
System-Level Performance Estimation Strategy for Sw and Hw

A. Allara (1), C. Brandolese (2), W. Fornaciari (2,3), F. Salice (2,3), D. Sciuto (3)
(1) ITALTEL, Central Research Labs, CLTE, 20019 Castelletto di Settimo m.se (MI), Italy.

(2) CEFRIEL, via Fucini, 2 - 20133 Milano, Italy. salice@cefriel.it
(3) Politecnico di Milano, P.zza L. Da Vinci, 32 - 20133 Milano, Italy. {fornacia, sciuto}@elet.polimi.it

Abstract

The design of an embedded system is a process where the tuning
of the architecture should take into account both the
functionality and the timing performance while considering the
heterogeneity of the hw and sw components. The goal of this
paper is to present the new model developed during the SEED
Esprit project, to estimate the software and hardware
characteristics for cosimulation and profiling within the TOSCA
codesign framework. The impact on the design space
exploration of such an high-level cosimulation strategy has been
tested by considering as a benchmark the reengineering of an
industrial device.

1. Introduction

The TOSCA project [1] [2] aims at defining a complete
methodology and the related CAD environment covering
different aspects of embedded system codesign [7] including
uncommitted system-level specification, design space
exploration and cosynthesis.

A key point in such an activity is the possibility to take
most of the decisions at the architectural level during the
earlier stages of the design, in order to avoid as much as
possible design loops including time-consuming synthesis
activities. In fact, time to market pressure faces the designers
with the necessity to adopt hw/sw partitioning or to reshape
the system architecture in a short time to conform the project
with the application requirements. A top level cosimulation is
the ideal platform where the designer validates the system
functionality and tradeoff alternatives. To speedup the the
design process, TOSCA improves the simulation performance
with acceptable detriment of accuracy by the use of a built-in
cosimulator, based on estimations of the hw and sw execution
times, starting from an internal OccamII model. The
simulation engine is event driven and considers the intrinsic
execution times of both hw and sw components according to
an a priori analysis whose results are back-annotated onto the
system-level description.

Under the designer’s point of view, this last activity is the
cornerstone to take synthesis decisions and normally it implies
a high computational overhead: each sw and hw process need
to be compiled, producing object code and synthesized hw

respectively, before to evaluate and back-annotate the results
on the system description.

Moreover, these evaluation steps have to be carried out
each time the technology is modified (e.g., hw/sw partition,
instruction set, technological libraries, ...) making onerous the
design space exploration. To overcome these drawbacks it is
valuable to estimate the performances by operating as much as
possible at system level.

In literature some proposals are emerging to cope with the
problem of estimating hw/sw performance. In [3], each
process i, whose specification is captured in LOTOS, is
characterized in time by performing a preliminary
transformation in PCG (Process Communication Graph)
followed by an appropriate expansion in blocks of data-
dependent and/or deterministic operations; then, each new
block is described through a CDFG. Successively, in the hw
case, an ASAP algorithm is applied twice (non resource
constrained and a single component of each type) on a pre-
optimized graph providing the timing estimation (the target
technology is an input). In the sw case, once the assembly
code is produced, the response time of a CDFG can be
estimated from a technology file (a description of the
instruction set including the execution time for each
instruction type).

In CoWare [4], system simulation is implemented by
software: one UNIX process runs the instruction set simulator
(DUPGE[) for the processes assigned to the sw partition, one
UNIX process runs the VHDL debugger (YKGOGE[) for the
processes assigned to the hw partition while communication is
implemented over UNIX IPC. After the assignment, all
process instances assigned to the same simulation-processor
are merged. As a consequence of this model, the simulation
allows to verify only the functional behavior of the system.
Since no timing estimation is performed at higher abstraction
levels, no consideration about real-time behavior can be
extracted.

In POLIS [5], each element of a network of CFSMs (Co-
design Finite State Machines) describes a component of the
system without specifying if it will belong to the hardware or
software partition. Hw and sw modules are characterized by
different delays even if each CFSM transition performs the
same computation. System level hw-sw Co-simulation allows

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 08,2021 at 17:44:06 UTC from IEEE Xplore. Restrictions apply.

the designer to evaluate design choices that, at this level,
include hw-sw partitioning, CPU selection, The timed co-
simulation is based on software synthesis and performance
estimation techniques. In the software synthesis each CFSM to
be implemented via sw is mapped into a software structure (a
procedure for each CFSM together with a simple Real-time
Operating System) by means of a two-step process: first of all,
each CFSM_sw is implemented and optimized in a high-level
processor-independent representation, similar to a CDFG,
then the CDFG is translated into C code. Successively, such a
code is compiled and optimized in a specific instruction set. A
timing estimator analyzes the program and reports code size
and speed characteristics. The algorithm [6] uses a parametric
formula, with parameters obtained from benchmark programs,
to compute the delay of each node in the CDFG for different
micro-controller architectures. The estimator allows the user
to obtain accurate predictions of program execution times for
any characterized target processor. This timing
characterization is calculated by compiling the CDFG
representation in C and by executing the resulting code on a
host workstation where an instruction level simulator is
running.

In summary, the timing estimation problem (when
contemplated) is afforded either by translating the description
at system-level into a finer grain, where each component of
the system is accurately detailed and results are
back-annotated, or by associating to the system level
components some coarse grain information.

The former approach is characterized by a good accuracy
in the estimations. Unfortunately, it is time-consuming and
suffers of some drawbacks such as a strong sensitivity to the
considered developing environment (e.g., the compiler) and
architectural parameters, requires cooperation among different
analysis tools and it is computed off-line with respect to the
what-if analysis loop for hw/sw partitioning.

The latter approach, working at higher level, is fairly
independent of the technology and fast, frequently in
detriment of accuracy. It does not take significantly into
account the differences among target architectures. Usually,
such a class of estimation methodologies are computed
on-line, within the inner loop of the hw vs sw analysis.

Our approach is a meeting in the middle, where the
estimation is performed on-line at system-level, based on
information coming from a performance model considering
low level characteristics of code execution. The adopted
timing estimation methodology consists of evaluating, run-
time, the timing behavior of each process involved in the
system level simulation. In such a way, is easier to take into
account the unpredictable data dependent conditions such as
branches, alternatives, … . The accuracy is pretty good,
sufficient to take most of the decisions driving the hw/sw
partitioning and behavioral analysis of the system.
Furthermore, it is flexible since it considers the variability of

the Instruction Sets (IS) and compiling environment and it is
parametric in the clock period.

Due to space limitation only an overview of the theoretical
model of hw and sw timing models will be discussed in this
paper; more details on the general top level cosimulation
strategy can be gathered from [8] [9] [1].

The paper is organized as follows. Sections two and three
describe the models for the computation of the execution
times of the Occam II system specification, for the sw and hw
domains, respectively. Due to space limitation, details are
reported only for some OccamII statements. Section four
draws some conclusions and in particular discusses the
potential benefit from the user point of view, obtained through
the design space exploration activity performed during the
SEED project.

2. The Software Estimation Model

In the TOSCA environment, a priori timing
characterization of each OccamII sw-bound process γ is
performed by estimating the process execution time as
CPIγ * Tck where Tck is the clock of the target processor
and CPIγ is represented by the following relation:

CPIγ = CPIγmin
α * CPIγmax

(1-α) with α∈[0,1]

Given the characterization of the processor and compiler, it is
possible to compute, for each process γ, the value of CPIγmin

and CPIγmax. The best case, CPIγmin, is associated with a
processor with unbound number of registers on which
variables are pre-loaded; in such a case, the access to variables
values requires no load/store steps. In the worst case, CPIγmin,
the architecture is merely composed by 2 registers, thus
requiring an intensive use of load/store operations. Note that
the execution time of each process γ on a given executor falls
in the range [CPIγmin

 , CPIγmax]. Since such a range depends not
only on the intrinsic process but also on the CPIavg of the
target processor (for example, the MC68000 needs 4 CPI to
move a word from memory to a data register), it is
representative of a group of Compatible Instruction Sets
(CIS). To make the estimation function as general as possible,
CIS has been obtained by intersecting the relevant instructions
sets and then by calculating the upper and lower bounds, that
is:

U-CIS = {CPIave | MAX(∩i IS of processor i)}
L-CIS = {CPIave | MIN(∩i IS of processor i)}

The parameter α, introduced in the CPIavg computation, allows
to model different configurations of processor and compiler.
For example, by increasing the data register count and by
improving the compiler efficiency, CPIavg tends towards
CPIγmin . Furthermore, α depends on the executed code. By
fixing processor and compiler, α can be estimated by
compiling different code segments, evaluating αi for each of
them, and, finally, by computing the average, that is:

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 08,2021 at 17:44:06 UTC from IEEE Xplore. Restrictions apply.

α=avg{αi|min ∑
γ∈code

 () CPIreal-CPIγmin
αi *CPIγmax

(1-αi)  ∀ code ∈ system}

Such a value represents the characterization of the
processor-compiler pair that must be considered by the
software execution time estimator.

The CPIγmin and CPIγmax of a single process are efficiently
computed by considering the same characterization of the
primitives composing it. For instance, the OccamII process

StateBitCondition := (bitval=1)AND(contONE<5)

is composed by the assignment primitives and a logical
expression composed of two comparison operators.

Let us now give the flavor of the methodology, by
evaluating CPIγmin and CPIγmax for some of the OccamII
primitives. More details concerning the rest of OccamII
statements used in TOSCA, can be found in [9].

2.1 Assignments
The assignment process, :=, modifies the variable content.
The following table reports CPImin and CPImax for the three
types of possible assignments:
1. Var := Var; in the best case a value stored in a register

is transferred to another one while, in the worst case, a
value stored in memory is copied to another location.

2. Var := ConstantValue; it represents the case where a
pre-load constant is copied in a register (best case) or a
number is moved to a specified location (worst case).

3. Var := Exp; it identifies the case where the expression
result is loaded in a register or in a memory location.
The best case CPIavg depends on the considered CIS: for
two or three operand instructions, the expression
evaluation consists of compute and save operations (the
worst case needs to explicitly save the result), for
instructions with one operand both worst case and best
case need to save the computational result.
#Op CPIavgs

Var := Var Var := ConstantValue Var := Exp
3 or 2 CPImin CPImoveRR CPImoveRR 0

1 CPImin CPImoveRR CPImoveRR CPImoveRR

CPImax CPIload + CPIstore CPImoveImmediateMem CPIstore

Table 1. CPIavg for the OccamII assignments.

2.2 Algebraic Expressions
An algebraic expression is a combination of symbols,
algebraic operators, constants, and parentheses;
expressions follow the conventional rules of algebra. An
algebraic expression can be easily represented by a DAG
where each internal node (VI) and each operand node (VO)
represent an algebraic operator and an operand,
respectively. In the considered model, the set of internal
nodes, VI, has been decomposed into three subsets: VI0,
VI1 and,VI2. The numerical index indicates the number of
operands connected to the node; for example, by
indicating with |V| the cardinality of V, in figure 1b we
have |VI0| =2, |VI1|=2 and, |VI2|=3.

In the best case CPImin depends on the instruction
architecture. If a three operands instruction architecture is
considered, since the target architecture has as many registers
as necessary, the CPImin is only related to both the number of
algebraic operators and the overhead caused by arrays (the
address register has to be computed).

Vo
Vo Vo

VoVo

VI2

VI2VI1

VI0

ba

a

fecdc +

-*-

++

*

Temp := (c-d+((a+b)*c))*(a+e-f)

Figure 1. a) the considered model and b) an example of algebraic
expression graph.

If the instruction set contemplates algebraic instructions with
less than three operands, further overhead has to be
considered. In the case of two operand instructions some
variables have to be moved in temporary registers to save their
value. In general, |VI2| variables have to be moved from their
registers to temporary locations.

In the case of algebraic instructions with one operand,
both partial results and some variables have to be moved,
since the instruction itself implicitly specifies one register to
store partial computations. In general, |VI2| variables and
|VI2|-1 partial results have to be moved.

In the worst case, because of the target architecture is
constituted by only two data registers, the worst case CPIavg

does not depend on the considered CIS. Let us consider the
algebraic expression (b * c) + (d * e). The partial result
corresponding to one partial computation (b*c or d*e) has to
be stored to make data registers available for the other
product; then, the stored value has to be re-loaded to compute
the final result. In general |VI0| results are involved in load-
store operations. Table 2 summarizes the possible cases.

2.3 Logical Expressions
A logical expression is a combination of symbols, logical
operations (AND, OR and NOT), comparison operators
(=, <>, <, >, >=, <=), constant, and parentheses; logical
expressions produce boolean values. A logical expression
can be represented by an OBDD (Ordered Binary
Decision Diagram), representing a set of binary-valued
decisions, culminating in an overall decision that can be
TRUE or FALSE. Each Boolean variable in the OBDD
corresponds to a set of nodes, either a test applied to two
variables of the same type or a symbol (variable or
constant whose value can be TRUE or FALSE); the nodes
are ordered so that each level corresponds to a single
variable. Hence, a logical expression can be seen as a
network of local functions where the set of edges
describes the logical operations while the set of nodes
corresponds to the local functions

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 08,2021 at 17:44:06 UTC from IEEE Xplore. Restrictions apply.

Oper. CPIavg

3 CPImin ∑
|V|

CPIoperator_i+OverHeadArraymin

2 CPImin ∑
|V|

CPIoperator_i+|Vi2|*CPImoveRR+OverHeadArraymin

1 CPImin ∑
|V|

CPIoperator_i+(2|Vi2|-1)*CPImoveRR+OverHeadArraymin

CPImax ∑
|V|

CPIoperator_i+ ∑
op

CPIload+|Vi0|*(CPIload+ CPIstore)+OverHeadArraymax where op = (2*|VI2|+|VI1|)

Table 2. CPIavg for the algebraic expressions.

It has to be underlined that the performance is related to the
graph shortest path that, in turn, depends on the local
functions ordering. To overcome the related computational
effort in addressing all possible cases, since our goal is fast
performance evaluation, two different approaches have been
proposed. The first is based on two assumptions:
1. The shortest path is equal to 1 while the longest path is

equal to the number of local functions. An analysis
considering a set of examples has justified this first
assumption: a typical logical expression is composed of
a restricted number of local functions (less then 4) and,
usually, the shortest path evaluates 1.

2. To preserve the functionality of a given expression,
shortcuts have to be avoided; thus, all the local functions
are pre-computed. This assumption allows a modular
computation.

Therefore, if the number of symbols and constants
involved is op, CPImin and CPImax are determined as:

CPIs
CPImin CPIcmp + CPImin_branch

CPImax |Longest_path|*(CPIcmp + CPImax_branch) + ∑
op

CPIload

Since hard real-time applications are considered, the
second approach takes into account the worst case that is:

CPIs
CPImin |Longest_path|*(CPIcmp + CPImin_branch)

CPImax |Longest_path|*(CPIcmp + CPImax_branch) + ∑
op

CPIload

2.4 Tuning of the sw estimation model
Several tests have been performed during the SEED project to
validate the sw estimation strategy. The first column of the
following table reports a fragment of an OccamII specification
computing a CRC code (of the ILC16 benchmark), after the
necessary serialization of operations performed to fit a sw
implementation (i.e. a single processor). The other columns
report the values of CPIavg computed according to the
presented model. A value of α=0.7 has been chosen to
minimize the cumulative error, computed on the set of
processes composing the entire ILC16 system. The target
microprocessor is the Motorola 68000. Figure 2 shows that,
for the OccamII statements of table 3, the estimation sw model
has a good correspondence with actual data.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

CPI min

CPI MAX

CPI Actual

CPI Expected

Figure 2. Comparison between actual and estimated CPIavg for the
OccamII code of table 3.

3. The Hardware Estimation Model

Similarly to the software case, the variability of hw resources
and implementation strategies have been taken into account by
modeling the execution time of hw-bound OccamII processes,
through the following relation, where TckHW depends on the
target technology:

CPI_eqγ = CPI_eqγmin
β* CPI_eqγmax

(1-β) with β∈[0,1]

Again, CPI_eqγmin and CPI_eqγmax represent the range
containing the execution time of each process γ. The best case,
CPI_eqγmin, represents an ASAP scheduling with no bound on
functional resources. For the sake of completeness, note that
such a value may slightly differ from the global minimum,
since it does not takes into account the effect of possible inter-
process optimizations. The worst case, CPI_eqγmin,
corresponds to the presence of a single functional resource per
type, i.e. a purely serial computation of the process. The
parameter β depends on both the number of resources and the
scheduling policy. The proper value has to be determined by
benchmarking the hw compiling environment, through the
analysis of different code segments, each producing a local βi.
Hence, the final value β used to represent a given
implementation technology/architecture and scheduling
policy, is:

β=avg{βi | min ∑
β∈code

() CPIreal-CPIγmin
βi *CPIγmax

(1-βi) ∀ code ∈ system}

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 08,2021 at 17:44:06 UTC from IEEE Xplore. Restrictions apply.

OCCAM CPImin CPImax CPIact

MyData := Data 4 9 4
MyCRC_LOW := CRCLow 4 9 4
MyCRC_HI := CRCHi 4 9 4
i := 0 4 9 8
While (i < lenData) 20 34 28
i := i+1 8 17 13
tempData := BIT(MyData BITAND bytemask) 8 17 12
tempCRC_LOW := BIT(MyCRC_LOW
BITAND bytemask)

8 17 12

tempCRC_HI := BIT(MyCRC_HI BITAND
bytemask)

8 17 12

MyData := MyData >> 1 8 26 8
MyCRC_HI := MyCRC_HI >> 1 8 26 8
MyCRC_LOW := MyCRC_LOW >> 1 8 26 8
IF (tempCRC_HI) 12 16 14
MyCRC_LOW := MyCRC_LOW + remainder 8 17 8
IF (tempData >< tempCRC_LOW) 16 24 18
MyCRC_LOW := MyCRC_LOW ><
generator_LSB

8 17 8

MyCRC_HI := MyCRC_HI ><
generator_MSB

8 17 8

CRCLow := MyCRC_LOW 4 9 5
CRCHi := MyCRC_HI 4 9 5
Table 3. Value of CPIavg for a serialized OccamII program computing a
CRC code.

3.1 Equivalent CPI
In order to simplify the comparison among hw and sw
solutions, the concept of equivalent CPI (CPI_eq) has
been introduced. The execution time of each operation is
mainly a function of the architecture (e.g., an adder can be
implemented as ripple carry, carry look-ahead, ...) and the
number of bits n of the involved operators, so that the
execution time to carry out each operation is Top=f(∆, n,
architecture), where ∆ is the elementary unit of delay. By
assuming that the clock period of the hw partition is
Tckhw=K* ∆, the corresponding number of clock cycles is:

 Nck= Top/Tckhw = f(∆, n, architecture) / K*∆

By calling Φ=Tckhw/Tck, where Tck is the clock cycle of the
target processor, the following expression of the execution
time can be obtained:

Execution_Timeop = (Nck*Tckhw/Tck)*Tck =
= ((f(∆, n;m, architecture)/K*∆)  *Φ)*Tck

By comparing the above expression with the one determined
for the software, it is straightforward to derive the following
equivalence:

CPI_eq = ((f(∆, n, architecture)/K*∆) *Φ) ≡ CPI

CPI_eqmin and CPI_eqmax of each process γ, representing
the best and worst case of scheduling, are obtained by a
modular composition of a set of primitives, each being an
expression depending on a set of parameters.

The set of primitives includes the whole OccamII
language, For space reasons, the paper reports only a subset of
such analysis. More details can be found in [9].

3.2 Hardware assignments
As stated before, an assignment process, :=, modifies a
variable. Three different types can be identified:
1. Var := Var : a value stored in a register is transferred in a

different one;
2. Var := ConstantValue : a constant value is copied in a

register;
3. Var := Exp : the expression result is loaded in a register.

Since expression computation and result storing can be
occur simultaneously, the CPI_eq corresponding to this
process is completely dominated by the expression
computation.

CPI_eq
Var:=Var 1

Var := ConstantValue 1
Var := Exp 0

3.3 Hardware Algebraic Expressions
In the best case, execution time corresponds to a scheduling
without resources limitation, i.e. the intrinsic process
parallelism is maximized. In such a case, a good
approximation of best performance can be achieved by
considering all the operators of the same type and by
considering the related maximum CPI.

The worst case refers to an architecture where the
computation is fully serial. By considering the DAG
representation introduced before and calling | Vi | the
cardinality of the subset of V constituted by an operator of
type i, we obtain:

CPI_eq
CPI_eqmin max{CPI_eqi | log2 (|Vi|+1) * CPI_eqVi}

CPI_eqmax
∑
∀ i

∑
|Vi|

CPI_eqVi

3.4 Hardware Algebraic Operators
In order to produce a characterization as close as possible to
the user needs, the most representative architectures of
algebraic operators have been analyzed [10]. The following
table contains the models adopted to evaluate the performance
of their implementations.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

CPI_eq Min

CPI_eq Max

CPI_eq Actual

CPI_eq Expected

Figure 3. CPIeq for the hardware implementation of the OccamII
specification of figure 2.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 08,2021 at 17:44:06 UTC from IEEE Xplore. Restrictions apply.

Op Architecture f(∆, n, architecture)
+ Ripple carry 2*n*∆
+ CCLA(n/p*p)

p = BCLA dimension
if (n=1) 11*∆ else

 (10 + logp(1+ n*(
n

4
-1))(

n

4
+1) * 11* ∆

* Baugh Wooley if (n=1) 2*∆ else 4*n*∆
* Bisection if (n=1) 2*∆ else 4*n*∆
/ Restoring (Dean) (3*n2+1) * ∆
/ Non Restoring (Guild) 3*(n+1)2 * ∆
/ Non Restoring with 2-level

CLA and Carry-save
(Cappa - Hamacher)

(11*n+12) * ∆

/ Non restoring with 1-level
CLA and Carry save
(Cappa - Hamacher)

(9*n+10) * ∆

Table 4. Timing performance of the main Hw operator implementations.

The accordance between the estimations and the actual data
for an hardware implementation is shown in figure 3,
reporting CPIeq against the OccamII lines of the same
example of figure 2.

4. Concluding remarks

The paper presented an overview of the hw/sw estimation
model currently used by the TOSCA top-level cosimulator.
This model has been validated and tuned by modeling both
small benchmarks and the ILC16 component, commercialized
by Italtel, used as test vehicle for the SEED Esprit project [1].

Accuracy of high-level cosimulation has been significantly
improved while ensuring remarkable performance during
cosimulation. By using a SPARCstation 20 running at
85MHz, we observed an average simulation ratio around
16-18. This means that, to simulate a system characterized by
24K events/s, the simulator is able to process 1.5K events per
CPU second. The current implementation delivers a
throughput already good enough to enable its effective use for
developing real-size designs. In particular, such a type of
analysis seems to be two orders of magnitude faster than the
low-level strategy presented in [2], based on the use of VHDL
models for both the hw and the sw.

The ILC16 component is a data-link controller for sixteen
asynchronous/synchronous data streams based on the HDLC
protocol. The original design allocates the management of the
channels to a RISC CPU core cell, while the HDLC protocol
processing is hw-bound; both sections are embedded in the
same chip. The system has been reverse engineered by using
the TOSCA environment and validated through the high-level
simulator, the specification is composed of more than 4K
OccamII lines of code.

The high-level TOSCA co-simulator has been the basis
for design space exploration, the various components of the
ILC16 system have been initially allocated to either hw or sw
domains and then simulated to verify the functionality and the
fulfilment of the timing constraints. Different scenarios have
been considered before committing to the final hw/sw
implementation, ranging from the fully hw to fully sw
solution. Apart from the above considerations on the

functional/timing properties, the system specifications have
been modified through a set of transformations according to
the computation of some metrics evaluating the quality of the
system, but this aspect is out of the scope of this paper.
Different alternatives in terms of microprocessor clock
frequency have been also taken into account.

The total manpower (excluding the synthesis stage) has
been allocated on the different design stages as presented in
Table 5, depending on the level of confidence of the designer
with the co-design environment.

Activity weeks new
designer

trained
designer

Occam Language (tool learning) 4 13%
Exploration Manager (tool learning) 1 3%
Design Specification 8 26% 31%
Functional Debug 16 52% 62%
Design Space Exploration 2 6% 8%
Total weeks/m 31

Table 5. Breakdown of the manpower for the development of the
ILC16 device.

These results are important to get a feedback on the
effectiveness of the proposed methodology for design entry
and design space exploration.

Currently, most of the effort is devoted to define high-
level estimation strategies for the hw and sw power
consumption, and in the improving of the existing algorithms
for hw/sw partitioning.

5. References
[1] SEED ESPRIT-ESD project n.22133, www site

 http://www.cefriel.it/eda/projects/seed/mainmenu.htm.
[2] W.Fornaciari, F.Salice, D.Sciuto, A two-level Cosimulation

Environment, IEEE Computer, pp. 109-111, June 1997,.
[3] C.Carraras et al., A Co-Design Methodology Based On

Formal Specification And High-Level Estimation, Proc. of
IEEE Codes/CASHE’96, Pittsburgh, Pennsylvania, 1996.

[4] I.Bolsen et al., Hardware/Software Co-Design of Digital
Telecommunication Systems, Proc. of the IEEE, Vol. 85, No.
3, pp. 391- 418, March 1997.

[5] M.Chiodo et al., Hardware-Software Codesign of Embedded
Systems, IEEE Micro, Vol. 14, No. 4, pp. 26-36, Aug. 1994.

[6] K.Suzuki, A. Sangiovanni-Vincentelli, Efficient Software
Performance Estimation Methods for Hardware/Software
Codesign, Proc. of DAC ’96, Las Vegas, US, June 1996.

[7] G. De Micheli, M.G. Sami editors, Hardware/Software
Co-Design,: NATO ASI Series, Series E: Applied Sciences -
vol.310, Kluwer Academic Pub., The Netherlands, 1996.

[8] A.Allara, S.Filipponi, W.Fornaciari, F. Salice, D. Sciuto, A
Flexible Model for Evaluating the Behavior of
Hardware/Software Systems , Proc. of IEEE
Codes/CASHE’97, Braunschweig, Germany, March 1997.

[9] W.Fornaciari, F.Salice, D.Sciuto, Hw and Sw estimation
strategies for the SEED project, Tech. Report n. 97011,
CEFRIEL, Milano, Italy, 1997.

[10] K.Hwang, Computer Arithmetic, Principles, Architectures
and Design, John Wiley & Sons, 1979.

Authorized licensed use limited to: Politecnico di Milano. Downloaded on September 08,2021 at 17:44:06 UTC from IEEE Xplore. Restrictions apply.

