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SUMMARY

Replacement beam formulations represent a family of 1D continuum models suitable for approximate anal-
yses of the structural arrangements of buildings. In this paper, an energy equivalence approach is applied to
coupled shear walls to develop suitable replacement beam models. Assuming properly compatible coupling
fields between walls, a novel three-field coupled two-beam approach, therein providing shear and axial de-
formations, is proposed. The corresponding mathematical formulation provides closed-form solutions for
simple loading cases with homogenous properties. Considering slender coupled shear walls, as typically
found in tall buildings, the coupled two beams can be reduced to a two-field formulation, i.e., a parallel as-
sembly of an extensible Euler—Bernoulli beam and a rotation-constraining beam. The latter model is solved
analytically, and expressions for the tip displacement and base bending moment are presented. A finite el-
ement model is then presented and demonstrated to be an efficient tool for static and dynamic analyses. The
effects of the axial deformation and degree of coupling on slender coupled shear wall responses are de-
scribed as being dependent upon two suitable parameters. Various approximate relations are also proposed
for design purposes. Finally, the validity of both analytical solutions and the finite element model is con-
firmed via numerical examples.

KEY WORDS: coupled shear walls; tall building; continuum approach; coupled two beams (CTB); degree of cou-
pling; axial extensibility

1. INTRODUCTION

Simple continuum formulations, the so-called replacement beams (RBs) (Potzta and Kollar, 2003), can
provide useful approximate models for capturing the fundamental response features of a wide class
of buildings, especially tall ones (i.e. Tarjian and Kollar, 2004; Zalka, 2001, 2009, 2012; Bozdogan,
2011).

Despite static and dynamic analyses of complex structures can be nowadays easily afforded with the
aid of commercial finite element (FE) packages, the adoption of such an approach since an early stage
of a design process may be exaggeratedly time consuming and sometimes can lead to an imperfect
evolution of the concept (Howson, 2006; Carpinteri et al., 2012). Furthermore, computer-based anal-
yses without any checking tools of the outputs may be questionable. The simple continuum-based
models can therefore provide a tool for framing the first design phases and to obtain immediate checks
of the computer-based analyses; moreover, they help practitioners understand the complex behavior of
large structures such as multi-story buildings (Zalka, 2012).

As commonly adopted structural systems, coupled shear walls provide a suitable solution for lateral
load resisting systems in tall buildings. The overall stiffness and damping of these structures and their
performance are strongly influenced by the properties of the connecting beams. With regard to the
composite arrangement of such structures, an equivalent continuum model (e.g. RBs) can be effective
in analysis and design processes. To obtain this model, the classical approach in the literature smears
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the stiffness properties of each connecting beam over the inter-story height and considers the solid
walls as cantilevers acted upon by lateral loads and laminar shear flows at the junctions with the
connecting beams (Coull and Choudhury, 1967; Heidebrecht and Stafford Smith, 1973; Smith and
Coull, 1991). Approximate calculations based on the continuum method in which structural elements,
such as coupled shear walls, are replaced by a single equivalent sandwich beam have been presented
(Tarjian and Kollar, 2004). An approximate method for determining the natural periods of multi-story
buildings has been presented (Kaviani et al., 2008). In this case, lateral resisting systems are replaced
by a cantilever Timoshenko or sandwich beam with varying cross-section.

A proper continuum procedure for the analysis of rows of coupled shear walls can be based on
multi-layered beam theory (Capuani et al., 1994; 1996), where a displacement-based approach is
adopted for the accurate analysis of the static and dynamic responses. Other authors (Savassi and
Mancini, 2009) have also developed a one-dimensional FE numerical version based on the continu-
ous medium technique to analyze coupled shear walls and to emphasize the capacity of a correspond-
ingly simple computer code. In addition, a new approximate method has been proposed (Bozdogan
et al., 2009, Bozdogan, 2009; Bozdogan, 2011) based on the continuum approach, the FE method,
and the so-called transfer matrix that is able to simply and efficiently estimate the static and funda-
mentally dynamic characteristics of coupled walls. Moreover, a method has been proposed
(Wdowicki and Wdowicka, 2012) for the analysis of three-dimensional shear walls and shear core as-
semblies having stepwise changes in the cross-section. This analysis is based on a variant of the con-
tinuous connection method and involves replacing the connecting beams by equivalent continuous
connections.

Depending on the specific structural arrangement and the effective deformability of the elements,
adopting consistent kinematic fields in the RB models may greatly influence their efficiency. It is well
established that axial deformations in vertical elements play a fundamental role in the structural re-
sponse of tall structures (Georgoussis, 2006; 2007). A simple rod theory with a numerical solution
(finite difference method) that considers global deformations has been proposed for coupled shear
walls (Takabatake, 2010) and for frame tubes (Takabatake et al., 1995; Takabatake and Satoh,
2006). The effectiveness was demonstrated through a comparison with FE results for various tall
and high-rise buildings. Other authors (Lee et al., 2002; Myoungsu et al., 2012) have conducted para-
metric studies on the variation in the axial and bending stiffness properties of columns and beams,
therein reporting that the axial stiffness of the columns is the most influential factor in the tube action
as well as in the shear lag behavior, whereas the bending stiffness of the columns and beams had little
impact, perhaps due to the tube-to-tube interaction. Other studies (Swaddiwudhipong et al., 2001;
2002) have stressed that the effect of axial deformation in the frame within frame-shear wall systems
should also be considered for tall and/or slender buildings, and the effect of the axial force in the col-
umn should be included for arrangements that include a termination of core walls in the lower portion
of the building. The axial deformation has been considered in panel-like structures (Mancini and
Savassi, 1999, 2004), and a numerical model with cubic one-dimensional FEs was presented to solve
the governing equations. The shear deformation was neglected in the formulation. Single-field models
with analytical solutions have been proposed to estimate the static solution (Smith and Coull, 1991;
Zalka, 2009), and a frequency analysis (Zalka, 2001) of buildings containing coupled walls was devel-
oped by introducing axial extensibility into vertical elements. The procedures do not consider the shear
and axial deformations as independent fields; rather, they only consider the lateral displacement field in
the solution.

Given the importance of compatible kinematical fields such as the shear and axial deformations in
walls in addition to the lateral deflection, this paper presents novel continuum models for coupled shear
walls without jeopardizing the intrinsic simplicity of the continuum approach. Because of the physical
properties of such continuum systems, the models can be applied to FE formulations, especially for
dynamic applications, in a straightforward manner compared with previous formulations. Reinoso
and Miranda (2005) proposed an equivalent continuum system, which consists of a combination of
a flexural beam and a shear beam (SB) in order to simply approximate dynamic characteristics of
buildings.

Assuming uniform properties along the height and other consistent assumptions, the coupled shear
wall system is reasonably generalized by smearing the properties of spandrel connecting beams into an



equivalent continuum core and using appropriate elastic properties. This continuum model is used as
the framework in this study to develop RB systems, although it presents the drawback of its inability to
capture the real pure shear mode. Accounting for the independent rotation field and an equal axial field
in shear walls induced by global bending effects, a three-field coupled two-beam approach (CTB) is
first presented as an RB model for structures with identical walls. When adopting this formulation
for non-identical walls, the different axial fields in the two walls must be considered. This model takes
the wall shear deformation into account; this is usually neglected in other RB systems. This general-
ized CTB consists of a condensed extensible Timoshenko beam (TB) and an SB connected by rigid
links. The TB is the joint replacement of the two shear walls, and the SB replaces the effect of the
connecting beam. The relevant governing differential equations are derived and analytically solved.
Addressing tall building structural systems, the CTB model is simplified into a two-field model, i.e.,
an extensible Euler—Bernoulli beam (EBB) replaces the slender shear walls, and a rotational constraint
beam (RCB) corresponds to the continuum core effect.

Two controlling parameters of walls, the degree of coupling and the degree of axial extensibility, are
introduced, and the transverse and axial deformation expressions are derived from differential equa-
tions obtained by the minimization of the total potential energy. The tip displacement and overturning
moment in tall coupled shear walls are subsequently examined by the latter CTB formulation and are
dependent on the interactions of the controlling parameters. A practical criterion that defines a thresh-
old for the adoption of the two-field CTB method is also suggested. In addition to the exact solutions,
alternative approximate formulations with acceptable accuracy are proposed to further simplify the
prediction of the tip displacement and overturning moment. To apply these formulations, the evalua-
tion of only the preliminary controlling parameters is required.

Finally, a 1D FE model is introduced as a numerical reference solution for the analytical results ob-
tained using the CTB models. All of the theoretical approaches are verified using the FE software
SAP2000 (SAP2000, Advanced 14.1.0, Computers and Structures, Berkeley, California, USA) and
various methods from the literature. The numerical investigations show that the axial extensibility of
shear walls considerably influences their responses, especially at higher degrees of coupling. Consid-
ering the axial effects, the displacement, the wall moment, the wall shear and the rotation all increase,
whereas certain responses such as the axial force in the walls and the eigenfrequencies decrease. The
decrease in the eigenfrequencies and the change in the dynamic responses are more significant for the
fundamental mode. The three-field CTB formulation is demonstrated to be applicable not only for slen-
der coupled walls but also for stocky ones and shear-type systems because it also captures the shear
deformation in the walls. The proposed CTB models are sufficiently simple and accurate to be used
at both the conceptual design stage and the final analysis and can also be useful for checking the results
of more advanced numerical calculations, e.g., FE packages.

2. MATERIAL AND METHODS

Depending on the structural characteristics of building structural systems, several RB models may be
used (Potzta and Kollar, 2003) to represent the real stiffness of the system as a whole, each characteriz-
ing proper kinematical models. Classical RBs include (Figure 1) (a) EBBs, which are suitable for a first
approach in modeling tall buildings; (b) SBs, which can capture the behavior of shear-type buildings;
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Figure 1. Classical replacement beam models applied as building structural systems. EBB, Euler—
Bernoulli beam; SB, shear beam; CTB, coupled two beams; TB, Timoshenko beam; SWB, sandwich beam.



(c) the CTBs, a parallel coupling of an EBB and an SB, which appear appropriate for coupled shear
walls and shear wall-frame structures; (d) TBs, a series coupling of an EBB and an SB, which prop-
erly model shear walls or trussed resisting schemes; and (e) sandwich beams, equivalent to the par-
allel coupling of the TB and EBB, which is the most general framework and is able to describe the
fundamental behavior of frames coupled to single or multiple shear walls.

To develop proper RB models for a coupled shear wall system (Figure 2(a)), a fundamental assump-
tion is required. For this purpose, the discrete set of connecting beams can first be replaced by an
equivalent homogeneous core characterized by the elastic moduli E,, and G,,. The resulting system
may be assumed as a system (Figure 2(b)) with the following base assumptions:

1. The wall systems are in the plane stress condition.
2. Shear walls have a rigid cross-section, and connecting beams are inextensible.

As suggested in the literature (Capuani et al., 1994; 1996), an elastic curtain can be obtained by a
stress energy balance between a typical connecting beam and its inter-story equivalent continuum.
The equivalent elastic modulus £,, of the continuum core is assumed to be equal to zero to neglect
the normal stress component in the core along the vertical axis. The equivalent shear modulus in the
continuum core G,, reads (Capuani et al., 1994)
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Geog = |2 1
‘4 ht (12Elb+G1cAb> M

where E and G are the elastic moduli of a typical connecting beam with a moment of inertia 7, and area
Aj, (the cross-section shear factor) and / and ¢ are the story height and the connecting beam thickness,
respectively.

Local deformation effects at junctions between the connecting beams and walls are also taken into
account in evaluating the G,, through the following approximate relation

h
£'y=ty <1 + ,u—b) )
p

where /y, and ¢, are the connecting beam height and length, respectively. The coefficient 4 may be de-
fined in the range 0 < <1, e.g., x=0.5 (Smith and Coull, 1991).

Compatibility between the rotations, #(x) and w(x), in the shear walls and in the continuum core
p(x), respectively, at the centroid of the walls can be expressed as (Figure 3(a))
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Figure 2. (a) A typical coupled shear wall system, (b) equivalent continuum model, and (c) force
equilibrium and consistent kinematical fields.
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Figure 3. (a) Unmodified and (b) modified rotation compatibilities with axial extensibility in a typical
portion of the continuum model.
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where By and B, are the widths of the left and right shear walls.
Provided that

1 B
1 < B <4 4)
the rotational fields in the walls are almost identical (6 = v).

Assuming that the continuum model is subjected to a transverse force, the continuum core plays the
role of a transferor between the walls (Figure 2(c)), therein satisfying the equilibrium in the wall inter-
nal forces through the shear flow acting vertically inside the core. Thus, an axial extensibility, which is
uniformly distributed along the cross-section, is generated in each wall, thereby driving the continuum
core to secondarily rotate through its interaction, thus leading to a modification in the compatibility
model of the rotation fields (Figure 3(b)). The extensibility fields are shown (Figure 3(b)) as w,(x)
and w,,(x) in the two walls.

However, considering identical rotation in both walls and the modified compatibility, it is conve-
nient to describe the local kinematic fields through the following relations:

{ wi(x) = w1 (x) + y,0(x)
wa(x) = —wya(x) + »,0(x)

W (¥) + wia(x)
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where w;(x) and w,(x) are the total axial displacements in the left and right walls, respectively; y; and
y, are the horizontal distances from the centroids (Figure 3(b)); y.(x) is the total shear strain in the
equivalent continuum core; and u’ (x) is the first derivative of the transverse displacement.

The global vertical equilibrium enforces a constraint between the axial strains in the two walls and,
thus, between the respective axial extensibilities, i.e., w,; = —(B»/B1)w,,». For simplicity, in all subse-
quent analytical formulations, the shear walls are assumed to be identical (i.e. By=B,=5;
w1 =—w,=w). Thus, the normal &;(x), &;(x) and shear y;(x), y.(x) strains in the walls read

{el x) =wi'(x) = w (%) + 2,60 (x) ; 1 (x) = ' (x) — O(x)
2 (%) = —w(x) +1,0 (%) 5 1) =7 (&)

According to the above assumptions and hypotheses, different continuum-based formulations of
coupled shear walls are presented in this paper through the addition or removal of suitable internal ki-
nematic constraints.

(©6)

2.1. A three-field [u, 6, w] extensible coupled two-beam system

A novel RB model for coupled shear walls, considering the shear deformation and axial extensibility in
walls, is introduced on the basis of the continuum model (Figure 2) and the modified compatibility pre-
sented in Figure 3(b). This continuum model can be seen (Figure 4) as a single extensible TB and the



B SB

K1
KSI KsZ
Ka]

u, 6, w

Figure 4. The three-field extensible coupled two-beam model as a parallel coupling of the Timoshenko
beam (TB) and sandwich beam (SB) systems.

continuum core as a classical SB, wherein both are connected in parallel by rigid links. This composite
system is called the three-field [, 8, w] CTB model. It is worth mentioning that the equivalent bending
K1, shear Ky and axial K, stiffness properties in the TB are obtained by summing the corresponding
stiffnesses of the two shear walls, and the equivalent shear stiffness K, in the SB is proportional to the
equivalent shear modulus G, (refer to Equation (8)). In particular, this CTB system can be prone to
model shear-type frames, where the walls and connecting beams, respectively, are converted to
inextensible slender columns and stiffened beams. Therefore, the equivalent stiffness properties must
be limited properly in the CTB formulation (i.e. K — ;K| — «©; K5 — ).

Having defined the strains in Equation (6), the total potential energy of a lateral load distribution
q(x) consequently reads

1 /
V(u,0,w) = Eg [Kble P Kaw? + Ko (u' — 9)2} dx+
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=where 4 and [ are the cross-sectional area and moment of inertia, respectively, of the identical shear
walls.

Closed-form solutions of the three-field CTB model acted upon by a transverse load are achieved by
solving the differential system arising from the stationarity of Equation (7), i.e.,

u —rgd —rw —r, =0
0" =130+ rau’ + (2BK o /€,°Kpi )w = 0 ®)
W+ (24K oB/162Kin )0+ (2K o /K a0 — (4K /62K )w = 0

with constants 7 to r4 listed in Appendix A. Assuming a constant load ¢, the system is transformed
into a single differential equation as

x2
W —ru = —rg E + 7 (10)



Constants 74 to rg are also presented in Appendix A. The expression of u(x) from Equation (10) is
derived as
(rer7 —13) 3 4
22~ Tt

u(x) = C, cosh(y/r7x) + C; sinh(y/r7x) + C3 + Cax — (11)
By substituting Equation (11) into Equation (9) and solving the set of linear equations, the expres-
sions of the rotational 8(x) and axial w(x) fields in the shear walls (TB in the CTB model) are given by
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with 79 to 7, expressed in Appendix A. The analytical definition of C; to Cy is obtained (Appendix A)
by imposing the relevant boundary conditions (origin of x is at the tip point):

uH)=0; OH)=0; wH)=0 (14)

0(0)=0; u(0)p;6(0)-p,w(0) =0; w(0)=0 (15)

The global bending moment M(x) is expressed as the sum of the single wall contributions A/; and
the overall couple due to axial forces [N;(x)=— N,(x)=N(x)]:

K , 2
M(x) = My(x) + N(x) (B + €5) = Kn0'(x) + (B + Cy)w' (1) = £ (16)
The global shear force V(x) can in turn be expressed as follows:
B 2K
V(x) = (Ksl + Ksz) [u’(x) + (KSQK_ - Ksl)é?(x) — 52 W(x):| =qgx a7
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where the summation of the first two terms gives the local shear in the walls.

2.2. A two-field [u, w] extensible coupled two-beam model for systems with slender walls

For slender coupled shear walls, the three-field CTB may be further simplified into an axially extensi-
ble two-field CTB (Figure 5) composed of an EBB and an RCB. This model is governed by the trans-
verse field u(x) in both the EBB and RCB and by the axial field w(x) only in the EBB, accounting for
the extensibility effects in shear walls. In this assembly, the RCB corresponds to the continuum core
shown in Figure 2(b). The relevant kinematics of this CTB are obtained by introducing the constraint
6=u’ in both Egs. (5) and (6).

The relevant definition of the total potential energy reads

11 "’ 5 14 B 2 171
V(u,w) :—I[Kblu’ + Kaw' }dx—l——jl(sz 14+ = )u' —=w| dx— [ qudx (18)
20 20 fb f[, 0

where K;,;, K,; and K, are defined in Equation (8). Note that the second integral in Equation (18) corre-
sponds to the energy contribution of the RCB when the axial effect is considered. Based on such an energy
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Figure 5. The extensible two-field coupled two-beam model composed of the merged Euler—Bernoulli
beam (EBB) constrained by the rational constraint beam (RCB).

definition at the inextensible wall limit (i.e. w=0 and p=— (B/{;)u’), the coupling beam effect re-
duces to a rotationally distributed stiffness kg as

B\? B\’
kﬁ:Geqt5b<1+€—> = S2<1+?) (19)

b b

This coefficient accounts for the level of elastic coupling between the shear walls. For ordinary
values of ky, the response is the combination of the bending and shear behaviors associated with
the EBB and RCB, respectively. A value of ky equal to zero represents a pure flexural model
(EBB), and a very large value corresponds to a pure shear-type mode.

Two coupled differential equations in u(x) and w(x) may be achieved by minimizing the energy as
follows:

1 d " 20
w”(x) — U [w(x) - Eu/(x)] =0
where
a:k—’z;f:ﬂ;[*:@;d:(BJrfb) 2D
EI 2

The total moment of inertia / for the fully coupled wall system (i.e. k5 — ) can then be defined
(Smith and Coull, 1991) as

I=1+1I (22)

Two controlling non-dimensional parameters are now introduced in a straightforward manner to
clearly evaluate the structural response. The first parameter ¢ is called the degree of axial extensibility
and measures the influence of this source of deformation in the shear wall response. This parameter is
the ratio between the axial strain €4(N) of the shear wall and its maximum bending strain ez(N) due to
the corresponding transportation moment, M(N)=Nxd. This is expressed as
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The second parameter ¢ is called the degree of coupling and controls the degree of participation
(e.g. see Reinoso and Miranda, 2005; Kuang and Huang, 2011) of the overall flexural and overall
rotational deformations in the CTB system. This defines the elastic constraint between the shear walls in
their inextensible configuration:

¢ = aH? (24)

where o is expressed in Equation (21) and H is the total height. Note that the effective amount of cou-
pling, where the wall’s extensibility is accounted for, is also controlled by the adjoint parameter ¢.

By considering a distributed constant load ¢ in Equation (20), a single ordinary differential equation
in u(x) can be readily derived as

m 6(1 +§) " o__ q 58 X 2
The associated boundary conditions are
uH)=0; v (H)=0; wH)=0 (26)
) 2 .
W(0)=0; u (O)-%M(O)—&—d—;w(O):O; W (0) =0 7)

Applying the first equation in Equation (20), those boundary conditions that are dependent on w can
be re-expressed in terms of the transverse field u(x) as

dHZ m 8 ! " 8 " q

The corresponding expression of u(x) may accordingly be given as follows:

4 2 3 4 2 4
+ 12x* —4xH” +3H" — 12H H
u(x) = —2 0 (% * 6+t
EIN'H? 24 2
H? 29)
it 5)[sech(/1H)[—1 + cosh[A(H — x)] + AHsinh(4x)] — /IHtanh(/lH)]}
where the combined influence of the controlling parameters is expressed by
P=(1+8a (30)

Substituting Equation (29) into Equation (20), the axial deformation w(x) in the walls is finally
expressed as

_qd { cosh(x)

AH — sinh(AH)]  2(¢+ Dx  (x* — H?)
W) =73 WEI 1 } 1)

tanh(Ax — =
{an( )+ cosh(rAH) NEI 6ET

The analytical definition of the tip displacement is provided by Equation (29) as

— alt” ] _4 +<+ #[cosh(lH) — 1 — JH sinh(1H)] (32)
P (14 ) 8ET | (2H)? (AH)* cosh(ZH))

where /% is defined in Equation (30). The corresponding expression for inextensible shear walls reads
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This latter expression is obtained by assuming £4 — « or equivalently by keeping ¢ =0 in the def-
inition of % (Equation (30)). Note that the solution also predicts the expected tip displacement for large
degrees of coupling (i.e. kg — )

- qH*
(””P)kﬂ e 8ET 4

where [ is defined in Equation (22).
Furthermore, for a very small rotational stiffness kg, the following asymptotic relation holds:

ex inex ~ qH4 /le
: = e == ] ———
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Uncoupled or fully coupled bending behaviors are attained when ky— 0 or ky— =, respectively.
Therefore, various analytical expressions of these conditions are proposed in this section, and their val-
idation is investigated in the model assessment section. The two limiting conditions, called ‘uncoupled
bending (i.e. UB)’ and ‘fully coupled bending (i.e. FCB)’, are introduced as

UB: (kg—0=>w—0) ; FCB: (kg—m:w—»(j)u') (36)

By means of the inextensible CTB (i.e. £=0), it is also readily verified that for very large values of
ing a very large value of 1. Accordingly, a relevant condition corresponding to inextensible shear walls
with a large rotational stiffness &y may be determined. With regard to the equilibrium, the global bend-
ing moment Mq(x) in every two-field CTB model is given by

kg, the tip displacement vanishes (u )k =(. This can be proven through Equation (33) by apply-
9 —>®

2EI" 2
w(x)| =& (37)

Mg(x) = [E]u (x) +

The local bending moment A (x) in extensible shear walls can also be derived by considering only
the first term in Equation (37). Thus, its expression at the base section is given by

q 1 . EH?
M7, = —— < —|[cosh(AH) + tanh(AH)[AH — sinh(AH)] — 1] + — 38
= (g eosh 4 + anh i) it — sinh(ar)] 1]+ G®)
For kg — =, this becomes
o gH* & qH® ]
M;; ===
(ML), - 2 1+¢ 21 (39)
This expression can be compared with its inextensible counterpart
MU = % [cosh(1H) + tanh(1H )(AH — sinh(AH)) — 1] (40)

The overturning moment at a very small coupling of the shear walls in both the extensible and
inextensible cases is
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Furthermore, the shear force in extensible coupled walls can be expressed as follows:
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2.2.1. On the applicability of the two-field coupled two beams

In this section, a practical limitation is proposed to detect whether the two-field CTB model can be ap-
plied instead of the three-field model. For this purpose, the aspect ratio must be introduced for a single
shear wall (i.e. A; =B/H) and a single connecting beam (i.e. A, =/,/h;,). The structural responses of 70
coupled shear walls with different aspect ratios are numerically evaluated using the three-field and
two-field CTB models, and the difference between their responses is utilized (maximum 5%) as a re-
liability criterion. It should be noted that the typical inter-story height (i.e. #=3m) is fixed for all ar-
rangements. Thus, Figure 6 shows the general limitation proposed as a function of the aspect ratios of
the walls A; and connecting beams A,. For a specific coupled wall system and provided that the point
associated with (A, and A,) falls into the shaded area, the two-field CTB model can be applied instead
of the three-field model with acceptable accuracy; otherwise , the three-field CTB formulation must be
used.

2.2.2. Approximate relations for response estimation
Based upon the two controlling parameters of the degree of coupling and the axial extensibility, ap-
proximate relations have been introduced that are useful for quick estimation of the tip displacement
and the overturning moment. The corresponding expressions are proposed (Table 1) for both uni-
formly and inversely linear load patterns. An effective inertia ratio function R; is recommended in
Table 1 for the tip displacement calculations with extensibility effects.

The base local bending moment in the extensible walls can be found using Equation (37) by subtracting
the moment produced by the axial forces and the global moment. Accordingly, its expression reads

H? = 2 : Uniform Load
T any {J i (43)

My, =15 —
oL J j =73 :Linear Load

Consequently, an alternative definition for the axial force at the base N, can be introduced as

2
qH
Np=-—"+R 44
b ="k (44)
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Figure 6. A threshold to confidently use the two-field coupled two-beam model.



Table 1. Alternative formulations of the tip displacement and base bending moment in tall coupled shear walls.

Response Coupling degree & Deflection mode Uniform load Linear load
Tip displacement —0. Uncoupled bending %. ;;gg}
w Fully coupled bendi g Hedl,
—5 00, ully coupled bending RET T20ET"
. H* 1gH*
>0, < . Bending shear gEq;(RI>- 1205q1’ (Ry)
2 2
Base-bending moment -0 Uncoupled bending i o
— 0 Fully coupled bending "22 fgﬁ @QTEH
>0, < Bending shear # (1 =Ry) 2 (1-Ry)
_ (e+25)(1+8) _ 5.1(e+04)
Ri=asimo R =simaes

where the function R, is defined in Table 1. Thus, the overturning moment associated with each load
pattern can be directly expressed by substituting Equation (45) into Equation (43). Note that the ex-
pression of R, is recommended for a practical range of controlling parameters, e.g., 1 <e<100 and
0.1<£<0.33. The accuracy and simplicity of use of these alternative formulations are demonstrated
in the numerical section.

2.3. A three-field [u, 6, w] finite element model

To investigate the static and dynamic responses, the classical FE approach is adopted for the entire
equivalent continuum model of Figs. 2(b) and 3(b). A one-dimensional element is therefore introduced
for the model with linear variation in the transverse displacement u(x), rotation 8(x) and axial deforma-
tion w(x) in walls, thus resulting in six degrees of freedom (Figure 7). Note that even if the walls are
non-identical, a single axial field can be adapted due to the equilibrium of axial forces in the walls. A
dimensionless coordinate /8 and the nodal displacement vector of the ¢” generic FE are introduced as

B=2x/t ;3 U= [u1,01,wi,u,6,w]" 45)

The generalized displacement vector s,(x, f) of the " FE can be expressed as
Se(x,t)=[u 0 W]T =Z(x)U.(¢) (46)

where Z(x) represents the shape function matrix (see Appendix B).
Upon introducing the relevant Lagrangian ./, the transverse equations of motion of the undamped
continuum model can be readily obtained by applying Hamilton’s principle

151 ]
(L)dt=o[(T -V +W,)dt =0 47)
to

to

where T'is the total kinetic energy, V' is the potential energy and W, is the work produced by the ex-
ternal transverse load. The potential energy is expressed in Equation (7).

01 ui u2

wi w2
L ! l
1 1

02

Figure 7. Finite element model for the proposed continuum model with six degrees of freedom.



The kinetic energy reads

T (ivi)) = % z{zpd 4G +1(6)” +400)°] + p. [Ac(uz) +1.(5) + %] (W)z}dx (48)

where p, is the wall’s density; 4. and /. are the continuum core area and moment of inertia, respec-
tively; and p,. represents the core mass per unit volume, with (Capuani et al., 1994)

h
pe="3 1 (49)

where £, is the connecting beam height.
Finally, the work due to the external distributed load g(x, #) is given by the subsequent expression

H
W, = (I) q(x, t)u dx (50)

To overcome the shear locking effect, a selective reduced integration of the shear-dependent com-
ponents in the elastic energy is adopted (Capsoni et al., 2013). The resulting system of equations of
motion of the FE assumes the subsequent expression

MeUe +Ce Ue +Ke Ue: Qe (51)

M, and K, represent the mass and stiffness matrices of the ¢” generic FE (Appendix B), respectively,
and Q, refers to the generalized force vector. The damping matrix C, can also be defined based on the
classical (proportional) or the non-classical damping and will be the subject of further studies. A free
vibration analysis can be performed using Equation (51) by imposing Q.=0 and performing an
eigenanalysis.

3. MODEL ASSESSMENT

All the continuum-based models presented are verified with benchmarks and through cross checks. A
20-story coupled shear wall structure (Figure 8) with an asymmetrical (System 1) or symmetrical (Sys-
tem 2) configuration is assumed as the reference example. Moreover, a multi-story frame (System 3) is
presented to examine the capability of the present models in analyzing shear-type structures (Figure 8).
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Figure 8. Coupled shear walls (20 stories): System 1 and System 2; Shear frame (10 stories): System 3.



3.1. Verification of the finite element formulation

This section refers to System 1 and System 3, which are shown in Figure 8. Because the condition in
Equation (4) is satisfied, the FE model with 20 elements can be confidently adopted. To define the stiff-
ness matrix of the FE for System 3, the shear stiffnesses K; and K, and the axial stiffness K,,; are
infinitely magnified. The effectiveness of the proposed continuum-based model is demonstrated with
regard to static displacement and free vibration problems by comparison with the results of a FEM soft-
ware SAP2000 (SAP2000, Advanced 14.1.0, Computers and Structures, Berkeley, California, USA),
whereas all the structural members are modeled by shell elements. The first four natural frequencies
of System 1 and System 3 are calculated using the proposed FE model and compared (Table 2), respec-
tively, to those found in the literature (Takabatake, 2010; Bozdogan, 2011) and those computed by
SAP2000; the results are found to be in agreement with the maximum error of 5.3% for System 3.
The static transverse displacement of System 1 is also compared (Figure 9(a)) with those resulting from
the various methods, therein showing a stiffer deflection with respect to the solution of Smith and Coull
(1991) and SAP2000 model and a smoother one compared with the solution of Takabatake (2010).

3.2. Verification of three-field and two-field coupled two-beam systems

The transversal displacement of System 3 resulted by the three-field CTB formulation is compared
(Figure 9(b)) with the response obtained from SAP2000 model. Figure 9(b) indicates the good agree-
ment between the two results with a maximum error of 4% at the top, showing that the CTB formula-
tion is approximately capable of modeling shear-type frame systems. It should be noted that the both
shear stiffnesses (i.e. K,; and Kj,) and the axial stiffness (i.e. K,;) in the CTB formulation are infinitely
maximized. Figure 10(a) compares the transverse displacement computed by SAP2000 with the results
of the present FE formulation consisting of 20 elements and the three-field CTB solution, all applied to
System 2 (Figure 8). The continuum-based graphs are in good agreement with the relatively stiffer re-
sponse with respect to the result obtained from SAP2000 model. It should be mentioned that these
comparisons are conducted based on similar conditions applied in the three-field CTB model.

The accuracy of the analytical solution of the two-field CTB is also investigated based on System 2
using software SAP2000 and analytical expressions presented in the literature (Zalka, 2009; Smith and
Coull, 1991). The criterion proposed in Section 2.2.1 is satisfied for the present example to allow using
the two-field CTB. The transverse deflection provided by the two-field CTB and the other methods are
compared in Figure 10(b). This figure shows that the deflection obtained from SAP2000 model is
smoother than the result of the CTB model. Note that the shear deformation in the walls is also con-
sidered in SAP2000 model, whereas it is neglected in the CTB. The results by the CTB and Smith
and Coull (1991) are perfectly in agreement, although the solution of Zalka (2009) differs, only ap-
proaching the other responses at the top. This deflection shape seems to be related to the approximated
stiffnesses and the interaction of the shear and flexural behaviors present in Zalka’s formulation.

Based on the hypotheses adopted for the three-field CTB system, this model is applicable not only
for tall coupled walls but also for short ones, because it can capture the shear deformation in shear
walls. To better clarify this point, the difference between the tip displacement by the FE and those ob-
tained using the three-field CTB and literature models (Smith and Coull, 1991; Zalka, 2009) is plotted
(Figure 11(a)) as a function of the aspect ratio of a single shear wall (A; =H/B). It is assumed that the
characteristics of the coupling beams are invariant in all the models. According to Figure 11(a), the
response difference with respect to the literature models increases dramatically when A, is less than 4

Table 2. First four natural frequencies of System 1 and System 3.

System 1 System 3
Mode number FEM—Takabatake (2010) Bozdogan (2011) Present FE SAP2000 Present FE
1 13.09 13.15 13.08 56.14 53.53
2 55.55 56.66 54.34 188 178
3 129.00 133.03 129.22 358.3 349.18
4 224.90 231.40 229.50 505.1 512.17

FEM, finite element model.
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(i.e. the structures are becoming shorter and shorter). This demonstrates that the analytical models pro-
posed in the literature are unable to accurately capture the shear deformation effects in short walls. In-
creasing the A, the diagrams tend to be more stable, with small errors due to the negligible shear



deformation in the walls. This advantage of the three-field CTB can be observed clearly in Figure 11(b),
where its solution is plotted versus that of Smith and Coull (1991) for several aspect ratios.

3.3. Assessment of limiting conditions for the two-field coupled two-beam system

The two limiting conditions presented in Equation (36) are shown for System 2 in Figure 12. The first
condition provides almost zero axial deformation (w— 0), as was expected (Figure 12(a)). On the
other hand, the ‘fully coupled bending’ state, attained for large values of k4, shows that the axial de-
formation w tends to the slope of the transverse deflection multiplied by (B+{,)/2. Diagrams for the
axial deflection w(x) and deflection slope u ' (x) are graphed in Figure 12(a), showing that the relation-
ship between w(x) and u ' (x) is validated when the axial diagram values are approximately four times
those of the slope curve [(B+{,)/2 =(6+2)/2=4]. For instance, with respect to the top elevation re-
sponse, the axial displacement and the deflection slope are w=0.0007844 m and
u =0.00019626 rad, respectively, with a ratio of 3.9967. The deflection shapes corresponding to these
two state conditions are indicated in Figure 12(b). The corresponding deflection mode for intermediate
values of rotational stiffness, i.e., (0 < kg < <) is bounded by the two plotted curves.

4. NUMERICAL INVESTIGATIONS

Satisfying the criterion proposed in Figure 6, the relevant two-field CTB is applied to analyze System
2. The transversal displacement is plotted in Figure 13(a), with and without the contribution of axial
effects. Note that the inextensible wall response can be achieved by assuming K,; — = (i.e. {—0)
in all of the formulations. The considerable difference between the two diagrams can be observed, with
a maximum of 31% observed at the top. An analogous comparative investigation on the local bending
moment, shear force and axial force distribution along the shear walls is conducted (Figures 13(b) and
14(a) and (b)). The maximum differences between the responses of the extensible and inextensible
systems are approximately 13%, 20% and 12%, respectively.

The tip displacement is plotted in Figure 15 as function of the degree of coupling ¢ for different
values of the degree of extensibility ¢ normalized with respect to the response in the uncoupled bending
mode when ¢=0. Note that the tip displacement increases with £, with the lowest curve corresponding
to the inextensible limit (¢ =0). The range 0<&<1/3 is considered, where the lower bound applies
when the shear walls are a considerable distance from each other, and the upper bound refers to the case
of coupling beams with vanishing lengths. A horizontal asymptote, the so-called shear mode state, is
specified in Figure 15 for £ =0 (inextensible walls). In this case, for large ¢, the structure is found to
exhibit a global shearing mode. It is worth mentioning that because the real shear mode in a frame-type
structure contains the subsequent local bending, which occurs among columns and beams, the present
CTB formulation cannot exactly capture this mode state due to its uniform continuum. For reference Sys-
tem 2 (e=10.76) with extensible (¢ =0.1875) and inextensible (£ =0) walls, normalized responses of 0.31
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and 0.21, respectively, can be attained from Figure (15). For small coupling (¢— 0), all of the
curves tend to approach each other, and the same unit response is found (i.e. uncoupled bending
state). A horizontal asymptotic line is specified for this state in Figure (15). The tip displacement
for this condition (i.e. 0.05217 m in reference System 2) can be accurately provided using Equation
(35). Note that for ¢ — <, a “fully coupled bending’ state can be assigned to each extensibility level
¢ except for £=0 (inextensible case). For instance, the typical asymptote for such a state mode is
highlighted for ¢=1/6 in Figure (15). The key parameter defining this state is the total inertia / =
1 +1I*, as defined in Equation (22). The gray dashed line in Figure (15) shows how the same responses
can be obtained for different values of & and €. A synoptic frame for the aforementioned behavioral
scenarios is presented in Table 3. Using this classification, the tip displacement u,;, level in coupled
shear walls can be properly evaluated by adopting the relevant expression.

In addition to the tip displacement, the base bending moment is investigated. First, the global base
moment Mg is analyzed, considering the extensible (¢ >0 ) and inextensible (=0 ) wall formula-
tions. The global base moment, herein normalized with respect to the moment at the uncoupled bend-
ing state, is found to be approximately constant for a wide range of values of ¢. This is in agreement
with the quite obvious equilibrium considerations. The local bending moment A, at the base of the
walls is plotted in Figure (16), normalized with respect to the moment at the uncoupled bending state.
Note that all of the curves give the same value for ¢ — 0, corresponding to the ‘uncoupled bending’
state (Equation (41)). It should be noted that the local overturning moment tends to the global one by
decreasing ¢ for both the extensible and inextensible systems. Figure 16 shows that the responses in-
crease with increasing ¢. The corresponding responses in reference System 2 are 0.5 and 0.44 for ex-
tensible and inextensible walls, respectively. Upon improving ¢, the diagrams tend to exhibit lower
base moments, but it is clear that the curve corresponding to the inextensible walls (¢=0) predicts
lower values in comparison with the extensible systems (¢ >0 ). Similarly to the tip displacement
plot, the three limiting conditions are specified by horizontal asymptotic lines and typical deflection
shapes in Figure 16. A synoptic frame is also given in Table 4 for the prediction of the local base
overturning moment.

To demonstrate the use of the alternative formulations presented in Table 1, the proposed functions
R, and R, are plotted in Figure 17(a) and (b) for practical values of ¢ and £ to easily estimate and sub-
stitute them into the tip displacement and overturning moment expressions. Moreover, the probable er-
ror percentages between the exact and alternative responses are plotted in Figure 17(c) and (d),
respectively. These latter plots are obtained by analyzing several structural dimensions of coupled
shear walls. Figure 18(c) and (d) shows that the maximum error is approximately 7% in both cases.
For System 2, R;=3.158 and R,=0.507 can be obtained from Table 1 and applied to calculate the
tip displacement 0.0165 m and the base moment 12755 kNm, where the errors with respect to the exact
responses are 2.48% and 1.42%, Analyzing many arrangements with different structural characteris-
tics, the average difference between the responses of structures with extensible and inextensible walls
is plotted (Figure 18) with respect to . Note that ¢ is fixed in this investigation. Figure 18 indicates that
a larger ¢ produces higher estimation errors, where the axial extensibility is accounted for. It can be
observed that the absolute differences in the tip displacement are considerably higher than the errors
in the bending moment.

Table 3. General framework for tip displacement in tall building coupled shear walls.

Axial effect Extensibility Coupling Deflection Ui (m)
parameter status in shear degree € mode
walls
E=0 Inextensible —0 Uncoupled bending Eq. (35)
walls — Shear mode state 0.00
>0, < Bending shear Eq. (33)
0<é<1/3 Extensible walls -0 Uncoupled bending Eq. (35)
— Fully coupled bending Eq. (34)

>0, < Bending shear Eq. (32)
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Table 4. General framework of the local base bending moment in tall building coupled shear walls.

Axial effect Extensibility Coupling Deflection M;
parameter status in shear degree ¢ mode (N—m)
walls
£=0 Inextensible —0 Uncoupled bending Eq. (41)
walls — Shear mode state 0.00
>0, < Bending shear Eq. (40)
0<¢é<1/3 Extensible walls —0 Uncoupled bending Eq. 41)
— Fully coupled bending Eq. (39)
>0, < Bending shear Eq. (38)

The rotation field # is analyzed here using the three-field CTB model (Equation (12)). This field in
reference System 2 is plotted in Figure 19(a), where the extensible case clearly obtains higher values.
The maximum rotation locations for the extensible and inextensible walls are placed at considerably
different elevations (see small circles on curves in Figure 19(a)). These elevations reveal important
information regarding the optimum damping location when addressing damper installation in the
dynamic response control.

Therefore, an investigation is conducted with respect to those locations’ sensitivity to the degree of
coupling in coupled shear walls (Figure 19(b)). The vertical axis in Figure 19(b) refers to the normal-
ized position of the maximum rotation with respect to the total height of the walls. Note that for very
low degrees of coupling, both the extensible and inextensible systems give the same values, whereas
the two diagrams diverge significantly with increasing coupling degree.

With regard to the frequency-dependent responses, Figure 20(a) and (b) is a plot based on the pro-
posed FE formulation. Figure 20(a) indicates the frequency ratio wi/wg of systems with inextensible
and extensible walls using their first three eigenmodes. To obtain the response of the inextensible
case, a very large axial stiffness (K,; — «) is adopted in the FE formulation. The ratio increases with
increasing ¢, but its magnitude is significantly greater in the fundamental mode and subsequently in
the second mode in comparison with the third mode. However, the investigation demonstrates that
the extensibility effect in tall coupled shear walls might affect the dynamic responses as well as the
static responses. Figure 20(b) compares the dynamic magnification factor of the tip displacement
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between systems with inextensible and extensible walls subject to 5% classical damping. This factor
shows the magnification of the static tip displacement when the system is subjected to a harmonic
force. Note that the horizontal axis is normalized with respect to the frequency of the extensible struc-
ture. Note that the response with axial extensibility differs significantly compared with that without
that effect.

5. CONCLUSIONS

A continuum model for coupled shear walls in which the discrete set of connecting beams is replaced
by an equivalent elastic core has been developed. Based on this framework, two novel CTB models
considering the axial deformation in the walls and a one-dimensional FE model used to facilitate the
dynamic analysis of coupled walls are developed. The range of application of the two CTB formula-
tions depends on the shear walls’ slenderness. These formulations refer to systems with identical shear
walls, but generalization is straightforward provided that the ratio between the dimensions of the walls
is limited. The closed-form formulation of the models is properly derived and further developed for the
novel CTB with solutions depending on two controlling parameters: the degree of coupling and the
degree of axial extensibility. The analysis of a reference structure shows that the transverse deflection,
local bending moment, wall axial force, wall shear and wall rotation distributions when considering
extensibility in the walls can differ considerably from the corresponding inextensible counterparts.
This difference increases for increasing degrees of coupling and is particularly important in the dis-
placement components. The analysis of the limiting conditions of ‘uncoupled bending’, ‘fully coupled
bending’ and pure ‘shear mode state’, depending on values assumed by the two controlling parameters,
highlights the role of extensibility, especially for slender coupled shear walls. With respect to the dy-
namic response, axial extensibility reduces the natural eigenfrequencies, especially the first one, and
may significantly change the forced response. The investigations showed that the extensible two-field
CTB cannot capture the pure ‘shear mode state’ featuring stocky walls; however, it reveals a suitable
RB model for a wide range of practical wall slendernesses. Also, the capability of the CTB formulation
was verified in modeling shear-type frames. Various easy-to-use approximate formulas proposed,
based upon the controlling parameters, for the tip displacement and base overturning moment demon-
strated their suitability for design purposes. The proposed CTB models may be useful for both re-
searchers and practicing engineers.



APPENDIX A
Symbolic definitions and constants adapted in the solution of the extensible three-field CTB are listed
as follows:
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APPENDIX B
The matrix, including the shape functions selected for the FE, reads as follows:
Z0 0 2 0 0] [1-p 0 0 148 0 0
ZwW={0 z 0 0 Z 0=/ 0 1-p 0 0 1+p 0
o o0 zZ 0 0 2 0 0 1-p 0 0 144

The stiffness matrix of the FE with length £ associated with extensible walls and continuum core are,
respectively,

[ K /0 Kq/t)2 0 —K /0 Kq/t/2 0
Ka/t/2 Ky /O +Kg /4 0 —Ka/t)2 —Kp /O + K /4 0
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Thus, assembling two stiffness matrices yields the global matrix as K. =Kyajs + Kcore-
The FE mass matrix contribution M, to the walls and to the equivalent continuum core M., read
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Finally, the global mass matrix is M, =Mys + Mcore-
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