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Turbulent plane Poiseuille and Couette flows share the same geometry, but produce their
flow rate owing to different external drivers: pressure gradient and shear, respectively.
By looking at integral energy fluxes, we pose and answer the question as to which flow
performs better at creating flow rate. We define a flow efficiency, which quantifies the
fraction of power used to produce flow rate instead of being wasted as a turbulent overhead;
effectiveness, instead, describes the amount of flow rate produced by a given power. The
work by Gatti et al. (J. Fluid Mech., vol. 857, 2018, pp. 345–373), where the constant power
input concept was developed to compare turbulent Poiseuille flows with drag reduction, is
here extended to compare different flows. By decomposing the mean velocity field into
a laminar contribution and a deviation, analytical expressions are derived which are the
energy-flux equivalents of the FIK identity. These concepts are applied to literature data
supplemented by a new set of direct numerical simulations, to find that Couette flows
are less efficient but more effective than Poiseuille flows. The reason is traced to the
more effective laminar component of Couette flows, which compensates for their higher
turbulent activity. It is also observed that, when the fluctuating fields of the two flows are
fed with the same total power fraction, Couette flows dissipate a smaller percentage of
it via turbulent dissipation. A decomposition of the fluctuating field into large and small
scales explains this feature: Couette flows develop stronger large-scale structures, which
alter the mean flow while contributing less significantly to dissipation.

Key words: turbulence theory

1. Introduction

This work describes at an integral level the process by which turbulent Poiseuille
and Couette flows – which share a simple geometrical setting but possess intrinsic
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differences – use a fraction of the external driving power to produce a flow rate, and
dissipate the remainder via turbulence. The interest in these two prototypical flows resides
in the fact that Poiseuille flows are pressure-driven, while Couette ones are powered by
shear forces lumped at the wall.

Both flows are wall-bounded, hence the relevance of viscous scaling: viscous or ‘plus’
units are built with the wall-based velocity scale u∗

τ = √
τ ∗

w/ρ
∗ (the asterisk denotes

dimensional quantities, ρ∗ is the fluid density and τ ∗
w the wall-shear stress) and the

kinematic viscosity ν∗ of the fluid. However, viscous units sometimes fail at recovering
universality when comparing different plane wall-bounded flows. For example, it is known
that turbulence develops faster with h+ in Couette flows, where h+ = h∗u∗

τ /ν
∗ is the

friction Reynolds number built with the friction velocity and the channel half-height h∗.
Indeed, the shear and wall-normal Reynolds stresses are known to saturate faster in Couette
flows, and turbulence is sustained at lower h+ (Orlandi, Bernardini & Pirozzoli 2015);
large near-wall structures have been observed in Couette flows at values of h+ as low as
93, while spectral peaks at low wavenumbers are encountered in Poiseuille flows at much
higher h+ (roughly, h+ = 5000) and mostly in the central region of the channel (Lee &
Moser 2018).

As a consequence, one cannot simply resort to scaling when comparing different flows
over a plane wall; for the comparison to be meaningful, prescribing the value of the
Reynolds number is also necessary. It is common practice (see e.g. Monty et al. 2009;
Sillero, Jiménez & Moser 2013) to compare different wall-bounded flows at the same
friction Reynolds number. However, not only is this choice discretionary, but also the
definition itself of the friction Reynolds number contains arbitrariness in the choice of
length scale (Jiménez et al. 2010). The choice of h∗ made above seems reasonable, at least
for Poiseuille flows (Jiménez & Hoyas 2008). The same convention is often adopted in
the literature for Couette flows as well, even though many argue that the full width of the
channel 2h∗ would be better suited than h∗ as a length scale (Barkley & Tuckerman 2007;
Lee & Moser 2018).

To set up a proper comparison, the framework introduced by Gatti et al. (2018) to
describe global energy fluxes is here extended. The framework was originally conceived
to compare the same Poiseuille flow under different flow control strategies; here it is
generalized to compare flows that differ altogether. A criterion to set up a sensible
comparison is needed: as in flow control, where one can compare at the same pressure
gradient, the same flow rate or the same power input (Quadrio, Frohnapfel & Hasegawa
2016), multiple possibilities exist, none of which can be excluded a priori. In the present
context, the constant power input (CPI) criterion is shown to provide some advantages.

After introducing the flows of interest and the adopted notation in § 1.1, the framework
used to study the global energy budgets is presented in § 2. It is then applied to a database
of existing direct numerical simulations, complemented by some newly produced ones,
in § 3, where trends of energy budgets with different Reynolds numbers are considered.
In § 3.3 a scale analysis addresses the contribution of the large Couette structures to the
turbulent dissipation, and § 4 contains a concluding discussion.

1.1. Notation and problem statement
In this paper, an asterisk superscript denotes dimensional quantities; non-dimensional
ones are written as bare symbols, except those scaled in viscous units, for which the
conventional ‘plus’ notation is employed. Let u∗ be the velocity vector and u∗, v∗,w∗
its Cartesian components; by indicating with 〈·〉 the temporal average, the usual Reynolds
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Figure 1. Sketch of the flow and reference system.

decomposition of the velocity field in its mean and fluctuating components is

u∗ = U∗ + u′∗, (1.1)

where U∗ ≡ 〈u∗〉 is the mean velocity, with components U∗, V∗ and W∗; the fluctuating
velocity field u′∗ (with its components u′∗, v′∗ and w′∗) is consequently defined.

Let us now consider (see figure 1) the statistically steady flow between two indefinite,
parallel plates, forced by a pressure gradient and/or a relative movement of the plates. Let
h∗ be half the gap between the plates; a system of Cartesian axes is located with origin at
the mid-plane, so that the y axis points in the wall-normal direction. The mean pressure
gradient ∂〈P∗〉/∂x∗ = −G∗ drives the flow in the streamwise (x) direction; without loss
of generality, we assume G∗ > 0. The two walls move in the streamwise direction with
velocity ±U∗

w. This is the combined Couette–Poiseuille flow, which reduces to the simple
Couette flow for G∗ = 0 and to the simple Poiseuille flow for U∗

w = 0. The bulk velocity
is written as U∗

b ; although for the simple Couette flow U∗
b = 0, the wall velocity U∗

w can
be regarded as the bulk velocity once the flow is observed in a reference frame where one
of the two walls is at rest. Hence, the flow rates realized by simple Poiseuille and Couette
flows are U∗

b and U∗
w, respectively.

A (yet unspecified) non-dimensionalization employing h∗ as the length scale defines a
Reynolds number Re. The balance of the kinetic energy U2 = 0.5UiUi of the mean flow
(MKE) can thus be written in a dimensionless form specialized for the plane channel as
(Pope 2000)

D̄
Dt

U2

2
= GU︸︷︷︸

pumping power

+ −r( y)
dU
dy︸ ︷︷ ︸

turb. production

+ d
dy
(r( y)U)︸ ︷︷ ︸

turb. transport

+ 1
Re

d
dy

(
U

dU
dy

)
︸ ︷︷ ︸

viscous diffusion

− 1
Re

(
dU
dy

)2

︸ ︷︷ ︸
dissipation

, (1.2)

where r( y) = −〈u′v′〉 is the wall-normal profile of the Reynolds shear stress. In this
balance, the pumping power acts as a source term, while production of turbulent kinetic
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energy (TKE) and dissipation both act as a sink. Two (turbulent and viscous) transport
terms are also present. The balance of TKE k = 0.5〈u′

iu
′
i〉 reads

D̄k
Dt

= r( y)
dU
dy︸ ︷︷ ︸

turb. production

+−1
2

d
dy

〈v′u′
iu

′
i〉︸ ︷︷ ︸

turb. transport

+ − d
dy

〈P′v′〉︸ ︷︷ ︸
pressure transport

+ 1
Re

d2k

dy2︸ ︷︷ ︸
viscous diffusion

− 1
Re

〈
∂u′

i
∂xk

∂u′
i

∂xk

〉
︸ ︷︷ ︸
turb. dissipation

, (1.3)

where this time production acts as a source, and three (turbulent, pressure and viscous)
transport terms are present together with a sink (dissipation). Notice that in both cases
the pseudo-dissipation formulation (also referred to as isotropic dissipation) has been used
instead of the thermodynamically correct one (Bradshaw & Perot 1993).

Equations (1.2) and (1.3) are integrated in the wall-normal direction over the full channel
height and then halved to obtain balances per unit wet surface for MKE and TKE. Notice
that all the divergence terms (except for the mean viscous diffusion) integrate to zero. This
results in

MKE: Πt −Φ − P = 0, (1.4)

TKE: P − ε = 0, (1.5)

where Πt is the total power input to the flow, and contains two contributions, Πp and Πw.
The former represents the power provided by the pressure gradient and arises from the
integration of the pumping power term; the latter is the power of the external forces applied
to the walls to keep them at a speed Uw, and arises from integration of the mean viscous
diffusion term. By indicating the mean shear stress (dU/dy)/Re at the top and bottom walls
as τw,t and τw,b, respectively, it can be further shown that G = (τw,b − τw,t)/2. Hence

Πt = Πp +Πw, (1.6)

Πp = 1
2(τw,b − τw,t)Ub = τaUb, (1.7)

Πw = 1
2(τw,t + τw,b)Uw = τsUw, (1.8)

where τs and τa are the symmetric and antisymmetric wall shear stress, respectively. Both
velocity scales appearing in the definition of power (Ub and Uw in (1.7) and (1.8)) are
referred to as flow rates, since, as explained above, they represent flow rate in simple
Poiseuille and Couette flows.

Equation (1.4) shows that part of the power Πt is wasted by the dissipation Φ of the
mean flow, given by integration of the corresponding term:

Φ = 1
2

∫ 1

−1

1
Re

(
dU
dy

)2

dy. (1.9)

The remainder is transformed into TKE by turbulent production:

P = 1
2

∫ 1

−1
r( y)

dU
dy

dy. (1.10)
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Finally, turbulent dissipation ε (arising from the integration of the corresponding term)
degrades the energy fed from the mean flow to turbulent fluctuations:

ε = 1
2

∫ 1

−1

1
Re

〈
∂u′

i
∂xk

∂u′
i

∂xk

〉
dy. (1.11)

2. The CPI framework for the Couette–Poiseuille flow family

A conceptual framework was designed by Gatti et al. (2018) to rationally compare
Poiseuille flows with and without flow control in terms of integral energy fluxes under CPI.
That analysis is here extended to the Couette configuration, to enable a CPI comparison
between different flows. The general combined Couette–Poiseuille flow family is discussed
first, and results for simple Couette and simple Poiseuille flows are recovered later.

The starting point is choosing the velocity scale for a meaningful non-dimensionalization,
once the length scale h∗ has been set. We opt for the so-called power velocity U∗

π :

U∗
π =

(
Π∗

t

ρ∗

)1/3

, (2.1)

which in its definition resembles the friction velocity, except that the total power input per
unit wetted area is used instead of the wall shear. This naturally leads to the definition of
a power-based Reynolds number Reπ = h∗U∗

π/ν
∗. Using this non-dimensionalization is

equivalent to expressing all energy fluxes as fractions of Π∗
t ; obviously, Πt = 1. Notice

that the definition (2.1) of the power velocity is more general than the one U∗
π,Pois given

in previous works (Hasegawa, Quadrio & Frohnapfel 2014; Gatti et al. 2018) and valid for
Poiseuille flows only; the following relation holds:

U∗
π =

(
3
ν∗

h∗

)1/3

(U∗
π,Pois)

2/3. (2.2)

Under the general definition (2.1), any two Couette–Poiseuille flows with the same values
of Reπ are driven by the same power input. The definition is also independent of the
reference frame, and immediately applies to unusual flow configurations such as Poiseuille
flows with no flow rate (Tuckerman et al. 2014) or experimental results for Couette and
Couette–Poiseuille flows (Kawata & Alfredsson 2019; Klotz, Pavlenko & Wesfreid 2021).

Because of the definitions (1.7), (1.8) and (2.1), the total power (1.6) can be recast in
terms of Reynolds numbers:

Re3
π = (h+

s )
2Rew + (h+

a )
2Reb, (2.3)

where h+
s = h∗√τ ∗

s /ρ
∗/ν∗ and h+

a = h∗√τ ∗
a /ρ

∗/ν∗ are the friction Reynolds numbers
defined with the friction velocity descending from the symmetric and antisymmetric wall
shear stresses, while Reb = h∗U∗

b/ν
∗ and Rew = h∗U∗

w/ν
∗ are Reynolds numbers where

the velocity scale is given by the flow rates.
In addition to the power Reynolds number, a second parameter is needed for the

characterization of a Couette–Poiseuille flow. The two usually employed parameters
(Telbany & Reynolds 1980, 1981; Nakabayashi, Kitoh & Katoh 2004) are the friction
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Reynolds number h+
b of the bottom wall and the flow parameter θ :

h+
b =

h∗
√
τ ∗

w,b/ρ
∗

ν∗ , θ = h∗

τ ∗
w,b

dτ ∗

dy∗ = − τ ∗
a

τ ∗
w,b
, (2.4a,b)

where τ ∗ is the total shear stress. In the present power-focused approach, we use instead
Reπ and the pumping power share a = Πp/Πt. Hence, a pair (Reπ , a) or equivalently
(h+

b , θ) fully describes the state of a Couette–Poiseuille flow. Because of (1.6), (1.7), (1.8)
and (2.3), the two parameter sets can be related as follows:

⎧⎨
⎩

Reπ = ((1 + θ)(h+
b )

2Rew − θ(h+
b )

2Reb)
1/3,

a =
(

1 − 1 + θ

θ

Rew

Reb

)−1

,
(2.5)

where Rew and Reb implicitly depend on h+
b and θ (an explicit relation cannot be obtained

due to the closure problem of turbulence).

2.1. The extended Reynolds decomposition
The next step of our analysis consists of extending the classic Reynolds decomposition, as
in Gatti et al. (2018). After splitting the velocity field into a mean component U( y) and a
fluctuating part, the former is further decomposed as the sum of a Stokes (laminar) and a
deviation part:

U( y) = UL( y)+ UΔ( y), (2.6)

where UL is the Stokes solution of the problem under consideration that achieves the same
flow rate as the turbulent one, i.e.

UL( y) = Uwy + 3
2 Ub(1 − y2). (2.7)

Hence, the deviation profile UΔ is zero at the wall and has zero integral; in other words,
it does not contribute to either Ub or Uw. For a generic parallel flow with constant
cross-section, UL is the solution that minimizes the power required to generate a given
flow rate (Bewley 2009; Fukagata, Sugiyama & Kasagi 2009).

The wall-shear stresses can also be decomposed into the sum of a laminar and a
deviation part, i.e. τs = τL

s + τΔs and τa = τL
a + τΔa . As already observed in Gatti et al.

(2018) for Poiseuille flows, the extended Reynolds decomposition also decouples the
integral power budget terms:

Φ = ΦL +ΦΔ = 1
2

∫ 1

−1

1
Reπ

(
dUL

dy

)2

dy + 1
2

∫ 1

−1

1
Reπ

(
dUΔ

dy

)2

dy, (2.8)

P = PL + PΔ = 1
2

∫ 1

−1
r( y)

dUL

dy
dy + 1

2

∫ 1

−1
r( y)

dUΔ

dy
dy. (2.9)

Moreover, it can be proved that PΔ = −ΦΔ < 0: hence the positive production term PL

transfers energy from the mean to the fluctuation field, whereas the deviation production
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MKE TKE

Πt = 1.000

φL = 0.162

PL = 0.838

−PΔ = 0.379

φΔ = 0.379

ε = 0.459

Figure 2. Extended energy box for a Couette flow at h+ = 102, with numerical values of the integral terms
expressed in power units.

PΔ acts in the opposite direction to be a sink for TKE. Eventually, because of the extended
decomposition, (1.4) and (1.5) can be rewritten as

MKE: 1 −ΦL − PL = 0, (2.10)

TKE: PL −ΦΔ − ε = 0, (2.11)

where the total power input term Πt becomes unity as a result of the power-based scaling.
The interpretation of the various integral terms is now straightforward: of the power input
Πt, the dissipated fractionΦL is the smallest amount of power required to achieve the given
flow rate for the flow under consideration (Gatti et al. 2018). The remaining dissipation
is caused by the presence of turbulence, and exits the system as either turbulent (ε) or
deviational (ΦΔ) dissipation; the two contributions sum up to PL. The whole process is
conveniently represented by the energy box (Quadrio 2011; Ricco et al. 2012), drawn in
figure 2 for a Couette flow at h+ = 102 (one of the cases discussed below). The various
components of the balance are a function of the flow type and Reynolds number.

2.2. Analytical expressions for the energy fluxes
Most of the quantities defined above can be expressed analytically in terms of the Reynolds
number Reπ , the pumping power share a = Πp/Πt and the following two weighted
integrals of the Reynolds shear stress r( y):

αP = 1
2

∫ 1

−1
−yr( y) dy, αC = 1

2

∫ 1

−1
r( y) dy. (2.12a,b)

Due to the antisymmetric weight in a symmetric integration domain, αP is only determined
by the antisymmetric part of the Reynolds stress, and is therefore zero for Couette flows;
conversely, αC depends on the symmetric part alone, and is zero for Poiseuille flows. The
weight functions are the wall-normal derivative of the laminar profile UL( y), normalized
by their wall value.

Integration of the momentum equation written for the deviation component (not
shown for brevity) leads to τΔs = αC and τΔa = 3αP: once again, the symmetric and
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antisymmetric parts of r( y) separate. Although separable, they are mutually dependent
due to the nonlinear nature of the Navier–Stokes equations. Separation is also possible for
the flow rates, with Uw and Ub associating to αC and αP, respectively:

Uw = ReπαC

2

(√
1 + 4(1 − a)

Reπα2
C

− 1

)
, Ub = ReπαP

2

(√
1 + 4a

3Reπα2
P

− 1

)
.

(2.13a,b)

These expressions are the CPI equivalent of the FIK identity originally derived by
Fukagata, Iwamoto & Kasagi (2002). Furthermore, an expression for PL is obtained:

PL = Reπα2
C

2

(√
1 + 4(1 − a)

Reπα2
C

− 1

)
+ 3Reπα2

P
2

(√
1 + 4a

3Reπα2
P

− 1

)
(2.14)

and, since from (2.10) ΦL = 1 − PL, ΦL also becomes analytically known. Lastly, an
expression for ΦΔ is needed; first, the following integral is defined:

β = 1
2

∫ 1

−1
r2( y) dy. (2.15)

Then, ΦΔ can be written as

ΦΔ = Reπ(β − α2
C − 3α2

P). (2.16)

The Cauchy–Schwarz inequality proves that this quantity is always non-negative.

2.3. Simple Couette and Poiseuille flows
Expressions for simple Couette and Poiseuille flows are obtained by setting a = 0 or a = 1,
respectively. Simple Couette flows have an antisymmetric mean velocity profile, hence
shear and Reynolds stresses are symmetric: τw = τs and τa = 0, with αP = 0 and Ub = 0.
Conversely, simple Poiseuille flows have a symmetric mean velocity profile, hence shear
and Reynold stresses are antisymmetric: |τw| = τa and τs = 0, with αC = 0 and Uw = 0.
For both types of flows, (2.3) can be simplified to

Re3
π = (h+)2Req, (2.17)

where Req is the flow-rate-based Reynolds number, i.e. Req = Rew for Couette flows and
Req = Reb for Poiseuille flows.

Equation (2.14) can be further simplified into an expression for PL (or ΦL) that is valid
for both simple Couette and Poiseuille flows. For this purpose, a new Reynolds number is
introduced, based on a new velocity scale U∗

α . The latter is given by the ratio between the
weighted integral α∗ of the Reynolds shear stress and the flow rate U∗

q :

U∗
α = α∗

U∗
q
, α∗ = 1

2h∗

∫ h∗

−h∗
r∗( y∗)ψ( y∗) dy∗, (2.18a,b)

where ψ( y∗) = (dUL/dy)/(dUL/dy)y=0 is the same non-dimensional weight of (2.12a,b),
such that α∗ = α∗

C for Couette flows or α∗ = α∗
P for Poiseuille flows. The new Reynolds
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number Reα = h∗U∗
α/ν

∗ is consequently defined; Reα already appears in the FIK identity
for Couette flows (Kawata & Alfredsson 2019), which can be cast as

Reα = Re2
τ

Rew
− 1, (2.19)

and the one for U+
b of Poiseuille flows (Marusic, Joseph & Mahesh 2007),

Reα = Re2
τ

3Reb
− 1. (2.20)

Eventually, the aforementioned fluxes PL and ΦL can be written as functions of Reα:

PL = 1
1 + 1/Reα

, ΦL = 1
1 + Reα

. (2.21a,b)

The laminar production PL expresses the fraction of external power wasted because of
turbulence, and is of particular interest as it quantifies the overhead in producing flow rate
from a given power. Due to the non-dimensionalization used, the dissipation ΦL of the
laminar component is the ratio between the power Π∗

L required by the Stokes solution and
the total power input Π∗

t :

ΦL = Π∗
L

Π∗
t
, (2.22)

with ΠL being the theoretical minimum power needed to achieve a given flow rate.
Therefore, ΦL represents an efficiency: the closer is ΦL to one, the closer is the flow
to the ideal situation where the whole power is spent to produce flow rate. Summing
up, the whole MKE box is determined by the value of Reα; it remains to be determined
when a given Reα is obtained, and what happens to the TKE box. This requires additional
information from direct numerical simulation datasets because of the unknown distribution
r( y), and is addressed below.

3. Numerical results

The discussion that follows is based on a set of direct numerical simulations of turbulent
Poiseuille and Couette flows. The dataset includes simulations carried out for the present
work as well as published data from Lee & Moser (2015, 2018), Orlandi et al. (2015),
Gatti & Quadrio (2016) and Gatti et al. (2018). The new set of simulations, carried out
with the code described in Luchini & Quadrio (2006), includes two Couette flows with
h+ � 100 and 500, as well as Poiseuille flows at h+ = 100, 150, 316 and 500, selected
to provide additional data points when needed; details of the various cases and their
spatial discretization are reported in table 1. As for the Couette simulations, a streamwise
domain length long enough to accommodate large-scale motions in the core of the channel
has been used; following Orlandi et al. (2015), a value of 12πh∗ is chosen here for
the low-Reynolds-number simulation, while 16πh∗ is used for higher Reynolds number.
These domain lengths have limited effects on one-point statistics (Lee & Moser 2018),
mainly affecting two-point statistics and the spatial orientation of structures (Komminaho,
Lundbladh & Johansson 1996), neither of which is of primary interest in this study.
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Figure 3. Dependence of the Reynolds numbers (a) Req, (b) Reπ and (c) Reα on the friction Reynolds number
h+, for Couette (red) and Poiseuille (blue) flows. The dashed lines in (a,b) indicate analytical fits, whereas the
dotted lines in (c) are empirical linear fits. For colours and symbols, refer to table 1.

3.1. Comparison at constant Reτ
First, the relationship among the various Reynolds numbers is discussed, and figure 3 plots
their variation with h+. Figure 3(a) shows that Req varies with h+ quite similarly in the
two flows; the similarity is even more striking when the variation of Reπ is considered, as
shown in figure 3(b). In both cases, available data show the expected nearly linear increase.
For example, Abe & Antonia (2016) linked h+ and Reb for Poiseuille flows by assuming
that deviations from the logarithmic law in the mean velocity profile near the mid-plane
of the channel are negligible; the same approximation was found to be valid for Couette
flows as well (Orlandi et al. 2015). The underlying functional form fitted to the present
data yields

Reb

h+ = 2.85 + 2.48 ln(h+), (3.1)

Rew

h+ = 5.17 + 2.39 ln(h+), (3.2)

and the use of (2.17) leads to analogous expressions for Reπ versus h+. In both cases,
the approximations are satisfactory. The most interesting result, however, is contained
in figure 3(c), where the change of Reα with h+ is shown. Considerable quantitative
differences are seen between Couette and Poiseuille flows: the slope of a linear fit to
Couette data is approximately three times larger than the same slope for Poiseuille flows.

Comparing Couette and Poiseuille flows at the same h+ is the most natural choice,
used several times in the past (see § 1). This comparison yields quite a similar flow
rate, and does not immediately reveal why a Couette flow possesses an increased level
of turbulent activity with respect to a Poiseuille flow at the same h+. However, under
such condition, Reα differs considerably between the two flows, suggesting a new and
potentially informative comparison.
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Figure 4. Reynolds numbers (a) Req and (b) Reα against Reπ . For colours and symbols, refer to table 1.
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Figure 5. Plot of PL and ΦL = 1 − PL against Reπ . For colours and symbols, refer to table 1.

3.2. Comparison at constant Reπ
Before addressing the comparison at the same Reα , which will provide a better indication
of turbulent activity, we compare Couette and Poiseuille flows at CPI. The relationship
between Reπ and h+ is shown in figure 3(b) to be nearly linear for the available data,
and to not depend on the flow type. Parameters Req and Reα are plotted against Reπ in
figure 4. Figure 4(a) allows one to assess the effectiveness Req(Reπ) of the flow, i.e. the
amount of flow rate Req produced out of a given power input Reπ . Data for Poiseuille
and Couette flows almost collapse, meaning that they are similarly effective. The marginal
difference between the two flows indicates that Couette flows are slightly more effective
than Poiseuille flows on the whole range of available data. This was already pointed out
by Orlandi et al. (2015), and seems to be at odds with much evidence in the literature of
a higher turbulent activity in Couette flows, e.g. from the same authors (see § 1 for more).
Such higher turbulent activity is here confirmed in figure 4(b): when the two flows are
compared under the same power input, Couette flows achieve a much higher Reα than
Poiseuille flows. In view of the discussion in § 2.3, this implies that Couette flows exhibit
a larger turbulent overhead PL, hence a lower efficiency ΦL. Figure 5 better shows how
efficiency ΦL and its complement overhead (or inefficiency) PL change with Reπ ; it is
clearly seen that the turbulent overhead is larger in Couette flows than in Poiseuille flows
for a given power input.

Provided that a Couette flow is more turbulent than a Poiseuille flow at CPI and that
turbulence has an adverse effect, the reason for the better effectiveness of the Couette case
has to be sought in its Stokes solution. The lower efficiency ΦL means that the Stokes
component UL of a generic Couette flow is fed with a smaller fraction of the total power
input; still, this UL requires less power than its Poiseuille counterpart to achieve a given
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Figure 6. (a) Turbulent dissipation ε and (b) deviational dissipation ΦΔ versus Reπ . For colours and
symbols, refer to table 1.

flow rate, hence compensating for the lower power supply. In other words, the concept of
efficiency – after (2.22) – addresses performance with respect to the ideal case of the flow
under consideration, while effectiveness Req(Reπ) does that in absolute terms.

Another significant difference between the two flows is the presence of energetic,
large-scale structures in Couette flows (Kitoh & Umeki 2008; Pirozzoli, Bernardini
& Orlandi 2014; Lee & Moser 2018). These essentially realize an inertial mechanism
(Papavassiliou & Hanratty 1997) that transfers momentum from one wall to the other – or,
in other words, produce flow rate. While they surely do not provide a better performance
with respect to the optimal case of a Stokes solution, their comparison with smaller-scale
turbulence is not trivial. Large-scale rolls in Couette flows can be either suppressed or
energized by a Coriolis force; in the first case, drag reduction is observed at constant flow
rate (Komminaho et al. 1996), in the latter a drag increase is obtained instead (Bech &
Andersson 1996; Kawata & Alfredsson 2016), suggesting that large-scale structures have
a negative impact on effectiveness. De Giovannetti, Hwang & Choi (2016) also reported a
degrading effect of large-scale structures on flow performance – albeit in Poiseuille flows.
In light of this, the Stokes solution can be considered mainly responsible for the larger
flow rate of Couette flows.

The remaining flux terms of the TKE box are plotted in figure 6. Here the data points
follow qualitatively similar curves for the two flows, but with significant quantitative
differences. The TKE dissipation ε is found to monotonically increase in both flows, in
agreement for example with Abe & Antonia (2016), even though Couette flows yield
significantly larger values than Poiseuille flows. As for the deviational dissipation ΦΔ,
Gatti et al. (2018) observed an increasing trend for Poiseuille flows until a maximum at
intermediate Reπ is reached; then, the curve decreases monotonically to asymptotically
approach zero. The same trend is here confirmed for Couette flows, except that the
maximum is reached much earlier than in Poiseuille flows, supporting once more the
notion that the former develop faster with Re. Moreover, the available Couette data points
are consistently above those for Poiseuille flows, except the one at the highest Re; a trend
reversal is thus possible at high Reynolds number, even though additional high-Re Couette
data would be needed to establish it properly.

3.3. Comparison at constant Reα
Additional considerations can be made when the two flows are compared at the same value
of Reα . It has already been shown how this is equivalent to enforcing an identical MKE
box, and that Reα significantly differs for the two flows at the same h+ or Reπ .
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Figure 7. Turbulent dissipation ε against Reα . For colours and symbols, refer to table 1.

Figure 7 plots the turbulent dissipation ε against Reα . A single point on this plot, i.e. a
pair of (Reα, ε) values, is sufficient to determine the whole energy box. Indeed, the value of
Reα sets both PL andΦL, while the value of ε provides the missing information to recover
deviational dissipation from (2.11) as well as deviational production, since ΦΔ = −PΔ.

The two curves for Poiseuille and Couette flows in figure 7 are very similar, not only
qualitatively but also quantitatively. This is quite remarkable, since in principle nothing
prescribes such different flows with different mechanisms of power input and at different
h+ and Reπ to redistribute the same power fraction PL identically between ε and ΦΔ.
A striking difference with respect to figure 6(a) is that, here, Couette flows show a lower
turbulent dissipation than Poiseuille flows, albeit marginally. Moreover, the present data
indicate a tendency for this difference to increase with Re. In other words, when the same
fraction of power PL is transferred to the field of turbulent fluctuations, a Couette flow
dissipates less of it as turbulent dissipation (and consequently more of it as ΦΔ), in
a manner that becomes more evident for increasing Re. This trend occurs despite both
flows achieving ε → 1 (thus ΦΔ → 0) in the limit Reα → ∞, which is then approached
at a faster rate in Poiseuille flows. This can be readily shown through (2.16) under the
asymptotic-Re assumption that r( y) equals the total shear stress τwψ( y).

3.4. Discriminating large- and small-scale dissipation
The above observation can be explained by the role of the large-scale structures in the two
flows; as already stated, such structures are more intense in Couette flows than in Poiseuille
flows, at least for the relatively wide range of Reynolds numbers observed in the literature.
The lower turbulent dissipation in Couette flows might thus be attributed to the reduced
ability of these large-scale motions to transform PL into ε. Moreover, the implied larger
ΦΔ is a sign of the large-scale motions being more efficient at producing Reynolds shear
stresses, consistent with observations by Lee & Moser (2018). Since the shear stress is
directly related to the mean flow by the mean momentum equation, large scales affect the
mean flow more than small scales.

To confirm this hypothesis, a decomposition of the fluctuating velocity field into large-
and small-scale components is carried out. The procedure closely follows the one devised
by Kawata & Alfredsson (2018). A large-scale field u� is defined via a sharp Fourier
filter in the homogeneous directions, and the small-scale field is consequently defined
as us = u′ − u�. Budget equations were derived by Kawata & Alfredsson (2018) for
the kinetic energy of these two fields. These equations resemble the one for the kinetic
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energy of the whole fluctuation field, and feature equivalent terms, plus a key additional
transport term that describes the energy transfer between the large and small scales. The
cross-scale transport term is conventionally defined to be positive when the large-scale
field is receiving power. The equation for the large-scale kinetic energy becomes

D̄
Dt

〈u�i u�i 〉
2

= −〈u�v�〉dU
dy︸ ︷︷ ︸

production

+−1
2

d
dy

〈v′u�i u�i 〉︸ ︷︷ ︸
turb. transport

+ −
〈
u�i u′

k
∂us

i
∂xk

〉
︸ ︷︷ ︸

cross-scale transport

+ − d
dy

〈P′v�〉︸ ︷︷ ︸
press. transport

+ 1
Re

d2

dy2

〈u�i u�i 〉
2︸ ︷︷ ︸

viscous diffusion

− 1
Re

〈
∂u�i
∂xk

∂u�i
∂xk

〉
︸ ︷︷ ︸

turb. dissipation

. (3.3)

Substituting u� with us provides the analogous equation for the small-scale field. The
crucial cross-scale term describes the energy exchange between small and large scales,
and represents a non-local process in physical space, so that the exchange only balances
after integration on the whole domain, i.e.∫ 1

−1
−
〈
u�i u′

k
∂us

i
∂xk

〉
︸ ︷︷ ︸
cross-scale, large

+ −
〈
us

i u
′
k
∂u�i
∂xk

〉
︸ ︷︷ ︸

cross-scale, small

dy = 0. (3.4)

Volume-integration of the budget equation (3.3) and its small-scale equivalent yields
the energy fluxes PL, PΔ and ε separated into their small- and large-scale components,
which are indicated by subscripts s and �, respectively, plus the interscale transfer T .

We compute the decomposed energy budget for two Couette flows at h+ � 100 and 500.
As in Kawata & Alfredsson (2018), no filtering is carried out in the streamwise direction,
owing to the very elongated nature of the large-scale structures. For spanwise filtering,
the selection of the wavelength λz to discriminate the large-scale motion is guided by the
rather flat peak of the energy spectrum observed in Lee & Moser (2018) in the range 3 <
λz < 6.5. Detailed scrutiny of the same spectrum for the present datasets has determined
the range of interest to be λz ≥ π , which is used as a criterion to discriminate the large
scales from the small scales.

The decomposed energy budget is given in figure 8 for a Couette flow at h+ � 100,
where the TKE box is separated into two sub-boxes pertaining to the small and large
scales. It is confirmed that the large scales are less efficient than the small scales at
producing ε, with ε� = 0.079 versus εs = 0.380. Not only do small scales produce more
turbulent dissipation, but they also convert a larger fraction of the received energy into
it, as ε�/PL

� = 0.336 while εs/PL
s = 0.627. Obviously, their impact on the deviational

dissipation is opposite, with |PΔ� |/PL
� = 0.706 and PΔs /PL

s = 0.355. The same picture
is observed in figure 9 for a Couette flow at h+ � 500, with even more pronounced
features because of the higher Re and the increased separation between large and small
scales. The large-scale contribution to turbulent dissipation becomes much smaller than
the small-scale one (ε� = 0.034 against εs = 0.515); moreover, the large scales account
for most of the deviation dissipation with |PΔ� |/ΦΔ = 0.8398. In other words, turbulent
dissipation is clearly dominated by small-scale effects, whereas deviation dissipation is
mainly caused by large-scale effects.

In both cases, the interscale net energy flux is rather small: T = 0.01 for h+ � 100
and T = −0.052 for h+ � 500. However small, the net integral effect at lower Reynolds
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MKE Large

Small

Πt = 1.000

φL = 0.161

PL
s = 0.606

PL
	 = 0.235

−PΔ
s = 0.215φΔ = 0.382

εs = 0.380

ε	 = 0.079

T = 0.010

−PΔ
	 = 0.166

Figure 8. Extended energy box for a Couette flow at h+ = 102, with the TKE box split into large- and
small-scale contributions.

MKE Large

Small

T = −0.052
Πt = 1.000

φL = 0.039

PL
s = 0.529

PL
	 = 0.432

−PΔ
s = 0.066

φΔ = 0.412

εs = 0.515

ε	 = 0.034

−PΔ
	 = 0.346

Figure 9. Extended energy box for a Couette flow at h+ = 507, with the TKE box split into large- and
small-scale contributions.

number is to transfer energy from the small to the large scales. The same result
was obtained by Papavassiliou & Hanratty (1997) by treating large-scale structures as
secondary motions; this differs, however, from the more recent observation put forward
by Kawata & Alfredsson (2018), where an inverse interscale transport was only found for
the Reynolds shear stress r( y). At higher Reynolds number the direction of the transfer is
reversed, and power goes from large to small scales. This inversion can be explained by
figure 10, that plots the y profile of the cross-scale transport term of the large scales, i.e.

−
〈
u�i u′

k
∂us

i
∂xk

〉
. (3.5)

A positive peak is present in the near-wall region, where the large scales are receiving
power; the present data suggest that its position scales in viscous units. Hence the
peak covers a large portion of the domain at low Reynolds number – meaning that
the integral flux T is dominated by near-wall effects, and ends up being positive at
h+ � 100. Conversely, at higher h+ the integral is dominated by the core region of the flow,

924 A25-16

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 P

ol
ite

cn
ic

o 
di

 M
ila

no
, o

n 
30

 A
ug

 2
02

1 
at

 1
4:

19
:0

4,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

59
8

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2021.598


Energy budgets in Couette and Poiseuille flows
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0

1

2

3

(×10−2)

y+

〈u	
iu

k′ (∂
u is /∂

x k)
〉+

h+ � 100

h+ � 500

Figure 10. Profiles of the cross-scale transport term for the large-scale fluctuation field u� in Couette flows,
plotted in viscous units. Red: h+ = 102; black: h+ = 507.

where the large scales lose energy, thus explaining the negative value of T at h+ � 500.
This interpretation agrees, for example, with findings by Cho, Hwang & Choi (2018)
and Kawata & Tsukahara (2021), who detected an inverse energy cascade from large
energy-containing motions to even larger ones in the proximity of the wall.

4. Conclusions

Turbulent plane Poiseuille and Couette flows have been compared in terms of their integral
energy fluxes, as a result of the analysis of a database of direct numerical simulations. The
work is based on the framework introduced by Gatti et al. (2018) to compare two Poiseuille
flows with and without flow control under the same power input (i.e. at CPI). The CPI
approach is extended here to the case of a generic plane parallel flow driven by both shear
and a pressure gradient. A power-based velocity scale U∗

π and a corresponding Reynolds
number Reπ are defined and used for non-dimensionalization, so that two flows with the
same power input possess the same U∗

π and the same Reπ . After a standard Reynolds
decomposition, the mean flow is further split into a laminar (Stokes) and a mean deviation
contribution. This procedure also decouples all the volume-integrated energy fluxes into a
laminar and a deviational part. The extended decomposition, together with normalization
by the total power input, enables expressing all the energy fluxes as functions of the sole
variables Reπ and two wall-normal integrals of the Reynolds shear stress.

Comparing Couette and Poiseuille flows at the same Reπ ascertains that Couette flows
produce a slightly larger flow rate, i.e. Couette flows are more effective at converting a
given input power into flow rate. However, the efficiency of the process is a completely
different concept. Among the volume-integrated fluxes, the flux PL (laminar production
of TKE) indicates the total fraction of power that is wasted as an overhead expense owing
to the presence of turbulence, or the flow (in)efficiency. The flux ΦL = 1 − PL is the
laminar dissipation, i.e. the dissipation of the laminar flow, and similarly expresses the
efficiency of the flow, being the ratio between the theoretical minimum power necessary
to realize a given flow rate and the actual power used to drive the turbulent flow. For a
comparison under the CPI condition, Couette flows produce a larger PL (see figure 4)
and a lower efficiency ΦL = 1 − PL. The two observations that Couette flows are at
the same time more effective (i.e. produce a larger flow rate for a given power) and less
efficient (i.e. waste a larger power share to turbulence) are only apparently contradictory:
the laminar Couette solution requires less power than its Poiseuille counterpart to produce
the same flow rate, hence compensating for the higher turbulent activity of the former.
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The Stokes solution is therefore quite relevant in determining the absolute performance
of a turbulent flow at producing flow rate. Also, the efficiency ΦL should not be used to
compare effectiveness at producing flow rate across different flows, but only to indicate
how the flow compares to the ideal situation.

In the case of simple Couette and Poiseuille flows, both fluxes ΦL and PL have been
written as functions of a sole variable: the Reynolds number Reα , which is embedded
in the FIK identity. Its velocity scale is the ratio between a weighted integral of the shear
stress and the flow rate. Surprisingly, these two functions of Reα turn out to be identical for
Couette and Poiseuille flows. However, the same value of Reα is achieved by Couette flows
at a lower value of h+, explaining and – more importantly – quantifying how turbulence
in Couette flows develops faster with the Reynolds number.

Couette and Poiseuille flows can also be compared at the same value of Reα , which
corresponds to a situation where the fluctuating field is fed with the same fraction PL of the
total power. In this case, Couette flows are found to achieve a smaller turbulent dissipation
ε, even though for both flows ε tends to unity at infinite Reynolds number. Indeed, Couette
flows feature stronger large-scale structures, which are efficient at modifying the mean
flow, but carry a lower contribution to turbulent dissipation compared to smaller scales. To
verify this, an interscale analysis of the energy fluxes has been performed on two Couette
flows at h+ � 100 and 500. The TKE integral budget is further divided in small- and
large-scale contributions, with an additional transport term that quantifies the cross-talk
between scales, as shown in figures 8 and 9. By setting the scale separation threshold in
such a way that the large rolls are included into the large-scale part, it is found that the
large scales produce only a minor fraction of the total ε (approximately 10 %–20 % of
it); moreover, they convert to turbulent dissipation only a small fraction (approximately
10 %–30 %) of the power PL

� with which they are fed. This behaviour is opposite to that
of the small scales, and becomes more pronounced as the Reynolds number increases.
At low Reynolds numbers, the interscale transport term is found to move energy from
the small to the large scales; the opposite happens at higher Reynolds number. Such an
inverse interscale transport was indeed already observed by Kawata & Alfredsson (2018)
but limited to the shear stress, whereas other studies (Cho et al. 2018; Kawata & Tsukahara
2021) have already reported a reversed energy cascade in the proximity of the wall. Our
data suggest that this near-wall, inverse-cascade region scales in viscous units; hence it
contributes more to the cross-talk at lower Reynolds numbers, and becomes less important
as Reynolds number increases.

The framework proposed here for the analysis of global energy budgets in turbulent
flows, by also accounting for the presence of large-scale structures, has been demonstrated
for the Couette–Poiseuille family of flows, but its range of use is larger. It can be applied
to unconventional cases such as Poiseuille flows with zero flow rate (Tuckerman et al.
2014) or Couette flows in a rotating reference frame (Bech & Andersson 1996; Kawata &
Alfredsson 2019). Every term of the energy box except ε (and T in the scale-decomposed
version) can be obtained from the profile of the Reynolds shear stress, hence the framework
suits experimental studies as well. Flow control schemes can also be assessed, as done in
Gatti et al. (2018), providing useful insights on the role played by large-scale motions in the
context of drag reduction. Roccon, Zonta & Soldati (2021) have recently and successfully
applied it to two-phase flows with complex physics. Flows featuring large or secondary
motions, such as open-channel flows (Zampiron, Cameron & Nikora 2021), are of interest
as well; the same applies to to straight-duct flows with arbitrary geometry. Finally, as
pointed out by Frohnapfel, Hasegawa & Quadrio (2012), generalization to external flows
such as spatially developing boundary layers is also possible.
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