
Abstract A spatial object is characterized not only by its geometric extents, but also by the spatial
relations existing with its surrounding objects. An important kind of spatial relations is represented by
topological relations. Many models have been defined in literature for for-malizing the semantics of
topological relations between spatial objects in the Euclidean 2D and 3D space [3, 4, 7]. Nevertheless,
when these relations are evaluated in available systems many robustness problems can arise, which are
essentially related to the discrete represen-tations adopted by such systems. In a Spatial Data
Infrastructure (SDI) the perturbations introduced by the exchange of data between different systems
can increase the robustness problems.

This paper deals with a set of rules for the representation of spatial datasets which allow to evaluate
topological relations in a robust way using existing systems. These rules are well-known and
described in literature and are based on a few basic assumptions on the sys-tem behavior which are
fulfilled by today’s systems. The main contribution of this paper is to determine in detail which rules
are sufficient in order to make each topological relation robust; it turns out that the rules depend not
only on the topological relation being consid-ered, but also on the geometric types of the involved
geometries and on the dimension of the space in which they are embedded, thus giving rise to a
very large number of possi-ble combinations. The paper analyses the topological relations and a
significant subset of the geometric types defined in the most recent version of the Simple Feature
Access (SFA) model published by OGC, considering both a 2D and a 3D space. The extension of the
work to the types which have been left out can be done using the same concepts and methodology.

A. Belussi · S. Migliorni (�)
Department of Computer Science University of Verona, Veron Italy
e-mail: sara.migliorini@univr.it
e-mail: alberto.belussi@univr.it

M. Negri · G. Pelagatti
Department of Electronics, Information and Bioengineering Politecnico of Milan, Milan Italy

Impact of data representation rules on the robustness
of topological relation evaluation

Alberto Belussi · Sara Migliorini · Mauro Negri · Giuseppe Pelagatti

Received: 19 June 2013
Revised: 10 March 2014
Accepted: 17 April 2014
Published online: 26 June 2014

This is a post-peer-review, pre-copyedit version of an article published in Geoinformatica. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s10707-014-0210-x

Keywords: Robustness, Topological relations, Spatial data infrastructure, Discrete representation, Distributed systems

mailto:sara.migliorini@univr.it
mailto:alberto.belussi@univr.it
http://dx.doi.org/10.1007/s10707-014-0210-x

1 Introduction

Topological relations are a fundamental formal tool for describing spatial properties of data
in geographical applications: this occurs for example in schema definitions, in order to
define spatial integrity constraints, and also in query specification, where topological rela-
tions can be used for retrieving information of interest for the user, and in update processes
where topological relations are used to specify data quality [16, 20].

Although many abstract models have been studied in literature [3, 4, 7, 19] for defining
the semantics of topological relations between geometric objects embedded in a Euclidean
space, the problems arising when topological relations are evaluated on data have been
much less explored. Topological relations have been defined by using the 9-intersection
matrix approach [7] or other axiomatic approaches [19], while for their evaluation spe-
cific computational geometry algorithms have been implemented in systems which work
on data represented as vectors in a discrete space. The evaluation of topological relations
should be robust, i.e. two different evaluations performed by the same or by different sys-
tems on the same dataset should produce the same result; moreover, in the distributed and
heterogeneous context of a Spatial Data Infrastructure (SDI), where datasets are exchanged
between systems, also the evaluation of topological relations performed by different systems
on data which has been exchanged through the network should remain identical. How-
ever, satisfying this requirement can be difficult for several reasons discussed in the next
subsection.

1.1 Robustness problems in the evaluation of topological relations

The first difficulty in obtaining a robust evaluation of topological relations is due to the
finite numerical representation of coordinates in the vector representation. The existence of
robustness problems in the execution of computational geometry algorithms which use
finite numbers (e.g. floating point) for the representation of coordinates in the Euclidean
space, instead of the real numbers theoretically required, is well known [2, 11]. For
example, consider the 5 segments in Fig. 1.a, where the grid represents the finite 2D space.
The size of the grid cells can be very small; for instance, with EPSG:32632 WGS84/UTM
coordinates represented by standard FP64 numbers the grid interval is in the worst case 2
−29 meters. In Fig. 1.a all the segment vertices are on the cell corners, but the distance
between a segment and a vertex of another segment can be very small, much smaller than
the cell size, as shown by the 3 vertices of segments s2, s3 and s5 with respect to segment s1.
In these cases different systems can produce different evaluations of the topological
relations between segments s2, s3, s5 and segment s1. In order to provide experimental
evidence of this problem, we have moved one endpoint of segment s2 to all positions of a
square of 64 × 64 grid positions and evaluated its topological relation with segment s1 using
two spatial DBMSs: PostGIS [21] and Oracle Spatial [15]. Indeed, the two systems have
produced different evaluations in many cases when the endpoint was very near to s1.

The problems related to the adopted finite number representation are made even worse
by the data perturbation occurring during the exchange of data between different systems.
Such exchanges can introduce perturbations in geometric representation as a result of the
conversions between different formats and precisions. For instance, the GML language [14],

Fig. 1 Topological relations between segments in a discrete space

an OGC and ISO standard for the exchange of spatial data, adopts a decimal encoding of
coordinates represented as character strings, and the conversion from and to the floating
point representation adopted by most current systems can introduce perturbations. More-
over, in order to reduce the size of datasets, the number of decimal positions in the decimal
representation is reduced with respect to the one that would be required in order to keep the
original precision. These perturbations can cause a modification of the topological relation
between two segments; for example, in Fig. 1.a a small perturbation of the x coordinate of
one vertex of s3 can transform the evaluation of the relation between s1 and s3 from disjoint
to crosses.

Finally, the robustness problem in the evaluation of topological relations is also related
to the dimension of the geometric space (2D or 3D) embedding the objects. For example, in
Fig. 1.a segments s1 and s4 have a macroscopic intersection in 2D, such that in this space
every system will likely evaluate the topological relation as a crosses. Conversely, in a 3D
space a small difference in the z-value of the position corresponding to the intersection of
their planar projections could cause some systems to evaluate the relation as disjoint while
others would still evaluate it as crosses. Therefore, in many cases a distinct analysis of the
robustness of topological relations in 2D and 3D is necessary.

1.2 An approach for determining the robustness rules required by topological relations

In literature several robustness rules have been proposed in order to solve the mentioned
robustness problems, and they are to some extent applied by systems. These rules refer to
the representation of the data, not to the algorithms adopted for evaluating the relation. The
most important one is based on the identification of common geometric primitives between
different objects. These common primitives can be either stored once and referred to by the
objects (topological structures [6]) or repeated identically in all objects which share them.
This robustness rule can solve many of the mentioned problems, but not all of them. A
complementary robustness rule, which has been suggested, for instance in [23], consists in
ensuring that a minimum distance is kept between all geometric primitives which are not
identical. Fig. 1.b shows a possible application of these rules to the situation of Fig. 1.a: by

applying the first rule, segment s1 has been broken and is now a line constituted by segments
s11, s12 and s13; by applying the second rule, one vertex of segment s2 has been moved away
from s1 so that their relationship is interpreted as disjoint.

The primary goal of this paper is to develop an approach for identifying for each topolog-
ical relation the set of robustness rules which are sufficient to make robust their evaluation;
if no other kinds of rules are discovered and applied, these rules are also necessary in order
to guarantee the robustness.

As a secondary goal, this paper shows the application of this approach to a wide set of
topological relations, trying to cover many of the most relevant situations occurring with
data compliant with current standards. However, since the rules required by each topological
relation depend also on the type of geometries being considered and on the space (2D or 3D)
in which they are embedded, the analysis has been restricted to the following topological
relations and data types:

– All topological relations that can be expressed using the well known approach of Egen-
hofer et al. [7] based on the 9-intersection matrix: the topological relations of the Simple
Feature Access (SFA) model published by OGC [13] are a subset of them.

– The geometric types of the most recent version of the SFA, considering both a 2D and
a 3D space, but without the collection types.

The approach can be also applied to the collection types in [13], but this would require
much space without producing a deeper understanding. Notice that the data types of the
most recent SFA version embed the primitives in 3D space but do not include 3D objects
(i.e., solids).

The approach presented in this paper is based on the following key points:

1. Definition of a set of vector predicates: a vector predicate is an elementary predi-
cate which can be evaluated in the discrete vector model and is necessary in order to
implement some topological relations (Section 2).

2. Definition of a set of critical vector predicates: a critical vector predicate is a vector
predicate whose evaluation is non robust due to the discussed problems (Section 3.1).

3. Determination of which robustness rules are necessary and sufficient for making each
critical vector predicate robust, taking into account a reasonable formalization of the
systems’ behavior in the considered SDI environment. Notice that the given rules are
sufficient to guarantee robustness, because their application ensures that topological
relations are evaluated in the same way by any implementation. Conversely, the given
rules are necessary to guarantee robustness, because if they are not satisfied the eval-
uation of topological relations becomes not robust, namely the execution of different
algorithm implementations may produce different results (Section 3.2).

4. Determination of which critical vector predicates are required for the evaluation of each
topological relation on some geometrical types (Section 4).

5. Derivation of the robustness rules required by a topological relation between two
geometries from 3 and 4 (Section 4).

Finally, Section 5 illustrates the results of some experiments performed in order to confirm
the effectiveness of the proposed robustness rules.

1.3 Related Work

Geometric algorithms are typically described assuming an infinite precision that cannot be
provided by the adopted computer representations. This assumption raises great difficulties

in implementing robust geometric algorithms. A variety of techniques have been proposed
in recent years to overcome these issues. For instance, the Exact Geometric Computation
model [2] provides a method for making robust the evaluation of geometric algorithms.
This can be achieved either by computing every numeric value exactly, or by using some
symbolic or implicit numeric representation that allows predicate values to be computed
exactly. Exact computation is theoretically possible whenever all the numeric values are
algebraic, which is the case for most current problems in computational geometry. This
technique has made much progress, so that for certain problems the introduced performance
penalty is acceptable. However, when the computation is performed on curved objects or in
3D space the overhead is still large. For this reason, an alternative approach has been pro-
posed which is called Controlled Perturbation (CP) [9] and belongs to the Finite-Precision
Approximation Techniques. This method proceeds by perturbating the input slightly but in
a controlled manner such that all predicates used by the algorithm are guaranteed to be eval-
uated correctly with floating-point arithmetic of a given precision. The algorithms of the
Snap Rounding family, such as the one in [11] and [10], are examples of this approach. They
require the application of rounding algorithms that convert an arbitrary-precision arrange-
ment of segments into a fixed-precision representation. However, even if such algorithms
guarantee the robustness of the result, the quality of the geometric approximation in terms
of similarity with the original arrangement can be quite low and some topological relations
can be modified. Conversely, the aim of this paper is to define rules that can guarantee,
when they are satisfied, that a dataset is robust w.r.t. topological relation evaluation. In case
of rule violations, SR algorithms could be one possible mean for modifying the dataset in
order to fulfill the rules.

In the geographical field, topological data models have been defined which use a rep-
resentation based on topology instead of on coordinates (see for instance [6, 22]). A GIS
topology is a set of rules that models how points, lines and polygons share coincident
geometries, for instance imposing that adjacent features will have a portion of common
boundary. A topological data model manages spatial relationships by representing spa-
tial objects as an underlying graph of topological primitives: nodes, faces and edges. The
original model has been defined for representing objects in a 2D space; however, several
extensions to the 3D space have been defined. The Formal Data Structure (FDS) [12] has
been the first data structure to consider spatial objects as an integration of geometric and the-
matic properties. It includes three levels: features related to thematic class, four elementary
objects (point, line, surface, and body) and four primitives (node, arc, face, and edge). The
model requires that elementary objects shall be disjoint and a 1 to 1 correspondence exists
between objects and primitives. In order to overcome some difficulties of FDS in modeling
objects with indiscernible boundary, the TEtrahedral Network (TEN) has been proposed in
[17]. This model includes 4 primitives: tetrahedron, triangle, arc, and node, where the first
one is a real 3D primitive. The Simplified Spatial Model (SSM) [24] has been the first topo-
logical structure that focuses on visualization aspects of queries as 3D models. It includes
only two primitives: nodes and faces, while an arc can be part of two faces. Finally, the
Urban Data Model (UDM) [5] represents the geometry of a body or of a surface using planar
convex faces, defined as sets of nodes. In [8] the author defines the concept of geomet-
ric realm as a planar graph over a finite resolution grid. Problems of numerical robustness
and topological correctness are solved below and within the realm layer so that spatial
algebras defined above a realm enjoy very nice algebraic properties. Realms also interact
with a database management system to enforce geometric consistency on object creation
or update. All these topological representations ensure data quality and relation preserva-
tion, but they cannot be applied in a distributed context where data is transferred among

different systems. On the contrary, in order to deal with a distributed context where data
are exchanged among different systems and evaluated using different algorithm implemen-
tations, this paper assumes that geometries are represented with a traditional discrete vector
model and defines a set of rules for making robust existing algorithms used to evaluate
topological relations.

In [5] the authors face the problem of developing systematic, robust, correct and effi-
cient implementation strategies and optimized evaluation methods for topological predicates
between all combinations of the three spatial data types: point, line and polygons. In par-
ticular, they recognize four main problems in existing algorithms: even if the plane sweep
algorithm is the basis of any topological relation evaluation, (1) each topological predi-
cate usually requires an own, tailored plane sweep algorithm leading to a great number of
algorithms; moreover, (2) different outputs can be required on the basis of the considered
predicate, and (3) each single algorithm is an ad-hoc implementation for which it is dif-
ficult to demonstrate that it covers all cases and guarantees mutual exclusiveness among
relations. Finally, (4) the kind of query (verification or determination) usually impacts the
evaluation process. For solving these issues a two phases approach is proposed: in a first
exploration phase the plane sweep algorithm is used for determining the given configura-
tion between two spatial objects (e.g. their intersections), while in a subsequent evaluation
phase the collected information is used to determine the existing relation.

The problem of developing correct and efficient implementation techniques of topolog-
ical predicates is also treated in [18]. The authors consider all combinations of complex
spatial data types including two-dimensional point, line, and region objects. The solution
consists of two phases: an exploration phase, which summarizes all intersection and meet-
ing situations in two precisely defined topological feature vectors, and an evaluation phase,
which determines the kind of the topological predicate. Besides this general evaluation
method, the authors present an optimized method for predicate verification and an optimized
method for predicate determination.

The approach adopted in this paper is different from the one in [5, 18] because it does
not propose different evaluation strategies or algorithms, but it identifies a set of rules for
data representation whose compliance guarantees a robust evaluation of topological rela-
tions using the existing algorithms. The reason is that in a distributed context it is convenient
to guarantee robustness by modifying the geometry representation in a way that any algo-
rithm implementation can produce the same evaluation, rather than rely on a modified
implementation that cannot be available everywhere.

2 Discrete vector model

This section presents a discrete vector model that contains the data structures and the opera-
tions that are usually implemented in current spatial database management systems in order
to deal with the evaluation of topological relations. This model is used in this paper as a for-
mal description of an implementation of a part of the Simple Feature Access (SFA) model
of OGC [13], which is an abstract specification. The SFA model contains classes describing
geometries of the 2D space, but with the possibility to store also the z coordinate usually
representing the height above or below sea level (such geometry representation model is
often called 2.5D model). Moreover, the type PolyhedralSurface is available for represent-
ing surfaces in 3D space, as sets of polygon patches with some constraints. The complete
type hierarchy is shown in Fig. 2. The main characteristics of these types are supposed to
be known by the reader, please refer to [13] for more details.

Fig. 2 Geometric type hierarchy of the Simple Feature Access (SFA) model

As explained in the introduction, we consider only the basic types of the SFA model,
since a robustness analysis for the whole set of geometric types cannot be presented due
to space constraints. The considered types are: Point, LineString, Polygon and Polyhedral-
Surface, and we focus on the implementation of the tests that are necessary for evaluating
the topological relations on geometries of these types. Moreover, we assume that: (i) in
LineString geometries and Polygon rings successive collinear segments are not admitted
(they can be merged in one segment); (ii) in PolyhedralSurface type adjacent coplanar
patches are not admitted (they can be substituted by the patch obtained by merging them)
and (iii) patches have no holes, this does not represent a significant limitation, since it is
very difficult in a discrete space to represent collinear segments or coplanar patches, and
holes in a surface can be generated by a set of patches without holes that together form a
shape similar to a ring. Notice that conditions (i) and (ii) does not prevent that two different
geometries can have collinear segments or patches, this situation is only avoided inside the
same geometry. Finally remember that polyhedral surfaces in the SFA model are simple, i.e.
they are surfaces with neither self-intersections nor self-tangency.

2.1 Discrete Vector Model Types

In the considered discrete vector model each geometry is described as a set of vertices
embedded in a discrete space. A vertex is represented as a tuple of coordinates, namely by
two or three real numbers encoded using a discrete approach, like the floating point model.
In the sequel, these numbers are denoted as finite numbers. In the model definition we aim
to identify those operations that require a computation on finite numbers, thus having a
direct effect on the robustness of topological relation evaluation. The model is composed

of some basic vector types that are used to implement the considered SFA types, some
basic predicates and operations, and some derived predicates and operations. The following
definitions formalize the model.

Definition 1 (Basic vector types)

– A vertex v is a tuple of finite numbers representing a 2D or 3D coordinate: v = (x, y)

or v = (x, y, z), respectively.
– Let (v1, v2) be a pair of vertices, a segment is the linear interpolation between them.
– Let (v1, . . . , vn) be a list of vertices, its linear interpolation is a ring if and only if

v1 = vn.
– A patch is a finite part of a plane whose boundary is defined by a ring.

Definition 2 (SFA types) Given a geometry g belonging to basic types of the SFA model
[13], its discrete representation DR(g) is defined as a follows (v denotes a generic vertex):

– If g ∈ Point then DR(g) = v.
– If g ∈ LineString then DR(g) = (v1, . . . , vn) with n > 1.

The linear interpolation between any two consecutive vertices vi, vi+1 is a segment
si . Therefore, its discrete representation can be simplified as follows: DR(g) =
(s1, . . . , sm) with m = n − 1 and si = (vi, vi+1).

– If g ∈ Polygon then DR(g) = ((v1,1, . . . , v1,n1), . . . , (vk,1, . . . , vk,nk
)) with ni > 2 and

k > 0, where each list of vertices is a ring: the first one represents the outer boundary,
while the other ones represent the inner boundaries (i.e. possible holes). Notice that
since a Polygon can be defined only in a 2D space, all boundary rings are coplanar.
Using the ring definition, the discrete representation of g ∈ Polygon can be simplified
as follows: DR(g) = (r1, . . . , rk) with k > 0, where each ri = (vi,1, . . . , vi,ni

) is a
ring.

– If g ∈ PolyhedralSurface then DR(g) = ((v1,1, . . . , v1,n1), . . . , (vk,1, . . . , vk,nk
)) with

ni > 2 and k > 0, where each list of vertices is a ring representing a polygon without
holes.
Using the patch definition, the discrete representation of a PolyhedralSurface can be
simplified as DR(g) = (p1, . . . , pk) with k > 0 and where each pi is a planar patch
defined by the ring (vi,1, . . . , vi,ni

).

Definition 2 considers only the basic types of the SFA model, in accordance with what
previously stated. For a formal definition of all SFA type properties and of the other SFA
types deriving as specialization of the GeometryCollection class, please refer to [13].

In Definition 3 a set of basic operations and predicates is defined for analyzing the imple-
mentation of the topological relation evaluation in a discrete vector space. Indeed, each of
them identifies a type of processing on finite numbers that is required in many cases.

Definition 3 (Basic vector predicates and operations) The signature of each operation has
the syntax: 〈ret type〉〈geom〉.〈op name〉(〈par type〉〈par name〉).
Operations

– dist : vertex × vertex → real, v1.dist(v2) returns the Euclidean distance between two
vertices v1 and v2.

– start : segment → vertex, s.start() returns the start point of the segment s.
– end : segment → vertex, s.end() returns the end point of the segment s.

– ray : segment × P (segment) → integer, s.ray(S) returns the number of segments of S

that the semi-straight line starting from s.start () and passing through s.end() intersects
(excluding the possible intersection at s.start ()).

– ∪ : segment×· · ·× segment → segment, s1 ∪· · ·∪ sn joins n overlapping (or touching)
segments that lie on the same straight line, if the segments are disjoint or do not lie
on the same straight line, it returns the empty geometry.1 Given two set of segments
Si = {si1, . . . , sin} and Sj = {sj1, . . . , sjm}, the compact notation Si ∪ Sj can be used
to denote the join of its contained segments: Si ∪ Sj = si1 ∪ · · · ∪ sin ∪ sj1 ∪ sjm.

– bnd : patch → P (segment), p.bnd() returns the set of segments defining the boundary
of the patch p.

Predicates

– eq : vertex × vertex → boolean, v.eq(v0) tests the equality between two vertexes; two
vertices are equal only if they are bitwise identical.

– cnt : segment × vertex → boolean, s.cnt(v) tests the containment between a vertex v

and the interior of a segment s: v ⊂ I (s).
– int : segment × segment → boolean, s1.int(s2) tests the intersection between the inte-

riors of two segments: dim(I (s1) ∩ I (s2)) = 0. If the intersection has dimension 1, it
returns false.

– cnt : patch× vertex → boolean, p.cnt(v) tests the inclusion between a vertex v and the
interior of a patch p: v ∈ I (p).

– int : patch × segment → boolean, p.int(s) tests the intersection between the interior of
a patch p and the interior of a segment s: dim(I (s) ∩ I (p)) = 0. If the intersection has
dimension 1, it returns false.

– int : patch × patch → boolean, p1.int(p2) tests the intersection between the interior
of two patches: dim(I (p1) ∩ I (p2)) = 1. If the intersection has dimension 2, it returns
false.

Notice that, the set of basic predicates is very small and does not contain all the elemen-
tary predicates that one could expect. For example, there is no test of boundary intersection
between two segments. Indeed, the boundary intersection between two segments can be
obtained by comparing for equality the vertices of their boundaries using other three
basic operations/predicates: s.start (), s.end() and v.eq(v0). In a similar way, many other
expected operations can be derived from these basic ones.

Since in many cases during topological relation evaluation the same expressions have
to be reused, the most common repeated expressions are introduced below as derived
operations and predicates. Some expressions do not identify an exact algorithm for their
evaluation, but they identify the need for some basic operations and predicates, thus requir-
ing a specific type of processing. For example, the test of segment overlapping s.ov(s0)

requires to test the containment of a vertex in a segment and can avoid the test of segment
intersection.

Definition 4 (Derived vector predicates and operations)
Operations and predicates on vertices
Semantics of operations and predicates is shown in Table 11 of Appendix A. In the sequel
the list of operations and predicates is presented (v, vi , vi,j represent a vertex). Notice that,

1This operation is applied to segments produced as intermediate result of other operations and cannot be
applied to segments of a LineString that are not collinear by definition.

for evaluating topological relations only the test of equality between two vertices will be
required (see Section 2.2), since also the belong-to relation, the intersection computation,
and the test of not empty intersection between two sets of vertices can be derived from it.

– set : vertex × P (vertex) → boolean, v.bel(V) tests if a vertex v belongs to a set of
vertices V = {v1, . . . , vn}.

– ∩ : P (vertex) × P (vertex) → P (vertex), {v1,1, . . . , v1,n} ∩ {v2,1, . . . , v2,m} returns
the common vertices between {v1,1, . . . , v1,n} and {v2,1, . . . , v2,m}.

Operations and predicates on segments
Semantics of operations and predicates is shown in Table 12 of Appendix A. In the sequel
the list of operations and predicates is presented (s, si are segments). Notice that, for evaluat-
ing topological relations only the test of equality between two vertices and the containment
of a vertex in a segment will be required (see Section 2.2), since also the equality relation
and the topological relations: in, overlaps and disjoint between two segments can be derived
from them.

– bnd : segment → P (vertex), s.bnd() returns the boundary of a segment s.
– eq : segment × segment → boolean, s1.eq(s2) tests the equality between two segments

s1 and s2.
– bel : segment × P (segment) → boolean, s.bel(S) tests if the segment s belongs to the

set of segments S = {s1, . . . , sn}.
– in : segment×segment → boolean, s1.in(s2) tests the inclusion between two segments:

s1 ⊂ s2.
– ov : segment × segment → boolean, s1.ov(s2) tests the intersection between two seg-

ments that requires they share a portion of line, but excludes inclusion or equality (i.e.
dim(I (s1) ∩ I (s2) = 1).

– dj : segment × segment → boolean, s1.dj(s2) tests of interior disjointness between two
segments (I (s1) ∩ I (s2) = ∅).

– diff : segment × P (segment) → P (segment), s.diff(S) computes the difference
between a segment s and a set of segments S that overlap s.

Operations and predicates on patches
Semantics of operations and predicates is shown in Table 13 of Appendix A. Notice that, for
evaluating topological relations the necessary tests on patches are: containment and overlap-
ping of a segment in a patch, and relations overlaps, disjoint, in and equals between patches.
Moreover, for specifying the containment of a segment in a patch in particular cases, an
additional operation is introduced, called p.bndov(s), that returns the set of boundary seg-
ments of a patch p that overlap or are contained in a segment s. Finally, we remark that for
evaluating the overlaps relation between a patch and a segment the predicate p.cnt (s) is not
necessary. In the sequel p, pi represent a patch:

– ver : patch → P (vertex), p.ver() returns the patch vertices.
– cntint : patch × segment → boolean, p.cntint(s) tests the inclusion between a segment

s and a patch interior (I (s) ⊂ I (p)).
– cnt : patch× segment → boolean, p.cnt(s) tests the inclusion between a segment s and

a patch p (s ⊂ p).
– ov : patch × segment → boolean, p.ov(s) tests the overlapping between a segment

interior and a patch interior (dim(I (s) ∩ I (p)) = 1 ∧ ¬(I (s) ⊂ I (p)).

– dj : patch × segment → boolean, p.dj(s) is a test of disjointness between a segment
interior and a patch interior (I (s) ∩ I (p) = ∅).

– eq : patch × patch → boolean, p1.eq(p2) tests the equality between two patches p1
and p2.

– int2 : patch × patch → boolean, p1.int2(p2) is a test of interior intersection of
dimension 2 between two patches interior (dim(I (p1) ∩ I (p2)) = 2).

– in : patch × patch → boolean, p1.in(p2) tests the inclusion between two patches
(p1 ⊂ p2).

– dj : patch × patch → boolean, p1.dj(p2) is a test of interior disjointness between two
patches (I (p1) ∩ I (p2) = ∅).

– ov : patch × patch → boolean, p1.ov(p2) is a test of interior overlapping between two
patches (dim(I (p1) ∩ I (p2)) = 2 ∧ ¬(I (p1) ⊂ I (p2)) ∧ ¬(I (p2) ⊂ I (p1))).

In order to simplify as much as possible the specification of the evaluation tests for topo-
logical relations, which are illustrated in Section 2.2, some additional derived operations
and predicates are presented in Table 14 of Appendix A, that apply to geometries of types:
LineString, Polygon and PolyhedralSurface.

2.2 Testing topological relations in the discrete vector model

This paper considers all topological relations that can be expressed using the well known
approach of Egenhofer et al. [7] based the 9-intersection matrix. The topological relations
of the SFA model are a subset of them.

The 9-intersection matrix is defined by using the concepts of interior (internal part),
boundary and exterior (external part) of a geometric object. Given a geometric object
a of the abstract type Geometry and the operations: a.PS() returning the point set rep-
resented by a, a.boundary(), returning the geometric object representing the boundary
of a (or the emptyGeometry if a has an empty boundary), the following point sets are
defined:

1. interior of a, denoted as I (a): it is the point set a.PS() \ a.boundary().PS(). Namely,
it is the set of object points that do not belong to its boundary.

2. boundary of a, denoted as B(a): it is the point set a.boundary().PS().
3. exterior of a, denoted as E(a): it is the point set a.space() \ a.PS(). Namely, it is the

set of points from the space embedding a that do not belong to the object itself.

Definition 5 (Topological relation) Given two geometric objects a and b of any geomet-
ric type, the definition of a topological relation is given, using the combinatorial topology
approach and the Dimensionally Extended 9-Intersection Model (DE-9IM) [4], by assigning
the following matrix:

R(a, b) =
⎡
⎣

dim(I (a) ∩ I (b)) dim(I (a) ∩ B(b)) dim(I (a) ∩ E(b))

dim(B(a) ∩ I (b)) dim(B(a) ∩ B(b)) dim(B(a) ∩ E(b))

dim(E(a) ∩ I (b)) dim(E(a) ∩ B(b)) dim(E(a) ∩ E(b))

⎤
⎦ (1)

where the possible values are {F, 0, 1, 2, T , ∗} with the meaning F : empty set, 0: point, 1:
curve, 2: surface, *: any, T : 0,1,2.

In the sequel, we show how each cell of the 9-intersection matrix can be evalu-
ated in the discrete vector model presented above. Given the discrete representation

DR(g1), DR(g2) of two geometries g1, g2, the content of each cell can be computed
by evaluating a given logical expression which contains some of the vector operations
and predicates previously presented and has DR(g1), DR(g2) as parameters. The logi-
cal expressions are obtained by considering for each cell all the possible combinations
of geometry types that are admissible. Since this matrix can be used for the definition
of any topological relation, the obtained set of expressions is sufficient for evaluating
any topological relation defined by means of a 9-intersection matrix. This approach is
similar to the one applied in [18], but is extended to the 3D space types of the SFA
specification.

Proposition 1 (Evaluation of matrix cells using vector predicates) Given two geometries
a and b, the following tables show for each combination of types the cells of the matrix
that have to be evaluated: one table regards the 2D space, the other one the 3D space.
In the table the following symbols are used: T (F) indicates that the cell for the con-
sidered combination of types (type(a)/type(b)) is always true (false), while Tab(x) means
that Table x of Appendix B shows the logical expression that implements in the discrete
model the test required for evaluating the cell. Finally, if the cell can be evaluated consid-
ering the test specified for another cell ci,j of the matrix Mt1,t2 , this cell is specified by the
symbol c

t1,t2
i,j .

2D Point (PT) LineString (LN) Polygon (PL)

PT MPP MPL MPG[
Tab(15) F ¬c1,1
F F F
¬c1,1 F T

] [
Tab(15) Tab(19) Tab(23)
F F F
T e1(∗) T

] ⎡
⎣

Tab(15) cPL
1,1 Tab(23)

F F F
T T T

⎤
⎦

LN MLP = MT
PL MLL MLG⎡

⎣
Tab(18) Tab(19) Tab(24)

Tab(16) cPP
1,1 e2(∗)

Tab(24) e2(∗) T

⎤
⎦

⎡
⎣

Tab(19) cLL
1,1 Tab(24)

cPG
1,1 cPL

1,1 e3(∗)

T cLL
1,3 T

⎤
⎦

PL MGP = MT
PG MGL = MT

LG MGG⎡
⎢⎣

Tab(21) cGL
1,1 Tab(25)

cLG
1,1 cLL

1,1 cLG
1,3

Tab(25) cGL
1,3 T

⎤
⎥⎦

(*) e1: if ln.bnd() �= ∅ then T else F ; e2: if ln.bnd() = ∅ then F else cPL
1,3;

e3: if ln.bnd() = ∅ then F else cPG
1,3.

3D Point (PT) LineString (LN) PolyhedralSurface (PS)

PS MSP MSL MSL⎡
⎣

Tab(15) F T

cLP
1,1 F T

Tab(20) F T

⎤
⎦

⎡
⎣

Tab(22) cSP
1,1 T

cLL
1,1 cLP

1,1 cLL
1,3

Tab(25) e1(∗) T

⎤
⎦

⎡
⎢⎣

Tab(23) cSL
1,1 Tab(24)

cSL
1,1 cLL

1,1 cSL
3,1

Tab(25) cSL
3,1 T

⎤
⎥⎦

(*) e1: if ln.bnd() = ∅ then F else cSP
3,1.

Proof The completeness proof of the above tables and of the cases illustrated in
Appendix B is presented in [1].

3 Robustness of vector predicates

The discrete representation of geometries may produce many unexpected problems during
query evaluation and quality tests, due to the two main problems highlighted in the intro-
duction: numerical weakness of algorithms implementation and data perturbation induced
by transfer. Section 3.1 formalizes such problems and defines a set of assumptions about the
considered environment, then Section 3.2 analyses the robustness of the vector predicates
used in the evaluation of topological relations.

3.1 Assumptions on systems and implementations

Let us consider two systems, denoted here as S (source) and D (destination), which
exchange spatial data and evaluate topological relations on such exchanged data. During
the transfer a transformation may occur on each vertex; let vS be a vertex in S and vD the
same vertex in D, the transformation from vS to vD is captured by a mapping f (), such that
vD = f (vS).

The behavior of current systems displays a set of problems with respect to robustness.
In the sequel these problems are listed and for each one some minimal assumptions on the
system behavior are stated. They are considered as necessary preconditions in order to build
robustness rules.

Problem 1 (Numerical weakness in algorithms implementation) An aspect that introduces
ambiguity in the evaluation of topological relations is the necessity of implementing a
system of linear equations in order to evaluate some elementary geometric tests. These
tests are used in all implementations of the basic vector predicates. They are ambiguous
due to the finite precision of the discrete geometric representation and of the algorithms
implementation in current GIS systems.

In particular, the following tests might lead to ambiguous results, when performed on
different systems.

Problem 2 (Vertex-Vertex equality/disjunction) If the two vertices are close to each other,
different systems may return different results.

Problem 3 (Vertex-Segment relative position) If the distance between a vertex v and a
segment s is very small, then different systems may return different results The relative
position between an (oriented) segment and a close vertex in a 2D/3D space can be: (i) the
segment contains the vertex; (ii) the segment is on the left of the vertex; (iii) the segment is
on the right of the vertex. Left and right refers to the unique plane that contains both s and
v. For example, s can contain v and f (s) might be on the left of f (v) or s can be on the
right of v and f (s) on the left of f (v).

Problem 4 (Segment-Segment intersection/disjunction in 3D) In some cases different
systems return different results if the two segments are close to each other.

Segment-segment intersection in 2D is not an independent elementary problem, since it
can be reduced to Problem 3, as it will be shown in Section 3.2.

Problem 5 (Vertex-Patch relative position) If the distance between a vertex v and a patch
p is very small, then different systems can return different results. The relative position

between a vertex and an (oriented) patch in the 3D space can be: (i) the patch contains the
vertex; (ii) the patch is above the vertex; (iii) the patch is below the vertex.

Problem 6 (Vertex-Vertex distance computation) Computing the distance between two
vertices in different systems can return different results.

In order to achieve the robustness in these elementary tests, the following assumptions
are introduced. In particular, Assumption 1 is important to preserve vertex identity, and
Assumption 3 is important to preserve the disjunction of geometries.

Assumption 1 (Equality preservation in data exchange) The mapping f () representing the
exchange of geometries between a source system S and a destination system D is a function,
namely: ∀v1, v2 ∈ V(v1.eq(v2) =⇒ f (v1).eq(f (v2))) where V is the set of vertices in the
source system S.

Assumption 2 (Bounded error in distance computation) Given two vertices transferred
from system S to system D, the evaluation of their relative distance in the two systems
can be not equal, but the difference is less then a threshold T: ∀v1, v2 ∈ V(| v1dist(v2) −
f (v1).dist(f (v2)) |< T).

Assumption 3 (Minimum distance for preserving relative positions) In the transfer of
geometries from system S to system D, it is possible to determine a threshold distance TD
(TD >> T) such that the following conditions hold, where V is the set of vertices, S is the
set of segments and P is the set of patches in the source system S.

Assumption 4 (Vertex-Vertex minimum distance) ∀v ∈ V (∀v1 ∈ V (v.dist(v1) > TD +
T =⇒ (¬v.eq(v1) =⇒ ¬f (v).eq(f (v1))).

Assumption 5 (Vertex-Segment minimum distance) ∀v ∈ V (∀s ∈ S (v.dist (s) > TD +
T =⇒ ((s is on the left of v) ∧ (f (s) is on the left of f (v)) ∨ (s is on the right of v) ∧
(f (v) is on the right of f (v)))))

Assumption 6 (Segment-Segment 3D minimum distance) ∀s ∈ S3D (∀s1 ∈
S3D(s.dist(s1) > TD + T =⇒ (¬s.int(s1) =⇒ ¬f (s).int(f (s1))).

Assumption 7 (Vertex-Patch minimum distance) ∀v ∈ V (∀p ∈ P (v.dist(p) >

TD + T =⇒ ((p is above v) ∧ (f (p) is above f (v)) ∨ (p is below v)

∧ (f (p) is below f (v))))).

The requirement TD >> T is necessary because the uncertainty in the distance
computation T would make Assumption 3 useless. Notice that with the precision lev-
els provided by current systems, TD is significantly smaller than the average error in
the coordinate representation with respect to real positions of points (spatial accuracy):
TD << Absolute-Positional-Error. Moreover, the value for TD can be chosen by applying
the following considerations: (i) TD only depends on the precision in coordinate represen-
tation; (ii) this precision in the floating point representation depends on the magnitude of
the numbers to be represented: the higher is the magnitude, the lower is the precision, the
higher will be TD. For example, considering the worse case in EPSG:32632 WGS84/UTM
coordinates which implies a precision around 10−9 meters, the value of TD should be

significantly greater than 10−9, so that also the numerical weakness of distance evaluation
can be adsorbed. Finally, notice that as shown in Section 1.1 in real datasets it is not correct
to assume that TD is the minimum distance among the represented vertices, segments and
patches, if this property has not been explicitly implemented.

The second problem that can impact the robustness of elementary tests is due to the
perturbation that a dataset can suffer in a transfer process from one system to another one.

Problem 7 (Perturbation in data exchange) The data transfer between two systems S and
D may cause a perturbation that slightly modifies the discrete representation of geometries.

In order to deal with this problem, the following minimal assumption is stated.

Assumption 8 (Boundedness of perturbation in data exchange) The perturbation intro-
duced in a vertex representation by the mapping f () has an upper bound, called PB
(Perturbation upper bound). In other words, given a vertex v, the distance between v and
f (v) is always less than PB: ∀v ∈ V (v.dist (f (v)) < PB).

If a sequence of n data transfers is considered instead of a single one, then it
is also assumed that the combined effect of all perturbations cannot diverge: ∀v ∈
VS(v.dist(fn(. . . (f1(v)))) < PB). Otherwise, after each perturbation the robustness rules
that will be presented in next section will guarantee the preservation of the elementary
tests, but the perturbed dataset will possibly not satisfy the robustness rules any more, thus
requiring a procedure for restoring robustness before another perturbation is applied.

3.2 Robustness evaluation of vector predicates

The implementation of topological relations on the discrete vector model makes use of a
set of predicates, which include in their definition the elementary operations described in
Section 2. For the reasons highlighted above, some of these predicates can return differ-
ent results in different systems, and are called here critical vector predicates. This section
introduces the set of critical vector predicates that are used in the evaluation of topological
relations and defines a set of rules for making them robust.

Given the problems on systems and implementations described in Section 3.1, the vector
predicates, introduced by Definition 3 of Section 2, can be proved to be critical with respect
to robustness, since their evaluation on the same data can change when data are transferred
from one system to another one.

Proposition 2 (Lack of robustness in basic predicates and operations) Given the systems
and implementation problems described in Section 3.1, the predicates of Definition 3 are all
not robust, and hence are called critical vector predicates. Among the operations presented
in Definition 3, only the following two operations are not robust: v.dist (v0) and s.ray(S).

Proof The lack of robustness of v.eq(v0), s.cnt (v) and p.cnt (v) is a direct consequence
of Problem 2, 3 and 5, respectively. Relatively to s.int (s0), in 3D it is a direct consequence
of Problem 4; while in 2D, it is not robust since it can be reduced to a combination of
elementary operations which are not robust. In particular, if two segments s1 and s2 intersect
each other in 2D then the relative positions of the end points of s1 w.r.t. s2 are opposite (i.e.,
one is on the left of s2, the other one is on the right). These relative positions are subject to
Problem 3 and thus s.int (s0) is not robust also in 2D.

Similarly, p.int (s) is not robust since it can be reduced to a combination of elementary
operations that are not robust. In particular, since p.int (s) requires that the intersection
dimension is zero, then p and s have to be not coplanar and the possible relative positions
of s w.r.t. p are those ones shown in Fig. 3a, b and c, which are subject to Problem 3, 4 and
5, respectively. A similar reasoning is true also for p.int (p0) by considering the boundary
segments of one patch w.r.t. the other one. The lack of robustness of the operation v.dist (v0)

is a direct consequence of Problem 6. Finally the operation s.ray(S) is not robust due to
the Problem 4, because the variation in segment intersection detection produces a different
intersection count and thus a different result of the s.ray(S) operation.

3.2.1 Robustness rules for basic critical predicates

This section introduces a set of rules that, applied on the datasets in the source system
S, make non ambiguous the evaluation of the critical vector predicates identified in Defi-
nition 3. These rules are classified into two categories: Identity Rules (IR) and minimum
Distance Rules (DR). The following IR are used to ensure the robustness of topological
relation evaluation and are based on Assumption 1.

Rule 1 (IR1: Vertex-Segment) For each vertex v that has to lie in a segment s = (v1, v2),
a new vertex vh bitwise identical to v has to be introduced in the s representation splitting
it into two new segments s1 = (v1, vh) and s2 = (vh, v2) [8]. Therefore, after the rule IR1
has been applied, the following condition is always true: ∀v ∈ S(∀s ∈ S(¬s.cnt(v))).

Notice that, in a discrete vector model after splitting a segment s the resulting segments
s1 and s2 are usually not collinear due to the involved approximations, except for some
statistically rare cases. Since the presence of collinear segments complicates some predi-
cate definitions and in general requires to transform all tests between two segments into
tests between a segment and a set of segments without really affecting the contribution,
in this paper the vector model does not consider the presence of collinear segments in the
representation of a geometry.

Rule 2 (IR2: Segment-Segment) All intersections between two segments s1 and s2 have to
be represented by splitting them through the insertion of a new common vertex, which has
to be represented only once or by means of several identical instances, namely instances
that have bitwise identical coordinates. Therefore, after the rule IR2 has been applied, the
following condition is true: ∀s1 ∈ S(∀s2 ∈ S(¬s1.eq(s2) =⇒ ¬s1.int(s2))).

Rule 3 (IR3: Vertex-Patch) All vertex-patch intersections must be represented by a vertex
v contained in the patch definition. Therefore, the patch representation has to be split in two

Fig. 3 Critical situations for vector predicates.

and the vertex v has to be inserted as a new start/end point of a new segment composing
one of the patch boundaries. Therefore, after the rule IR3 has been applied, the following
condition is true: ∀v ∈ S(∀p ∈ S(¬p.cnt(v))).

These rules are not sufficient alone to guarantee the robustness for all critical predi-
cates. In particular, in order to solve the situation highlighted in Problem 1-4 and given
Assumption 4 and 3, the following other rules are introduced.

Rule 4 (DR0: Vertex-Vertex) For all pairs of vertices v1 and v2 of S, the distance between
them is either zero or is greater than a Minimum Granted Distance (MGD): ∀v1 ∈ S(∀v2 ∈
S(v1.dist(v2) = 0 ∨ v1.dist(v2) > MGD)).

Rule 5 (DR1: Vertex-Segment) For all vertices v and for all segments s of S, the distance
between them is either zero or is greater than MGD: ∀v ∈ S(∀s ∈ S(s.dist(v) = 0 ∨
s.dist(v) > MGD)).

Rule 6 (DR2: Segment-Segment) For all pairs of distinct segments s1 and s2 of S, the
distance between them is either zero or is greater than MGD: ∀s1 ∈ S(∀s2 ∈ S(s1.dist(s2) =
0 ∨ s2.dist(s2) > MGD)).

Rule 7 (DR3: Vertex-Patch) For all vertices v (representing isolated points or segment end
points) and for all patches p of S, the distance between them is either zero or is greater than
MGD: ∀v ∈ S(∀p ∈ S(p.dist(v) = 0 ∨ p.dist(v) > MGD)).

Considering Assumption 2, 3 and 8, MGD should be always be always greater than
2 × PB + TD + T, since we need to guarantee a distance TD + T between two geometries
even if each of them moves towards the other by PB.

Notice that in 2D space DR2 is implied by DR1 and that the minimum granted distance
between patches and segments is implied by DR2 and DR3.

Theorem 1 (Robustness of critical vector predicates) Given Assumption 1, 3 and 4 the ne-
cessary and sufficient rules to be applied on dastasets in the source system (S) in order to
guarantee the robustness evaluation of the critical vector predicates in the destination sys-
tem (D) are those shown in Table 1. Notice that for the mentioned assumptions, when IR1,
IR2 and IR3 are applied on S, predicates s.cnt(v), s1.int(s2) and p.cnt(v) are always false.

Proof v1.eq(v2) Considering the first row, DR0 is a sufficient condition for the robustness
of v1.eq(v2). If v1.eq(v2) is true in S, then Assumption 1 preserves the truth of the predicate;
while, if v1.eq(v2) is false, then given Assumption 1 and Assumption 4, DR0 guarantees that

Table 1 Robustness conditions for critical vector predicates

Predicate in 2D space in 3D space

v1.eq(v2) DR0 DR0

s.cnt(v) IR1 + DR1 IR1 + DR1

s1.int(s2) IR1 + DR1 IR1 + IR2 + DR2

p.cnt(v) IR1 + DR1 IR1 + IR3 + DR3

p.int(s) NA IR1 + IR2 + IR3 + DR2 + DR3

p1.int(p2) NA IR1 + IR2 + IR3 + DR2 + DR3

two distinct vertices remain distinct. Regarding the necessity of DR0, observe that without
it a false v1.eq(v2) can become true after a perturbation due to data transfer.

s.cnt(v) Considering the second row, IR1+DR1 are sufficient conditions for the robust-
ness of s.cnt(v). If s.cnt(v) is true, IR1 has not been applied correctly, hence after its
application this case cannot occur. Conversely, if s.cnt(v) is false, then either v is an end
point of s or v is disjoint from s. In the first case, given Assumption 1, IR1 is sufficient for
preserving in data transfer the identity between a vertex and a segment end point, which pre-
serves the falsity of f (s).cnt(f (v)) avoiding the vertex to move into the segment interior.
In the second case, given Assumption 8 and Assumption 5, DR1 is sufficient for preserving
the spatial disjunction among a vertex and a segment interior, which preserves the falsity of
f (s).cnt(f (v)). Regarding the necessity of IR1 (DR1), observe that without IR1 (DR1) the
first (second) case described above cannot be robust.

s1.int(s2) Considering the third row, in 2D DR1 is sufficient to preserve s1.int(s2), if two
segments intersect, then the relative position of one segment end point with respect to the
other one is opposite (i.e., one end point is on the left, and the other one on the right of the
other segment); hence, given Assumption 8 and Assumption 5, after a data transfer DR1 pre-
serves the relative position of vertices with respect to segments and s1.int(s2) is preserved.
The same reasoning applies for two disjoint but very close segments. In addition, IR1 is
applied so that, given Assumption 1, it avoids that a s1.cnt(s2.start()) (or any of the other
possible containment between s1 interior and s2 end points) becomes a f (s1).int(f (s2)).
In 3D IR2 is also introduced in order to avoid that two crossing segments become disjoint,
and DR2 is introduced in place of DR1 since, given Assumption 6, it preserves the spatial
disjunction of segments, avoiding that two disjoint segments become interior crossing seg-
ments. Regarding the necessity of DR1 in 2D, observe that without it, due to Problem 3, the
relative positions of one segment end points with respect to the other segment can change
converting two crossing segments in two disjoint segments or vice versa; finally, without
IR1 a s1.cnt(s2.start()) (or other similar situations) can be transformed after data transfer
into a f (s1).int(f (s2)).

p.cnt(v) Considering the fourth row, in 2D if p.cnt(v) is true then the relative position
of v with respect to a segment of p boundary has to be preserved; DR1 is sufficient to
preserve this condition, since, given Assumption 8 and Assumption 5, after a data transfer
DR1 preserves the relative position of vertices with respect to segments. In addition, IR1 is
applied so that, given Assumption 1, it avoids that, given a segment s of p boundary such
that v.eq(s.start ()) (or v.eq(s.end())) becomes a f (p).cnt(f (v)). Finally, if p.dj(v), then
given Assumption 8 and Assumption 5, DR1 is sufficient for preserving the relative position
between a vertex and the segment of p boundary. Regarding the necessity of DR1 in 2D
we can observe that without DR1, due to Problem 3, the relative positions of a vertex with
respect to a segment of a patch boundary can change moving the vertex inside or outside
the patch; finally, without IR1 a v.eq(s.start()) (or v.eq(s.end())) can be transformed after
data transfer into a f (p).cnt(f (v)).

In 3D, IR1+IR3+DR3 are sufficient conditions for the robustness of p.cnt(v). In partic-
ular, if p.cnt(v) is true, then IR3 has not been applied correctly, hence after its application
this case cannot occur. Conversely, if p.cnt(v) is false then either v is an end point of some
segments of p boundary (indeed, IR1 excludes that v lies in the interior of some boundary
segments) or v is disjoint from p. In the first case, given Assumption 1, IR3 is sufficient
for preserving in data transfer the identity between a vertex and a segment end point, which
preserves the falsity of f (p).cnt(f (v)) avoiding the vertex to move into the patch interior.
In the second case, given Assumption 8 and Assumption 6, DR3 is sufficient for preserving

the spatial disjunction among a vertex and a patch interior, which preserves the falsity of
f (p).cnt(f (v)). In addition, IR1 is introduced so that, it avoids a vertex v to be contained
in one segment of the patch boundary; moreover, when v is equal to an internal vertex of
the patch, given Assumption 1, it avoids that f (p).cnt(f (v)) becomes true. Regarding the
necessity of IR3, observe that without it the first case described above cannot be robust. The
necessity of DR3 is justified by the second case; finally IR1 is necessary in order to avoid
that, due to Problem 3, an internal vertex of the patch moves inside it.

p.int(s) Considering the fifth row, in 3D IR1+IR2+IR3+DR2+DR3 are sufficient condi-
tions for the robustness of p.int(s). If p.int(s) is true, then the relative position of the end
points of s with respect to the patch p is opposite (i.e., one end point is above, and the other
one below the patch); hence, given Assumption 8 and Assumption 7, after a data exchange
DR3 preserves the relative position of vertices with respect to patches and p.int(s) is thus
preserved. Conversely, if p.int(s) is false, then the following cases are possible: (i) s is dis-
joint from p, or (ii) s interacts with segments of p boundary (sp). In the first case, given
Assumption 6 and Assumption 7, IR3+DR3+DR2 preserve disjointness, avoiding that an
end point v of s, such that p.cnt(v), crosses the p border (IR3); or an end point of s changes
its relative position w.r.t. p (DR3), or s changes its relative position w.r.t. a segment of p

boundary (DR2). In the second case, if s.int(sp) is true then, given Problem 4, a perturba-
tion might transform it into a f (p).int(f (s)); IR2 avoids the possibility of having this case.
Finally, IR1 avoids the possibility of having that sp.cnt(s.start()) (or sp.cnt(s.end())) is
true, thus the last possible case is that sp.start().equal(s.start()) (or any other combination
of start/end points) and this is preserved by IR1 and Assumption 1. Regarding the necessity
of the conditions, observe that without each of the listed rules, one of the above described
cases cannot be robust.

p1.int(p2) The proof for the sixth row is very similar to the previous one, since the
preservation of patch intersections requires the preservation of intersection between patch
boundary segments and patch interiors. The only case that has to be considered in addition is
the situation in which two patches are intersecting without requiring the intersection of any
patch boundary segments with other patch interior (see Fig. 4), in this case the preservation
of segments intersection is sufficient, and hence IR2 is required.

Before stating robustness rules for critical vector operations, let us remark that in this
context the required robustness for the operation v.dist (v0) is not that the distance between
two vertices is kept unmodified, but it is sufficient that: given two vertices v1 and v2 such
that v1.dist (v2) > 0, then f (v1).dist (f (v2)) > 0.

Fig. 4 Example of intersecting
patches without any interior and
boundary intersections.

Theorem 2 (Robustness of critical vector operations) Given Assumption 1-8, the necessary
and sufficient rules to be applied on datasets in the source system S in order to guarantee the
robustness of the critical vector operations evaluation on target system D are the following
ones: (i) for v.dist (v0) DR0 is required (ii) for s.ray(S0) DR1 is required.

Proof v.dist(v0) If DR0 is satisfied, then, given Assumption 3, a distance v1.dist (v2) > 0
cannot become equal to zero in D. Vice-versa, if the distance v1.dist (v2) > 0 becomes zero
in D then DR0 is violated, thus DR0 is also a necessary condition.

s.ray(S) Consider that this predicate is used to verify if a point (s.start ()) is inside or
outside a ring (S0), thus the alteration of the number of intersections between the ray and
the segments of S0 far from s.start () can only occur when two segments of S0 produce a
shape similar to a cusp so that in S system the cusp intersects the ray and in D system it
does not (or vice versa). Hence, the count is decreased (or increased) of two, which does
not change the inside/outside evaluation. Therefore, the only problem regards what happens
very near to s.start (), however, if DR1 guarantees the robustness of the relative position of
a vertex and a segment, then DR1 is sufficient to ensure the robustness of s.ray(S0). The
need comes directly from the fact that the only alteration of the s.ray(S0) result can occur
when s.start () crosses one segment of S0, which violates DR1.

3.2.2 Robustness Rules for Derived Critical Predicates

A derived critical predicate is a predicate which can be expressed in terms of other pred-
icates, at least one of which is critical. A derived critical predicate becomes robust if and
only if its constituent predicates become robust. Among all possible derived predicates, here
are considered the ones that are useful for the implementation of the topological relation
evaluations, which have been presented in Definition 4. In this section the conditions for
guaranteeing their robust evaluation are shown.

Lemma 1 (Robustness of derived critical vector predicates) Under the hypothesis of Theo-
rem 1 and Theorem 2, the derived vector predicates of Definition 4 become robust with the
application of the rules shown in Table 2 (second and third column for 2D and 3D space,
respectively).

Proof The derived vector predicates listed in the first column are defined in terms of basic
predicates listed in the fourth column (see Definition 3); hence according to Theorem 1 and
Theorem 2, the sufficient and necessary rules for guaranteeing their robustness derive from
the union of the rules that guarantee the robustness of the basic predicates that define them.

4 Robustness of topological relations evaluation

The previous section discussed the robustness of vector predicates and operations. The
obtained results are applied in this section for deriving the robustness of topological rela-
tions. Remember that, if no rules are introduced on discrete geometries representation,
vector predicates are all not robust.

The results are presented by showing, for each possible pair of geometric types, a
robustness matrix which specifies in each cell the required rules for guaranteeing a robust
evaluation. In particular, the necessary robustness rules are identified by means of a set of

Table 2 Robustness conditions for derived critical vector predicates. Terms DR10 (DR20) means that DR0
is implied by DR1 (DR2), and DR21 that DR1 is implied by DR2

Derived Predicate in 2D space in 3D space Basic Predicates

v.bel(V), V1 ∩ V2

V1 ∩ V2 �= ∅, s.eq(s0),

s.bel(S), ln1.eq(ln2) DR0 DR0 v.eq(v0)

pg1.eq(pg2) DR0 – v.eq(v0)

p.eq(p0), ps1.eq(ps2) – DR0 v.eq(v0)

s.ov(s0) IR1 + DR1 IR1 + DR1 s.cnt(v)

s.in(s0) IR1 + DR10 IR1 + DR10 v.eq(v0), s.cnt(v)

s.dj(s0) IR1 + DR10 IR1 + IR2 + DR20,1 v.eq(v0), s.cnt(v), s.int(s0)

p.ov(s) IR1 + DR10 IR1 + IR2 + IR3 + v.eq(v0), s.cnt(v), s.int(s0),

DR20,1 + DR3 p.cnt(v),

p.cnt(s), p.ov(p0), IR1 + DR10 IR1 + IR2 + IR3 + v.eq(v0), s.cnt(v), s.int(s0),

p.in(p0), p.int2(p0) DR20,1 + DR3 s.ray(S), p.cnt(v)

p.dj(s) IR1 + DR10 IR1 + IR2 + IR3 + v.eq(v0), s.cnt(v), s.int(s0),

DR20,1 + DR3 s.ray(S), p.cnt(v), p.int(s)

p1.dj(p2) IR1 + DR10 IR1 + IR2 + IR3 + v.eq(v0), s.cnt(v), s.int(s0),

DR20,1 + DR3 s.ray(S), p.cnt(v), p.int(p0)

predefined robustness levels, that are defined below. Basically, greater level number means
an increasing number of robustness rules to be applied.

Definition 6 (Robustness levels) Considering the results shown in Theorem 1 and
Lemma 1, the following robustness levels are introduced level R: no additional rules are nec-
essary to guarantee robustness; level 0: DR0 is required; level 1: IR1 and DR1 are required;
level 2: IR1, IR2 and DR2 are required; level 3: IR1, IR3 and DR3 are required; level 4:
IR1, IR2, IR3, DR2 and DR3 are required.

The following theorems present the robustness matrix for each combination of geometric
types in 2D and 3D space, respectively. Notice that different cells and different combina-
tions of types require different robustness rules. Moreover, the embedding space has also an
impact on this analysis. In the tables each matrix cell contains a 4-tuple (L0L1L2LT) rep-
resenting the robustness level that is required to implement the test dim(f (A)∩f (B)) = x,
where x ∈ {0, 1, 2, T }. In the 4-tuples the symbol F in position i is used to indicate that the
intersection producing the dimension i is always false.

Theorem 3 (2D Robustness matrices) Table 3 shows the robustness matrices for all the
possible combinations of geometric types in 2D space.

Proof The presented robustness matrices have been obtained by considering the expres-
sions presented in Proposition 1 for intersection evaluation in each matrix cell and the results
of Theorem 1, Theorem 2 and Lemma 1. In particular, for each combination of types a
matrix has been computed, and for each matrix cell the corresponding vector expression has
been analyzed and the critical basic or derived vector predicates contained in it have been
identified, then according to Theorem 1, Theorem 2 and Lemma 1 the maximum level of
robustness required by the identified critical predicates has been computed.

Table 3 Robustness matrices in 2D space

2D Point (PT) LineString (LN) Polygon (PL)

PT (pt, pt) (pt, ln) (pt, pg)⎡
⎢⎣

(0FF0) F (0FF0)

F F F

(0FF0) F T

⎤
⎥⎦

⎡
⎢⎣

(1FF1) (0FF0) (1FF1)

F F F

T (RFFR) T

⎤
⎥⎦

⎡
⎢⎣

(1FF1) (1FF1) (1FF1)

F F F

T T T

⎤
⎥⎦

LN (ln, pt) = (pt, ln)T (ln, ln) (ln, pg)⎡
⎢⎣

(1FF1) F T

(0FF0) F (RFFR)

(1FF1) F T

⎤
⎥⎦

⎡
⎢⎣

(11F1) (1FF1) (F1F1)

(1FF1) (0FF0) (1FF1)

(F1F1) (1FF1) T

⎤
⎥⎦

⎡
⎢⎣

(F1F1) (11F1) (F1F1)

(1FF1) (1FF1) (F1F1)

T (RFFR) T

⎤
⎥⎦

PL (pg, pt) = (pt, pg)T (pg, ln) = (ln, pg)T (pg, pg)⎡
⎢⎣

(1FF1) F T

(1FF1) F T

(1FF1) F T

⎤
⎥⎦

⎡
⎢⎣

(F1F1) (1FF1) T

(11F1) (1FF1) (F1F1)

(F1F1) (F1F1) T

⎤
⎥⎦

⎡
⎢⎣

(FF11) (F1F1) (FF11)

(F1F1) (11F1) (F1F1)

(F1F1) (F1F1) T

⎤
⎥⎦

Theorem 4 (3D Robustness Matrices) Table 4 shows the robustness matrices for all the
possible combinations of geometric types in 3D space.

Proof See proof of Theorem 3.

As an example of the application of these results to some topological relations of SFA
model we consider here the disjoint and touch relations, which can be defined using the
9-IM matrix as shown in the following definition.

Definition 7 (Disjoint and touches relations of SFA) The formal definition of each relation
is presented below together with the specification of the corresponding set of 9-intersection
matrices. Notice that the set of matrices can change with respect to the considered geometric
types. In particular, the following notation is used pt denotes a point, c denotes a curve, s

denotes a surface, while a, b are generic geometries.

– DJ: a.disjoint(b) ≡def a.PS() ∩ b.PS() = ∅
Rdj (pt, pt) = [FFT FFF T FT]
Rdj (pt, c/s) = [FFT FFF T ∗ T]
Rdj (c/s, pt) = Rdj (pt, c/s)T

Rdj (c/s, c/s) = [FFT FF ∗ T ∗ T]
– TC: a.touch(b) ≡def (I (a) ∩ I (b) = ∅) ∧ (a.PS() ∩ b.PS() �= ∅)

Rtc(pt, c/s) = [FT F FFF T T T]
Rtc(c/s, pt) = Rtc(pt, c/s)T

Rtc(c, s) = [F ∗ ∗ ∗ T ∗ T ∗ T] ∪ [FT ∗ ∗ ∗ ∗ T ∗ T] ∪ [F ∗ ∗ T ∗ ∗ T ∗ T]2

Rtc(s, c) = Rtc(c, s)
T

Rtc(c, c) = [F ∗ T ∗ T ∗ T ∗ T] ∪ [F ∗ T T ∗ ∗ T ∗ T] ∪ [FT T ∗ ∗ ∗ T ∗ T]
Rtc(s, s) = [F ∗ T ∗ T ∗ T ∗ T] ∪ [F ∗ T T ∗ ∗ T ∗ T]1 ∪ [FT T ∗ ∗ ∗ T ∗ T]2

2only in 3D spaces

Table 4 Robusness matrices in 3D space.

3D Point (PT) LineString (LN) PolyhedralSurface (PS)

PT (pt, pt) (pt, ln) (pt, ps)⎡
⎢⎣

(0FF0) F (0FF0)

F F F

(0FF0) F T

⎤
⎥⎦

⎡
⎢⎣

(1FF1) (0FF0) (1FF1)

F F F

T (RFFR) T

⎤
⎥⎦

⎡
⎢⎣

(3FF3) (1FF1) (3FF3)

F F F

T (RFFR) T

⎤
⎥⎦

LN (ln, pt) = (pt, ln)T (ln, ln) (ln, ps)⎡
⎢⎣

(1FF1) F T

(0FF0) F (RFFR)

(1FF1) F T

⎤
⎥⎦

⎡
⎢⎣

(21F2) (1FF1) (F2F2)

(1FF1) (0FF0) (1FF1)

(F2F2) (1FF1) T

⎤
⎥⎦

⎡
⎢⎣

(44F4) (21F2) (F4F4)

(3FF3) (1FF1) (3FF3)

T (F2F2) T

⎤
⎥⎦

PS (ps, pt) = (pt, ps)T (ps, ln) = (ln, ps)T (ps, ps)⎡
⎢⎣

(3FF3) F T

(1FF1) F (RFFR)

(3FF3) F T

⎤
⎥⎦

⎡
⎢⎣

(44F4) (3FF3) T

(21F1) (1FF1) (F2F2)

(F4F4) (3FF3) T

⎤
⎥⎦

⎡
⎢⎣

(4444) (44F4) (FF44)

(44F4) (21F2) (F4F4)

(FF44) (F4F4) T

⎤
⎥⎦

Table 5 and Table 6 show the minimum and maximum level of robustness for all the
intersection tests required by disjoint in 2D and 3D, respectively. Notice that, as expected,
the required robustness level changes according to the considered combination of geo-
metric types, e.g. a.DJ (b) has robustness level (0, 0) for the combination (pt, ln) in 2D,
while has (1, 1) for the combination (ln, pg) in the same space; and also according to
the embedding space, e.g. ln.DJ (ln) has robustness level (0, 1) in 2D, while has (1, 2)

in 3D.
Each table cell contains for a pair of geometric types t1, t2:

– The 9-intersection matrix of the relation using the following notation: (i) the matrix
cells that must be considered for testing the relation (necessary cells) are underlined;

Table 5 a.DJ(b) in 2D. The notation f (cx,y) means that the cell is a derived cell and its test can be avoided
since it is implied by the test of cx,y

2D Point (PT) LineString (LN) Polygon (PL)

PT Rdj(pt, pt)=[FFT FFT TFT] Rdj(pt, ln)=[FFT FFF T*T] Rdj(pt, pg)= [FFT FFF TTT]⎡
⎢⎣

0 F f (c1,1)

F F F

f (c1,1) F T

⎤
⎥⎦

⎡
⎢⎣

1 0 f (c1,1, c1,2)

F F F

T ∗ T

⎤
⎥⎦

⎡
⎢⎣

1 1 f (c1,1, c1,2)

F F F

T T T

⎤
⎥⎦

Robust. level = [0,0] Robust. level = [0,1] Robust. level = [1,1]

LN Rdj(ln, pt) = Rdj(pt, ln)T Rdj(ln, ln) =[FFT FF* T*T] Rdj(ln, pg) = [FFT FF* TTT]⎡
⎢⎣

1 1 f (c1,1)

1 0 ∗
f (c1,1) ∗ T

⎤
⎥⎦

⎡
⎢⎣

1 1 f (c1,1, c1,2)

1 1 ∗
T f (c1,2) T

⎤
⎥⎦

Robust. level = [0,1] Robust. level = [0,1] Robust. level = [1,1]

PL Rdj(pg, pt) = Rdj(pt, pg)T Rdj(pg, ln) = Rdj(ln, pg)T Rdj(pg, pg) =[FFT FFT TTT]⎡
⎢⎣

1 f (c1,1) f (c1,1)

f (c1,1) 1 f (c1,1)

f (c1,1) f (c1,1) T

⎤
⎥⎦

Robust. level = [1,1] Robust. level = [1,1] Robust. level = [1,1]

Table 6 a.DJ(b) in 3D. The notation f (cx,y) means that the cell is a derived cell and its test can be avoided
since it is implied by the test of cx,y .

3D Point (PT) LineString (LN) PolyhedralSurface (PS)

PT Same as 2D Same as 2D Rdj(pt, ps)= [FFT FFF T*T]⎡
⎢⎣

3 1 f (c1,1, c1,2)

F F F

T ∗ T

⎤
⎥⎦

Robust. level = [0,0] Robust. level = [0,1] Robust. level = [1,3]

LN Same as 2D Rdj(ln, ln) =[FFT FF* T*T] Rdj(ln, ps) =[FFT FF* TTT]⎡
⎢⎣

2 1 f (c1,1)

1 0 ∗
f (c1,1) ∗ T

⎤
⎥⎦

⎡
⎢⎣

4 2 f (c1,1)

3 1 ∗
T ∗ T

⎤
⎥⎦

Robust. level = [0,1] Robust. level = [1,2] Robust. level = [1,4]

PS Rdj(ps, pt) = Rdj(pt, ps)T Rdj(ps, ln) = Rdj(ln, ps)T Rdj(ps, ps) =[FFT FF* T*T]⎡
⎢⎣

4 4 f (c1,1)

4 2 ∗
f (c1,1) ∗ T

⎤
⎥⎦

Robust. level = [1,3] Robust. level = [1,4] Robust. level = [2,4]

(ii) the cells in bold are not to be considered, since their value is fixed for the considered
geometric types; (iii) finally, the cells in italics are functions of the necessary ones
(derived cells).

– The 9-intersection matrix of the relation showing in each necessary cell its robustness
level, and for each derived cell the cells from which they depend.

– The robustness level of the relation is described by specifying the minimum and
maximum level of robustness of the tests regarding necessary cells.

As a further example, Appendix C considers the robustness behavior the relation
Touches. In particular, Table 26 and Table 27 show the minimum and maximum level of
robustness required for all intersection tests.

In the following section topological relations in (IN), contains (CT), equals (EQ),
overlap (OV), and cross (CR) are used in addition to the DJ and TC, in order to discuss
the presented experiments. The assumed semantics for these relations is the one presented
in [13].

5 Experimental results

This section describes the results of some experiments performed with the aim to con-
firm the effectiveness of the robustness rules defined in Section 3.2. In particular, we want
to show that different rules are required according to: (i) the considered topological rela-
tion, (ii) the types of the geometries and (iii) the space in which geometries are embedded.
Each experiment evaluates the topological relations existing between the geometries of two
datasets having EPSG:32632 WGS84/UTM Zone 32N coordinates; the considered cases
are: (i) Points and LineStrings in 2D; (ii) Polygons and Polygons in 2D; (iii) LineStrings and
LineStrings in 3D; (iv) Points and PolyhedralSurfaces in 3D.

In all experiments, first the topological relations among each pair of datasets have been
computed without any manipulation. Then, the coordinates of the geometries have been
rounded using a grid of different granularities ranging from 10−6 to 10−1, in order to sim-
ulate a data perturbation, and the relations have been evaluated again. Only the results
regarding DJ and TC are reported since only these two relations have been analyzed in the
previous section.

The experiment results are reported in tables which show the number of relation changes
and the number of violations of the robustness rules which are required according to the
theorems of the previous sections. Remember that the DRx violations are always computed
on the original geometries with an increasing value of MGD. In all tables the number of
rules violations are always greater than the number of relation changes; this is in accordance
with the fact that a relation change always requires a rule violation and not vice versa, since
a lack in robustness does not necessarily imply a relation change. When available, we have
used in the experiments real datasets produced by different providers, since the production
processes might have had an impact on dataset robustness.

Points and LineStrings in 2D

The following four datasets containing Points and LineStrings in 2D space, produced by
different subjects, have been considered:

– Road Elements (REnorth) and Road Junctions (RJnorth) of a town of Northen Italy:
containing 3851 and 2856 geometries, respectively.

– Road Elements (REcent) and Road Junctions (RJcent) of a village in Central Italy:
containing 7458 and 2401 geometries, respectively.

The computed relations are: DJ, TC and IN. Remember that the DJ relation on types
(pt,ln) in 2D space has a robustness level 1 (see Table 5), which requires that IR1 and
DR1 rules are satisfied by robust datasets; the TC relation in the same case has a robust-
ness level 0 (see Table 26 in Appendix C), thus only DR0 has to be satisfied for obtaining
robustness.

The results of the experiments are shown in Table 7, where the number of changes for
TC and DJ relations after data perturbations of different sizes are reported (we consider
both the gained and the lost TC/DJ relations). The results regard both the north and cent

datasets and also the violations of the DR0 and DR1 rules in both datasets are shown in the
last columns. There are no violations of IR1 in both datasets.

The results of this experiment are consistent with the assumptions and the robustness
rules presented in the previous section, since:

– no TC relations are lost after perturbations: this is consistent with Assumption 1 that
preserving coordinate equality preserves existing TC relations between Points and
LineStrings;

– some new TC relations have been produced in this experiment for perturbations of size
10−2 and 10−1 and some DR0 violations are detected: this is consistent with Theorem
3 and Definition 7, since DR0 is required by the robustness rule of TC to avoid that a
different relation becomes a TC relation;

– no IR1 violations are observed in both datasets, no new DJ relations are generated by
perturbations, while many of them are lost due to DR0 and DR1 violations: this is
consistent with Theorem 3 and Definition 7.

Table 7 Number of relation changes between pairs of geometries computed by the query REx ��Q RJx

(where Q = RE.MBR ∩ RJ.MBR �= ∅). The cardinality of the result is 8651 (6596) pairs for x=north
(x=cent). First column contains the simulated perturbation PB, in the next columns the number of changes
w.r.t. no rounded datasets regarding relation TC and relation DJ are reported and the last two columns report
violations of DR0 and DR1 considering MGD = 2 × PB. For DR0 in brackets the number of violations
between a junction and a point of a road element boundary are reported

TC changes # DJ changes # violations of rules

IN → TC DJ → TC DJ → IN DR0 DR1

(DR0 boundary)

PB north cent north cent north cent north cent north cent

10−6 0 0 16 3 0 0 42(42) 3(3) 54 3

10−5 0 0 48 3 1 0 55(55) 3(3) 112 3

10−4 0 0 76 3 0 0 330(330) 5(5) 693 5

10−3 0 0 2255 5 2 0 2297(2291) 5(5) 2339 6

10−2 0 1 2089 8 2 0 2301(2293) 14(14) 2344 16

10−1 0 2 2282 15 4 0 2346(2312) 37(35) 2382 40

Further observations on this experiment are: (i) more relation changes are observed on the
north than on the cent datasets, and accordingly the number of violations of DR0 and DR1
is higher for north than cent datasets. (ii) Since this experiment regards points and vertices
of LineStrings, each violation of DR0 always produces at least one violation of DR1. Indeed,
the number of observed DR1 violations is higher than the number of DR0 violations.
Polygons in 2D
The following four datasets containing polygons have been considered:

– Road Areas (RAnorth) and Vehicular Areas (VAnorth) of a town of Northen Italy:
containing 2955 and 5860 geometries respectively.

– Road Areas (RAcent) and Vehicular Areas (VAcent) of a village in Central Italy:
containing 436 and 1769 geometries, respectively.

The same process described before has been performed also on these datasets. The com-
puted relations are: DJ, TC, OV, CT and IN. Remember that we focus on the DJ and TC
relations, which on types (pg, pg) in 2D space have both a robustness level 1 (see Table 5
and Table 26 in Appendix C), which requires that IR1 and DR1 have to be satisfied by
robust datasets. The results of this experiment are reported in Table 8, where columns are
organized as described in the previous experiment, but in this case only the violations of
DR1 are reported. Moreover, there are 68 violations of IR1 in the north datasets and no
violation in the cent datasets, which are not shown in the table since identity rules do not
depend on the considered MGD.

The results are consistent with the system assumptions and robustness rules presented in
the previous sections, in particular:

– The changes of TC into OV relations in the north datasets indicate a lack of robustness
that has been detected by the violations of IR1 and DR1 rules, that were required by
TC relation according to Theorem 3 and Definition 7.

– The great number of changes of DJ into TC or OV relations in the north datasets again
indicates a lack of robustness that is certified by the high number of DR1 violations,
indeed DR1 is required for DJ robustness according to Theorem 3 and Definition 7.

Table 8 Number of relation changes between pairs of geometries computed by the query RAx ��Q VAx

(where Q = RA.MBR ∩ VA.MBR �= ∅). The cardinality of the result is 20667 (5885) pairs for x=north
(x=cent). Columns are organized as in Table 7. The last two columns report violations of DR1 considering
MGD = 2 × PB.

TC changes # DJ changes # violations

TC → OV OV → TC DJ → TC DJ → OV OV → DJ of DR1

CT → TC

PB north cent north cent north cent north cent north cent north cent

10−6 139 0 4361 0 2346 0 81 0 32 0 358200 0

10−5 111 0 5484 0 2639 0 32 0 4 0 359066 0

10−4 114 0 5552 0 2663 0 22 0 5 0 359844 8

10−3 119 0 5555 0 2658 0 25 0 2 0 363126 16

10−2 101 0 5529 1 2634 0 32 0 6 0 366124 2340

10−1 99 1 5545 2 2632 0 29 0 1 0 391114 12518

– The significant number of DR1 violations in cent datasets for a perturbation of 10−1

does not produce changes in DJ relations, which means that although cent datasets are
not robust no change in TC or DJ relations occurs (in the experiments we registered
some changes of OV relations).

– The only case of TC change in cent dataset for a perturbation of 10−1 is due to a
violation of DR1, that after the perturbation has not modified the touching segments
but has produced a cross of a polygon boundary by another vertex, thus transforming
the TC in an OV relation.

– As in the previous experiment, the DJ relation changes more frequently than the TC re-
lation and changes are more frequent in the north than in the cent datasets. Accordingly
to this behavior, the number of DR1 violations is higher in north than cent datasets.

LineStrings in 3D
In order to test the rules also in the 3D space, we have considered the datasets of road
elements, which contain 3D LineStrings, and we have computed the relations among them
in 3D. The computed relations are: DJ, TC and CR. The DJ and TC relations on types (ln, ln)
in 3D space have both a robustness level 2 (see Table 6 and Table 27 in Appendix C), thus IR1,
IR2 and DR2 have to be satisfied for obtaining robustness. Results are reported in Table 9,
where columns are organized as described in the previous experiment, but in this case only
the violations of DR2 are reported. There are no violations of IR1 and IR2 in both datasets.

The results are consistent with the system assumptions and robustness rules presented in
the previous sections, in particular:

– In 3D space both DJ and TC relations change only with perturbations greater than 10−4

for cent and 10−3 for north datasets. As highlighted in previous experiments, also in
this case we observe a greater robustness of existing TC relations w.r.t. existing DJ
relation in both datasets.

– Also the number of DR2 violations is consistent, according to Theorem 4 and Definition
7, with the observed relation changes and shows that north and cent datasets are robust
for DJ and TC relations in case of perturbations of 10−4 and 10−3, respectively.

Points and Polyhedral Surfaces in 3D
Finally, a test on some synthetic datasets has been performed in order to test the robustness
rules between points and polyhedral surfaces in the 3D space. Datasets of two cardinalities

Table 9 Number of relation changes between pairs of geometries computed by the query REx ��Q REx

(where Q = RE.MBR ∩ RE.MBR �= ∅). The cardinality of the result is 9612 (12632) pairs for x = north

(x = cent). Columns are organized as in Table 7. The last two columns report violations of DR2 considering
MGD = 2 × PB.

TC changes # DJ changes # violations of

TC → DJ TC → CR DJ → TC DJ → CR DR2

PB north cent north cent north cent north cent north cent

10−6 0 0 0 0 0 0 0 0 0 4

10−5 0 0 0 0 0 0 0 0 0 6

10−4 0 0 0 0 0 4 0 0 0 26

10−3 0 0 0 0 0 10 0 0 376 28

10−2 0 0 0 0 442 13 0 0 1322 38

10−1 0 0 0 0 725 13 0 0 2202 74

have been considered: 5000 and 10000. The computed relations are: DJ, TC and IN. The DJ
and TC relations on types (pt, ps) in 3D space have a robustness level 3 (see Table 6) and
robustness level 1 (see Table 27 in Appendix C), respectively; thus IR1 and DR1 have to be
satisfied for obtaining robustness of TC relation and IR1, IR3 and DR3 for robustness of DJ
relation. Results are reported in Table 10, where columns are organized as described in the
previous experiment, but in this case the results regard both the 5K and the 10K datasets
and also the violations of DR1 and DR3 in both datasets are shown in the last columns.
There are 531 (1108) violations of IR1 and 246 (548) violation of IR3 in 5K (10K) datasets.

The results of this experiment are consistent with the system assumptions and robustness
rules presented in the previous sections, since:

• some changes of existing TC relations occurred and, according to Theorem 4 and Def-
inition 7, in this case they are consequences of the detected IR1 violations; indeed,
a higher number of IR1 violations w.r.t the number of TC relation changes was
produced;

Table 10 Number of relation changes between pairs of geometries computed by the query Pointsx ��Q

PSurfacex (where Q = Point.geometry ∩ PSurface.MBR �= ∅) and x represents the dataset cardinality
(x ∈ {5000, 10000}). The cardinality of the result is 6826741 (27497550) pairs for x = 5000 (x = 10000).
Columns are organized as in Table 7. The last two columns report violations of DR3 (DR1) considering
MGD = 2 × PB.

TC changes # DJ changes # violations

TC → DJ TC → IN DJ → TC DJ → IN IN → DJ of DR3

IN → TC (DR1)

PB 5K 10K 5K 10K 5K 10K 5K 10K 5K 10K 5K 10K

10−6 342 725 5 23 280 521 16 45 235 520 0(302) 1(608)

10−5 371 714 6 20 279 478 24 32 230 509 0(302) 1(608)

10−4 313 703 2 22 273 466 10 43 238 518 3(302) 8(608)

10−3 384 676 7 9 265 505 19 35 237 522 15(302) 72(608)

10−2 357 692 6 16 286 490 11 38 238 519 182(302) 753(608)

10−1 339 754 11 17 260 495 17 38 231 518 1708(302) 7141(608)

• for similar reasons, the new DJ relations produced by a change of IN relations are
consequences of the detected IR3 violations and all changes of existing DJ relations are
due to DR1 and DR3 violations.

As final test we considered five pairs of datasets containing randomly generated points
and polyhedral surfaces in the 3D space (each dataset having 1000 geometries). Such
datasets had been prepared so that IR1 and IR3 rules were always satisfied and DR1 and
DR3 rules were satisfied up to a perturbation of 10−1; we computed the relations between
points and surfaces, resulting in 1667 TC relations and 1058 DJ relations (only the pairs
with intersecting MBR were considered in the queries). Then, we simulated perturbations
from 10−6 to 10−1 and recomputed the relations between points and surfaces on rounded
geometries. No relation change was observed after any perturbation in any pair of datasets.

Overall, the experiment results highlight that different datasets have different behaviours
with respect to robustness in topological relation evaluation. In particular, datasets
〈REnorth, RJnorth〉 and 〈RAnorth, VAnorth〉 showed a bad behaviour, i.e. many relations
changed after perturbation, while 〈REcent, RJcent〉 and 〈RAcent, VAcent〉 showed a more robust
behaviour, indeed even after heavy perturbations only a few relations changed. Notice that
the higher robustness of cent datasets with respect to north ones is not visible during the
common display and navigation operations. Finally, we observe that in the 3D space the
synthetic datasets violate robustness rules even if they are randomly generated (only IR1
violations were somehow injected in the datasets), showing that the proposed rules are not
trivially satisfied by a spatial dataset.

6 Conclusion and future work

Evaluating topological relations in distributed environments with many datasets and many
systems that interoperate, such as an SDI, can be a tough task to perform. One reason of
this situation regards the quality of datasets, indeed when the quality of the processed data
is low, different results can be obtained in different systems regarding the computation of
topological relations among geometries. This issue is usually called robustness and the goal
of this paper is to guarantee the robust evaluation of topological relations among different
systems. In particular, the considered context has been illustrated by means of (i) a reference
vector model for representing geometries of the Simple Feature Access model extended to
the 3D space (i.e. including polyhedral surfaces); (ii) a set of basic predicates on vector
geometries, that can be critical with respect in system evaluations; (iii) a set of problem
definitions and assumptions on systems behaviour.

Given such context, the following results have been formally derived: (i) a set of expres-
sions for testing the conditions of the 9-intersection matrix cells [7] in terms of vector pre-
dicates; (ii) a set of rules that guarantee the robustness of evaluation for the basic critical
predicates; (iii) a set of rules that guarantees the robustness evaluation of topological relation
defined with the 9-intersection matrix, with respect to the embedding space (2D or 3D) and
involved geometric types. Finally, the results of some experiments on real datasets have also
been presented, in order to show the effectiveness of the proposed approach in characteriz-
ing the robustness of spatial datasets with respect to topological relation evaluations.

Future work includes the definition of algorithms for rectifying geometries in spatial
datasets in order to (i) preserve as much as possible the existing topological relations and (ii)
satisfy the proposed rules for guaranteeing robustness in topological relations evaluation.
Moreover, the study will be extended to 3D volume type.

Appendix A: Derived vector predicates and operations

This section presents the semantics of derived vector predicates and derived operations
introduced in Section 2.1.

Table 11 Expressions for derived operations and predicates regarding vertices. In the table symbols v,
v1, . . . , vn denote a vertex, while V , V1, V2 are sets of vertices.

Signature Derivation expression Dependency

boolean v.bel(V) v.eq(v1) ∨ · · · ∨ v.eq(vn) v.eq(v0)

set(vertex) V1 ∩ V2 {v | ∃v1 ∈ V1 : v.eq(v1) ∧ ∃v2 ∈ V2 : v.eq(v2)} v.eq(v0)

boolean V1 ∩ V2 �= ∅ ∃v1 ∈ V1(∃v2 ∈ V2(v1.eq(v2))) v.eq(v0)

Table 12 Expressions for derived operations and predicates regarding segments. In the table symbols s,
s0, s1, . . . , sn denote a segment, while S is a set of segments.

Signature Derivation expression Dependency

set(vertex) s.bnd() {s.start(), s.end()} s.start(), s.end()

boolean s1.eq(s2) (s1.start().eq(s2.start()) ∧ s1.end().eq(s2.end())) ∨ v.eq(v0)

(s1.start().eq(s2.end()) ∧ s1.end().eq(s2.start()))
boolean s.bel(S) ∃si ∈ S(s.eq(si)) v.eq(v0)

boolean s1.in(s2) (s1.start().eq(s2.start()) ∧ s2.cnt(s1.end())) ∨ v.eq(v0), s.cnt(v)

(s1.start().eq(s2.end()) ∧ s2.cnt(s1.end())) ∨ s.start(), s.end()

(s1.end().eq(s2.start()) ∧ s2.cnt(s1.start())) ∨
(s1.start().eq(s2.end()) ∧ s2.cnt(s1.end())) ∨
(s2.cnt(s1.start()) ∧ s2.cnt(s1.end()))

boolean s1.ov(s2) (s1.cnt(s2.start()) ∧ s2.cnt(s1.end())) ∨ s.cnt(v)

(s1.cnt(s2.start()) ∧ s2.cnt(s1.start())) ∨ s.start (), s.end()

(s1.cnt(s2.end()) ∧ s2.cnt(s1.end())) ∨
(s1.cnt(s2.end()) ∧ s2.cnt(s1.start()))

boolean s1.dj(s2) ¬s1.int(s2) ∧ ¬s1.ov(s2)∧ v.eq(v0), s.cnt(v)

¬s1.in(s2) ∧ ¬s1.eq(s2) ∧ ¬s2.in(s1) s.int(s0)

set(segments) s.diff(S) = {si | si .in(s) ∧ ∀sj ∈ S(si .dj(sj))} ∧ v.eq(v0), s.cnt(v)

s.diff(S) S ∪ s.diff(S) = S ∪ {s} s.int(s)

Notice that the operation s.diff(S) produces a result only if the set S contains some seg-
ments that overlap s, otherwise the result is always the empty geometry, since the second
condition is not satisfied.

Fig. 5 Examples of possible
cases that make true the predicate
p.cnt(s). Notice that segments sA
and sB do not satisfy the
predicate p.cntint (), while all the
other segments do.

Table 13 Expressions for derived operations and predicates regarding patches. In the table symbols p, pi

denote patches, s, si denote a segment, S is a set of segments, while v, vi denote a vertex.

Signature Derivation expression Dependency

set(vertex) p.ver()
⋃

s∈p.bnd() s.bnd() p.bnd(), s.start(), s.end()

boolean p.cntint(s) ∀v ∈ s.bnd()(p.cnt(v) ∨ s.start(), s.end()

∃si ∈ p.bnd()(si .cnt(v) ∨ s.cnt(v), p.cnt(v)

v.bel(si .bnd()))) ∧ s.int(s0), s.ray(S)

∀sp ∈ p.bnd()(¬s.int(sp) ∧ ¬s.ov(sp)) ∧ v.eq(v0)

(s.ray(p.bnd()) mod 2) = 1

set(segments) {sp | sp ∈ p.bnd() ∧ (sp.ov(s) ∨ sp.in(s))} p.bnd(), s.start (),

p.bndov(s) s.end(), s.cnt(v),

v.eq(v0)

boolean p.cnt(s) p.cntint(s) ∨ ∃sp ∈ p.bnd()(sp.ov(s)) ∧ p.bnd(), p.cnt(v),

∀sj ∈ (s.diff(p.bndov(s)))(p.cntint(sj)) s.start(), s.end(),

s.cnt(v), s.int(s0),

s.ray(S), v.eq(v0)

boolean p.ov(s) (∃v ∈ s.bnd()(p.cnt(v) ∨ v.bel(p.ver()) ∨ p.bnd(), p.cnt(v),

∃sp ∈ p.bnd()(sp.cnt(v))) ∧ s.start(), s.end(),

(∃s1 ∈ p.bnd()(s1.int(s)) ∨ s.int(s0), s.cnt(v),

∃vi ∈ p.ver()(s.cnt(vi) ∧ v.eq(v0)

¬∃s2 ∈ p.bnd()(vi .bel(s2.bnd()) ∧
(s2.ov(s) ∨ s2.in(s))))))

∨ (∃s1 ∈ p.bnd()(s1.int(s)) ∧
∃s2 ∈ p.bnd()(¬s2.eq(s1) ∧ s2.int(s)))

∨ (∃vi ∈ p.ver()(s.cnt(vi)) ∧
¬∃s2 ∈ p.bnd()(vi .bel(s2.bnd()) ∧

(s2.ov(s) ∨ s2.in(s))) ∧
∃vj ∈ p.ver()(¬vi .eq(vj) ∧ s.cnt(vj) ∧

¬∃s2 ∈ p.bnd()(vj .bel(s2.bnd()) ∧
(s2.ov(s) ∧ s2.in(s)))))

boolean p.dj(s) ¬p.int(s) ∧ ¬p.cnt(s) ∧ ¬p.ov(s) p.int(s), p.bnd()

p.cnt(v), s.ray(S),

s.start(), s.end(),

s.int(s0), s.cnt(v),

v.eq(v0)

boolean p1.eq(p2) ∀s1 ∈ p1.bnd()(∃s2 ∈ p2.bnd()(s1.eq(s2))) ∧ p.bnd(), v.eq(v0)

∀s2 ∈ p2.bnd()(∃s1 ∈ p1.bnd()(s2.eq(s1)))

boolean p1.int2(p2) (∃si ∈ p1.bnd()(p2.cnt(si) ∨ p2.ov(si)) ∧ the same as

∃sj ∈ p1.bnd()(¬sj .eq(si) ∧ p.cnt(s)

(p2.cnt(sj) ∨ p2.ov(sj))))

∨ (∃si ∈ p2.bnd()(p1.cnt(si) ∨ p1.ov(si)) ∧
∃sj ∈ p2.bnd()(¬sj .eq(si) ∧

(p1.cnt(sj) ∨ p1.ov(sj))))

Table 13 (continued)

Signature Derivation expression Dependency

boolean p1.in(p2) (∀s1 ∈ p1.bnd()(p2.cnt(s1) ∨ the same as

∃s2 ∈ p2.bnd()(s1.eq(s2) ∨ s1.in(s2)))) p.cnt(s)

∧ ¬p1.eq(p2)

boolean p1.dj(p2) ¬p1.int(p2) ∧ ¬p1.int2(p2) ∧ ¬p1.eq(p2) the same as

p.cnt(s)+ p1.int(p2)

boolean p1.ov(p2) p1.int2(p2) ∧ ¬p1.in(p2) ∧ ¬p2.in(p1) the same as

∧ ¬p1.eq(p2) p.cnt(s)

Table 14 Expressions for derived operations and predicates regarding linestrings (line), polygons (poly) and
polyhedral surfaces (psur). In the table the following notation is used: DR(line) = ln = {s1, . . . , sk} (k > 0),
DR(poly) = pg = {ring1, . . . , ringl} = {pat1, . . . , patl} (l > 1) and DR(psur) = ps = {p1, . . . , pm}
(m > 0), where si is a segment, pati is a patch, and pi is a polygon.

Signature Derivation expression

vertex ln.start() if ¬s1.start.eq(sk.end()) then s1.start() else ∅
vertex ln.end() if ¬s1.start.eq(sk.end()) then sk.end() else ∅
set(vertex) ln.bnd() if ¬s1.start.eq(sk.end()) then {s1.start(), sk.end()} else ∅
set(vertex) ln.intVer() {si .start() | si ∈ ln} \ ln.bnd()

boolean ln1.eq(ln2) ∀s1 ∈ ln1(∃s2 ∈ ln2(s1.eq(s2))) ∧
∀s2 ∈ ln2(∃s1 ∈ ln1(s2.eq(s1)))

linestring pg.extBnd() ring1

set(linestring) pg.intBnd() if |pg| > 1 then {ring2, . . . , ringl} else ∅
set(linestring) pg.bnd() {pg.extBnd()} ∪ pg.intBnd()

patch pg.extPat() pat1
set(patch) pg.intPat() {pat2, . . . , patl}
boolean pg1.eq(pg2) pg1.extBnd().eq(pg2.extBnd()) ∧

∀ln1 ∈ pg1.intBnd()(∃ln2 ∈ pg2.intBnd()(ln1.eq(ln2))) ∧
∀ln2 ∈ pg2.intBnd()(∃ln1 ∈ pg1.intBnd()(ln1.eq(ln2)))

set(segment) ps.bnd() {s | ∃!p ∈ ps(s.bel(p.bnd()))}
set(segment) ps.intSeg() {s | ∃p ∈ ps(s.bel(p.bnd()) ∧ ¬s.bel(ps.bnd()))}
set(segment) ps.intVer() {v | ∃p ∈ ps(∃s ∈ p.bnd()(v.bel(s.bnd()))) ∧

¬∃s′ ∈ ps.bnd()(v.bel(s′.bnd())))}
boolean ps1.in(ps2) ∀pi ∈ ps1(∃pj ∈ ps2(pi .eq(pj))

boolean ps1.eq(ps2) ps1.in(ps2) ∧ ps2.in(ps1)

Appendix B: Proof tables

This section reports the proof tables for Proposition 1. The following notation is used inside
such tables: pn, ln, pg, and ps represent the discrete representation in the vector model of
point, linestring, polygon and polyhedral surface, respectively. Similarly, v, s, and p denotes
a vertex, segment, and patch, respectively.

Table 15 Proof Interior-Interior Intersection (pt/∗)

Case Testing conditions Scene

(pt1/pt2) pt1.eq(pt2)

dim=0/T

(pt/ln) ∃s ∈ ln(s.cnt(pt)) ∨
dim=0/T pt.bel(ln.intVer())

(pt/pg) pg.extPat ().cnt (pt)∧
dim=0/T ¬∃p ∈ pt.intPat()(p.cnt(pt)

∨ pt.bel(p.ver())

∨ ∃s ∈ p.bnd()(s.cnt(pt)))

(pt/ps) ∃p ∈ ps(p.cnt(pt) ∨
dim=0/T pt.bel(ps.intVer()) ∨

∃s ∈ ps.intSeg()(s.cnt(pt)))

Table 16 Proof Interior-Interior intersection (ln/pg)

Case Testing conditions Scene

ln/pg ∃s ∈ ln(∃v ∈ s.bnd()(pg.extPat().cnt(v)∧
dim=1/T ¬∃p ∈ pg.intPat()(p.cnt(v)∨

∃s1 ∈ p.bnd(s1.cnt(v)) ∨ v.bel(p. ver()))

∃s ∈ ln(∃ln1 ∈ pg.bnd()(

∃s1 ∈ ln1(s.int(s1))))

∃s ∈ ln(pg.extPat().cnt(s)

¬∃p ∈ pg.intPat()(p.cnt(s)))

Table 17 Proof Interior-Interior intersection (ps/ps) dim=T – (only in 3D space).

Case Necessary conditions Scene

ps1/ps2

dim=T ∃p1 ∈ ps1(∃p2 ∈ ps2(p1.eq(p2) ∨ p1.int2(p2))) Table 22

∃s ∈ ps1.intSeg()(∃p ∈ ps2(

p.ov(s) ∨ p.cnt(s)))∨ Table 22

∃s ∈ ps2.intSeg()(∃p ∈ ps1(

p.ov(s) ∨ p.cnt(s)))

∃s1 ∈ ps1.intSeg()(∃s2 ∈ ps2.intSeg()(

s1.ov(s2) ∨ s1.int(s2) ∨ s2.in(s1) ∨ s1.eq(s2)∨ Table 22

s1.int(s2)))

∃v ∈ ps1.intVer()(∃p ∈ ps2(p.cnt(v)∨
∃s ∈ p.bnd()(s.cnt(v))))∨ Table 22

∃v ∈ ps2.intVer()(∃p ∈ ps1(p.cnt(v)∨
∃s ∈ p.bnd()(s.cnt(v))))

∃v1 ∈ ps1.intVer()(∃v2 ∈ ps2.intVer()(

v1.eq(v2))) Table 22

Table 18 Proof Interior-Interior Intersection (ln/ln) Notice that testing conditions are presented on several
rows: each row describes a disjunct which is a conjuction of a necessary condition and an additional one
(usually the last one is used to take into account the dimension requirement)

Case Necessary conditions Additional conditions Scene

ln1/ln2

dim=0 ln1.intVer()∩ ∀s1 ∈ ln1(∀s2 ∈ ln2(

ln2.intVer() �= ∅ s1.int(s2) ∨ s1.dj(s2)))

∃v ∈ ln1.intVer()(

∃s ∈ ln2(s.cnt(v))) ∨ ∀s1 ∈ ln1(∀s2 ∈ ln2(

∃v ∈ ln2.intVer()(s1.int(s2) ∨ s1.dj(s2)))

∃s ∈ ln1(s.cnt(v)))

∃s1 ∈ ln1(∃s2 ∈ ln2 ∀s1 ∈ ln1(∀s2 ∈ ln2(

(s1.in(s2))) s1.int(s2) ∨ s1.dj(s2)))

ln1/ln2 ∃s1 ∈ ln1(∃s2 ∈ ln2

dim=1 (s1.eq(s2) ∨ s1.in(s2)∨
s2.in(s1) ∨ s1.ov(s2)))

ln1/ln2 ln1.IntVer()∩
dim=T ln2.IntVer() �= ∅

∃v ∈ ln1.intVer()(

∃s ∈ ln2(s.cnt(v)))∨
∃v ∈ ln2.intVer()(

∃s ∈ ln1(s.cnt(v)))

∃s1 ∈ ln1(∃s2 ∈ ln2 the same scenes of the

(s1.eq(s2) ∨ s1.in(s2)∨ 3rd and 4th row.

s2.in(s1) ∨ s1.int(s2)∨
s1.ov(s2)))

Table 19 Proof Interior-Boundary intersection (pt/ln) and (ln/ln) –

Case Testing conditions Scene

pt/ln

dim=0/T pt.bel(ln.bnd())

ln1/ln2 ∃v ∈ ln2.bnd()(v.bel(ln1.intVer())∨
dim=0/T ∃s ∈ ln1(s.cnt(v)))

Table 20 Proof Interior-Interior Intersection (ln/ps) – (only in 3D space)

Case Necessary conditions Additional conditions Scene

ln/ps ∃s ∈ ln(∃p ∈ ps(∀s ∈ ln(∀p ∈ ps

dim = 0 p.int(s))∨ (p.int(s) ∨ p.dj(s)))∧
∃s1 ∈ ps.intSeg()(∀s ∈ ln(∀s1 ∈ ps.intSeg()

s.int(s1))∨ (s.dj(s1) ∨ s.int(s1)))

∃v1 ∈ ps.intVer()(

s.cnt(v1)))

∃v ∈ ln.intVer()(∀s ∈ ln(∀p ∈ ps

∃p ∈ ps(p.cnt(v))∨ (p.int(s) ∨ p.dj(s)))∧
∃s1 ∈ ps.intSeg()(∀s ∈ ln(∀s1 ∈ ps.intSeg()

s1.cnt(v))∨ (s.dj(s1) ∨ s.int(s1)))∧
∃v1 ∈ ps.intVer()(

v.eq(v1)))

ln/ps ∃s ∈ ln(∃p ∈ ps(

dim = 1 p.cnt(s) ∨ p.ov(s))∨
∃s1 ∈ ps.intSeg()(

s.ov(s1) ∨ s1.in(s)∨
s.eq(s1)))

ln/ps ∃s ∈ ln(∃p ∈ ps(¬p.dj(s))∨
dim=T ∃s1 ∈ ps.intSeg()(

s.ov(s1) ∨ s.in(s1)∨
s1.in(s) ∨ s.eq(s1) ∨ s.int(s1))∨

∃v1 ∈ ps.intVer()(s.cnt(v1)))

∃v ∈ ln.intVer()(

∃p ∈ ps(p.cnt(v))∨
∃s1 ∈ ps.intSeg()(

s1.cnt(v))∨
∃v1 ∈ ps.intVer()(

v.eq(v1)))

Table 21 Proof Interior-Interior Intersection (pg1/pg2) – (only in 2D space)

Case Testing conditions Scene

pg1/pg2

dim=2/T pg1.extPat().eq(pg2.exPat())

∃s ∈ pg1.bnd()((pg2.extP at ().ov(s)∨
pg2.extP at ().cnt(s))∧

¬∃p ∈ pg2.intPat()(p.cnt(s)))∨
∃s ∈ pg2.bnd()((pg1.extP at ().ov(s)∨

pg1.extP at ().cnt(s))∧
¬∃p ∈ pg1.intPat()(p.cnt(s)))

Table 22 Proof Interior-Interior intersection (ps1/ps2) dim=0/1/2 – (only in 3D space).

Case Necessary Additional Scene

conditions conditions

ps1/ps2 ∃v ∈ ps1.intVer()(∀p1 ∈ ps1(∀p2 ∈ ps2(

dim=0 v.bel(ps2.intVer())) p1.dj(p2)))

∃v ∈ ps1.intVer()(∀p1 ∈ ps1(∀p2 ∈ ps2(

∃p ∈ ps2(p.cnt(v)∨ p1.dj(p2)))

∃s ∈ p.bnd()(s.cnt(v))))∨
∃v ∈ ps2.intVer()(

∃p ∈ ps1(p.cnt(v)∨
∃s ∈ p.bnd()(s.cnt(v))))

∃s1 ∈ ps1.intSeg()(∀p1 ∈ ps1(∀p2 ∈ ps2(

∃s2 ∈ ps2.intSeg()(p1.dj(p2)))

s1.int(s2)))

ps1/ps2 ∃p1 ∈ ps1(∃p2 ∈ ps2(∀p1 ∈ ps1(∀p2 ∈ ps2(

dim=1 p1.int(p2))) p1.dj(p2) ∨ p1.int(p2)

∃s ∈ ps1.intSeg()(∀p1 ∈ ps1(∀p2 ∈ ps2(

∃p ∈ ps2(p.cnt(s)∨ p1.dj(p2) ∨ p1.int(p2)

p.ov(s)))∨
∃s ∈ ps2.intSeg()(

∃p ∈ ps1(p.cnt(s)∨
p.ov(s)))

∃s1 ∈ ps1.intSeg()(∀p1 ∈ ps1(∀p2 ∈ ps2(

∃s2 ∈ ps2.intSeg()(p1.dj(p2) ∨ p1.int(p2)

s1.ov(s2) ∨ s1.in(s2)∨
s1.eq(s2)))

ps1/ps2 ∃p1 ∈ ps1(∃p2 ∈ ps2(

dim=2 p1.eq(p2) ∨ p1.int2(p2)))

Table 23 Proof Interior-Exterior intersection (pt/ln), (pt/pg) and (pt/ps)

Case Testing conditions Scene

pt/ln ∀v ∈ ln.bnd()(¬pt.eq(v))∧
dim=0/T ∀vi ∈ ln.intVer()(¬pt.eq(vi))

∀s ∈ ln(¬s.cnt(v))

pt/pg (¬pg.extPat().cnt(pt)∧
dim=0/T ∃p ∈ pg.intPat()(p.cnt(pt)))∧

∀ln ∈ pg.bnd()(∀s ∈ ln(¬s.cnt(pt)∧
∀v ∈ s.bnd()(¬pt.eq(v)))

∀p ∈ ps(¬p.cnt (pt))∧
pt/ps ∀s ∈ ps.bnd()(¬s.cnt(pt)∧

dim=0/T ∀v ∈ s.bnd()(¬pt.eq(v)))

Table 24 Proof Interior-Exterior intersection (ln/ln), (ln/pg) and (ln/ps)

Case Additional conditions Scene

ln1/ln2 ∃s1 ∈ ln1(∀s2 ∈ ln2(s1.dj(s2)∨
dim=1/T s1.int(s2) ∨ s1.ov(s2) ∨ s2.in(s1)))

ln/pg ∃s ∈ ln(¬pg.extPat().cnt(s))∨
dim=1/T ∃s ∈ ln(∃p ∈ pg.intPat()(p.cnt(s)))∨

∃ln ∈ pg.bnd()(∃s1 ∈ ln(s.int(s1)))

ln/ps ∃s ∈ ln(∀p ∈ ps(

dim=1/T p.int(s) ∨ p.dj(s) ∨ p.ov(s))∧
¬∃s2 ∈ ps.intSeg()(s.in(s2) ∨ s.eq(s2)))

Table 25 Proof Interior-Exterior intersection (pg/pg) and (ps/ps)– Case C.3.11 and C.3.16.

Case Additional conditions Scene

pg1/pg2 ∃s ∈ pg1.extPat().bnd()(

dim=2/T (¬pg2.extPat().cnt(s)∨
(pg2.extPat().cnt(s)∧
∃p ∈ pg2.intPat()(p.ov(s) ∨ p.cnt(s)))))

ps1/ps2 ∃p1 ∈ ps1(∀p2 ∈ ps2(p1.dj(p2)∨
dim=2/T p1.ov(p2) ∨ p1.int(p2)))

Appendix C: Robustness levels of the relation Touches

This section analyses the robustness behaviour of the relation Touches. Tables 26 and 27
shows the minimum and maximum level of robustness required for all intersection tests.
The notation f (cxy) means that the cell is a derived cell and its test can be avoided since it
is implied by the test of cxy . The term RobLev stands for robustness level.

Table 26 Analysis of the robustness behavior of a.TC(b) in 2D

2D Point (PT) LineString (LS) Polygon (PL)

PT NA Rtc(pt, ln)= [FTF FFF TTT] Rtc(pt, pg)= [FTF FFF TTT]⎡
⎢⎣

f (c1,2) 0 f (c1,2)

F F F

T f (c1,2) T

⎤
⎥⎦

⎡
⎢⎣

f (c1,2) 1 f (c1,2)

F F F

T T T

⎤
⎥⎦

RobLev = [0,0] RobLev = [1,1]

LS Rtc(ln, pt) =

Rtc(pt, ln)T Rtc(ln, ln) = [F*T *T* T*T] Rtc(ln, pg) = [F** FT* T*T]⎡
⎢⎣

1 ∗ f (c1,1)

∗ 0 ∗
f (c1,1) ∗ T

⎤
⎥⎦

⎡
⎢⎣

1 ∗ ∗
f (c1,1) 1 ∗

T ∗ T

⎤
⎥⎦

Rtc(ln, ln) = [FTT *** T*T] Rtc(ln, lp) = [FT*F *** T*T]⎡
⎢⎣

1 1 f (c1,1)

∗ ∗ ∗
f (c1,1) ∗ T

⎤
⎥⎦

⎡
⎢⎣

1 1 ∗
f (c1,1) ∗ ∗

T ∗ T

⎤
⎥⎦

RobLev = [0,0] RobLev = [0,1] RobLev = [1,1]

Rtc(pg, pg) = [FFT FTT TTT]

PL Rtc(pg, pt) =

Rtc(pt, pg)T Rtc(pg, ln) = Rtc(ln, pg)T
⎡
⎢⎣

1 f (c1,1) f (c1,1)

f (c1,1) 1 f (c1,1)

f (c1,1) f (c1,1) T

⎤
⎥⎦

RobLev = [1,1] RobLev = [1,1] RobLev = [1,1]

Table 27 Analysis of the robustness behavior of a.TC(b) in 3D

3D Point (PT) LineString (LS) Polyhedral Surface (PS)

PT NA Same as 2D Same as 2D

RobLev = [0,0] RobLev = [1,1]

Rtc(ln, ln) = [FT * T*T*T] Rtc(ln, ps) = [F** *T* T*T]

LS SAme as 2D

⎡
⎢⎣

2 ∗ f (c1,1)

∗ 0 ∗
f (c1,1) ∗ T

⎤
⎥⎦

⎡
⎢⎣

4 ∗ ∗
∗ 1 ∗
T ∗ T

⎤
⎥⎦

Rtc(ln, ln) = [FTT *** T*T] Rtc(ln, ps) = [FT *** T*T]⎡
⎢⎣

2 1 f (c1,1)

∗ ∗ ∗
f (c1,1) ∗ T

⎤
⎥⎦

⎡
⎢⎣

4 2 ∗
∗ ∗ ∗
T ∗ T

⎤
⎥⎦

⎡
⎢⎣

4 ∗ ∗
3 ∗ ∗
T ∗ T

⎤
⎥⎦

RobLev = [0,0] RobLev = [0,2] RobLev = [1,4]

PS Rtc(ps, pt) =

Rtc(pt, ps)T Rtc(ps, ln) = Rdj(ln, ps)T Rtc(ps, ps) = [F*T *T* T*T]⎡
⎢⎣

4 ∗ f (c1,1)

∗ 2 ∗
f (c1,1) ∗ T

⎤
⎥⎦

Rtc(ps, ps) = [F*T T** T*T]⎡
⎢⎣

4 ∗ f (c1,1)

4 ∗ ∗
f (c1,1) ∗ T

⎤
⎥⎦

Rtc(ps, ps) = [FTT *** T*T]⎡
⎢⎣

4 4 f (c1,1)

∗ ∗ ∗
f (c1,1) ∗ T

⎤
⎥⎦

RobLev = [1,1] RobLev = [2,4] RobLev = [2,4]

References

1. Belussi A, Migliorini S, Negri M, Pelagatti G (2013) Evaluation of Topological Relations in a Discrete
Vector Model. Tech. Rep. RR 91/2013, Department of Computer Science. University of Verona

2. Chen L (2001) Exact Geometric Computation: Theory and Applications. Ph.D. thesis, New York
University, Department of Computer Science

3. Clementini E, Di Felice P (1995) A comparison of methods for representing topological relationships.
Inf Sci Appl 3(3):149–178

4. Clementini E, Felice PD (1993) A small set of formal topological relationships suitable for end-
user interaction Proceedings of the Third International Symposium on Advances in Spatial Databases.
Springer, pp 277–295

5. Coors V (2003) 3d-gis in networking environments. Comput Environ Urban Syst 27(4):345–357
6. Egenhofer MJ, Frank AU, Jackson JP (1990) A topological data model for spatial databases. Proceedings

of the 1st Symposium on Design and Implementation of Large Spatial Databases (SSD ’90), pp. 271–286
7. Egenhofer MJ, Franzosa R (1991) Point-set topological spatial relations. Int J Geogr Inf Syst 5(2):161–

174
8. Güting RH, Schneider M (1993) Realms: a foundation for spatial data types in database systems. Int.

Symp. on Advances in Spatial Databases, vol. 692, pp. 14–35
9. Halperin D. (2010) Controlled perturbation for certified geometric computing with fixed-precision arith-

metic Proceedings of the Third International Congress Conference on Mathematical Software, ICMS’10.
Springer, pp 92–95

10. Halperin D, Packer E (2002) Iterated snap rounding. Comput Geom Theory Appl 23(2):209–225
11. Hobby J (1999) Practical segment intersection with finite precision output. Comp. Geometry Theory and

App 13, Comp. Geometry Th. and App
12. Molenaar M (1990) A formal data structure for 3D vector maps. Proceedings of EGIS90, p. 770781
13. OGC OpenGIS Implementation Standard for Geographic Information – Simple Feature Access – Part 1:

Common Architecture (2011). Version 1.2.1.
14. Open Geospatial Consortium (2012) OGC Geography Markup Language (GML) – Extended Schema

and Encoding Rules, version 3.3.0. url=https://portal.opengeospatial.org/files/?artifact id=46568
15. Oracle Oracle Spatial User’s Guide and Reference 10g Release 2 (10.2) (2006)., url=http://docs.oracle.

com/cd/B19306 01/appdev.102/b14255.pdf
16. Pelagatti G, Negri M, Belussi A, Migliorini S (2009) From the conceptual design of spatial con-

straints to their implementation in real systems Proceedings of the 17th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems. ACM, New York, NY, pp 448–451

17. Pilouk M (1996) Integrated modelling for 3D GIS. Ph.D. thesis. ITC. The Netherlands
18. Praing R, Schneider M (2008) Efficient implementation techniques for topological predicates on

complex spatial objects. Geoinformatica 12(3):313–356
19. Randell DA, Cui Z, Cohn A (1992) A spatial logic based on regions and connection. Proceedings of the

Third International Conference on Principles of Knowledge Representation and Reasoning (KR’92), pp.
165–176. Morgan Kaufmann

20. Rodrı́guez MA, Brisaboa N, Meza J, Luaces MR (2010) Measuring consistency with respect to topologi-
cal dependency constraints Proceedings of the 18th SIGSPATIAL International Conference on Advances
in Geographic Information Systems, GIS ’10. ACM, New York, NY, pp 182–191

21. The Open Source Geospatial Foundation PostGIS 2.1 Manual (2013)., url=http://postgis.net/stuff/
postgis-2.1.pdf

22. Theobald DM (2001) Topology revisited: representing spatial relations. Int J Geogr Inf Sci 15(8):689–
705

23. Thompson RJ, van Oosterom P (2006) Interchange of spatial data-inhibiting factors. Proceeding of the
9th AGILE International Conference on Geographic Information Science

24. Zlatanova S (2000) 3D GIS for Urban Development. Ph.D. thesis. ITC – Faculty of Geo-Information
Science and Earth Observation. The Netherlands

https://portal.opengeospatial.org/files/?artifact_id=46568
http://docs.oracle.com/cd/B19306_01/appdev.102/b14255.pdf
http://docs.oracle.com/cd/B19306_01/appdev.102/b14255.pdf
http://postgis.net/stuff/postgis-2.1.pdf
http://postgis.net/stuff/postgis-2.1.pdf

Alberto Belussi received the Master degree in electronic engineering from the Politecnico di Milano in
1992 and the PhD degree in computer engineering from the same university in 1996. Since 1998 he has
been working at University of Verona (Italy), where from 2004 he is Associate Professor. His main research
interests include: conceptual modeling of spatial databases, geographical information systems, spatial data
integration and spatial query optimization.

Sara Migliorini received the Master degree in Computer Science from the Universit degli Studi di Verona
in 2007 and the PhD degree in computer science from the same university in 2012. From 2012 she is a post-
doc research associate at Universit degli Studi di Verona. Her main research interests include: geographic
information systems, scientific workflow systems and collaborative and distributed architectures.

Mauro Negri received the Degree in Electronics Engineering from the Politecnico di Milano (Italy) in 1979.
He has been a Research Assistant at the University of Brescia from 1986 to 1991. Since 1992 he is an Asso-
ciate Professor of Computer Science at the Electrical and Information Department (D.E.I.) of the Politecnico
di Milano. His currently research interests include conceptual modelling of spatial data, spatial database
design,GIS, geospatial interoperability architectures for the Public Administrations. He is author of several
articles on international journals and conference proceedings. He has been a member of WG1 of the Inte-
saGIS project and he has actively participated to the design of the conceptual model and of the conceptual
schema of the “National core” database of the Italian Spatial Data Infrastructure, published by CNIPA (Italian
National Authority for Informatics in the Public Administration)in 2006. He is a member of some projects
on spatial interoperability and topographic databases of regional and national government.

Giuseppe Pelagatti has received the doctoral degree in Electronic Engineering in 1973. Since 1986 he is
Full Professor of Computer Science at Politecnico of Milan (Italy). His main research interests are focused
on Distributed Database, Database and Information Systems Design, Object-Oriented Database Systems and
Geographical Information Systems (GIS).

	Impact of data representation rules on the robustnessof topological relation evaluation
	Abstract
	Introduction
	Robustness problems in the evaluation of topological relations
	An approach for determining the robustness rules required by topological relations
	Related Work

	Discrete vector model
	Discrete Vector Model Types
	Testing topological relations in the discrete vector model

	Robustness of vector predicates
	Assumptions on systems and implementations
	Robustness evaluation of vector predicates
	Robustness rules for basic critical predicates
	Robustness Rules for Derived Critical Predicates

	Robustness of topological relations evaluation
	Experimental results
	Conclusion and future work
	Appendix A: Derived vector predicates and operations
	Appendix B: Proof tables
	Appendix C: Robustness levels of the relation Touches
	References

