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Abstract

This paper deals with the extraction of multiple mod-
els from noisy or outlier-contaminated data. We cast the
multi-model fitting problem in terms of set coverage, deriv-
ing a simple and effective method that generalizes Ransac to
multiple models and deals with intersecting structures and
outliers in a straightforward and principled manner, while
avoiding the typical shortcomings of sequential approaches
and those of clustering. The method compares favorably
against the state-of-the-art on simulated and publicly avail-
able real data-sets.

1. Introduction
Finding a model (or structure) that fits data corrupted by

noise and outliers is an omnipresent problem in empirical
sciences, including Computer Vision. When multiple in-
stances of the same structure are present in the data, the
problem has a chicken-and-egg pattern: in order to estimate
models one needs to first segment the data, and in order
to segment the data it is necessary to know which model
points belong to. Moreover, the presence of multiple struc-
tures strains robust estimation, because, in addition to rogue
points, the outliers to a structure of interest are all the inliers
to the other structures.

Among the wide range of methods proposed in Com-
puter Vision to address the challenge of multiple models
geometric fitting, the analysis of consensus together with its
counterpart, the analysis of preferences, can be recognized
as leitmotifs recurring throughout the extensive literature on
the subject. The consensus set of a model is simply defined
as the set of points that are inliers to that model. Dually, the
preference set of a point is the set of models to which that
point is inlier. Most of the multi-model fitting techniques
proposed in the literature can be ascribed to one of these
two concepts, according to which horn of the chicken-egg-
dilemma is addressed first.

Consensus-based algorithms put the emphasis on the es-
timation part and focus on models that describe as many

points as possible. On the other hand, preference ap-
proaches concentrate on the segmentation side of the prob-
lem, and aim at finding a proper partition of the data, from
which model estimation follows.

Both approaches conceptually work on the consen-
sus/preference matrix P defined as

P (i, j) =

{
1 if err(xi, θj) < ε

0 otherwise
(1)

where xi ∈ X are data points, θj ∈ H tentative structures,
err a suitable error function and ε the inlier threshold. The
binary matrix P can be interpreted in several ways. It can be
regarded as the incidence matrix of an hyper-graph where
rows correspond to vertices and columns represent hyper-
edges; alternatively its rows, identified with preference sets,
can be interpreted as representations of data in high dimen-
sional spaces. In both cases multi-model fitting boils down
to cluster analysis. Changing the perspective, columns of P
can be interpreted as consensus sets, whose cardinality is to
be maximized.

In the remaining of this section we shall track down the
path that, starting from consensus throughout preference
analysis, have been followed in the literature to address the
challenges of multiple structures recovery. For a review of
multi-model fitting from the perspective of the optimization
of a global energy functional the reader is referred to [9].

1.1. Consensus analysis

Consensus analysis stands out as one of the first efforts to
address robust model estimation. The methods belonging to
this category follow a common paradigm. At first the space
Θ of all the feasible structures is approximated as a suitable
finite hypothesis space H in different ways. Then a voting
procedure elects the structures in H that best explain the
data in terms of consensus.

The idea of exploiting consensus is at the core of the cel-
ebrated Ransac (Random Sample Consensus) and its vari-
ants (see [20] and references therein). A straightforward
generalization to multiple models is Sequential Ransac



[29, 33], an iterative, greedy algorithm that executes Ransac
many times and removes the found inliers from the data as
each structure is detected. As a consequence, inaccurate
detections at early stages of the algorithm can heavily de-
teriorate the results; in addition, points in the intersections
do not contribute to the sampling of subsequent structures.
As such, this strategy is inherently prone to achieve sub-
optimal segmentation. A parallel scheme, dubbed Multi-
Ransac, has been proposed in [39] in the endeavor to mit-
igate its greediness. This method, however, falls short of
dealing with intersecting models.

The popular Hough transform and its randomized ver-
sion [35] can be regarded as consensus-oriented algorithms
too. A more general approach consists in finding modes di-
rectly in Θ (e.g. [25]). In this way the difficulties of the
quantization step are alleviated by mapping the data into
the parameter space through random sampling and then by
seeking the modes (e.g. with with mean-shift [3]).

In all these consensus based methods, alongside the vot-
ing phase, the approximation of Θ is a recurring and tricky
issue. The crucial point is that, when multiple structures
are hidden in the data, consensus oriented algorithms have
to disambiguate between genuine structures and redundant
ones, i.e. instances of the same model with slightly differ-
ent parameter. This issue is addressed by enforcing several
disjointedness criteria, either explicitly or implicitly by dif-
ferent approximations of the solution space.

For instance, Hough transform handles redundancy by
capturing similar structures in the same equivalence class
via the quantization of Θ. Along the same line, the band-
width used in mean shift can be thought as a softer way to
localize and aggregate redundant models. Also Sequential
Ransac and Multi-Ransac enforce disjointedness by avoid-
ing to sample similar models [7]. As regards Sequential
Ransac, this idea can be identified in the iterative removal
of the discovered inliers and in the subsequent sampling of
the hypotheses on the remaining data. In Multi-Ransac this
is more evident, since this algorithm explicitly search for the
best collection of k disjoint models. In practice, however,
using consensus as the only criterion seems short-sighted,
for true models can have mutual intersections greater than
redundant ones, hence the algorithm would fail in discern-
ing authentic structures.

In order to overcome the drawbacks inherent to consen-
sus methods, the problem has been tackled from a differ-
ent point of view, where the role of data and models are
reverted: rather than representing models and inspecting
which points support them, points are described by the pref-
erence they grant to models.

1.2. Preference analysis

The idea of describing point by their residuals can be
traced back to [38] where the residuals distributions of in-

dividual points, with respect to a set of putative structures
randomly sampled, is analyzed. In particular, the most sig-
nificant structures are revealed as peaks in the histograms of
the residuals. In addition, the number of models is automat-
ically determined by the median number of modes found
over all data points. In practice, the mode-finding step of
this strategy suffers of low accuracy and depends critically
on the bin size adopted.

Building on this idea, J-Linkage algorithm [28] was
the first successful application of a preference-based rep-
resentation of data. A two steps first-represent-then-cluster
scheme is implemented: data are represented by the votes
they grant to a set of model hypotheses, then a greedy ag-
glomerative clustering is performed to obtain a partition of
the data.

Several elements in common with previous methods can
be recognized: an inlier threshold ε is used as in Ransac and
the idea of casting points’ votes echoes Randomize Hough
Transform. Despite that, J-Linkage does not rely on a quan-
tized space, which causes the shortcoming of Hough Trans-
form, nor on the residual space, which leads to the diffi-
culties of modes estimation, but explicitly introduces a con-
ceptual space where points are portrayed by the preferences
they have accorded to random provisional models. The
changes of perspective entailed by preference analysis re-
sults in a different approach to the chicken-&-egg dilemma.
Structures are recognized as groups of neighboring points in
the conceptual space therefore the emphasis is shifted from
the estimation to the segmentation part of the problem. T-
Linkage [15] extends this idea by relaxing the notion of bi-
nary preference set allowing the use of soft votes to depict
points preference more accurately.

Along the same line of J-Linkage, Kernel Fitting (KF)
[2], Robust Preference Analysis [16] (RPA) and Random
Cluster Model Simulated Annealing (RCMSA) [19] ex-
ploits points preferences.

KF and RPA first derive a kernel matrix to measure
agreement between preferences, then a (different) transfor-
mation is applied in order to detect and remove outliers.
Then the cleaned kernel matrix is used by KF to over-
segment the remaining inliers and reassemble the structures
with a merging scheme. RPA performs symmetric non neg-
ative factorization on the cleaned kernel matrix in order to
extract the most representative sampled models. Robust
statistic is then employed to assign the data to the recovered
structures. RCMSA [19] organizes point preferences in a
weighted graph and the multi-model fitting task is stated as
a graph cut problem which is solved efficiently in an anneal-
ing framework.

Finally, we can ascribe to preference analysis also all the
approaches based on higher order clustering [1, 8, 10, 37],
where higher order similarity tensors are defined between
n-tuple of points as the probability of points to be clustered



together measured in terms of residual errors with respect
to provisional models.

1.3. Shortcoming of preference approaches

Indubitably, a preference-based approach has the great
advantage of casting specific multi-model fitting problems
in a very general clustering framework. Nevertheless it has
been largely recognized by the research community that the
segmentation/clustering problem is ill-posed, and that a “no
free lunch theorem” [34] holds, which states that a given
clustering method can be optimal only with respect to some
specific type of data-set.

Moreover, Kleinberg [12] confirms that clustering tech-
niques are inherently fraught with ambiguities: he con-
ceives an axiomatic theory in which he defines three de-
sirable properties that a clustering scheme ought to satisfy,
namely scale-invariance, a “richness” condition that all par-
titions are achievable, and a consistency requirement on the
shrinking and stretching of distances. In that setting an
“impossibility theorem” is derived, demonstrating that there
is no clustering function satisfying simultaneously all the
three properties.

In addition, two other main issues are not satisfactorily
handled by clustering techniques. In first instance, classical
clustering approaches are designed to yield a partition of the
data, hence they are not suitable for dealing explicitly with
intersecting structures. As a result, intersections are either
ignored or dealt indirectly with ad hoc post processing on
the output.

In second place, the treatment reserved to outliers is not
completely sound. For estimation purposes, gross outliers
ought to fall in a special group of points, but clustering treats
all the segments in the same way. This is the reason why
partitional clustering schemes are not able to enforce ro-
bustness by simply throwing-in one additional model with
the hope that outliers will be clustered together. Hierarchi-
cal methods in practice are more resilient to outliers, still
they do not have a specific treatment during the clustering
phase: for example T-Linkage relies on a posteriori specific
heuristics to ensure robustness.

2. Multi-model fitting as a coverage problem
For all the reasons described in the previous section, in

this work we sidestep the pitfalls of clustering and focus on
the objective of maximizing consensus. However, in do-
ing this, we shall counteract the shortcomings of Sequential
Ransac and its relatives, namely greediness and poor han-
dling of intersecting models. These requirements will natu-
rally lead to a coverage formulation, which will be referred
to as “Random sample Coverage”, or RansaCov.

Let us start by assuming that all the points xi ∈ X are in-
liers (the case of outliers will be dealt with later on). This is
equivalent to state that all the points are explained by some

structures, in other words, the true structures determine, by
means of their consensus sets, a cover of the data, i.e. a col-
lection of sets whose union contains X:

F = {Sj : j ∈ J} such that X ⊆
⋃
j∈J

Sj , (2)

Note that we are not requiring that these sets are disjoint,
so we are not limited to partitions and we can properly han-
dle the case of intersecting models. By invoking the Oc-
cam’s principle, a straightforward formulation is therefore
to ask for a cover consisting of a minimal number of con-
sensus sets. In this way we are implicitly discouraging re-
dundant models. Thus we are naturally led to the following
SET COVER problem.

Definition 2.1 (SET COVER). Given a ground set X and
F = {S1, . . . , Sm} a cover of X , select the minimum num-
ber of subsets from F that covers X .

In this formulation, X = {x1, . . . , xn} contains the data
points and the collection F = {S1, . . . , Sm} is composed
by the consensus sets of the sampled models θ1, . . . , θm ∈
H: i.e. Sj = {x ∈ X : err(x, θj) < ε} instantiated on
minimal sample sets as in Ransac. The property that F is
a cover of X can be easily enforced by requiring that every
points of X is sampled at least once. SET COVER can be
rephrased rigorously using the matrix P in the constraints
formulation and introducing m binary variables zj ∈ {0, 1}
for each subset Sj . If Sj is selected in the solution then
zj = 1, otherwise zj = 0. In this way SET COVER can be
shown to be equivalent to an Integer Linear Programming
(ILP) problem:

minimize
m∑
j=1

zj subject to Pz ≥ 1. (3)

The constraint can be expanded as∑
j:Sj3xi

zj ≥ 1 ∀xi ∈ X (4)

where it becomes clear that it is meant to ensures that the
solution {Sj}j:zj=1 is a cover of X .

If X is corrupted by rogue points we can integrate them
in the formulation of the problem at the cost of introducing
an additional parameter k equal to the desired number of
structures. Requiring some extra information to deal with
outliers seems to be unavoidable. In this respect, k is a more
guessable parameter than others.

Instead of trying to find the smallest number of sets that
cover all elements, we search for the largest number of
points that can be covered by k sets, possibly leaving some
points (the outliers) uncovered. This leads to the so called
MAXIMUM COVERAGE problem.



Definition 2.2 (MAXIMUM COVERAGE). Given a ground set
X , F = {S1, . . . , Sm} a collection of subsets of X and an
integer k, select from F at most k subsets that cover the
maximum number of points in X .

This problem is translated in an ILP one thanks to a col-
lection of n auxiliary variables yi, such that yi = 1 if xi
belongs to the returned subsets, 0 otherwise:

maximize
n∑

i=1

yi

subject to
m∑
j=1

zj ≤ k∑
j:Sj3xi

zj ≥ yi ∀xi ∈ X

0 ≤ yi ≤ 1, zj ∈ {0, 1}.

(5)

The first condition enforces that no more than k sets are
picked and the second constraint ensures that if yi ≥ 0 then
at least one set Sj 3 xi is selected.

The following preprocessing is applied to the input col-
lection of sets. First of all, keeping in mind that our aim is
to maximize consensus, we refit a structure to each consen-
sus set via least squares, and, if the consensus has increased,
we update the structure and its supporting points. The re-
maining sets are hence ordered by cardinality |S1| ≥ |S2| ≥
. . . ≥ |Sk| and a set Sj is discarded if

Sj ⊆
j−1⋃
i=1

Si. (6)

The rationale of this choice is to keep only those structures
that cover at least a point that otherwise would be uncovered
by the union of larger ones. Please note that in particular we
are deleting subsets that are contained in one larger set.

SET COVER and MAXIMUM COVERAGE are long known to
be NP-hard [11]: not surprisingly, since the inherent com-
plexity of multi-model fitting does not disappear by simply
rephrasing it in different terms. Nevertheless, these opti-
mization problems are among the oldest, most studied and
widespread ones in the mathematical programming litera-
ture. Therefore we can reap the outcomes of the efforts
made by the scientific community in addressing this issues,
and enjoy the fruits of several studies focused on approxi-
mating the solutions of these problems.

For example, the greedy strategy – hereinafter Greedy-
RansaCov – which keeps choosing the set that covers most
uncovered points until they all are covered, embodies the
spirit of Sequential Ransac with the only differences that the
hypothesis space is not sampled iteratively1 and, instead of

1In Sequential Ransac columns of P are generated sequentially: once
a structure of inlier is detected, its supporting points are removed and suc-
cessive hypotheses are sampled from the remaining of the data.

returning a partition, intersecting segments are allowed. It
has been demonstrated by Feige [6] that this greedy strategy
is the best possible in terms of approximation ratio. More
precisely an approximation ofH(n) holds in the case of SET

COVER problem (where H(n) denotes the n-th harmonic
number), and 1−1/e for the MAXIMUM COVERAGE problem.
This result applies effortless to Greedy-RansaCov giving a
provable quality measure of the solution.

Another straightforward strategy consist in solving a re-
laxed Linear Programming (LP) problem and converting the
solution by rounding up all non-zero variables to 1. In this
case [32] shows that the solution achieves an approximation
guarantee of a factor equal to the the frequency of the most
frequent point, where the frequency of a point is the number
of sets that cover that point. Our preprocessing step, besides
refining the models, improves the approximation factor of
the relaxed LP solution, for it actually reduces the maximal
frequency of the points.

In practice, more sophisticated strategies are used by ILP
solvers, but the relaxed LP solution is a good starting point.
Our algorithm – dubbed ILP-RansaCov – solves (5) using
the intlinprog function of MATLAB, which attempts to
tighten the LP relaxation with several heuristics and falls
back to branch and bound in case of failure.

Comparison with FACILITY LOCATION. The closest
methods to ours in the literature are those casting multi-
model fitting as a FACILITY LOCATION (FL) problem: pro-
vided a set of potential facilities (which corresponds to the
pool of tentative structures), FL selects an optimal subset
of facilities and assigns customers (i.e. data points) to one
facility each, so as to minimize the sum of facility opening
costs and the distances between customers to their assigned
facilities. This leads to the optimization of a cost function
composed by two terms: a modeling error – i.e. customers-
facility distances – which can be interpreted as a likelihood
term, and a penalty term to encode model complexity – the
cost to open the facilities – mimicking classical MAP-MRF
objectives. Some authors solves it with ILP [30, 14, 22, 13]
while others propose different combinatorial optimization
techniques [9, 36, 4, 18]. Although SET COVER and FL are
related (the first can be rephrased as a special case of the
second) and ILP has been used to solve both, ILP-RansaCov
differs from previous work based on FL in many respects.

In first instance, FL needs to guess a correct trade-off
between data fidelity and model complexity, in order to
strike the proper balance between over and under fitting.
For example [4, 9] regularizes the modeling-fitting error,
expressed in terms of residual, by introducing a label costs
that penalizes the number of different structures, whereas
[13], aimed at fitting subspace of different dimensions to
outlier-free data, exploits a penalty term encoding subspace
dimension. In contrast, our formulation elude this thorny
trade-off: in the outlier-free scenario SET COVER regular-



izes the solution invoking the minimality of cover, while,
if outliers are present, MAXIMUM COVERAGE requires the
maximum number of models as a clear, intelligible param-
eter, instead of balancing two incommensurable quantity in
the cost function.

Second, FL minimizes the fitting error on the continuum
of residuals, in the same spirit of MLE estimators, while
ILP-RansaCov gains resiliency to outliers by maximizing
the consensus à la Ransac. This, however, comes at the
price of assuming that all the structures have the same er-
ror scale, while MLE-like estimators can compute the scale
along the parameters of each model.

In our formulation the rogue points will be simply left
uncovered by MAXIMUM COVERAGE, whereas FL copes with
outliers either by introducing a special additional model for
which a constant fidelity measure has to be manually tuned
[9], or by requiring an upper bound to the total number of
outliers [14].

Finally, FL approaches enforce hard-membership con-
straints, producing a partition of the data, whereas ILP-
RansaCov inherently caters for intersecting solutions.

3. Experiments on simulated data
In this section we investigate the performance of ILP-

RansaCov with respect to Greedy-RansaCov (which em-
ulates Sequential Ransac), J-Linkage [28] and T-Linkage
[15] on synthetic data, using the same sampling and the
same inlier threshold for all the methods (or, equivalently,
the same P matrix). We obtained the implementations of
J-Linkage and T-Linkage from [27]. The MATLAB code of
ILP-RansaCov is available on the web2.

The data sets (Fig. 1) consist of segments in several con-
figurations and circles, as in [28]. Each structure consists
of 50 inliers points, contaminated by Gaussian noise and
outlying points in different percentages (reported in Tab. 1).
All the methods have been provided with the correct num-
ber of structures k; in the case of J-Linkage and T-Linkage,
the largest k structures produced by the algorithms are con-
sidered.

The results are collected in Fig. 1 while Tab. 1 reports
the misclassification errors (ME), computed as follows: first
the map between ground-truth labels and estimated ones
that minimize the overall number of misclassified points is
found (as in [23]), then a point is deemed as correct if one
of its labels corresponds to the ground-truth. The ME is the
percentage of misclassified points .

First of all we can notice that in the Stair4 experiment
(firstly used in [39] to criticize Sequential Ransac), Greedy-
RansaCov performs poorly: the shortcomings of this greedy
strategy are here afoot: the incorrect selection of the first
structure compromises the subsequent interpretation of the

2www.diegm.uniud.it/fusiello/demo/cov/

outliers J-Lnkg T-Lnkg Grdy-RansaCov ILP-RansaCov

Stair4 50% 10.20 10.00 39.20 12.00
Star5 60% 15.20 14.40 10.40 3.80
Star11 50% 35.00 33.09 32.36 25.18
Circle4 50% 26.50 23.00 30.25 11.25

mean 20.12 20.12 28.05 13.06

Table 1: Misclassification error (ME %) on simulated data.

data. A greedy approach to the MAXIMUM COVERAGE prob-
lem yields a sub-optimal segmentation also on the Circle4
data-set, where one of the four structures is over-segmented
by Greedy-RansaCov at the expense of the smaller circle in
the center.

On Star11 J-linkage misses a ground truth segment. Dur-
ing the merging process some inliers are incorrectly ag-
gregated to spurious models, hence the recovered segment
that actually corresponds to a ground truth structure col-
lects fewer inliers, to the point that it falls outside the first
k largest models and is deemed as outlier. In general the
tendency of loosing inliers during the segmentation step af-
fects J-Linkage (and T-Linkage) also in the other data-sets,
e.g. it is particularly evident on Circle4,

Even when the discovered inliers are enough to recover
the corresponding structures, this behavior has a detrimental
effect on the model estimate, for it increases the variance.

ILP-RansaCov yields reliable segmentations in all the
experiments, and it achieves the best average ME. The rea-
son can be ascribed to the non-greedy minimization strat-
egy (w.r.t. Greedy-RansaCov) and to the departure from the
partitioning paradigm (w.r.t. J-Linkage and T-Linkage). As
a matter of fact, when models do not intersect, as in Stair4,
the performance of J-Linkage and T-Linkage are in the same
range of ILP-RansaCov.

4. Experiments on real data

In this section, we demonstrate the performance of ILP-
RansaCov on three classical Computer Vision applications,
namely: i) vanishing point detection, ii) video motion seg-
mentation, and iii) two-views segmentation. In all these sce-
narios we compare ILP-RansaCov with J-Linkage [28], T-
linkage [15] and RPA [16], whose implementation is taken
from [21]. In addition, one reference method has been
added to the comparison for each specific scenario, namely:
MFIPG [18] in the vanishing point experiments, SSC [23]
for video motion segmentation and RCMSA [19] for two-
views segmentation. These methods have been selected be-
cause i) they are among the best performers, ii) the original
code from the authors is available (MFIPG [17], RCMSA
[17], SSC [24]), and iii) they have been tested on the same
respective data-sets.

MFIPG and RCMSA are considered only in one scenario
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Figure 1: Comparison on simulated data (outliers marked as x).

out of three because the authors provided the tuning param-
eters only for that particular application (vanishing point
detection and two-views segmentation, respectively). SSC
instead is tailored specifically to subspace segmentation,
hence it cannot be applied in the other two cases (where
models are not linear or affine subspaces).

All the algorithms but SSC and RCMSA were provided
with the same pool of putative models, sampled as in [16].

Vanishing point detection. In this experiment we com-
pare the performances of ILP-RansaCov with MFIPG on
vanishing point detection using the York Urban Line Seg-
ment Database [5], or York Urban DB in short, a collection
of 102 images of architectural Manhattan-like environments
(i.e. scenes dominated by two or three mutually orthogonal
vanishing directions). Annotated line-segments that match
with the 3-d orthogonal frame of the urban scene are pro-
vided with the ground-truth, no outliers are present in the
data. The aim is to group the supplied segments in order to
recover two or three orthogonal vanishing points.

MFIPG (Model-Fitting- with-Interacting-Geometric-
Priors) is a recently proposed method that improves on
PeARL [4] adding high-level geometric priors. In par-
ticular, in this application, an additional term expressing

interaction between vanishing points is included into the FL
formulation, to promote the extraction of orthogonal van-
ishing points. The global input parameters recommended
in the original paper have been optimized for each single
image to enhance the results.

Figure 2 shows three images where ILP-RansaCov
achieved the worst ME, which are nevertheless qualitatively
correct. Figure 3(a) reports the cumulative distribution of
the ME per sequence, i.e. the value on the ordinate corre-
sponds to the percentage number of sequences where the
algorithm achieved a ME lower than the abscissa. The dif-
ferences among the methods can be better appreciated by
plotting the area above the cumulative distribution of ME
(Fig. 3(b)) or by analyzing the average and median ME,
collated in Tab. 2. These quantitative results confirm that
ILP-RansaCov is the most accurate, followed by RPA. As
MFIGP enhances PeARL, figures in Tab. 2 indirectly cor-
roborate the advantage of ILP-RansaCov over PeARL. It is
worth noting that Greedy-RansaCov, a proxy of the vilified
Sequential Ransac, performs better than other sophisticated
methods, in this task.

Video motion segmentation. In this experiments we con-
sidered Sparse Subspace Clustering [23] a state-of-the-art



Figure 2: A sample of the worst ILP-RansaCov results on
YorkUrbanDB (vanishing point detection). Line member-
ship is color-coded.
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Figure 3: Results on YorkUrbanDB. (a) is the cumulative
distributions of the errors per sequence; (b) shows the area
above the curve (the smaller the better).

J-Lnkg T-Lnkg RPA MFIGP Grdy-RansaCov ILP-RansaCov

Mean 2.85 1.44 1.08 3.51 2.38 0.19
Med 1.80 0.00 0.00 0.16 0.00 0.00

Table 2: Misclassification error (ME %) on YorkUrbanDB.

technique that exploits a sparse representation to build an
affinity matrix, which in turns is segmented by spectral clus-
tering. The input data is a set of features trajectories across
a video taken by a moving camera, and the aim is to re-
cover the different rigid-bodies. We use the 51 real video
sequences from the Hopkins 155 data-set [31], each con-
taining two or three moving objects, with no outliers. Fol-
lowing [26], in order to deal with degenerate motions, we
project the data onto an affine 4-d space where the rigid-
body segmentation is translated in a 3-d plane fitting prob-
lem.

Figure 4 reports some sample results, in particular three
sequences belonging to Traffic 2 and Others 3 subsets, re-
spectively, where ILP-RansaCov achieves sub-optimal seg-
mentations. Figure 5 and Tab. 3 provide a comparison of the
performances in terms of ME: ILP-RansaCov places in the
same range of SSC and achieves the best overall results. In
this case the advantage of solving the MAXIMUM COVERAGE

problem with a global approach is afoot, since the greedy
strategy of Greedy-RansaCov, sampling being equal, fails.
Please note that, via [13], this experiment provides an indi-
rect comparison with FLoSS.

Two-views segmentation. In this experiment we addi-
tionally compare ILP-RansaCov against RCMSA [19] on
the Adelaide Robust Model Fitting Data Set, or Adalai-

Figure 4: A sample of the worst ILP-RansaCov results on
Hopkins155 (video motion segmentation). Point member-
ship is color-coded.
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Figure 5: Results on Hopkins155. (a) is the cumulative
distributions of the errors per sequence; (b) shows the area
above the curve (the smaller the better).

J-Lnkg T-Lnkg RPA SSC Grdy-RansaCov ILP-RansaCov

Traffic 3 Mean 1.58 0.48 0.19 0.76 28.65 0.35
Med 0.34 0.19 0.00 0.00 1.53 0.19

Traffic 2 Mean 1.75 1.31 0.14 0.06 7.48 0.54
Med 0.00 0.00 0.00 0.00 0.00 0.00

Others 3 Mean 6.91 5.32 9.11 2.13 14.89 2.13
Med 6.91 5.32 9.11 2.13 14.89 2.13

others 2 Mean 5.32 6.47 4.41 3.95 8.57 2.40
Med 1.30 2.38 2.44 0.00 0.20 1.30

All Mean 2.70 2.47 1.42 1.08 10.91 0.98
Med 0.00 0.00 0.00 0.00 0.00 0,00

Table 3: Misclassification error (ME %) on Hopkins155.

deRMF in short, which consists of 38 image pairs, 19 re-
lated by multiple homographies (H) and 19 by multiple fun-
damental matrices (F), with outliers. The task involves seg-
menting different planes/moving objects by fitting homo-
graphies/fundamental matrices to subsets of corresponding
points.

All the methods are given the inlier threshold computed
from the available ground truth.

Some failure examples are reported in Fig. 6. The left
image is an example of under-segmentation, where a unique
fundamental matrix explains both the cube and the toy (red
points). In the middle image ILP-RansaCov fails in detect-
ing one planar structure (second wall of the building from
the left). In the right image the campanile (on the very right)
is over-segmented, and this consumes one of the available k
models, thereby preventing the nearby wall to be detected.

From the data reported in Fig. 7 and Tab. 4, the reader
can appreciate that the ME of ILP-RansaCov is consistently
lower than RCMSA and in the same range of RPA.

In order to evaluate the relative importance of multi-



Figure 6: A sample of the worst ILP-RansaCov results on
AdelaideRMF (two-views segmentation). Point member-
ship is color-coded, black crosses are points outliers.

0 0.1 0.2 0.3 0.4 0.5 0.6

Misclassification Error 

0

0.2

0.4

0.6

0.8

1

P
e

rc
e

n
ta

g
e

 o
f 

im
a

g
e

s

J-Linkage
T-Linkage
RPA
RCMSA
grdy-RansaCov
ILP-RansaCov

(a) Cumulative ME

0 0.05 0.1 0.15 0.2 0.25IL
P R

an
sa

C
ov

Seq
. R

an
sa

C
ovR

C
M

SA
R
PA

T-L
in
ka

ge
J-

Li
nk

ag
e

(b) Area above the cumulative ME

Figure 7: Results on AdelaideRMF. (a) is the cumulative
distributions of the errors per sequence; (b) shows the area
above the curve (the smaller the better).

J-Lnkg T-Lnkg RPA RCMSA Grdy-RansaCov ILP-RansaCov

F
Mean 16.43 9.37 5.49 12.37 17.08 6.04
Med 14.29 7.80 4.57 9.87 21.65 4.27

H
Mean 25.50 24.66 17.20 28.30 26.85 12.91
Med 24.48 24.53 17.78 29.40 28.77 12.34

Table 4: Misclassification error (ME %) for motion segmen-
tation (F) and plane segmentation (H) on AdelaideRMF.

ple membership w.r.t. the optimization method, we have
rephrased Multi-Ransac in the framework of maximal cov-
erage: the strategy is similar to Greedy-RansaCov, the dif-
ference being that, after a set is picked, the subsequent ones
are searched among those having maximal Jaccard distance
with the currently covered elements, thereby maximizing
disjointedness. Even if a point can be assigned to multiple
model, experiments demonstrated that the performances are
consistently inferior to ILP-RansaCov (ME is: 2.97 for VP,
4.58 for video sequences, 17.01 for F and 26.85 for H), con-
firming the crucial role of the optimization technique.

Finally, we run an experiment to probe of how the exe-
cution time scales with the input dimension and where the
time is spent. To this end, we run ILP-RansaCov on a line
fitting problem extracted from Star11 with variable number
of sampled models and number of points. The execution
times, broken down for each step, are reported in Fig. 8.
The instantiation of the consensus/preference matrix dom-
inates the complexity for moderate point number, whereas
ILP takes over when the number of points increases. Also,
while the dependence from the number of sampled models
appears to be polynomial, the execution time grows expo-
nentially with the number of points, in accordance with the-
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Figure 8: Execution time of ILP-RansaCov on simulated
data w.r.t. the dimensions of the problem.

YorkUrbanDB Hopkins155 Adelaide (F) Adelaide (H)

mean 8.09 41.19 52.24 146.34
median 1.14 11.56 48.79 51.12

Table 5: Execution time [s] of ILP-RansaCov on real data.

oretical prediction.
The impact of the preprocessing step, related to Eq. (6),

is negligible in terms of the running time, but it improves
the quality of the solution: e.g., with reference to Tab. 4
(F), the mean ME of ILP-RansaCov without this refinement
raises to 11.44.

To complete the picture on computational burden, we re-
port in Tab. 5 the time spent by ILP-RansaCov in each ex-
periment on real data. A comparison with other methods
would have been meaningless for not all of them are coded
in MATLAB as ours.

5. Conclusions
We formulated multi-model fitting in terms of SET

COVER and MAXIMUM COVERAGE problems, yielding a sim-
ple and easy to implement method that generalizes Ransac
to the case of multiple structures in a neat and principled
manner.

As in previous work, the multi-model fitting problem is
formulated in terms of optimization of a global cost func-
tion, thereby eluding the greediness of techniques such as
Sequential/Multi-Ransac and J-linkage, but at the same time
avoiding the difficult trade-off between data fidelity and
complexity of other formulations, by resorting to consen-
sus maximization. In both cases, we tackle the problem of
intersecting models at the root, by replacing partitions with
coverages.

ILP-RansaCov is modular with respect to the ILP solver
and to the sampling strategy. Few intelligible parameters
need to be set and tuned, namely the inlier threshold and
the number of desired model.

In summary, we expect that this paper will offer prac-
titioners a manageable tool for addressing a difficult and
ubiquitous problem, and will provide the community a ref-
erence baseline for further advancements.

Acknowledgments. L. Magri gratefully acknowledge the
support of 3Dflow srl.
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