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Abstract 

This work aims to demonstrate the benefits and limitations of an on-board Guidance for reusable launch vehicles, as 

well as to tradeoff different Model Predictive Control (MPC)-based Guidance and Control (G&C) architectures, 

exploiting, in particular, recent advances on successive convexification algorithms for optimization problems. 

Leading space agencies and private companies are investing on the development of reusable space launchers to 

reduce the cost to access the space. Indeed, that cost is one of the major deterrents in space exploration and space 

utilization. Reusability is, therefore, the unanimous solution to lower costs, and get a reliable and fast space access. 

Among many technological enhancements, the guidance, navigation, and control plays a crucial role: precise 

pinpoint landing capabilities or mid-air recovery, in fact, are mandatory. Indeed, the capability for generating re-

optimized guidance trajectories on-board in real-time based on current flight conditions promises to improve the 

system performance, allows for fault tolerance capabilities, and reduces mission preparation costs. The work focuses 

especially on the implementation of a successive convexification Model Predictive Control guidance algorithm 

which solves the 6 Degree-of-Freedom (DoF) Powered Descent Guidance problem (PDG). The novelty of that work 

is applying a model predictive-based technique to a complex dynamic environment, trading off different solutions to 

the problem and relying on results obtained by using an industrial simulation framework. The robustness of the 

proposed approach is tested in several operative scenarios and the feasibility of real-time implementation is studied. 

For what concerns the trajectory optimization routine, the formulation of the problem, while initially being non-

convex, is convexified. This is performed by implementing a successive convexification algorithm, which obtains a 

sub-optimal solution of the original problem in a fraction of the time required by a global optimizer, by solving a 

Second Order Cone Programming (SOCP) problem. This method allows coping with different kinds of dynamics 

nonlinearities, as well as cost functions and constraints. By presenting the approach and critically discussing the 

obtained results, the work provides an overview of the different methodologies available in the literature and assesses 

the limits of those approaches when applied to highly nonlinear scenarios, with large dispersions of uncertain 

parameters, as it is the case of reusable launch vehicles. 

Keywords: Reusability, Successive Convexification, Reentry, Trajectory Optimization, MPC. 

Nomenclature 

Iteration 

Discrete time instant 

Number of discrete points 

Time of flight (or final time) 

Specific Impulse 

Gravity at sea level 

Ambient Pressure 

Area of the nozzle 

Thrust vector in Body Frame 

Aerodynamics force vector in Body Frame 

Rotation matrix from i to j 

Versor relative to i axis 

Minimum thrust 

Maximum thrust 

Glide-slope angle 

Tilt angle 

Angular velocity 

Angle of attack 

Gimbal angle 

Time dilatation coefficient 

Acronyms/Abbreviations 

VTVL  Vertical Takeoff Vertical Landing 

PDG  Powered Descent Guidance 

MPC  Model Predictive Control 

DoF    Degree of Freedom 

SOCP   Second Order Cone Programming 

SCvx  Successive Convexification 

FOH  First Order Hold 

ZOH  Zero Order Hold 

LTV   Linear Time Varying 

TVC    Thrust Vector Control 

STC     State-Triggered Constraints 

1. Introduction
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The capabilities of a precise soft-landing have 

multiple applications in several space missions, such 

as mining asteroids exploration, planetary 

explorations and reusable space launcher. In the last 

few years, reusable launch vehicles became one of the 

principal interests for leading space agencies and 

private companies, especially in what concerns the 

vertical takeoff vertical landing (VTVL).  Reusability 

of launch vehicles is, indeed, the solution to lower the 

costs for space access. A VTVL mission involves the 

recovery of the launch vehicle or a part of it (usually, 

but not necessarily, the first stage). To satisfy this 

demand, precise pin-point landing or mid-air recovery 

is mandatory. To answer this goal, the guidance, 

navigation and control plays a crucial role. One of the 

most challenging aspects of this problem is the 

development of an autonomous optimal guidance 

technology that allows the computation of 

reoptimized trajectory online in real-time, based on 

current flight conditions. Often, the trajectory of a 

launcher is performed by adopting an offline open-

loop guidance: the optimal trajectory problem is 

solved offline and during the flight a low-level 

control system follows a reference trajectory. Until 

recently, only this approach has been adopted due to 

the difficulty in solving trajectory planning problems 

in real-time without any human intervention and to 

execute complex iterative optimization algorithms 

reliably on resource-constrained embedded platforms, 

such as the ones available in a typical flight computer. 

Thanks to the continuous advancement in more 

efficient and higher performing computational 

platforms, combined with the availability of fast and 

reliable optimization codes and in novel mathematical 

formulations of the problem, the closed-loop online 

guidance starts to be appealing. Indeed, online closed-

loop guidance can improve the performance of the 

vehicle by recomputing the optimal trajectory from 

the knowledge of the current external conditions 

[1],[2],[3],[4]. This approach allows to cope with the 

uncertainties encountered during the entry, descent 

and landing phases. This increases the likelihood that 

the launch will land safely and at the desired site and 

enhances the probability of the success of the mission 

[5]. Recently developed real-time embedded MPC 

guidance and control strategies have a great potential 

for the next generation of high-performance reusable 

space launchers.  

This work focuses especially on the 

implementation of a successive convexification MPC-

based guidance algorithm which solves the 6 DoF 

PDG problem. This approach is applied to a complex 

dynamic environment, by testing its robustness and 

underlying the limitations, comparing two G&C 

strategies, based on simulations obtained within an 

industrial simulation framework. 

1.1 Organization 

       The organization of the paper is the following: 

Sec. 2 gives an overview of the successive 

convexification algorithm; Sec. 3 presents the 6DoF 

Powered Descent Guidance Problem; Sec. 4 

illustrates the G&C architectures proposed in this 

paper; Sec. 5 reports the evaluation of the 

performance; Sec. 6 underlines the conclusion of the 

work. 

2. Successive Convexification

In this section, a general overview of the

successive convexification algorithm is presented; in 

this paper, indeed, this tool has been used to 

convexify and to solve the 6-DoF PDG guidance 

problem.  

The successive convexification algorithm is a 

novel method to solve nonconvex optimal control 

problem with nonlinear dynamics and nonconvex 

state and control constraints. This method has been 

introduced firstly in [6], where the authors, after 

presenting the algorithm, perform the convergence 

analysis and demonstrate that the obtained solution of 

the convex subproblem will recover the optimality of 

the original nonconvex problem. One fundamental 

feature is that the algorithm can be initialized with a 

simple dynamically inconsistent guess solution. For 

the reasons stated previously and due to the fact that 

this algorithm has minimal requirements on the 

considered dynamical system, it can be applied to 

several real-world optimal control problems, such as 

autonomous landing of reusable launchers (as in this 

work and in [4] and [7]). 

The successive convexification algorithm 

computes the solution of the original problem by 

iteratively solving convex optimization subproblems, 

preferably formulated as SOCP: these are obtained 

through a linearization of the nonconvex dynamics 

and constraints on the previous iteration solution. The 

method involves adding virtual controls, dynamics 

relaxation and trust regions to avoid artificial 

infeasibility and artificial unboundedness, which 

drive the convergence. The user can specify the 

tolerances within which the original nonconvex 

problem is solved with local optimality [6],[8]. 

2.1 Linearization 

The first step in successive convexification is the 

linearization of the nonlinear dynamics, state and 

inputs constraints about the (i-1)th solution in order to 

eliminate the nonconvexities. The obtained convex 

subproblem is solved resulting in a new solution for 

the ith iteration. The process is reiterated in succession 

until convergence is accomplished and the optimality 

is restored. 
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A general optimization problem with dynamics 

constraints is described by: 

 (1)   

      The problem is linearized at each time instant 

about the previous iterative solution, though a first-

order Taylor approximation. The linearized 

subproblem is: 

 (2) 

                  

     X and U are convex set. The analytical expressions 

of the jacobian is reported in [9]. 

2.2 Discretization 

The linear-time variant (LTV) problem obtained 

in the previous section must be convert in a finite 

dimensional parameter optimization problem. The 

dynamics and the time are, therefore, discretized to K 

points. The time vector is divided in this way: 

  (3) 

       The discretization of the linear problem can be 

performed by using several discretization schemes, 

such as ZOH, FOH, Runge-Kutta methods or Global 

Pesudospectral methods. Ref. [10] provides a detailed 

overview of each of these methods. In this paper, the 

ZOH has been adopted for the discretization. In [9] 

the analytical expressions of the discretized state 

space solution of the time-varying system and the 

discretized input are reported.  

2.3 Trust Regions and Virtual Controls 

      The linearization of the nonlinearities can create 

two issues called artificial unboundedness and 

artificial infeasibility. The former is mitigated with 

the introduction of the trust regions constraints. In 

this paper, they are defined as quadratic inequality 

constraints and the penalization in the cost function of 

the trust region radius. The aim of these constraints is 

to define a region close to the previous iteration, in 

order to limit the deviation between two adjacent 

iterations. The inequality constraints are defined in 

this way: 

with 

 (4) 

      The artificial infeasibility is avoided by 

introducing the so-called virtual controls, which are 

additional control inputs and allow reaching each 

point of the solution domain, through dynamics 

relaxation: 

 (5) 

with ν ∈ ℝnx. Both trust regions and virtual

controls are penalized in the cost function. 

     (6) 

     Where wj are the weights and Sj
i are the norm of 

the trust region radius and the norm of ν. 

2.3 Initial Guess 

One of the important features of the successive 

convexification algorithm is that the process can be 

initialized with a simple dynamically inconsistent 

guess solution. 

The simplest initialization approach is to create a 

linear interpolation of the discrete state variables at 

each time instant among the initial and final 

conditions. The discrete input variables can be 

initialized by assuming a constant value for the whole 

simulation. It is worth to underline that whenever 

there are unknown variables a priori, they can be 

initialized with user-defined values with the foresight 

to satisfy the imposed constraints. 

The initial guess state and input variables solution at 

each time instant, are defined as: 

  (7)  

      The algorithm is not particularly sensitive to the 

initial guess, but, poor guesses may lead to increased 

convergence time [7]. 
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2.4 Algorithm 

Successive Convexification 

Initialization: 

• Compute the initial guess (i=0) xk
0 and uk

0;

• for k ∈ [1, K-1] linearize the problem around

x0 and u0:

      

and the terms related to the constraints 

• Set the maximum number of iterations and

the tolerance on the trust regions radius.

Successive Convexification Loop: 

• While (i < imax & ||Δi||2 ≥ Δtol)

1. Solve the problem in Eq. 2 with xk
i-1,

uk
i-1 and the matrices;

2. Store the new solution xk
i, uk

i, Δi, νk
i;

3. If i ≥ imax or ||Δi||2 < Δtol

Exit Loop

else

(a) Linearize the problem around the

new solution;

(b) Set i = i+1;

(c) Return to step 1;

end

         end 

The algorithm has been validated by applying the 

method to a nonlinear optimal control problem of 

which it is known the analytical solution [9],[11],[12]. 

3. 6 DoF Landing Problem

In this section, the 6-DoF formulation for a

generalized powered descent guidance problem is 

presented. The powered descent guidance problem is 

a trajectory optimization problem, in which the 

optimal control problem is solved by maximising 

desired performance, while a set of constraints is 

satisfied. More specifically, in this case the objective 

is to minimize the amount of fuel needed to safely 

land [13].  

For the feasibility of implementing the guidance 

and control algorithms, certain assumptions need to 

be made: 

• The planetary rotation effects are neglected

due to the relatively short duration of the

studied problem.

• A simplified formulation of the 

aerodynamics forces has been considered.

• The centre of pressure is considered constant

in the body-fixed frame.

• The effects of the wind are not embedded

into the guidance problem.

• The vehicle is equipped with a single rocket

engine that can be gimballed symmetrically

about two axes up to a maximum gimbal 

angle. 

• The engine can be throttled between

minimum and maximum thrust values and

once the engine is ignited, it cannot be shut

off until the terminal condition is reached.

• The launcher is modelled as a rigid-body.

• The center of mass is considered constant

during flight.

• The moment of the inertia of the rocket is

considered constant during the flight.

• Higher order terms like flexible modes and

sloshing are neglected by Guidance.

• The time of flight is not fixed a priori, but it

is an optimization variable.

     It is worth to be noticed that these assumptions 

refer only to the guidance problem. Most of them are 

dropped for the development of the nonlinear 

simulator. However, any nonlinear dynamics and 

control configurations can be incorporated in the 

guidance optimization problem, making the problem 

more complete on one hand, but on the other more 

complicated [5],[16]. Indeed, by introducing more 

realistic models, the linearization process, introduced 

in Section 2, will produce denser Jacobians and the 

optimization problem will be more difficult to be 

solved by the optimizer.  

It is worth to underline that the strongest 

assumptions that may impact on the results are the 

evaluation of the centre of gravity, the centre of 

pressure and the inertia during the flight. These terms, 

indeed, play a crucial role for the definition of the 

moments on the vehicles, and so on the control. 

However, for the powered descent problem the 

definition of both the centre of gravity and centre of 

pressure is not straightforward and dedicated analysis 

must be performed, which depends on the considered 

vehicle features, such as shape of the vehicle, tanks 

configuration, fuel and oxidizer used. The integration 

in the optimization is not a trivial issue. An example 

of formulations can be seen in [22]. 

By considering the trade-off between complexity 

of the problem and computational effort, the author 

decided to considered the assumptions stated above, 

starting from the work of [5],[16]. 

3.1 Reference Frames 

For the development of the equations of motion, 

two reference frames have been considered [4]: 

• Inertial reference frame ℱI: The inertial

reference frame is centered in the landing

site, and is Up-East-North reference frame,

such that the xI-axis points Up, yI-axis East,

while zI-axis North.

• Body-frame ℱB: The body frame attached to

the rocket's center of mass and has the xB-
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axis aligned with the thrust vector when it is 

not gimbaled, yB-axis perpendicular with 

respect to xB-axis and the zB-axis completes 

the right-handed system, where the subscript 

B means "Body", such that when the rocket 

is landed ℱB coincides with ℱI. 

Fig. 1 illustrates these two reference frames. 

Fig. 1: Inertial (Blue) and Body-Frame (Black). 

      The rotation matrix between the reference frames 

is expressed by the quaternion formulation, with the 

leading scalar element convention. In addition, it is 

remarked that the controller actuates the TVC by 

rotating the nozzle of the engine by a certain angle. 

Ref. [9] gives the expressions of the rotation matrices 

and the definition of the gimbal angles.  

3.2 Nonconvex Problem 

      Here the equations of motion, the state and inputs 

constraints are reported. Moreover, the environment 

and the aerodynamic model exploited in this work are 

outlined. One of the novelties in this paper is the 

formulation of the landing problem by considering a 

variable atmospheric model and a variable 

gravitational field. 

3.2.1 Equations of motion 

      The mass-depletion dynamic is assumed to be an 

affine function of the thrust magnitude and it is 

defined by: 

  (8) 

 where  is is the term related to the reduction of 

the specific impulse due to the atmospheric 

backpressure and is expressed by [14]: 

 (9) 

The translational motion is ruled by: 

 (10) 

The gravitational field gI = [g 0 0]’ depends on the 

altitude.  

The rotational motion is governed by Euler rigid-

body attitude dynamics: 

 (11) 

Ω(.) is the skew-symmetric matrix of the angular 

velocities, while J is the inertia matrix. ri,j are the 

arms with respect to the centre of mass of the 

launcher. 

The nonlinear dynamics are summarized by: 

 (12) 

3.2.2 Atmospheric Model 

     The equations of motion are largely affected by 

the aerodynamics forces and torques generated by the 

atmosphere on the vehicles. For this reason, an 

accurate model of the atmosphere must be selected. 

The choice of such a model has to be a trade-off 

between the accuracy of the model itself and the 

complexity introduced in the optimization model. By 

taking into account both characteristics, it has been 

decided to adopt the exponential atmospheric model. 

     The density and the pressure variations are defined 

as follows: 

     (13) 

where H is the scale height factor, and x is the 

altitude. A deeper insight can be found in [9].  

3.2.3 Aerodynamic Model 

      A tractable aerodynamic model is presented 

which approximates the relationship between the 

aerodynamic forces and the velocity [7], [15]. The 

model allows to express the aerodynamics forces in 

ℱB coordinates as follows: 

 (14) 

CA is the matrix of constant aerodynamic coefficient, 

which is a symmetric-positive-definite matrix. Due to 

the axis-symmetry of most of the rocket-powered 

vehicles, CA takes this form: 
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     (15) 

      If ca,x is equal to ca,yz the model is called spherical 

aerodynamic model, because AB(t) is always anti-

parallel with respect to the velocity in body frame. If 

ca,x is different to ca,yz the model is called ellipsoidal 

aerodynamic model and AB(t) has also orthogonal 

component. A more detailed explanation is given by 

[7]. In Fig. 2 a representation of the model is 

illustrated. 

Fig. 2: Spherical aerodynamic model (left) and 

Ellipsoidal aerodynamic model (right) [7]. 

3.2.4 State Constraints 

     The problem embeds several state constraints. The 

first one is a lower bound of the mass. For each time 

instant, the mass cannot be smaller than the dry mass. 

This constraint is enforced by:  

 (16) 

The second constraint refers to the glide scope 

angle, which allows to restrict the path of the vehicle 

to lie within an upward-facing cone:  

(17) 

where ei are the versors. The angle γgs ∈ [0,90°). 

The third constraint bounds the tilt angle which is the 

angle between the x-axis of ℱI and the x-axis of ℱB. It 

takes this form: 

(18) 

The fourth constraint limits the maximum angular 

speed of the launcher, and it is given by: 

    (19) 

Then, an additional constraint must be considered 

in the formulation of the problem in order to preserve 

the unit norm of the quaternions: 

 (20) 

Lastly, the boundary conditions must be set. In 

this paper the initial attitude has not been constrained, 

while it is constrained when the problem is solved 

during the flight in order to have continuity in the 

solution. 

3.2.5 State-triggered Constraint 

      The state-triggered constraints (STC) are 

particular kinds of constraints enforced only when a 

state-dependant condition is satisfied. These 

constraints work like an if-statement on the solution 

variables. In this work, a continuous formulation of 

the STC has been used; however, in this subsection it 

is reported the application only. A deeper explanation 

of the theoretical background can be found in [6], [7], 

[16], [17], [18] and [19]. In this work, the STC has 

been used to formulate the constrain of the angle of 

attack of the vehicle. This is managed through a 

simplified q-α bound which imposes an angle of 

attack (α) constraint when the dynamic pressure (q) is 

larger than a prescribed value ( ), similar to what 

has been done in [6], [7], [16] and [19]. The STC has 

the following form: 

 (21) 

Then, Eq. 21 is rewritten in order to have a 

continuous formulation for the optimization problem: 

it is constituted by a trigger-function (gα) and a 

constraint-function (cα): 

    (22) 

Fig. 3: Angle of attack constraint 

Fig. 3 illustrates the geometrical representation of 

this constraint. 

3.2.6 Input Constraints 

      The powered descent guidance problem has been 

formulated with two input (or control) constraints. 

The first one is related to the maximum and the 
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minimum thrust magnitude that the engine can grant. 

The second constraint limits the thrust vector control 

up to a maximum gimbal angle. 

The former is defined as:  

 (23) 

where Tmin and Tmax are the lower and upper 

bounds. The latter is given by:  

 (24) 

An additional input constraint should be 

considered in order to have a more general and 

complete guidance problem. This constrain limits the 

throttle rate, avoiding that the thrust will change 

instantaneously. However, in this work it has not been 

embedded to maintain the problem simpler. The 

smoothness of the thrust profile has been checked as 

posteriori, and for the development of the simulator, 

the dynamics of the engine has been modelled by 

means of low-pass filter, as explained in Section 4. 

3.2.7 Cost Function 

      The last step that must be done to properly design 

the 6-DoF landing problem is the definition of the 

cost function. the objective of the powered descent 

guidance is to find a trajectory to land safely in a 

prescribed location, by using the least amount of fuel 

on-board. This goal can be achieved by the selection 

of several cost functions, such as the maximization of 

the final mass or the minimization of the time-of-

flight, indeed the fuel consumption is strictly 

increasing monotonic function with respect to the 

time. In this paper, the time-of-flight has been 

selected as cost function, since better outcomes are 

experienced. 

3.2.8 Summary Nonconvex Problem 

Nonconvex Problem 

Cost Function: 

Dynamics: 

State Constraints: 

State-triggered Constraints: 

Input Constraints: 

3.3 Convex Problem 

      The original problem is convexified by mean of 

the Successive Convexification algorithm. The 

nonconvex continuous-time free-final-time optimal 

control problem is converted into a convex linear-

time-varying discrete-time fixed-final-time 

subproblem, specifically an SOCP problem. 

3.3.1 Free-final Time to Fixed-final Time 

      In order to make the original problem explicitly 

time dependent and to convert it from a nonconvex 

continuous-time free-final-time optimal control 

problem to an equivalent convex linear-time-varying 

discrete-time fixed-final-time subproblem, the 

dynamics outlined in Eq. 12 is expressed in terms of 

normalized trajectory time, τ ∈ [0, 1]. This step is 

performed as follows: 

 (25) 

      The inverse of the derivative of τ with respect to t 

defines a dilatation coefficient σ: 

 (26) 

      In this way, the dynamics is recasted such that: 

 (27) 

3.3.2 Convexification of the Equations of Motion 

      The convexification of the equations of motion is 

performed by linearizing the nonlinear dynamics 

about the solution of the previous iteration. This 

operation guarantees the convexity of the subproblem. 

The original continuous time problem is transformed 

into an LTV subproblem:  
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  (28) 

     where the matrices are: 

 (29) 

The dynamics is relaxed with the addition of the 

virtual controls ν. This set of equality constraints 

must be satisfied in each time instant k ∈ [1, K-1].   

3.3.3 Convexification of the Constraints 

      The formulation of the convex problem requires 

the convexification of three constraints: two state 

constraints, more precisely the norm of the 

quaternions and the angle of attack constraint, and 

one input constraint, which is the lower bound of the 

thrust magnitude.  

      The convexification of the Eq. 20 is obtained by 

performing a first-order Taylor expansion 

approximation, evaluated around the (i-1)th iteration: 

 (30) 

This expression is enforced in each k ∈ [1, K]. 

Even the convexification of the angle of attack 

constraints (Eq. 22) is obtained thanks to the first-

order Taylor expansion. Due to the min function, the 

approximation is given as follow: 

(31) 

where ζ is the combined vector of the variables 

and Hα is the jacobian. 

Lastly, the lower bound of the thrust magnitude is 

convexified by linearizing the equation around the 

previous iteration, obtaining the following expression: 

 (32) 

This constraint must be valid for k ∈ [1, K-1]. 

3.3.4 Trust Regions Constraints 

      As anticipated in Sec. 2.3, trust regions 

constraints are added to problem in order to limit the 

deviation between two adjacent iterations. Beyond to 

the ones relative to the state and inputs, a constraint 

related to the time of flight is introduced:  

 (33) 

Then,  is penalized in the cost function. 

3.3.5 Cost Function of the Subproblem 

      The original cost function is augmented with 

penalization terms relative to the trust region radius 

and the virtual controls norm. Moreover, the time of 

flight is replaced by σ, due to the time-normalization: 

   (34) 

3.3.6 Summary 

Convex Subproblem 

Cost Function: 

Dynamics: 

k ∈ [1, K-1]. 

State Constraints: 

 k ∈ [1, K]. 

State-triggered Constraints: 

k ∈ [1, K-1]. 

Input Constraints: 

k ∈ [1, K-1]. 

Trust Regions: 
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k ∈ [1, K-1]. 

Virtual Controls: 

k ∈ [1, K-1]. 

It is worth to underline that the optimization problem 

is scaled, for more detailed explanation see Ref [9]. 

3.4 Example of Trajectory 

In this subsection, an example of a trajectory 

generated solving the 6-DoF guidance problem is 

shown, and the results in terms of method behavior 

are provided. 

For this example, the parameters adopted are 

given in Tab. 1 and Tab. 2 in Sec. 5.  

It is worth to note that, due to numerical stability, 

both the boundary conditions and the parameters of 

the problem are scaled with appropriately chosen 

scaling-factors in order to have values ∈ [-10, 10] 

range. The outcomes are presented in Fig. 4 – Fig. 

6. 

Fig. 4: Thrust Profile convergence. 

Fig. 5: Cost function convergence. 

Fig. 6: Trajectory convergence 

From the figures, it is clear the iterative nature of 

the successive convexification method: both the thrust 

profile (Fig. 4) and the trajectory (Fig. 6) converge to 

a final solution starting from a dynamically 

inconsistent guess solution, while satisfying the 

constraints (Fig. 4). This behaviour is confirmed also 

in Fig. 5 where the value of the cost function 

decreases until it flattens, meaning that the 

convergence is met. 

Fig. 7 – 9 show the final trajectory and the final 

profiles. 

Fig. 7: Final trajectory (blue line: trajectory, red 

line: thrust direction, black line: attitude of the 

vehicle). 
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Fig. 8: Thrust profile. 

Fig. 9: Euler angles profile. 

The outcomes show that the obtained solution are 

smooth both for the thrust profile and the Euler angles. 

Further details are presented in [9]. 

4. G&C Architectures

Once the guidance problem is set, a low-level

controller is required to generate the commands so 

that the reference trajectory is followed by the 

system, in order to meet the mission goals. Indeed, 

one of the aims of this work is to test the guidance 

algorithm in highly nonlinear scenarios, with large 

dispersions of uncertain parameters by using a 

nonlinear simulator, validated against an industrial 

simulation framework. For this reason, two control 

architectures have been developed, to link the 

guidance with the simulator. In the closed-loop 

guidance frame, both cases imply a replanning online 

of the trajectory by solving the 6DoF guidance 

problem depending on the flight conditions. It is 

noted that, in this work the navigation problem is not 

addressed, so it is assumed that the full state of the 

system is known at each time instant. However, a 

simplified performance model of the navigation is 

considering by introducing white noise to the 

measurements. 

The first architecture proposed in this work is 

based on an MPC-Guidance and a PID-Controller. 

The term MPC-Guidance has been adopted since the 

trajectory is re-optimized during the flight, taking into 

account the current conditions and looking ahead at a 

given horizon, as in a typical MPC problem. The 

6DoF guidance optimal control problem is solved 

with a prescribed frequency in order to generate a 

new path, based on the past solution and the new 

conditions. However, in this architecture, the MPC 

methodology is used to implement the function of 

guidance only, (i.e., the frequency of the MPC 

optimization is considered to be much smaller than 

that of the fastest dynamics of the system, thus seen 

as a function generating reference trajectories), while 

the control (high-frequency) action is performed by 

the PID. The choice of a PID controller has been 

made since there is a well-established knowledge of 

this kind of controller in aerospace applications, and 

because of the robustness and the relatively simplicity 

of the design. Different works use other kind of 

controllers such as H∞, LPV or Adaptive controller. 

The second architecture proposed in this work is 

closer to a classical Model Predictive Control 

approach: the optimal control problem is solved with 

higher frequency with respect to the previous 

architecture and the solution is used to feed directly 

the simulator. The 6DoF landing problem, indeed, is 

solved repeatedly with the new flight conditions [20]. 

In theory, this strategy is closer to an optimal control 

implementation, but, as it is possible to see in the next 

subsections, it has some limitations.  

4.1 MPC-G & PID-C 

      Here the design of the PID control is described. 

The first step requires the linearization of the model 

used to describe the system around a reference 

trajectory. Then, the 6DoF dynamics is decomposed 

into two 3DoF dynamics, in order to obtain two 

single-input single-output (SISO) systems and to 

design the controller based on Linear Control Theory. 

Indeed, the symmetry of the vehicle and the nature of 

the TVC control allow the decoupling of the original 

system. The control inputs are the deflection angles of 

the nozzle (δy and δz). This assumption is verified also 

by the eigenvalue analysis, as it is possible to see in 

Fig. 10.  
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Fig. 10: Poles of the decoupled system (above) 

and of the original system (below). 

Moreover, due to the time-varying nature of the 

system, a gain-scheduled PID has been adopted, in 

order to get stability and similar performance in each 

phase of the flight. The gains have been tuned by 

using the MATLAB app PID tuner, in order to meet 

the following performance: overshoot less than 10%, 

settling time less than 1 second and at least 60° of 

phase margin. For the detailed analysis see [9]. The 

pitch and yaw controllers have been designed by 

following this strategy. 

For what concerns the control of the thrust 

magnitude, a different approach has been considered, 

indeed the design of a PID control able to modulate 

the magnitude of the thrust is not a trivial work. In 

fact, if the thrust is considered as an input variable, 

the model cannot be decoupled as before. For this 

reason, the thrust profile obtained by solving the 

SCvx problem is provided to the nonlinear simulator. 

This approach, however, does not compensate for the 

tracking errors as in a classical control 

implementation. This action is made by the 

recomputation online of the guidance problem. As 

stated in the previous chapter, indeed, the 6DoF 

powered descent guidance problem is solved online 

depending on the current conditions of the flight. This 

generates new solutions with new thrust profiles, 

which consider the error accumulated during the 

dynamics of the simulator.  

The thrust profile is not provided directly to the 

simulator, but a simple dynamics model of the engine 

(low-pass filter) is added to the model in order to 

simulate the intrinsic physical of the device. To 

compensate the delay introduced by the dynamic 

model, a PI-controller has been designed, where the 

integral action needs to eliminate the offset. 

Fig. 11 illustrates the schematic representation of 

this architecture. 

Fig. 11: Schematic representation of the first 

architecture. 

In this paper, the recomputation frequency of the 

guidance is 0.05 Hz, so every 20 s a new reoptimized 

solution is computed. 

4.2 MPC-G&C 

      The second architecture is presented, with a 

methodology similar to the classical Model Predictive 

Control approach. Indeed, in this case, the MPC has 

the role of both generating new trajectories and 

controlling the system. In order to cope with this 

demand, the 6DoF powered descent guidance is 

solved at a high frequency. However, it has been 

noticed that by solving the problem stated in Sec. 3 

with a frequency larger than 0.1 Hz, the optimization 

problem becomes excessively sensitive to the model 

of the system, ultimately leading to convergence 

problems. To cope this issue three different 

approaches have been assessed. In the first one, the 

frequency is reduced, and the terminal state is given 

as hard constraint; in the second one, the frequency 

remains relatively high (1 Hz) and the terminal state 

is given with a penalization term in the cost function. 

The third one is a combination of the two. The choice 

has been driven by three parameters: computational 

effort, convergence issues and final state error. The 

third strategy has been selected, because allows to 

have good final state errors, with less computational 

effort.  

      Fig. 12 illustrates a schematic representation of 

this architecture: 
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Fig. 12: Schematic representation of the second 

architecture. 

In this paper, it has not been used a receding 

horizon technique, because the successive 

convexification tool is not suitable for this approach, 

so, the whole trajectory has been considered as 

horizon. 

5. Performance Evaluation

In this section the performances of the proposed

architectures are assessed with the nonlinear 

simulator by mean of a sensitivity analysis with 

respect to several parameters of the problem. 

5.1 Nonlinear Simulator 

      The nonlinear simulator has been implemented 

with a 6DoF dynamics, by considering the same 

reference frames reported in Sec. 3.1. The simulator 

takes into account both constant winds and winds 

gusts computed by U.S. Naval Research Laboratory 

[21], the flexibility of the launcher with the 

introduction of additional forces and torques, model 

uncertainties and variable inertia during the flight. All 

the assumptions are reported in [9]. The nonlinear 

simulator has been validated against “DEIMOS-FES 

Atmospheric Flight Simulation Core”: the 

discrepancies between the models are reported in [9]. 

5.2 Sensitivity Analysis 

      The sensitivity analyses are performed by varying 

the initial conditions, the features of the launch 

vehicles, such as initial mass and inertia, and the 

model uncertainties (thrust misalignment and centre 

of mass shift), and the atmospheric conditions, such 

as wind gust and uncertainties on the values of 

atmospheric density and pressure, with respect to the 

nominal conditions. Firstly, the sensitivity is 

performed by considering one set of dispersion at a 

time, and then the worst-case scenario is assessed 

with the dispersion of the all the sets. This final 

condition is the worst-case scenario, since all the data 

vary from the nominal ones. It is noted that the 

constant winds are always active, while the wind 

gusts are considered as a perturbation with respect to 

the nominal conditions. The data of the problem used 

to perform the sensitivity analyses are uniformly 

distributed within prescribed range. The bounds of the 

range have been set by carrying out a preliminary 

campaign of tests. The optimization problem 

parameters are kept constant. The emphasis is given 

to the evaluation of the final position and velocity.  

5.2.1 Nominal Trajectory 

     Here the parameters used for the computation of 

the nominal trajectory have been reported (Tab. 1 and 

Tab. 2). Moreover, the errors on the final conditions 

are outlined in the tables (Tab. 3 and Tab. 4). 

Tab. 1: Initial conditions and desired final conditions. 

1 diag([0.82, 0.82, 0.82]) 

1000 1.225 kg/m3 

0.75 120 s 

Itermax 10 L 40 m 

1e-3 2.5 e3 kN 

K 100 1.2 e2 kN 

300 s [5 20 20] °/s 

J diag([0.08,6.04,6.04])e6

kg/m3 

90° 

10.52 m2 10° 

5 e1  m 10° 

-15 e1  m 5° 

3.15 m2 4 e4 Pa 

9.81 m/s2 20000 kg 

101325 Pa 

Tab. 2: Problem data and optimization problem 

parameters. 

Results Error 

[5.36 -0.56 0.13] m 5.39 m 

[4.69 -0.16 -0.01] m/s 0.35 m/s 

[0.04 -0.21e-2 -0.03e-2]° [0.04 0.21e-2 0.03e-2]° 

[0 -0.16 0.77]°/s 0.79°/s 

26332 kg - 

Tab. 3: Final conditions and errors for architecture 

MPC-G & PID-C. 

Results Error 

[24.33 1.73 -8.07] m 25.70 m 

[-6.03 -0.04 -0.88] m/s 1.36 m/s 

[-1.96 0.74 -0.19]° [1.96 0.74 0.19]° 

[0 0.32 -1.30]°/s 1.34°/s 

26567 kg - 

Tab. 4: Final conditions and errors for architecture 

MPC-G&C 

5.2.2 Dispersions 
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The sensitivity analyses entail several dispersions of 

the data with respect to the nominal conditions. Four 

cases have been identified and organized as follows: 

• Dispersion of the initial position and velocity.

• Dispersion of the launch vehicle features:

initial mass, inertia, misalignment of the

thrust and off set of the center of mass.

• Dispersion on the atmospheric conditions

(wind gusts) and uncertainties of the

atmospheric density and pressure.

• Worst-case scenario, where all the dispersion

stated above are active.

      For each case, 100 samples have been considered 

for the first architecture, and 50 samples for the 

second one, due to the higher computational effort. In 

Tab. 5 and 6 are reported the range of the set. 

Dispersion on the initial conditions 

Dispersion on the launch vehicle 

parameters 

Thrust misalignement angle = 

Dispersion on the atmospheric conditions 

Tab. 5: Set first architecture 

Dispersion on the initial conditions 

Dispersion on the launch vehicle 

parameters 

- 

Dispersion on the atmospheric conditions 

Tab. 6: Set second architecture. 

      In the next subsection, the results of the analyses 

are reported, showing in particular the dispersions of 

the final position and the velocity, and the trajectories 

for the worst-case scenario.  

5.2.3 Results 

     In this subsection, the outcomes of the sensitivity 

analyses are shown. In particular, the results 

regarding the worst-case scenario.  

      The dispersions of the final position and the final 

velocity for the first G&C architecture are illustrated 

in Fig. 13.  

Fig. 13: Final position dispersion (above), final 

velocity dispersion (below), MPC-G & PID-C. 

   The dispersions relative to the second architecture 

are depicted in Fig. 14: 
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Fig. 14: Final position dispersion (above), final 

velocity dispersion (below), MPC-G&C. 

     As it is possible to see from these figures, the first 

architecture allows guarantees a superior performance 

in terms of final state errors minimization. Indeed, the 

mean errors on the final position are 23.50 m for the 

first architecture and 51.74 m for the second one; 

while, the mean errors on the final position are 3.05 

m/s for the first strategy and 6.26 m/s for the second 

one. Below (Fig. 15) are reported also the trajectories 

generated by different initial conditions. Even by 

looking these plots, the first architecture is less 

sensitivity to the problem parameters than the second 

one, even if the ranges of the sets are wider. The 

points marked in green, indeed, means that the final 

error is less than 50 m for the position and 3 m/s for 

the velocity (6 m/s for the second architecture), 

otherwise the points are marked in red.   

      These results are confirmed also by looking the 

mean errors for all cases studied in Fig. 16. The labels 

on vertices stand for:  

• IC: Initial Conditions;

• ATMO: Atmospheric conditions;

• RP: Rocket Parameters;

• COM: Worst-case scenario;

Fig. 15: Trajectory of the sensitivity analysis: above 

MPC-G&PID-C, below MPC-G&C. 

Fig. 16: Sensitivity analyses outcomes. 

In all cases, the first architecture achieves better 

outcomes. It is interesting to note also that, without 

considering the worst-case scenario, the atmospheric 
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conditions generated the worst errors, meaning that an 

accurate atmospheric model is fundamental to have 

reliable outcomes and that the atmospheric 

disturbances have an important role for this kind of 

problems. The larger errors of the second architecture 

are due also for the soft constraints in the terminal 

state, but the main limitation is the converge issues. 

Indeed, for the second architecture, it has been 

experienced a high percentage of failure due to 

convergence issue: 18% on 50 samples. For the first 

architecture the percentage is 4%.   A low-level 

control, indeed, allows to have better performance 

and reduces the likelihood of encountering 

convergence errors, reducing the gap between the 

guidance and the actual trajectory. The performance 

of the second architecture may be improved by 

considering an MPC formulation with online 

prediction of the disturbance and increasing the 

computation frequency of the guidance, requiring a 

larger computational effort. Ref. [9] reports also the 

assessment of the final attitude and the propellant 

mass consumption.  

6. Conclusions

The obtained results from the sensitivity analyses

have shown that the MPC-G&PID-C is robust to the

dispersed parameters and the errors with respect to

the desired final state conditions are deemed

acceptable; moreover, the presence of a low-level

controller allows to reduce the gap between the

reference trajectory computed by the guidance and the

actual trajectory followed by the vehicle, and

decreases the likelihood of encountering convergence

issues. The MPC-G&C, on the other hand, is much

more sensitive to the dispersed parameters, while the

use of a soft constraints for the terminal states leads to

larger final errors. However, the main limitation of

this second architecture is the relatively high

probability of facing convergence issues, due to the

discrepancy between the optimal trajectory and the

real one, which leads to the violation of the imposed

constraints. This behaviour can be mitigated by

increasing the frequency of the computation online of

the optimization problem, but in this case the

computation time becomes the main bottleneck. For

this reason, the implementation of a strategy that

takes advantage of an inner-loop controller, as

proposed in the first architecture, is more reliable.

The drawback of the first architecture is that the PID-

controller is designed around a reference trajectory,

so an online tuning of the PID-gains is needed, or a

reference trajectory has to be known a priori.

However, different control strategies are available in

the literature and can be considered in future works.

      In conclusion, in the light of the obtained 

outcomes, the successive convexification Model 

Predictive Control guidance is a very promising 

solution for an online autonomous guidance 

implementation for precise pin-point landing. 

6.1 Proposed future work 

In this subsection, a set of topics for future 

investigation is summarized: 

• Different versions of the successive

convexification algorithms may be assessed,

in particular with a deeper focus on the

adopted discretization scheme, the definition

of dynamical trust region radius constraints,

and more accurate implementation of path

constraints by exploiting additional buffer

zone constraints.

• Some improvements may be considered such

as a more accurate atmospheric model, more

accurate computation of the inertia and the

geometric features of the launch vehicle

(centre of mass and centre of pressure), and

more accurate model of the aerodynamic

database by considering the dependence on

the angle of attack and the Mach number.

• Additional path constrains may be added in

the optimization problem, such as a throttle

limit to ensure unfeasible thrust variation.

• The real-time implementation of the

developed approach must be assessed, by

coding the algorithm in C++ or converted in

.mex files.
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