecisions, culminating in an overall decision that can be

where each internal node j\and each operand nodedV TRUE or FALSE. Each Boolean. variable in the. OBDD
corresponds to a set of nodes, either a test applied to two

represent an algebraic operator and an operand;’""’ : bl
respectively. In the considered model, the set of internal’ariables of the same type or a symbol (variable or

nodes, V, has been decomposed into three subsegs: V constant whose value can be TRUE or FALSE); the nodes

V,, and,\,. The numerical index indicates the number of &€ ordered so that each level corresponds to a single

operands connected to the node; for example, byvarlable. Hence, a Ioglgal expression can be seen as a
network of local functions where the set of edges

indicating with |V| the cardinality of V, in figure 1b we i i . ,
have IVolg:2 |\41||:|2 and, |W[=3. y g describes the logical operations while the set of nodes

corresponds to the local functions

Table 1. CPlavg for the Occamll assignments.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 08,2021 at 17:44:06 UTC from IEEE Xplore. Restrictions apply.

Oper. CPlavg
3 CPhii M
n > CPlyperator +OverHeadArrayin
VI
2 CPhin ZCPL)perator_'l"l\/Ql*CP|moveRR*'OVerHeadArraMin
1 P | V!
n Y CPlperator #(2|Vi2l-1)*CPnoverr-OverHeadArrayin
VI op
CPhax > CPloperator + > CPload*|Viol*(CPlioagt CPkiord+OverHeadArrayax where op = (2*]¥|+[Via|)

Table 2. CPI_ _ for the algebraic expressions.

It has to be underlined that the performance is related to the =
graph shortest path that, in turn, depends on the loca
functions ordering. To overcome the related computational
effort in addressing all possible cases, since our goal is fas |
performance evaluation, two different approaches have bee = / \ "
proposed. The first is based on two assumptions: ne S Ry
1.The shortest path is equal to 1 while the longest path i | |
equal to the number of local functions. An analysis | : ° o o —
considering a set of examples has justified this first s
assumption: a typical logical expression is composedof ,| , . |
a restricted number of local functions (less then 4) and, * 2 @ ¢ ® ¢ 7 & ¢ 2 m 2 w110 7 8w
usually, the shortest path evaluates 1. Figure 2. Comparison between actual and estimated CPI, for the
2.To preserve the functionality of a given expression, Occamll code of table 3.

shortcuts have to be avoided; thus, all the local functions3 The Hard Estimation Model
are pre-computed. This assumption allows a modular-" € Haraware ESlimaton iMode

computation. Similarly to the software case, the variability of hw resources
Therefore, if the number of symbols and constants and implementation strategies have been taken into account by
involved isop, CPlyi» and CP}.,are determined as: modeling the execution time of hw-bound Occamll processes,
CPIs through the following relation, where Tgk depends on the
CPhin CPhmp+ CPhin branch target technology:
(0]
CPloax |Longest_path[*(CBp+ CPlhuax branch+ chpload CPl_eqg= CPI_eqmnB* CPI_eqmax(l’B) with BC[0,]]

Since hard real-time applications are considered, the, .
; '’ . —Again, CPl_eg,, and CPI represent the range
second approach takes into account the worst case that is: g —SGhin —Hhax_TED 9

containing the execution time of each proge3sie best case,
CPIs . .
CPim ILongest path[(CRhs+ CPhun branc) CPI_egmn, represents an ASAP scheduling with no bound on
B op functional resources. For the sake of completeness, note that
CPlnay| |LONgest_path|*(CRhp + CPhax branch + > CPload such a value may slightly differ from the global minimum,
2.4 Tuning of the sw estimation model since it does not takes into account the effect of possible inter-

rocess optimizations. The worst case, CRl£q
orresponds to the presence of a single functional resource per

following tabl s a f tofan O " ificati type, i.e. a purely serial computation of the process. The
oflowing table reports a fragment of an Jccamil specification parametef depends on both the number of resources and the

computing & CRC code (of the ILC16 benchmark), after thescheduling policy. The proper value has to be determined by

necessary serialization of operations performed to fit a SWbenchmarking the hw compiling environment, through the
implementation (i.e. a single processor). The other columns '

report the values of CR) computed according to the analysis of different code segments, each producing afocal

presented model. A value @f=0.7 has been chosen to H ence, the. final valuef used. to represent a given
o) implementation technology/architecture and scheduling

minimize the cumulative error, computed on the set of olicy. is:

processes composing the entire ILC16 system. The targé? Y 1S _ . W

microprocessor is the Motorola 68000. Figure 2 shows that, P=avd Bil min > (CPhearCPimi *CPIymai))1 codel] systerh

for the Occamll statements of table 3, the estimation sw model POcode

has a good correspondence with actual data.

Several tests have been performed during the SEED project t
validate the sw estimation strategy. The first column of the

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 08,2021 at 17:44:06 UTC from IEEE Xplore. Restrictions apply.

OCCAM CPlinin|CPlmax|CPlact 3.2 Hardware assignments

MyData := Data 4 9 4 i .
MyCRC_LOW := CRCLow 2 9 4 As stated before, an assignment process, :=, modifies a
MyCRC_HI := CRCHi 4 9 4 variable. Three different types can be identified:

=0 4 9 | 8 1. Var := Var: a value stored in a register is transferred in a

' h|.|e(|< lenData) 20 34 28 different one;

=i+l 8 | 17 [13 5 Var = ConstantVal want value i ied i
tempData = BIT(MyData BITAND bytemask)| 8 | 17 | 12 - var .= Lonstantvalue a constant value IS copied In a
tempCRC_LOW := BIT(MyCRC_LOW 8 17 | 12 register,

BITAND bytemask) 3. Var := Exp: the expression result is loaded in a register.

LeyTeF:T?;%—H' = BIT(MyCRC_HI BITAND 8 | 17 | 12 Since expression computatioand result storingcan be
MyData := MyData >> 1 8 6 3 occur smultaneously, the CP_I_eq corresponding to thls
MyCRC_HI := MyCRC HI >> 1) 26 | 8 process is completely dominated by the expression
MyCRC _LOW := MyCRC_LOW >> 1 8 26 | 8 computation.

IF (tempCRC_HI) 12 [16 [14 CPl eq

MyCRC _LOW := MyCRC _LOW + remainder| 8 17 8 Var=Var 1

IF (tempData >< tempCRC_LOW) 16 24 18 - y

MyCRC_LOW := MyCRC_LOW >< 8 | 17 | 8 var 'V;O,r_'sgmva'“e (l)

generator_LSB = EXp

MyCRC_HI := MyCRC_HI >< 8 | 17 | 8 3.3 Hardware Algebraic Expressions

generator_MSB . . .
CRCLow = MyCRC_LOW 2 9 5 In_ the best case, execution time corresponds_ toa scheduling
CRCHi := MyCRC_HI 4 9 5 without resources limitation, i.e. the intrinsic process
Table 3. Value of CPI,_ for a serialized Occamll program computing a parallelism is maximized. In such a case, a good
CRC code. approximation of best performance can be achieved by
3.1 Equivalent CPI considering all the operators of the same type and by

S] considering the related maximum CPI.
In order to simplify the comparison among hw and SW The worst case refers to an architecture where the

solutions, the concept ofquivalentCPI (CPI_eq) has computation is fully serial. By considering the DAG
been introduced. The execution time of each operation isepresentation introduced before and calling; || \the

mainly a function of the architecture (e.g., an adder can bearginality of the subset of V constituted by an operator of
implemented as ripple carry, carry look-ahead, ...) and theynei we obtain:

number of bitsn of the involved operators, so that the CPl_eq
execution time to carry out each operation is=%4, n, CPI_eGhin maxX CP|_eq| [og;, (|Vi[+1)7* CPI_eq;}
architecturg, whereA is the elementary unit of delay. By Vil
assuming that the clock period of the hw partition is CPI_egu Y CPIl_ew
Tckp=K* A, the corresponding number of clock cycles is: B di

Nck= Toy Tckne= (A, N, architecture) / KA 3.4 Hardware Algebraic Operators

By calling ®=T K where Tck is the clock cvele of th In order to produce a characterization as close as possible to
y calling ®=Tcky,/Tck, where Tck is the clock cycle of the the user needs, the most representative architectures of

t_arget processor, the following expression of the e)(e‘:lr['()r1algebraic operators have been analyzed [10]. The following
time can be obtained:

table contains the models adopted to evaluate the performance
Execution_Timg, = (Ng*Tckny/Tck)*Tck = of their implementations.
= ({f(A, n;m, architecture)/KE) [d)*Tck &

By comparing the above expression with the one determined
for the software, it is straightforward to derive the following
equivalence:

CPI_eq = ({If(A, n, architecture)/K&)[* @) = CPI

——CPI_eq Min
---- CPI_eqMax
O CPl_eqActual
© CPI_eq Expected

CPI_egin and CPI_eg.y of each procesyg, representing
the best and worst case of scheduling, are obtained by a
modular composition of a set of primitives, each being anFigure 3. CPleq for the hardware implementation of the Occamll
expression depending on a set of parameters. specification of figure 2.

The set of primitives includes the whole Occamll
language, For space reasons, the paper reports only a subset of
such analysis. More details can be found in [9].

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 08,2021 at 17:44:06 UTC from IEEE Xplore. Restrictions apply.

Op Architecture f(A, n, architecture) functionaltiming properties, the system specifications have

+ Ripple carry 2n*A been modified through a set of transformations according to
+ _CCLA(g/_p*p) _ if (n=1) 11*A else the computation of some metrics evaluating the quality of the
p = BCLA dimension (10+logp(1+ n*§-1))(2+1)* 11*A system, but this aspect is out of the scope of this paper.
m BaughWooley i (n=1) 2° elsed ' Different alternatives in terms. of microprocessor clock
* Bisection if ("=1) 2°A elsed™n* A frequency have been also taken into account.
] Restoring (Dean) (3*n%+1) *A The total manpower (excluding the synthesis stage) has
/| Non Restoring (Guild) 3*(n+17°* A been allocated on the different design stages as presented in
/ |Non Restoring with 2-leviel (11*n+12) *A Table 5, depending on the level of confidence of the designer
CLA and Carry-save with the co-design environment.

(Cappa - Hamacher)

new trained

i ith 1-levé " Activi weeks
/ |Non restoring with 1-level (9*n+10) *A ty designer| designer]
CLA and Carry save R a T - 7 139
(Cappa - Hamacher) ccam Language (tool learning) b

— - - - Exploration Manager (tool learnin 1 3%
Table 4. Timing performance of the main Hw operator implementations. Dezign Specificatig - (9 8 26% 3104
The accordance between the estimations and the actual data|Functional Debug 16 5206 62%)
for an hardware implementation is shown in figure 3, [besign Space Exploration 2 6% 8%
reporting CPleq against the Occamll lines of the same [Total weeks/m 31
example of figure 2. Table5. Breakdown of the manpower for the development of the
ILC16 device.

4. Concluding remarks _
These results are important to get a feedback on the

The paper presented an overview of the hw/sw estimationeffectiveness of the proposed methodology for design entry
model currently used by the TOSCA top-level cosimulator. ang design space exploration.

This model has been validated and tuned by modeling both cyrrently, most of the effort is devoted to define high-
small benchmarks and the ILC16 component, commercializeqeve| estimation strategies for the hw and sw power
by Italtel, used as test vehicle for the SEED Esprit project [1]. consumption, and in the improving of the existing algorithms

Accuracy of high-level cosimulation has been significantly for hw/sw partitioning.
improved while ensuring remarkable performance during
cosimulation. By using a SPARCstation 20 running at 5. References
85MHz, we observed an averaginulation ratio around [1] SEED ESPRIT-ESD project n.22133, wvsite
16-18. This means that, to simulate a system characterized by http://www.cefriel.it/eda/projects/seed/mainmenu.htm.
24K events/s, the simulator is able to process 1.5K events pdR] W.Fornaciari, F.Salice, D.Sciutd two-level Cosimulation
CPU second. The current implementation delivers a EnvironmentIEEE Computer, pp. 109-111, June 1997,.
throughput alreadyapd enaigh to enable its effective use for [3] E6$rig?§;e$ic2{iﬁn (X)r;(?e:i'g;‘ L“é'\?é?‘?;;fﬂ%;?:f‘jofon
crabyas e o be tw odrs, of magride aser o g |EEE COUES/CASHES, itsburh, Pennsyania, 1996,

.] I.Bolsen et al.,Hardware/Software Co-Design of Digital
low-level strategy presented in [2], based on the use of VHDL" * 14jecommunication SystenRsoc. of the IEEE, Vol. 85, No.
models for both the hw and the sw. 3, pp. 391- 418, March 1997.

The ILC16 component is a data-link controller for sixteen [5] M.Chiodo et al. Hardware-Software Codesign of Embedded
asynchronous/synchronous data streams based on the HDLC SystemslEEE Micro, Vol. 14, No. 4, pp. 26-36, Aug. 1994.
protocol. The original design allocates the management of thé6] K.Suzuki, A. Sangiovanni-Vincentelligfficient Software
channels to a RISC CPU core cell, while the HDLC protocol Performance Estimation Methods for Hardware/Software
processing is hw-bound; both sections are embedded in the g"dgse'?\;lﬂi;:‘;ﬁ- OKADQC s:ﬁqfasd\ﬂf)?:a; lrJdSV\’/ ;r‘g/‘golf?ﬁ:r-e
same chip. The.syStem has bee.n reverse englneereq by usi Co-Design: NA:TO ASI Series, Series’E: Applied Sciences -
the TOSCA environment and validated through the high-level

. e . vol.310, Kluwer Academic Pub., The Netherlands, 1996.
simulator, the specification is composed of more than 4K [g] A Allara, S.Filipponi, W.Foraciari, F. Salice, D. Sciuf,

Occamll lines of code. _ ~ Flexible Model for Evaluating the Behavior of
The high-level TOSCA co-simulator has been the basis Hardware/Software Systems, Proc. of |EEE

for design space exploration, the various components of the Codes/CASHE’'97, Braunschweig, Germany, March 1997.

ILC16 system have been initially allocated to either hw or sw[9] W.Fornaciari, F.Salice, D.Sciutdiw and Sw estimation

domains and then simulated to verify the functionality and the ~ Strategies for the SEED projecTech. Report n. 97011,

fulfilment of the timing constraints. Different scenarios have __CEFRIEL, Milano, ltaly, 1997. .

been considered before committing to the final hw/sw [10] K.Hwang, Computer Arithmetic, Principles, Architectures

. . . and DesignJohn Wiley & Sons, 1979.

implementation, ranging from the fully hw to fully sw

solution. Apart from the above considerations on the

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 08,2021 at 17:44:06 UTC from IEEE Xplore. Restrictions apply.

