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Optimization of nonlinear, non-Gaussian Bayesian filtering for
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an filters u
s, often call
 of applications of 
he present work critically analyzes the probabilistic definition of dynamic state-space models subject to Bayesi
onitoring and predicting monotonic degradation processes. The study focuses on the selection of the random proces
ess noise, which is a key perturbation source in the evolution equation of particle filtering. Despite the large number
rforma

Bayesian filtering algorithms are gainin
the-art technique in the fields of probabilis
management (PHM), especially when the 
classes of Bayesian filters, particle filtering, a sequential Monte Carlo method developed by Gordon, Salmond and Smith
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sed for 
ed pro-
article filtering predicting structural degradation, the adequacy of the picked process noise has not been investigated. This paper reviews 
xisting process noise models that are typically embedded in particle filters dedicated to monitoring and predicting structural damage 
aused by fatigue, which is mono-tonic in nature. The analysis emphasizes that existing formulations of the process noise can jeopardize 
he performance of the filter in terms of state estimation and remaining life prediction (i.e., damage prognosis). This paper subsequently 
roposes an optimal and unbiased process noise model and a list of requirements that the stochastic model must satisfy to guarantee high 
rognostic performance. These requirements are useful for future and further implementations of particle filtering for monotonic system 
ynamics. The validity of the new process noise formulation is assessed against experimental fatigue crack growth data from a full-scale 
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1. Introduction
nce metrics.

g popularity in many engineering applications and they are emerging as a state-of-
tic life prediction, structural health monitoring (SHM), and prognostics and health 
diagnostic-prognostic process requires real-time execution. Among the dif-ferent 
 [1], is 

of great interest because of its ability to deal with nonlinear systems characterized by non-Gaussian variables [1–6]. Recent 
applications of particle filtering have been presented in literature in a number of diagnostic and prognostic scenarios: fault 
detection in structural components [7,8], prediction of turbine blade creep [9], prediction of lithiumion battery degradation 
[10,11] and asymptotic process prediction in composite materials [12]. Literature also provides examples of particle filtering 
applied in the field of nonlinear structural dynamics and structural parameter identification [13,14]. Other works related to 
particle filtering are analyzed throughout the paper.
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Nomenclature

C� Paris’ law parameter
F crack shape function
K stress intensity factor
k discrete time step
k� gamma distribution parameter
N load cycle
Ns number of samples
n system state vector dimension
m measurement vector dimension
m� Paris’ law parameter
p input vector dimension
q model parameter vector dimension
S remote stress
U input vector support
u input vector
X system state vector support
x system state vector
Z measurement vector support
z observation vector
d�;� Kronecker delta
H measurement noise vector support
g measurement noise
H model parameter vector support
h� gamma distribution parameter
h model parameter vector
l mean
R covariance matrix
r standard deviation
r2 variance
X process noise vector support
x process noise vector
The design of the filter includes a random process introduced in the model equation describing the system dynamics. This 
random process works as a perturbation source describing the inherent, un-modeled uncertainty of the system and is inher-
ent in defining the probability density function (pdf) of the system state variables. Such process noise aims at describing, for 
example, micro-scale dynamics of the damaging process, which is not accounted for in macro-scale engineering models. In 
the fields of SHM and PHM, such a random process is often called process noise, where the term ‘process’ indicates the system 
evolution process, and ‘noise’ emphasizes its stochastic, perturbative nature. The definition of the process noise is typically 
made by the algorithm designer, but none of the applications of particle filtering for diagnostic and prognostic of structures 
presented in literature discusses the efficiency and effectiveness of the chosen random process. This paper will clearly show 
that this selection does, in fact, have implications on the filter’s predictive performance.

In addition to the above-cited papers [7–11], the works in [15–20] are remarkable examples of real-time fatigue crack 
growth (FCG) prognosis in metallic structures based on particle filtering. Recent works investigating different aspects of par-
ticle filtering-based FCG prognosis are also available in [21–23]. Applications of particle filtering for life prediction of com-
posite materials subject to matrix micro-cracking are available in [12,24,25]. All those papers defined the process noise in 
different ways (some of them using nonlinear non-Gaussian random processes), but none of them discussed the selected 
process critically.

The analysis presented in this paper shows that if the process noise is not carefully tuned, the algorithm may encounter 
computational inefficiencies or it might fail the prognostic goal, defined here to be the accurate prediction of the remaining 
useful life (RUL) of the structure. Indeed, this analysis shows the drawbacks of process noises adopted in previous papers. 
Then, the paper proposes a process noise to improve the efficiency and effectiveness of particle filtering for monitoring and 
prognosis of monotonic degradation phenomena. Cracks in metallic alloys, delamination and matrix crack density evo-lution 
in composite laminates, and creep-induced plasticity are typical cases of monotonic degradation where particle filter-ing (if 
properly tuned) can help in monitoring the damage severity and predicting the RUL. It should be noted that the proposed 
process noise was already used by the authors in an application of particle filtering for composite materials suf-fering 
concurrent damage mechanisms [26]. Nevertheless, a critical analysis of the process noise was not presented in that work. 
Also, this paper proposes three requirements that the evolution equation, which strongly depends on the process noise, has 
to satisfy in order to build an efficient Bayesian filtering framework. Eventually, the designed filter is applied



to FCG observed in a real helicopter tail and the results are compared with older algorithm formulations available in liter-
ature based on well-known evaluation metrics. This application is a relevant example of particle filtering-based damage 
prognosis applied to a real aeronautical structure.

The remainder of the paper organizes as follows: Section 2 summarizes particle filtering, the system state refinement and 
the prognostic step to predict the evolution of the (monotonic) degradation process. Section 3 analyzes the evolution equa-
tion tailored for monotonic processes and the effect of the process noise. This section discusses also the requirements of the 
evolution equation to design an effective particle filter. Section 4 shows the application to FCG data obtained in a lab envi-
ronment and Section 5 concludes the paper.

2. Summary of particle filtering for nonlinear non-Gaussian system tracking

Particle filtering is a Bayesian filtering technique relying upon Monte Carlo importance sampling to approximate the con-
ditional pdf of the system state [2,3]. The recursive filtering of the system state acts upon a dynamic state-space model, 
which is composed of an evolution equation describing the system dynamics and an observation equation that links the 
observables, i.e., what is measured, with the true (unknown, and possibly hidden) system state. The dynamic state-space 
model is described by a first-order Markov assumption (1):
xk ¼ f k;hðxk�1;uk�1;xk�1Þ
zk ¼ gkðxk;gkÞ;

ð1Þ
where the vector x ¼ ½x1; x2; . . .  ; xn�T #X 2 Rn�1 contains the n state variables, while the vector z ¼ ½z1; z2; . . . ; zm�T #Z 2 Rm�1 

contains the m observations. The evolution equation is defined by f k;hð�Þ, which is an n-dimensional state mapping function

parametrized by the model parameter vector h ¼ ½h1; h2; . . .  ; hq�T #H 2 Rq�1, while gkð�Þ is a m-dimensional mapping function 
defining the observation equation. Both f k;hð�Þ and gkð�Þ are nonlinear and potentially time-varying. The two random pro-

cesses xk�1 #X 2 Rn�1 and gk # H 2 Rm�1 are the process and measurement noise, respectively. They contribute to the evo-
lution and observation equations by adding random perturbations. As explained in the introduction, the process noise
introduces a disturbance to account for the inherent, unpredictable variability in the system dynamics, and is the core of 
the discussion in Section 3. The measurement noise describes the uncertainty of the measurement system, and can be easily 
quantified when a series of repeatable observations is available. Although some authors defined them as white noise pro-
cesses [27], they can be general first-order random processes with time-varying moments.

A common assumption is that the input of the system u ¼ ½u1; u2; . .  .  ; up�T 2 U# Rp�1 is observable, and its observability is 
not further discussed henceforth. Unless otherwise specified, the model parameter vector and the input vector are supposed
to be deterministic and known. Thus, the dependence from the input vector is not underlined in the following equations. 
Also, dissertations on the observation equation, including frequency of observations and observation uncertainty, are not 
provided, since the paper focuses on the noise affecting the evolution equation only. With an abuse of notation, the distinc-
tion between random variables or random vectors and their realizations is also neglected. Since detailed discussions on par-
ticle filtering are not the aim of the paper, however, the interested reader may refer to [1–6] for more details.

2.1. Filtering of the dynamic state-space model

The filtering problem aims at estimating the conditional pdf of the system state upon the observation sequence z0:k, and its 
closed form solution consists of the Chapman-Kolmogorov equation (prediction) and the Bayesian updating (2)
pðxkjz0:k�1Þ ¼
Z
X
pðxkjxk�1Þpðxk�1jz0:k�1Þdxk�1;

pðxkjz0:kÞ ¼ pðxkjz0:k�1ÞpðzkjxkÞ
pðzkjz0:k�1Þ :

ð2Þ
Since the evolution of x undergoes to the assumption of first-order Markov processes (first row of (1)), the prediction
equation has made use of the fact that pðxkjxk�1; z0:k�1Þ ¼ pðxkjxk�1Þ, [3]. The analytical solution of (2) exists for linear-
Gaussian systems only. On the other hand, particle filter enables the approximation of the posterior pdf of a nonlinear

non-Gaussian system state given a series of observations, pðxkjz0:kÞ, by means of Ns samples xðiÞ
k ; i ¼ 1; . . . ;Ns. These samples

are often called particles, weighted using the importance sampling approach (3), [3]. The weights are normalized to sum up
to 1 (4) before computing the posterior distribution (5),
~wðiÞ
k ¼ wðiÞ

k�1

pðzkjxðiÞk ÞpðxðiÞk jxðiÞk�1Þ
qðxðiÞk jxðiÞk�1; z0:kÞ

; ð3Þ

wðiÞ
k ¼ ~wðiÞ

kPNs
j¼1 ~w

ðjÞ
k

; ð4Þ



1 The
p̂ðxkjz0:kÞ ¼
XNs

i¼1

wðiÞ
k dxðiÞ

k
;xk

ð5Þ
The functions in (3) are the transition density function (tdf), pðxkjxk�1Þ, the likelihood function, pðzkjxkÞ and the importance
density function, qðxkjxk�1; z0:kÞ. The choice of the importance density function is arbitrary, and a common practice is to use
the tdf as the importance density function, thus simplifying the weight formulation (6),
~wðiÞ
k ¼ wðiÞ

k�1pðzkjxðiÞk Þ: ð6Þ

The evolution equation f k;hð�Þ is the core of the tdf and is analyzed in Section 3. The algorithm based on Eqs. (4)–(6) is called 

bootstrap sequential importance sampling or bootstrap particle filter and is the most common algorithm adopted
in real-time diagnostic and prognostic applications, although some applications of auxiliary particle filter for structural state
diagnosis can be found in literature [7].

2.2. Prognostics: from the state refinement to the p-step ahead prediction

Particle filtering approximates the posterior distribution of the system state, which is a state estimation-refinement rather 
than a prognosis [27]. The prognostic stage is carried out by projecting the samples ahead into the future, at time step

p, using the evolution equation f k;hð�Þ, (i.e., pðxkjxk�1Þ). The prognostic step makes use of the pdfs defined in SubSection 2.1 and 
approximates the p-step ahead prediction distribution (7), as defined by Doucet, Godsill and Andrieu [2],
p̂ðxkþpjz0:kÞ ¼
XNs

i¼1

wðiÞ
k

Z
X
p xkþ1jxðiÞk
� � Ykþp

j¼kþ2

pðxjjxj�1Þdxkþ1:kþp�1: ð7Þ
The estimation of the end-of-life or the RUL of systems subject to progressive degradation involves the step-by-step prop-

agation of the samples xðiÞ
k using the tdf. Once all the samples have crossed a predefined threshold xth defining a critical or

limit degradation, the RUL pdf may be computed using (8),
p̂ðRULkjz0:kÞ ¼
XNs

i¼1

wðiÞ
k dRULðiÞ

k
;RULk

: ð8Þ
The term RULðiÞk is the remaining life of the i-th sample, i.e., the time required by xðiÞk to reach xth, evaluated with the infor-
mation up to time step k.

3. On the probabilistic transition using the process noise x

This section analyzes the tdf pðxkjxk�1Þ and the effect of the selected process noise to the transition of the samples. Assum-
ing that f k;hð�Þ is not time-varying (i.e., f k;hð�Þ � f hð�Þ), the process noise x is the only source of uncertainty affecting the tran-
sition of the i-th sample. In addition, the features of the process noise have been assumed as stationary; x loses indeed the
dependence from the time step k (9):
f hðxk�1;xÞ ! pðxkjxk�1Þ: ð9Þ
Each sample of the system state must perform a ‘plausible’ transition from xðiÞ
k�1 to xðiÞk in the state-space, in agreement

with the true, physical phenomenon. The requirements to generate likely transitions to monitor monotonic degradation pro-
cesses are discussed below, including: (i) the use of additive Gaussian or non-Gaussian and (ii) multiplicative log-normal 
process noises adopted in the literature.1 Then, a process noise definition and a list of requirements necessary to implement
an efficient filter are discussed. Without loss of generality, the system’s state has been considered unidimensional, xk #X 2 R, 
and the analysis of the evolution equation has made use of the algebra of random variables.

3.1. Additive Gaussian/non-Gaussian process noises

The works in [12,15,18,24,25], concerning fatigue-induced damage prognosis, proposed an additive noise altering the 
evolution equation, (10),
xk ¼ f 0hðxk�1Þ þx: ð10Þ

The nonlinear function f 0h is the deterministic evolution equation, which describes the system state dynamics without any

perturbation source. The superscript 0 is used to differ the deterministic model and the stochastic evolution function
f hðxk�1; xÞ. A simple analysis of the evolution equation in (10) can be carried out by using the conditional expectation of 
the system state (11):
notation of the original papers has been modified to make it consistent with the notation used in this work.



Table 1
Additiv
papers 

Pape

[18]

[24]
[25]
[12]
E½xkjxk�1� ¼ f 0hðxk�1Þ þ E½x�: ð11Þ
Assuming a Gaussian process noise, the tdf describing the probability of xðiÞk given xðiÞk�1 is a Gaussian distribution (12):
pðxkjxk�1Þ ¼ 1ffiffiffiffiffiffiffi
2p

p
rx

exp � xk � E½xkjxk�1�ð Þ2
r2
x

!
: ð12Þ
sian process noise allows the sample xð Þk to be smaller that xð

Clearly, the expected value of the system state is unbiased only if E½x� ¼  0. The work in [15] assumes x as a non-Gaussian 
random process, but further details were not provided. In [18], the authors used two types of process noise in an illustrative
example: a Gamma distribution, x � Cð0:15; 0:3Þ, and a Normal distribution x � Nð0:045; 0:1162Þ. Later in their paper, they 
applied the filter to experimental data using a ‘non-Gaussian white noise’, without further information. Instead, the authors
in [12,24,25] used Eq. (10) with a zero-mean Gaussian random process.
If the one-step ahead prediction is biased (E½xkjxk�1� – f 0hðxk�1Þ), the discrepancy between the deterministic evolution equation 

and the prediction made by the filter increases with the horizon of the prediction, altering the trend of the particles.
The bias becomes larger and larger when projecting the samples several steps ahead in the future, so it could produce nota-
ble effects in the prognostic stage. Some authors adopted a non-zero-mean noise to adjust the evolution equation using his-
torical data. However, such data may not be available for the system or structure that has to be monitored. Also, if historical 
damage propagation data suggest that there is a bias with respect to the models available in literature, such data could be 
efficiently used to modify the model parameters, so that the model would fit those historical data correctly. Table 1 summa-
rizes the additive process noises for structural degradation found in the literature.

Even though zero-mean Gaussian random processes will not introduce biases into the evolution equation, they may let 
the samples fall outside the domain support of the system state, i.e., a domain support mismatch. Let us assume an additive
Gaussian process noise and consider the system state xk as the size of a fatigue-induced damage: crack length, delamination
extent, etc. The domain of existence of 

i

the state vector is the
i 

positive sub-set of real numbers, X 2 R½0;1�. The use of a Gaus-

Þ
k�1, because of the symmetry of the Gaussian distribution. If the

sample decreases for a relatively large number of steps, it might become less than zero, and the algorithm fails, without pro-
viding any RUL estimation. As a matter of fact, a decreasing system state is not consistent with damage progression phenom-
ena, since aging or fatigue damage accumulates as time passes by, i.e., monotonically increases.

In order to give a clear, graphical explanation of the effect of the process noise on the particles’ propagation, Ns ¼ 100
samples of FCG have been propagated for N ¼ 150;000 load cycles using (10) and process noises similar to the one found
in literature (Table 1). This simulation refers to a virtual aluminum plate with a central crack, and the simulation features
are available in Table 2. A linear damage accumulation model based on Paris’ law simulates the step-by-step damage pro-
gression (13):
xk ¼ xk�1 þ C� DKðxk�1Þð Þm�
DN þx: ð13Þ
The stress intensity factor range is the difference between the maximum and minimum stress intensity factors within a
single load cycle, DK ¼ KðSmaxÞ �  KðSminÞ, and DN ¼ 200. The samples, each of them referring to a specific crack length, are 
projected in the future for several time steps (or load cycles) using (13). This simulation is representative of the particle
filtering-based prognostic stage, when the posterior pdf of the system state has been already computed and there is no addi-
tional information regarding the true damage progression.

Fig. 1 shows the Monte Carlo simulation compared with a Paris’ law-based deterministic model. The noise generated from
a zero-mean Gaussian distribution (Fig. 1a) keeps the samples centered on the deterministic model, i.e.,
E½xkjxk�1� ¼ f 0hðxk�1Þ; 8 k 2 N. However, if the process noise variance was too large, a sample propagation would unlikely rep-
resent a FCG progression. The samples in Fig. 1a make large jumps at every step, and some of them become negative
(xðk

iÞ 
< 0). It is difficult to identify a crack growth path because of the large perturbation caused by the noise. The reduction

of the process noise variance would solve the problem, but two main issues arise. Firstly, the closeness of the damage size to
zero would affect the selection of r2

x. As a matter of fact, the closer the damage is to zero, the higher the probability of the 
samples that will fall below zero, because of the symmetric nature of the Gaussian distribution. As a consequence, the choice
e noise already used in particle filters for prognosis. The last column is the bias introduced in a single step: from k-1 to k. (r2
x indicates that the original 

did not provide the value of the process noise variance).

r System state Random process x E ½x�
Crack length � Cð0:15; 0:3Þ 0:045; mm
Crack length � Nð0:045; 0:1162Þ 0:045; mm
Matrix crack density � Nð0;r2

xÞ 0; #=m
Matrix crack density, stiffness � Nð0;4Þ 0; #=m
Matrix crack density, stiffness, reliability � Nð0;r2

xÞ 0; #=m



Table 2
FCG simulation features.

Virtual structure Infinite Aluminum plate Al2024
Damage Central, through-the-thickness crack
Crack shape function F ¼ 1
Applied fatigue stress DS ¼ 60 MPa
Damage feature Stress intensity factor K ¼ FS

ffiffiffiffiffiffi
xp

p
FCG model Paris’ law C�ðDKÞm�

Paris’ law parameters C� ¼ 1:1994e� 14; m� ¼ 3:79
Initial semi-crack length pdf Nð25; 0:5Þ

Fig. 1. Monte Carlo samples of FCG starting from a known initial distribution. The different process noises can generate unlikely damage progression paths 
(a), or biases of the sample swarm (b-c) that can jeopardize the efficiency of the algorithm.
of r2
x would change on a case-by-case basis. Secondly, a too small of a process noise variance would neglect the randomiza-

tion effect caused by x. Particle filters may still work with null process noise, though the algorithm would neglect the pres-
ence of non-modeled phenomena of the damage progression, assuming that the model underneath the filter is ‘correct’. The 
other process noises introduce a bias in the evolution equation, and this bias increases with the number of simulation steps 
(Fig. 1b and c). The additive Gaussian noise in 1b seems to keep the particles in the correct region (positive domain), thanks
also to the bias. However, the initial crack length (� 25mm) is relatively large, and a smaller initial crack size might generate 
the same problem seen in Fig. 1a. The bias introduced by the Gamma process noise is very large; all of the samples have a
trend that is significantly different from the deterministic equation. As a consequence, the use of an additive Gaussian (or 
non-Gaussian) process noise is not considered optimal for monotonic degradation processes.

3.2. Multiplicative log-normal process noises

Another process noise formulation for FCG prognosis was proposed by Cadini, Zio, Avram [19] by referring to [28]. They
used a log-normal random process ex; x � Nðlx ¼ 0; r2

xÞ multiplied to the deterministic FCG rate (14), assuming DN ¼ 1,
xk ¼ xk�1 þ C�ðDKðxk�1ÞÞm
� 
ex: ð14Þ



Fig. 2. Typical damage growth rate curve observed in structural degradation phenomena, in logarithmic scale. The first region is also called threshold or
initiation region, the second region is the log-linear or stable propagation region and the third region is the critical or unstable propagation region.
The same noise was used in [20,21,29]. It was also used in [30] to estimate FCG using relevance vector machines. The 
multiplicative log-normal noise keeps the particles in the correct region of the state-space, because the log-normal distribu-
tion is defined in the positive region of real numbers. Then, it ensures that xðk

iÞ P xðk
iÞ
�1 8 i ¼ 1; . . .  ; Ns. The tdf becomes a log-

normal distribution with shift parameter xk�1, (15),
2 The
pðxkjxk�1Þ ¼ 1
ðxk � xk�1Þrx

ffiffiffiffiffiffiffi
2p

p exp � ½logðxk � xk�1Þ � ~l�2
2r2

x

 !
; ð15Þ
where ~l ¼ lx þ log dx
dN

��
k�1

� �
. Nonetheless, the zero-mean x introduces a bias in the evolution equation and such a bias

might generate an inefficient filter. The next paragraph explains why the log-normal distribution is a good choice for mono-
tonic degradation processes, but also why the features of the log-normal distribution chosen in [19–21,29–31] introduced a
bias that can be removed by the selection of a proper lx.

Most of the structural damage progression models for aging or fatigue are based on power laws because of the (always) 
positive value of the damage growth rate, usually described by a nonlinear function similar to the one presented in Fig. 2. 
Crack length, delamination area (or length), and plastic deformation caused by creep are typical examples of damages under-
going to always-positive growth rate curves, so their severity can only increase as time passes by.
Common damage growth modeling approaches use the log-linear region (region II) to model the damage growth rate. By so 

doing, the estimation of the empirical model parameters requires only a simple linear regression, as shown in (16) for the
estimation of C� and m� of the well-known Paris’ law, in (17) for the estimation of A; B; a; b for composite damage modeling 
[26] and in (18) for the estimation of a and n of the Norton law for creep modeling, adopted in [32]2:
log
dx
dN

¼ logC� þm� logDK þx; ð16Þ

log
dx
dN

¼ logAþ a logDGþx;

log
dx
dN

¼ logBþ b logDGþx;

ð17Þ
interested reader is referred to the original papers for details on the damage growth rate models presented here.



dxlog 
dt 

¼ log a � 
RT
U þ n log s þ x: ð18Þ 
The variable x above refers, generally, to some measure or feature of the damage extent. The term x is the linear regression
error, which is theoretically a zero-mean Gaussian variable, x � Nð0; r2

xÞ. The damage growth rates may be expressed by 
returning to the exponential form of the models reported in (19)–(21):
dx
dN

¼ C�ðDKÞm�
ex; ð19Þ

dx
dN

¼ AðDGÞa ex;
dx
dN

¼ BðDGÞb ex;
ð20Þ

dx
dt

¼ a exp � U
RT

� �
sn ex: ð21Þ
As visible from (19)–(21), all the damage growth rate models have a multiplicative stochastic term ex, which is, by definition,
log-normally distributed ex � log Nð0; r2

xÞ, [33]. However, a null mean value would introduce a bias in the conditional 
expectation of the damage growth rate, as proved hereafter.

Let us consider the conditional expected value of the evolution equation expressed through (22),
E½xkjxk�1� ¼ xk�1 þ E
dx
dN

����
k�1

ex
� 	

: ð22Þ
Since ex is the only source of uncertainty, the product dx=dNjk�1 e
x is log-normally distributed as well, (23),
dx
dN

����
k�1

exk�1 � logN lx þ log
dx
dN

����
k�1

;r2
x

� �
: ð23Þ
Using the properties of the log-normal distribution [33], the expected value of the stochastic FCG rate can be written as in 
(24),
E
dx
dN

����
k�1

ex
� 	

¼ elxe
r2x
2 exp log

dx
dN

����
k�1

� �
¼ e

lxþr2x
2

� �
dx
dN

����
k�1

: ð24Þ
The expected value of the stochastic damage growth rate is the product of the mean of the log-normal term, expðlx þ r2
x=2Þ,

and the deterministic damage growth rate dx=dNjk�1. Thus, the selection of lx and r2
x drives the expected value of the evo-

lution equation. The random process x � Nð0;r2
xÞ used in [19–21,29–31] produces a biased estimation of xk, since

er2
x=2 – 1 8r2

x 2 R½0;1�. It introduces a one-step prediction bias �xk between the stochastic and deterministic equation, quantifi-
able as the difference between the conditional expected value of the system state E½xkjxk�1� and the deterministic evolution
equation, (25):
�xk ¼ E xkjxk�1½ � � f 0hðxk�1Þ

¼ E
dx
dN

����
k�1

exk�1

� 	
� dx
dN

����
k�1

¼ dx
dN

����
k�1

e
r2x
2

� �
� 1

!
:

ð25Þ
Intuitively, this bias 
2

increases when the prediction involves multiple steps (k þ 1; k þ 2; . . .). Also, the error is proportional to
the noise variance rx. This result is particularly important for the prognostic stage: if lx ¼ 0, the difference between the 
deterministic equation and the stochastic equation is directly proportional to both the length of the prediction and the vari-
ance r2

x. A FCG simulation using the same mechanical properties reported in Table 2 and the process noise ex; x � Nð0; r2
xÞ 

produced the propagations in Fig. 3. Therefore, the log-normal process noise with lx ¼ 0 has not been considered as a good 
perturbation source for particle filtering.

3.3. Definition of an optimal x

The unbiased formulation of the evolution equation based on the multiplicative log-normal process noise may be easily
obtained by selecting a mean value lx that satisfies (26). Eq. (27) undergoes to such condition for any r2

x 2 R½0;1�,
E ex½ � ¼ 1; ð26Þ

lx ¼ �r2
x

2
: ð27Þ



Fig. 3. Monte Carlo simulation of FCG using the biased evolution equation and three values of r2
x: 0.1, 1 and 10. The bias increases with the perturbation

introduced by the process noise.
Fig. 4 shows
2 

the 
2

simulation of Ns ¼ 100 FCGs, similar to the one presented
2 

in Figs. 1 and 3, using the process noise
ex; x � Nð�rx=2; rxÞ. Fig. 4a, b, c and d refers to four different values of rx. The swarm of particles in Fig. 4a, b and c 
appears always centered on the deterministic FCG simulation, without any effect on the mean value of the samples. The
increasing variance introduces more and more perturbation in a single time step. If the variance becomes too large 
(Fig. 4d), most of the particles remain below the deterministic path (predicting a slower crack growth), and few particles 
remain above (predicting a faster and unlikely crack growth path), even if the expected value remains always equal to 
the deterministic model. The reason of this uneven distribution of the samples in the state-space is the asymmetry of the
log-normal pdf, and can be avoided by selecting a reasonable r2

x. Despite the drawback caused by the asymmetry of the dis-
tribution at relatively high r2

x, the selection of the noise variance still remains independent on the closeness of the damage
size to zero (a drawback affecting additive Gaussian noises), and a wide range of r2

x values can still provide satisfactory prop-
agation of the particles. Such an unbiased evolution equation may also introduce further advantages on the selection of the
sample size Ns. Since all the samples remain in the correct region of the state-space and they concentrate around plausible 
damage progression trajectories, a satisfactory approximation of the pdfs can be carried out with a reduced number of sam-
ples Ns, if compared with the sample size needed by other filters adopting a biased process noise.

3.4. Requirements for an unbiased and efficient evolution equation

The analysis of existing works has shown how additive Gaussian or multiplicative zero-mean log-normal distributions 
may cause systemic inaccuracies and computational difficulties for monotonic degradation monitoring. Therefore, a defini-
tion of some requirements that the evolution equation has to satisfy may help in designing an efficient algorithm:

	 support: the random perturbation should not make the particles fall outside the domain support, otherwise the algo-
rithm would waist computational power in propagating samples with null probability. Thus, the perturbation source

has to guarantee that Eq. (28) holds.
xðiÞk #X ; 8 k 2 N; i ¼ 1; . . . ;Ns ð28Þ

In the case of damage progression monitoring, the domain becomes X 2 Rn�1
½0;1�.

	 monotonicity: damage accumulation caused by fatigue or aging is inherently monotonic. The efficiency of the prognostic
stage depends on the capability of the tdf to generate likely damage progression paths. Therefore, the tdf of the system
state must guarantee that the samples increase during the one-step ahead transition, (29).
xðiÞk P xðiÞk�1; 8k 2 N; i ¼ 1; . . . ;Ns ð29Þ



Fig. 4. FCG simulation using the unbiased evolution equation with log-Normal process noise using r2
x ¼ 0:1 (a), r2

x ¼ 1 (b), r2
x ¼ 3 (c) and r2

x ¼ 10 (d).
	 bias: The random perturbation should not modify the particle trend, so it should not introduce biases in the evolution
equation. Otherwise, to change the amount of noise in the filter would mean to change the trend of the particles. This
is in contrast with the authors’ belief that long-term drifts should be driven by the updating of the model parameters 
rather than by a bias induced by the process noise. The process noise should be the source of short-term random pertur-
bations only, i.e. it should model the intra-specimen variability [34]. Thus, the tdf of the system state must satisfy (30),
E½xkjxk�1� ¼ f 0hðxk�1Þ; 8k 2 N: ð30Þ

The log-normal process noise that has been proposed here satisfies the three requirements discussed above. Then, the
simulation of the damage progression may be easily addressed by using Eq. (31), where r is a sample from Nð0; 1Þ,
xk ¼ xk�1 þ dx
dN

����
xk�1

exp �r2
x

2
þ rx r

� �
: ð31Þ
4. Application to fatigue crack growth prediction

FCG data coming from a full-scale test of an aeronautical structure are used to validate the proposed algorithm against the
existing formulations. The relevant features of the full-scale test are provided hereafter. Then, the section discusses the algo-
rithm prognostic performances using dedicated metrics.

4.1. Full-scale FCG test on a helicopter tail

The tail of a retired Mi-8/17 helicopter is used as case-study. The full-scale FCG test was conducted in a lab environment
as part of a European research project on SHM systems. A fatigue load was applied at the end of the tail to generate cyclic
stresses in the material and induce crack initiation and propagation. The root of the tail was clamped to a rigid structure
through a fiber-reinforced polymer component designed to simulate the stiffness of the central fuselage. The structure car-
rying the tail rotor was removed and the tail free-end was rigidly connected to an actuator. The applied force was perpen-
dicular to the tail axis, and an offset between the force application point and the tail axis guaranteed the generation of both
bending and torsion in the structure. Several local sensors and sensor networks were installed on the structure to monitor



the overall integrity of the tail and the crack progression as well. Though, data from the sensors have not been used here. The 
test required dedicated studies with finite element models for the test rig design and to evaluate the stress field of the tail 
during damage evolution [35]. The test rig is visible in Fig. 5, while the features of the FCG test are reported in Table 3.

An artificial notch was generated at a rivet hole in the region subject to positive normal stresses. The crack nucleated from 
the notch and propagated until the semi-crack length was around 35 mm, when the test was stopped. Fig. 6 shows a picture 
of the crack nucleation point, on the tip of the artificial notch. Once the crack was detected, it was repeatedly measured with 
a caliper during its propagation, and the measured semi-crack length has been used as input of the prognostic unit based on a 
particle filter. The resulting FCG is reported in Fig. 7. The crack nucleation needed around 400,000 load cycles, and then the

crack propagated in 1 � 106 load cycles from 7.5 mm (the semi-length of the notch) up to 35 mm.
4.2. Remaining life prediction using particle filtering

A particle filtering-based prognostic unit has been developed to monitor the crack growth evolution and predict when the

semi-crack length x reached the final size, which is xf ¼ 36:2 mm, after Nf ¼ 1:385 � 106 load cycles. After the first measure of 
the semi-crack length, the other measures were provided to the algorithm sequentially, thus simulating a real time condi-
tion. The measurement system has been modeled as unbiased and Gaussian, with fixed variance r2

g ¼ 1 mm2. The model
underneath the filter is Paris’ law with the analytical formulation of the stress intensity factor as done for the simulation in 
Section 3. The remote stress S was estimated by a finite element model of the structure, [35]. The particle filtering algo-
rithm is a sequential importance resampling with systematic resampling [3], and a kernel smoothing sub-algorithm [36] has 
been used to update the model parameters during run-time. Such updating of the model parameters, which has not been
discussed herein, improves the prediction capability of the filter without affecting the process noise selection. Model param-
eter updating and process noise should be treated separately as their objective is, as a matter of fact, decoupled. The goal of
real-time parameter updating is to refine the underneath model conditional on the observed data, thus aiming at improving 
the prediction of future trends. On the other hand, the process noise is instead a representation of non-modelled phenomena
and variabilities of true dynamic processes that are not accounted for in typical engineering models. The random perturba-
tion introduced by the process noise should not significantly modify the trend of the particle swarm, the latter being the goal
of the model parameter updating procedure, while it should enlarge or shrink the particle dispersion. In this application, the
model parameter vector composes of the two Paris’ law parameters, h ¼ ½log C�; m��T . The logarithmic form of C� should be
Fig. 5. Full-scale FCG test on the Mi-8/17 helicopter tail (a) and most stressed region with a FBG-based sensor network on the inner stringers (b). The thick
arrow on bottom-right of (a) shows the load direction, applied through a hydraulic actuator, while the circle in (b) shows the crack nucleation point from a
rivet hole.

Table 3
full-scale FCG test features.

Load shape Sinusoidal
Load frequency 1 Hz
Maximum load 8 kN
Load ratio (R) 0.1
Damage type Skin crack
Damage location Rivet hole
Damage initiation Artificial notch, 15 mm
Skin material (driving FCG) D-16 (equivalent to Al2024-T4)



Fig. 6. Crack nucleation from the notch at the rivet hole.

Fig. 7. Semi-crack length against fatigue load cycles.
noted, since it is log-normally distributed [37,34]. The initialization of the model parameters follows the historical data of the 
Al2024-T3 aluminum alloy studied by Virkler, Hillberry and Goel, [38]
h0 � Nðlh;0;Rh;0Þ;
lh;0 ¼ ½logð1:994 � 10�14Þ; 3:79�T ;

Rh;0 ¼
0:9966 �0:1764
�0:1764 0:0346

� 	
:

ð32Þ
Eqs. (33) and (34) represent the evolution equation for the i-th sample using the multiplicative log-normal and the additive 
process noise, respectively.



xðiÞk ¼ xðiÞk�1 þ
dx
dN

����
lðiÞ
h;k

DNex
ðiÞ
;

h
ðiÞ
k ¼ ~lðiÞ

h;k þNð0; h2 V½h�k�1Þ;
ð33Þ

xðiÞk ¼ xðiÞk�1 þ
dx
dN

����
lðiÞ
h;k

DN þxðiÞ;

h
ðiÞ
k ¼ ~lðiÞ

h;k þNð0; h2 V½h�k�1Þ:
ð34Þ
The evolution equation (eq. (33) or (34)) and the observation equation in (35) form the dynamic state-space model of the 
system,
zk � Nðxk;r2
gÞ: ð35Þ
The term ~lðiÞ
h;k is the i-th kernel location evaluated with the shrinkage rule from West [39,40], and follows (36),
~lðiÞ
h;k ¼ bhðiÞk�1 þ ð1� bÞE½h�k�1; ð36Þ
where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
and h 2 ½0; 1� is the smoothing parameter, a choice of the algorithm designer [36]. In this application, the

smoothing parameter has been kept equal to h ¼ 0:1 for all the simulations, and DN ¼ 500. The two moments E½h�k�1 and
V½h�k�1 are the Monte Carlo-mean and -variance of the model parameters at the previous time step, respectively.

4.3. Analysis of prediction results

A RUL prediction is made for every measure of the semi-crack length. The predictions made with different algorithms (i.e., 
particle filters with different process noises) are compared below. The initial distributions of the process noise have been 
selected empirically to guarantee satisfactory results, and their values are available in Table 4. Then, they have been 
increased at each run to assess the robustness of the algorithms. All the runs presented below have a sample size of
Ns ¼ 600, which has been considered enough to correctly represent the pdfs involved in the filtering process.

The performance of the algorithm has been validated using the percentage error and dedicated prognostic metrics pro-
posed in [41]: prognostic horizon (PH), ak accuracy (AL), cumulative relative accuracy (CRA) and convergence (CN) have been 
selected to compare the results of the algorithm against increasing values of the noise pdf parameters. The definition of such 
metrics has been slightly modified from [41] and adapted to this specific application.

	 Prognostic horizon ‘is the difference between the current time index k and the end-of-prediction utilizing data accumu-
lated up to the time index, provided the prediction meets desired specifications’, [41]. In this application, the end-of-

prediction is the end of the test, so the number of load cycles Nf , and the PH is the number of load cycles when 60%
of the RUL distribution first falls within the range RUL
 10%Nf . Also, the PH has been divided by the time of prediction:
Nf � Nk;0, where Nk;0 is the number of load cycles at the first prediction. By doing so, the PH can be compared with PH
values obtained from other data or runs, characterized by a different time of prediction.
	 ak accuracy ‘is the prediction accuracy at specific time instances, usually defined as the demand accuracy of prediction to 
be within a100% after a specific time instant’, [41]. In this application, the ak accuracy is the number of times that 60% of

the RUL distribution falls within a region that shrinks as time passes by. This region begins when the PH requirement has
first been met, and has the shape of a triangle that shrinks with the load cycles in the RUL plot.

	 Cumulative relative accuracy ‘is the normalized sum of relative accuracy (RA) at specific time instances’ [41], (37),
CRA ¼
Xk0
j¼1

cjRAj: ð37Þ
Table 4
Initial noise pdf parameters. The mean value lx ¼ 0 for the normal
and log-normal process noises, except for the unbiased log-normal.

Noise type Noise pdf parameters

Additive, Gamma k�0 ¼ 1:5 � 10�3; h�0 ¼ 3 � 10�3

Additive, normal r2
x;0 ¼ 1 � 10�4

Multiplicative, log-normal r2
x;0 ¼ 0:1

Unbiased, log-normal r2
x;0 ¼ 0:1



Fig
bia
me
The term k0 is the number of predictions (corresponding to the number of observations of the semi-crack length) during
the entire time of prediction (i.e., k ¼ 0; . . . ; k0). The terms cj are weights, which can be arbitrarily selected. Here, They
linearly increase from 0 to 1 with j, so a prediction error in the final stage of the prognosis (i.e., when the system is
approaching its end-of-life) is penalized with respect to a prediction error in the early stage (i.e., when the prognostic
Fig. 8. Example of RUL plot emphasizing relevant features for the prognostic performance assessment.

. 9. RUL predictions using different process noises with features presented in Table 4. Additive Gamma process (a), additive Gaussian (b), multiplicative,
sed log-normal (c) and multiplicative, unbiased (‘optimal’) log-normal (d). The thick arrows indicate the instant when the PH requirement has first been
t.



process is just started and the algorithm has collected a few data). It should be noticed that
P

jcj ¼ 1. The RA is defined as
the reciprocal of the relative error, (38),

RAk ¼ 1� jRULk � E½RULjz0:k�kj
RULk

: ð38Þ

	 Convergence ‘is defined to quantify the manner in which any metric improves with time’, [41]. The CN is estimated as 
the center of mass of the area under the metric curve. In this application, the CN has been evaluated using the relative

error, which is the second addendum of the right hand-side of (38). As already made for the PH, the convergence has 
been divided by the time of prediction. The interested reader is referred to [41] for the estimation of the CN.

Fig. 8 shows some relevant features of the RUL estimation plot. In this application, the RUL is the number of load cycles to
reach the final crack length xth ¼ xf . Besides PH and ak accuracy, Fig. 8 shows the features to estimate the most relevant prog-
nostic metrics as highlighted by the work of Saxena et al. [41]. The time of prediction is defined as the time between the first
RUL prediction, defined as first prediction in the figure, and the end of life. The constant confidence band around the true RUL
is used to define the other prognostic metrics, i.e., PH and ak accuracy. Since such a confidence band is defined here as a 
function of the end of life, it can be evaluated after the end of test, once the true Nf is available. The grey triangles are 
the expected values of the RUL conditioned on the observed measurements, and the dashed vertical grey lines represent
the r-band of the predicted RUL. The lower and upper limits of the sigma-band are estimated from the cumulative distribu-
tion function of the RUL, approximated by the particle set, by respectively finding RUL�k : PrfRULk 6 RUL�kg ¼ a and
RUL��k : PrfRULk 6 RUL��k g ¼ 1� a, with a ¼ 0:025 to obtain a 95%r-band. Those features and the other metrics presented
above have been used to evaluate the performance of the prognostic algorithm.

Each algorithm has been run using the process noise models in Table 4, and the results are summarized in Fig. 9. As seen 
in Fig. 9a, the additive Gamma process noise introduces a large bias in the particle swarm, insomuch as the RUL prediction 
capabilities are strongly reduced. This result could be improved by adopting much smaller values of the Gamma pdf 
moments, so much smaller k� and h�. However, such choice would be, as thoroughly discussed in Section 3, strongly case-
sensitive. Also, a too small of value for the Gamma pdf parameters may vanish the perturbation effect of the process noise. 
The other formulations produce much better results, and their predictions are comparable to one another (Fig. 9b–d). How-
ever, these results change with the process noise pdf parameters, as is shown below.

The performance of the prediction has been evaluated using a different amount of process noise, which has been 
increased using the following sequence: 1, 2, 5, 10, 20, 50, 80 and 100 times the original value. This means that the process
Fig. 10. Percentage error of the RUL prediction using increasing process noise moments: Gamma pdf (a), Gaussian pdf (b), log-normal pdf, biased noise (c)
and log-normal pdf, unbiased (‘optimal’) noise (d).



a

noise parameters have been multiplied by 1, 2, 5, etc. and the RUL prediction performance has been evaluated for each run. 
The percentage error of the RUL prediction is presented in Fig. 10. The algorithm using the Gamma process noise model fails
when the Gamma pdf parameters are larger that 2 times the initial k�0; h

�
0. Then, only two curves are visible in Fig. 10a. The 

percentage error remains high during the entire simulation, and the additional information on the semi-crack length does 
not help in increasing the accuracy of the prediction. The error eventually decreases during the last part of the test. The nor-
mal process noise model shows a smaller percentage error, which appear insensitive to r2

x (Fig. 10b). The percentage error
remain slightly below 50% up to 8 � 105 load cycles, independently from the process noise variance. Also, the algorithm is not 
able to converge at all when the process noise variance becomes too large, because some (or, at least, one) particles fall below
zero, thus never reaching xf . Therefore, the curves refer to variances r2

x;0; . . .  ; 50 � r2
x;0. The biased log-normal process noise 

model (Fig. 10c) shows a percentage error that increases with the amount of variance r2
x, and the algorithm does not con-

verge when such variance enlarges (r2
x > 20 � r2

x;0). The failure of this algorithm is caused by the fast propagation of the par-
ticles. When r2

x becomes too large, many particles fail in a single propagation step, thus not providing any RUL prediction.
On the contrary, the algorithm based on the unbiased log-normal process noise model converges for all of the tested vari-
ances, r2

x;0; . . .  ; 100 � r2
x;0. The percentage error is slightly different at each run (i.e., with different r2

x), but is not proportional 
to r2

x.

Fig. 11 shows the four metrics assessed against the process noise pdfs. These metrics confirm the robustness indicated by
the percentage error. The PHs of the algorithm with x � Cðk�; h�Þ are significantly lower than the PHs observed with other

2

lgorithms and, as remarked above, the algorithm converges only when k� 6 2 � k0; h� 6 2 � h0. Except for the case
rx ¼ 5 � rx;0, the algorithms with Normal and log-Normal process noises show similar prognostic horizons. Nevertheless, 
the unbiased log-normal model always converges, even when the variance r2

x is two orders of magnitude larger than the
initial one. The analysis of the AL, CRA and CN yields similar conclusions. It is worth noting that the high AL values obtained 
with the Gamma process noise have been caused by the very short PH and the narrow RUL pdf. As a matter of fact, AL and PH 
discussed here are strongly correlated, so high AL does not guarantee good prognostic capabilities. AL and PH should be ana-
lyzed together. All the plots in Fig. 11 shows that the performance of the unbiased log-Normal slightly decrease when r2

x

becomes very large with respect to the initial value (r2
x P 80 � r2

x;0). This small drop in the performance may be caused 
by the asymmetry of the log-normal distribution, as presented in Section 3, Fig. 4. According to the results discussed above,

the algorithm based on the unbiased log-normal process noise can be considered more robust with respect to other

Fig. 11. Prognostic horizon (a), ak accuracy (b), cumulative relative accuracy (c) and convergence (d) of the four algorithms as a function of the process
noise parameters.



formulations presented in literature. The selection of a very large variance r2
x could affect the algorithm performance, but

the prognostic unit will always converge regardless to the entity of the perturbation introduced with the random process.
 

5. Conclusions

The work reported herein has analyzed the process noise adopted in a typical Bayesian filtering algorithm for nonlinear,
non-Gaussian systems. The paper discussed the particle filtering capabilities to predict the evolution of monotonic degrada-
tion processes with respect to the type of process noise, specifically analyzing the case of structural damage progressions
caused by aging or fatigue. The conditional expectation of the system state has shown that some process noise formulations,
already adopted in literature, might cause inefficiency in the algorithm. Also, the algorithm might not even converge if the
samples fall outside of the state-space or the bias between the stochastic and deterministic equation becomes too large. This
analysis has brought to an unbiased evolution equation grounding on a log-normal process noise with a specific constraint
imposed between its mean and variance, and also to three requirements that the design of the filter has to meet to guarantee
the efficiency and effectiveness of the diagnostic/prognostic process.

The proposed particle filtering and the other existing formulations from literature have been tested on FCG observed in a
full-scale helicopter tail subject to tension-tension fatigue loads. The results have been compared in terms of RUL prediction
error and four performance metrics: PH, AL, CRA and CN. The results emphasized the robustness of the proposed algorithm
against the other formulations. Furthermore, the results suggest that the additive Gaussian (with zero mean) and the pro-
posed unbiased log-normal process noise have comparable performance, but the filter based on the additive Gaussian noise
may fail when the variance becomes too large. The variance selection problem of the additive Gaussian noise can be easily
addressed when the system state is unidimensional like the semi-crack length discussed in this paper, but could become
non-trivial for multidimensional system states or more complex system dynamics. Therefore, the unbiased log-normal pro-
cess noise proposed here has been considered the best choice to monitor and predict monotonic degradation processes.

The selection of the process noise variance magnitude has not been addressed in this paper. Its optimal value depends,
among other factors, from the uncertainty of the observations, and how widespread they are in the state-space. Therefore,
a discussion on the process noise variance magnitude would involve the uncertainty characterizing the observation equa-
tion. Future research should target the identification of quantitative probabilistic methods to select this fundamental particle
filtering parameter. Also, further research on the topic may discuss optimal process noise models to monitor and predict the
evolution of other types of degradation phenomena at component- or system-level.
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