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ABSTRACT
We study networks with linear dynamics where the presence of symmetries of the
pair pA,Bq, induces a partition of the network nodes in clusters and the matrix A is
not restricted to be in Laplacian form. For these networks, an invariant group con-
sensus subspace can be defined, in which the nodes in the same cluster evolve along
the same trajectory in time. We prove that the network dynamics is uncontrollable
in directions orthogonal to this subspace. Under the assumption that the dynamics
parallel to this subspace is controllable, we design optimal controllers that drive the
group consensus dynamics towards a desired state. Then, we consider the problem of
selecting additional control inputs that stabilize the group consensus subspace and
obtain bounds on the minimum number of additional inputs and driver nodes needed
to this end. Altogether, our results indicate that it is possible to design independently
the control action along and transverse to the group consensus subspace.

1. Introduction

The number of real-word systems modeled as complex networks is ever increasing, and
ranges from natural (Sethi, Eargle, Black, & Luthey-Schulten, 2009; Van Vreeswijk &
Sompolinsky, 1996), technological, (Stegink, De Persis, & van der Schaft, 2016; Yu et
al., 2012) and social systems (De Lellis, Di Meglio, & Lo Iudice, 2018; Proskurnikov,
Matveev, & Cao, 2015) to epidemic spreading (Gatto et al., 2020). The ultimate
goal of being able to arbitrarily affect the behavior of these systems has spurred re-
searchers across different scientific communities to investigate the controllability prop-
erties of linear complex networks (Lo Iudice, Sorrentino, & Garofalo, 2019; Pasqualetti,
Zampieri, & Bullo, 2014; Yuan, Zhao, Di, Wang, & Lai, 2013). In this framework, sev-
eral works (Liu, Slotine, & Barabási, 2011; Lo Iudice, Garofalo, & Sorrentino, 2015)
have revisited the classical tools of structural controllability (Lin, 1974) from the view-
point that in order to control complex networks, controllability must be guaranteed by
a proper selection of the set of nodes (the driver node set in which control signals are
injected. If the selection of the driver nodes ensures structural controllability, then the
network will also be controllable in Kalman’s sense for all possible edge weights but for
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a set of Lebesgue measure zero. Among the combinations of edge weights inside this
set, there are those that induce the emergence of symmetries (Chapman & Mesbahi,
2014, 2015) or equitable partitions (Gambuzza & Frasca, 2019) in the network graph.
In the presence of symmetries, there exist permutations of the network nodes that
leave the graph unchanged, and these symmetries induce a partition of the network in
clusters. On the other hand, an equitable partition (Godsil, 1997) clusters the network
nodes such that the sum of the incoming edges in any node of the same cluster from
nodes in any cluster is the same. While symmetries and equitable partitions cause loss
of controllability (Aguilar & Gharesifard, 2017), they also induce the emergence of
group consensus (Blaha et al., 2019; Pecora, Sorrentino, Hagerstrom, Murphy, & Roy,
2014), i.e., solutions in which the state of each node in the same cluster is the same.

In this work we focus on networks with symmetries and we show that loss of control-
lability and emergence of group consensus are different sides of the same coin. Both
are due to the presence of symmetry-induced invariant subspaces that are smaller
than the entire state space. While these subspaces allow group consensus solutions
to emerge, we also show that they encompass the network controllable subspace. Al-
toghether, our results show that while the dynamics orthognal to the group consensus
subspace is not controllable, it is possible that the dynamics along this subspace can
be controlled. If this is the case, control of the consensus solution can be achieved
by designing controllers on a reduced network, whose nodes correspond to clusters of
nodes of the original network, yielding a substantial computational advantage in the
control design.

Stabilizability of the dynamics orthogonal to the group consensus subspace is a
necessary requirement to achieve group consensus, and is not guaranteed when the
network dynamic matrix is not in the form of a Laplacian matrix, which is the case
considered in this paper. Hence, in order to be able to stabilize the group consen-
sus subspace, additional inputs must be added to the network. Here, we show how
to perform a selection that allows independent design of the control action on the
group consensus subspace and of the stabilizing action transverse to the subspace. We
also give bounds on the number of indipendent inputs and on the number of nodes
where these inputs must be injected, the drivers, to achieve stabilizability of the group
consensus subspace.

2. Mathematical Preliminaries and Network Dynamics

We denote by GpV, Eq an undirected graph with V “ tvi, i “ 1, . . . , Nu the set of
N nodes, and E Ď V ˆ V the set of edges defining the interconnections among the
nodes. The symmetric binary matrix A P RNˆN is the adjacency matrix of the graph,
that is, a matrix whose elements are Aij “ Aji “ 1 if pi, jq P E and Aij “ Aji “ 0

otherwise. A permutation πpVq “ rV is an automorphism (or symmetry) of G if (i)

V “ rV, i.e., π does not add or remove nodes, and (ii) pi, jq P E , then pπpiq, πpjqq P E .
The set of automorphisms of a graph with adjacency matrix A, with the operation
composition, is the automorphism group, autpGpAqq. Any permutation of this group
can be represented by a permutation matrix P that commutes with A, i.e., such that
PA “ AP . The set of all automorphisms in the group will only permute certain
subsets of nodes (the orbits or clusters) among each other. For any two nodes in the
same orbit there exists a permutation that maps them into each other. Moreover, the
coarsest orbital partition is defined as the partition of the nodes corresponding to the
orbits of the automorphism group. Given a partition Π of the set V of the network
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nodes V into s subsets tS1, S2, ...Ssu, such that Ysi“1Si “ V, SiXSj “ H for i ‰ j, we
can introduce the N ˆ s indicator matrix EΠ, such that EΠ

ij “ 1 if node i belongs to

Sj and EΠ
ij “ 0 otherwise.

We consider a linear dynamical network described by

9x “ Ax`Bu. (1)

where x P X “ RN is the stack vector of the states of the N network nodes and u
is the stack vector of the M input signals injected in the network. Consistently, the
N ˆN symmetric matrix A defines the network topology, while the N ˆM matrix B
describes the way in which the M input signals affect the network dynamics. Namely,
if the j-th input is injected in the i-th node then Bij “ 1, while Bij “ 0 otherwise.

3. Controllability Properties of Networks with Symmetries

In this section, we will show how the presence of symmetries in the controlled network
(1) affects controllability.

Lemma 1. The subset of automorphisms of GpAq given by the set of matrices P :“
tPi : PiA “ APi and PiB “ Bu forms a subgroup of autpGpAqq.

Proof. For the set P to be a subgroup, the following four properties must be true:

(i) PipPjPkq “ pPiPjqPk @ pPi, Pj , Pkq P P;
(ii) Pi P P is non singular @ i;

(iii) I P P;
(iv) given any two matrices Pi P P and Pj P P, then PiPj P P.

Proving that the matrices in P satisfy property (i) and (ii) is trivial as (i) is true
for any three square matrices with the same dimensions pPi, Pj , Pkq P P regardless of
whether these are, or are not, in P, while (ii) is true as permutation matrices are not
singular. Moreover, (iii) holds as IA “ AI “ A, and IB “ B. Moreover, property (iv)
is proved as

pPiPjqA “ PipPjAq “ PipAPjq “ APiPj “ ApPiPjq

from which we see that PiPjA “ APjPi for all pPi, Pjq P P. The proof is finally
completed by noting that, as from our hypotheses PjB “ PiB “ B for all pPi, Pjq P P,
it follows that PiPjB “ PiB “ B.

We will denote as autpGpA,Bqq the group represented by the permutation matrices
P such that PA ´ AP “ 0 and PB ´ B “ 0. Similarly to autpGpAqq, autpGpA,Bqq
partitions the set of network nodes into orbits or clusters, where an orbit is a subset
of symmetric nodes. Hence, we can define the coarsest orbital partition Π into clusters
corresponding to the orbits of the automorphism group autpGpA,Bqq, C1, C2, . . . , CK ,
such that YKi“1Ci “ V, and Ci X Cj “ 0 for i ‰ j. We will use the indicator matrix
EΠ to keep track of the orbit to which each node belongs.

Lemma 2. Each orbit of the coarsest partition Π induced by autpGpA,Bqq is a subset
of an orbit of the coarsest partition induced by autpGpAqq.
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Proof. The thesis follows from the observation that if two (or more) nodes are per-
muted by a permutation matrix P in autpGpA,Bqq and thus belong to the same orbit,
then they also belong to the same orbit of the coarsest orbital partition induced by
autpGpAqq, as the same matrix P also belongs to autpGpAqq.

Theorem 1. If there exists a permutation matrix P ‰ I such that PA´AP “ 0 and
PB ´B “ 0, then

(i) the set of states Xor :“ tx : xi “ xl @ i, l P Cj , @ju Ă X , is an invariant subspace
of the matrix A, i.e., @x P Xor, Ax P Xor;

(ii) if xi “ xl then 9xi “ 9xl for all pi, lq P Cj and for all j.

Proof. Let us start by showing that if there exists a permutation matrix P such that
PA “ AP and PB “ B, then the network state x and the permuted state vector
y :“ Px share the same dynamics. Indeed, by left multiplying both sides of eq. (1) by
P we get

P 9x “ PAx` PBu.

Then, as PA “ AP and PB “ B, we get

9y “ Ay `Bu.

Moreover, as there always exists a permutation matrix P P autpGpA,Bqq that maps
any two nodes belonging to the same clusters into each other (Klickstein, Pecora, &
Sorrentino, 2019), then statement (ii) follows, i.e., nodes in the same clusters share
the same dynamics, and thus if xi “ xl for all i and l in the same cluster, then also
9xi “ 9xl. Moreover, this also ensures that the subspace made of all the points of the
state-space such that xi “ xl @ i, l P Cj and @j “ 1, . . . ,K is A-invariant (statement
(i)).

Theorem 1 establishes the existence of the group consensus subspace Xor for network
(1). Hence, to tackle consensus control problems, it is useful to introduce a transfor-
mation that allows us to separate the dynamics along Xor from that orthogonal to
Xor itself. This task is accomplished by the Irreducible Representation (IRR) of the
symmetry group through a transformation in a new coordinate system (Pecora et al.,
2014) zor “ Torx. The transformation matrix

Tor “

„

T ‖

TK



P RNˆN (2)

is orthogonal, and the elements of the block T ‖ P RKˆN are such that

T
‖
ij “

a

|Ci|
´1

(3)

if node j is in cluster i and 0 otherwise. Note that the K rows of the matrix T ‖ are a
basis of Xor while the rows of the matrix TK P RpN´KqˆN are a basis of the orthogonal
complement to the group consensus subspace. Notably, each of the rows of the matrix
TK, say the j-th, can be associated to a single cluster say Ci. Namely, each element TKjl
is nonzero only if node l belongs to the cluster Ci. Consistently, the dynamic matrix
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Ã “ TorAT
T
or has the following structure:

Ã “ TorAT
T
or “

„

A‖ 0
0 AK



. (4)

From eq. (4), we see that the IRR decouples the dynamics along the consensus sub-
space governed by the block A‖ from that orthogonal to the group consensus subspace
governed by the block AK. In this new coordinate system, the dynamics of network
(1) can be rewritten as

9zor “ Ãzor ` B̃u, (5)

and

B̃ “ TorB “

„

B‖
BK



. (6)

Indeed, the pair pA‖, B‖q, which we will denote as the quotient pair, determines
the controllability properties of the dynamics along the subspace Xor and thus our
ability to control the consensus state, while the pair pAK, BKq determines our ability
to stabilize Xor. We are interested in studying the controllability properties of the two
pairs pA‖, B‖q and pAK, BKq. Before doing so, we will present a few more details on
this representation. First of all, let us point out that the block T‖ of the matrix Tor

is such that T‖ “ EΠ:, where EΠ P RNˆK is the indicator matrix corresponding to
the coarsest orbital partition Π. Consistently, the state of the quotient network, the
network associated to pair pA‖, B‖q, can be computed as

z‖ “ EΠ:x P RK

and thus we have that A‖ “ EΠ:AEΠ and B‖ “ EΠ:B.
Now, we are ready to give the following theorem.

Theorem 2. If there exists a matrix P ‰ I such that PA “ AP and PB “ B,
then Xor, the invariant subspace of the matrix A associated to the cluster consensus
solution, encompasses the controllable subspace.

Proof. To prove the statement we must show that if PB “ B, Xor encompasses the
range of B. Indeed, if PB “ B, then B is such that bil “ bjl for all l and for all
i, j in the same cluster, due to the fact that left-multiplying a vector by the matrix
P only permutes the elements associated to nodes of the same cluster. Hence, all the
columns of B and thus its range, are encompassed in Xor. As the controllable subspace
is defined as the smallest A-invariant subspace encompassing the range of B, the thesis
follows.

Corollary 1. BK “ 0pN´KqˆM .

Proof. The statement is a direct consequence of the statement of Theorem 2 and of
the definition of BK.
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4. Controlling group consensus

In Section 3 we have established some controllability limitations of networks with
symmetries. Here, we show how to operate within these limitations in order to control
group consensus.

Corollary 2. Consider a graph GpA,Bq with coarsest orbital partition Π. If the pair
pA‖, B‖) is controllable, then for any cost function Jpuptqq the optimal control problem

min
u

ż tf

0
Jpuptqqdt (7a)

s.t. 9x “ Ax`Bu (7b)

xp0q “ x0 (7c)

xptf q “ xf (7d)

admits solution u˚ptq :“ argmin
ştf
0 Jpuptqqdt if and only if x0 and xf are such that

Torx0 “ rz
‖
0 0sT and Torxf “ rz

‖
f 0sT , i.e., zK0 “ zKf “ 0. Moreover, if Torxf “ rz

‖
f 0s,

then u˚ “ u˚˚, where u˚˚ is the solution of the following optimal control problem

min
u

ż tf

0
Jpuptqqdt (8a)

s.t. 9z‖ “ A‖z
‖ `B‖u (8b)

z‖p0q “ T ‖x0 (8c)

z‖ptf q “ T‖xf . (8d)

Proof. From Theorem 2, if xf is such that zKf ‰ 0 then xf is not reachable, while if

x0 is such that zK0 ‰ 0 then xf is not reachable from x0. Hence, in both cases problem
(7) is not feasible. On the other hand, if x0 and xf are such that zK0 “ zKf “ 0, then
both x0 and xf belong to Xor, which we know coincides with the controllable subspace

from Theorem 2 and from the hypotheses. Then, reaching z
‖
f is equivalent to reaching

the point xf . Hence, to prove our thesis, we are left with showing that u˚ “ u˚˚. We
will do so by showing that problems (7) and (8) share the same decision variables, cost
function, and constraints. Indeed, the decision variables are the same by definition, as
well as the cost function as input signals are not affected by equivalent transformations.
Finally, to prove that problems (7) and (8) share the same constraints, let us show that
by left multiplying both sides of equations (7b)-(7d), we obtain eqs. (8b)-(8d) together
with a set of equations that are always verified independently of u. Indeed from the
hypotheses this is true for eqs. (7c) (7d), as left multiplying both by the matrix Tor
we obtain eqs. (8c) and (8d) together with two sets of N ´K equations of the type
0 “ 0. Finally, from eqs. (4), (6), and Corollary 1 we know that left-multiplying eq.
(7b) by Tor yields

9z‖ “ A‖z
‖ `B‖u (9a)

9zK “ AKz
K. (9b)
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As zKp0q “ 0, from eq. (9b) we have that zKptq “ 0 for all t, and thus eq. (9a), which
coincides with eq. (8b), captures completely the dynamics in eq. (7b) independently of
u. Hence, problem (7) and the reduced order problem in (8) share the same decision
variables, cost function, and constraints which implies that u˚ “ u˚˚.

Remark 1. Note that Corollary 2 provides an approach to design an input to control
group consensus. A viable alternative is to solve

min
u

ż tf

0
Jpuptqqdt (10a)

s.t. 9x “ Ax`Bu (10b)

y “ EΠTx (10c)

xp0q “ x0 P Xor (10d)

yptf q “ yf . (10e)

with EΠ being the indicator matrix corresponding to the partition Π of the network
nodes, and

yi
|Ci|

being the consensus value for all the nodes of the cluster Ci.

Remark 2. Corollary 2 provides an approach to control the consensus solution. The
stability properties of the group consensus subspace are determined by the eigenvalues
of the block AK of the matrix Ã in eq. (4). However this solution is not stabilizable,
as the dynamics orthogonal to the group consensus subspace are uncontrollable (see
Theorem 2).

Motivated by the considerations in Remark 2, we now tackle the problem of selecting
a set of nodes in which additional inputs must be injected to stabilizable Xor. To do
so, we leverage the following conditions from (Hautus, 1970).

Definition 1. Given a pair pA,Bq an eigenvalue λi of A is controllable if and only if
Dj such that vTi bj ‰ 0, for any eigenvector vi associated to λi.

Theorem 3. (Hautus, 1970) A dynamical system defined by the pair pA,Bq is stabi-
lizable if and only if every unstable eigenvalue of A is controllable.

We denote by w the W -dimensional vector of the additional inputs and by D the
N ˆW dimensional matrix indicating the nodes in which these inputs are injected,
that is, the drivers. Namely, Dij ‰ 0 if the j-th additional input wj is injected in
the i-th network node and 0 otherwise. Considering these additional inputs leads to
rewriting the dynamics of the network in eq. (1) as

9x “ Ax`Bu`Dw. (11)

As a result, applying the transformation Tor in eq. (4) to the controlled network in eq.
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(11) yields

9z “ Ãz ` B̃u` D̃w, (12)

where

D̃ “ TorD “

„

D‖
DK



. (13)

We constrain the selection of the matrix D to be such that the input signals w do not
affect the dynamics along the group consensus subspace, so to allow independent design
of (i) the control action u responsible for controlling the group consensus solution and
(ii) the stabilizing action w.

To be able to formulate and solve our driver node selection problem, let us relabel
the eigenvalues of A so that the first K are also eigenvalues of A‖ and the last pN´Kq
are also eigenvalues of AK (here we just list all the eigenvalues of A regardless of their
multiplicity). Note that this is possible from the block diagonal structure of Ã in eq.
(4). After this relabeling, the eigenvectors of A associated with its first K eigenvalues
span the group consensus subspace, while the eigenvectors of A associated with the last
pN ´Kq eigenvalues span its orthogonal complement. In particular, the last pN ´Kq
eigenvalues of A determine the stability properties of the group consensus subspace.
Moreover, we denote by Ωi the subspace of the eigenspace of the eigenvalue λi of
A that is orthogonal to Xor and by µi the dimension of Ωi. Given a vector d, we
denote by projΩi

pdq its projection on Ωi. Finally, we denote by ΛK the subset of the
eigenvalues of A with nonnegative real part that are also eigenvalues of AK. Thanks to
these preliminary considerations and notation, we can now formulate our driver node
selection problem
Problem 1: Select a matrix D such that

D‖ “ 0 (14a)

pAK, DKq is stabilizable (14b)

Algorithm 1 prescribes to initialize the matrix D as an empty matrix. Then, for
all the eigenvalues in the set ΛK, we find the number hi of columns of the matrix D
with nonzero and linearly independent projection on Ωi, that is, the subspace of the
eigenspace associated to λi that is orthogonal to the group consensus subspace. Then,
we add µi ´ hi column vectors to the matrix D each having non-zero and linearly
independent projection on Ωi, thus ensuring, from Definition 1 that λi is controllable.
Thanks to the condition in eq. (17), these µi´hi added columns will be orthogonal to
the group consensus subspace thus ensuring D‖ “ 0. Doing so for all λi in ΛK ensures
the pair pAK, DKq is stabilizable thanks to Theorem 3.

Theorem 4. Algorithm 1 solves Problem 1.

Proof. To prove that any matrix selected by Algorithm 1 satisfies condition (14a) it
suffices to note that from eq. (13) and the structure of the matrix Tor in eq. (2) we have
that the i-th element of the j-th column of D‖ is obtained as

ř

kPCi
Djpkq. Then, eq.

(14a) follows directly from eq. (17). On the other hand, note that from Theorem 3 and
Definition 1, to prove that any matrix selected according to Algorithm 1 satisfies (14b)
it suffices to show that for each eigenvector, say vKj of AK associated to an eigenvalue
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Algorithm 1 Driver Node Selection Algorithm

procedure Initialization (i “ 1, D is the empty matrix, j “ 0)
while i ď |ΛK| do

∆i “ tDj : projΩi
pDiq ‰ 0 ^ EDk : projΩi

pDkq ‖ projΩi
pDjqu

hi “ |∆i|

while j ď µi ´ hi do
j “ j ` 1
Build an N -dimensional vector Dj by solving

projΩi
pDjq ‰ 0 (15)

projΩi
pDjq ‰ projΩi

pDmq @m ă j (16)
ÿ

kPCl

Djpkq “ 0 @l (17)

D “ rD Djs

end while
i “ i` 1

end while
end procedure

that is encompassed in the set ΛK there exists a column DKl of the matrix DK such

that vKj
T
DKl ‰ 0. In turn, as any µi vectors of Ωi can be chosen as eigenvectors of AK,

and as the columns of DK are the projection of the columns of D on the orthogonal
complement to the group consensus subspace, ensuring that for any vKj associated to

an eigenvalue λi P ΛK there exists DKl such that vKj
T
DKl ‰ 0 is equivalent to ensuring

that there exist µi columns of D that span Ωi. As this is ensured by the inner while
loop in Algorithm 1 thanks to eqs. (15) and (16), the thesis follows.

Remark 3. Note that while indeed the symmetries of the pair pA, rB Dsq, with D
selected according to Algorithm 1, are not the same of that of the pair pA,Bq, this has
no effect on the dynamics along the group consensus manifold as from Problem 1 and
Theorem 4 we know that D‖ “ 0. Consistently, as the control signal w is conceived
to be a stabilizing feedback action, it will vanish asymptotically, and in the absence of
perturbations the network dynamics will revert to that in eq. (1).

Corollary 3. The number of independent input signals required to solve Problem 1 is
lower bounded by

max
i:λiPΛK

|Ωi|.

Proof. Let us start by noting that any vector in Ωi is an eigenvector of AK associated
to λi. Hence, for the stabilizability condition in Theorem 3 to be verified for the pair
pAK, DKq, we must have that for all λi P ΛK there exist |Ωi| columns of DK, and thus
also ofD, with nonzero and non-parallel projection on Ωi. Hence, the pair pAK, DKq can
be stabilizable only if the number of columns of D is at least equal to maxi:λiPΛK |Ωi|

which proves our statement.

After giving a bound on the number of input signals required to solve Problem
1, let us now give a bound on the number of drivers, i.e., the number of rows of D
encompassing at least a nonzero entry, required to solve Problem 1. To do so, let us
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define the operator

| ¨ |H :“

#

| ¨ | if | ¨ | ą 0

´1 otherwise

Corollary 4. The number of rows of the matrix D with at least one nonzero entry
required to solve Problem 1 is lower bounded by

max
i:λiPΛK

|Ωi|H ` 1.

Proof. From corollary 3, we know that the number of columns of D required to
stabilize Xor is lower bounded by maxi:λiPΛK |Ωi|. As the projections of these columns
on Ωi˚ , with i˚ “ argmaxi:λiPΛK |Ωi|, must be nonzero and non parallel, then the rank
of the matrix D is lower bounded by maxi:λiPΛK |Ωi|. On the other hand, to ensure the
condition in (14a) is fulfilled, each column of D must be parallel to Xor which is true
iff the columns of D verify eq. (17), that is, their elements sum to zero. Hence, for
the matrix D to be zero column sum and have at least rank maxi:λiPΛK |Ωi| it must
have at least maxi:λiPΛK |Ωi|H`1 rows encompassing nonzero entries thus proving our
statement.

Corollary 4 provides a bound on the number of driver nodes required to solve Prob-
lem 1. We will now show how to exploit the clusters induced by the network symmetries
to give a different bound from that provided in Corollary 4. To do so, let us denote
by Ωj

i the subspace of Ωi that is spanned by vectors el, l “ 1, . . . , |Ωj
i | such that each

element elm of el is nonzero iff node m is encompassed in cluster Cj . Roughly speaking,
Ωj
i is the j-th cluster specific subspace of Ωi. As in general Ωi cannot be completely

spanned by cluster specific vectors, we have that Ωi “ Y
K
j“1Ωj

i ` Ω̃i, where Ω̃i is thus
the subspace of Ωi that cannot be spanned by cluster specific vectors. Finally let us
relabel the network nodes so that node i belongs to Cj if |Cj´1| ă i ď |Cj |, with |C0| “ 0
as C0 does not exist. Then, the matrix D can be decomposed in blocks as follows

D “

»

—

—

—

–

D1

D2

...
DK

fi

ffi

ffi

ffi

fl

(18)

with each Dj having |Cj | rows.

Corollary 5. The number of rows of the matrix D encompassing nonzero entries
required to solve Problem 1 is lower bounded by

K
ÿ

j“1

ˆ

max
i:λiPΛK

|Ωj
i |H ` 1

˙

. (19)

Proof. From Theorem 3, Definition 1, and eq. (14a), we know that to solve Problem
1 we need to ensure that each λi P ΛK is made controllable by a matrix D such that
ř

lPCj
Dli “ 0 @i. Moreover, from Corollary 3 and as Ωj

i is spanned by cluster specific

vectors, it is possible to show that to ensure λi P ΛK is controllable we need that at
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least |Ωj
i | columns of the matrix Dj have nonzero and non parallel projection on Ωj

i .
Hence, these columns must define a matrix that is full rank but also zero column sum
so to ensure fulfillment of eq. (14a). This implies that stabilizing any λi P ΛK requires

that at least |Ωj
i |`1 rows of Dj encompass a nonzero entry for all j such that Ωj

i ‰ H,
and thus the total number of rows of the matrix D encompassing a nonzero entry is
lower bounded by the quantity in (19).

Remark 4. The problem of identifying the cluster specific vectors spanning the sub-
spaces Ωj

i for all i and j can be easily solved using the IRR transformation Tor. Indeed,
one of the properties of this transformation is to have cluster specific rows that can
be linearly combined through the coefficients of the eigenvectors of the corresponding
block of Ã to generate eigenvectors of A. Therefore, each eigenvector of A associated
to an eigenvalue λi obtained through this procedure either belongs to (i) Ωj

i if the rows

that are combined to obtain them are all associated to the same cluster Cj, or (ii) Ω̃i

otherwise.

5. Numerical example

We consider the N “ 8 node network in Fig. 1. A study of the symmetries of the pair
pA,Bq shows that there are K “ 3 orbital clusters, C1YC2YC3 “ V and C1 “ t1, 2, 3, 4u,
C2 “ t5, 6u, C3 “ t7, 8u. The corresponding indicator matrix is

EΠT “

»

–

1 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

fi

fl . (20)

We tackle the problem of steering the network state towards the group consensus value
r11ˆ4 21ˆ2 31ˆ2s

T in tf “ 5 seconds. To do so, according to the results in Section 4
we must first decouple the dynamics along and transverse to the group consensus
subspace by leveraging the state transformation z “ Torx with

Tor “

»

—

—

—

—

—

—

—

—

—

—

—

—

–

0.5 0.5 0.5 0.5 0 0 0 0

0 0 0 0 0 0
?

2
´1 ?

2
´1

0 0 0 0
?

2
´1 ?

2
´1

0 0
0.5 0.5 ´0.5 ´0.5 0 0 0 0

0 0 0 0
?

2
´1
´
?

2
´1

0 0
?

2
´1
´
?

2
´1

0 0 0 0 0 0

0 0
?

2
´1
´
?

2
´1

0 0 0 0

0 0 0 0 0 0
?

2
´1
´
?

2
´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (21)

obtaining

A‖ “

»

–

0 0
?

2
0 0 2
?

2 2 0

fi

fl, B‖ “

»

–

0
?

2
0

fi

fl, AK “

»

—

—

—

—

–

0 ´
?

2 0 0 0
´
?

2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

fi

ffi

ffi

ffi

ffi

fl

, BK “

»

—

—

—

—

–

0
0
0
0
0

fi

ffi

ffi

ffi

ffi

fl

. (22)
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u u

21

43

87

5

6

A “

»

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
1 1 0 0 0 0 1 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 0 0
0 0 0 0 1 1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

B “
“

0 0 0 0 0 0 1 1
‰T

C1 C2 C3
?
2 2

u

Figure 1. A simple 8 node network, with edge weights all equal to one. The coarsest orbital partition of the
network shown in the figure has three clusters C1, C2, and C3, colored in red, yellow, and cyan respectively.

Consistently with Corollary 1, we obtain that BK “ 0. Moreover, the pair pA‖, B‖q
defines the dynamics of the quotient network, whose three node structure is portrayed
in Fig. 1. As the reader may easily check, the pair pA‖, B‖q is controllable, and thus
to control the dynamics along Xor we pose the following minimum energy control
problem:

min
u

1

2

ż 5

0
uT ptquptqdt

s.t.

9z‖ “A‖z
‖ `B‖u

z‖p0q “T ‖x0

z‖p5q “T ‖r11ˆ4 21ˆ2 31ˆ2s
T “ r2 3

?
2 2

?
2sT

(23)

where z‖ P R3 is the state vector of the quotient network.
The solution of this optimal control problem is

u˚˚ptq “BT
‖ e

AT
‖ p5´tqW´1pz‖p5q ´ e5A‖zp0qq

“BT
‖ pV

T
‖ q

´1eΛ‖p5´tqV T
‖ W

´1pz‖p5q ´ V ´1
‖ e5Λ‖V‖zp0qq

« ´ 0.00003e
?

6p5´tq ` 2.54e´
?

6p5´tq ` 0.732

(24)

where

W pt0, tf q “

ż tf

t0

eA‖ptf´tqB‖B
T
‖ e

AT
‖ ptf´tqdt (25)
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is the reachability gramian of the quotient network. Note that the optimal control
input is a linear combination of the three eigenmodes corresponding to the three
clusters of the orbital partition Π of GpA,Bq. It’s worth underlining that, since the
consensus subspace is unstable, numerical computation of the optimal control solution
is hard due to the positive eigenvalue

?
6. Notably, due to the low dimensionality of

the quotient network, the IRR allows us to solve (23) analytically.
Having dealt with controlling the dynamics along the group consensus subspace,

we can now turn to stabilizing the dynamics transverse to this subspace. To this aim,
note that the spectrum of the matrix AK in (22) is composed of the following set of
eigenvalues

t´
?

2, 0,
?

2u (26)

with the geometric multiplicity of the null eigenvalue being equal to 3, and the other
two eigenvalues being simple. Hence, in order to apply Algorithm 1, we must first
consider that ΛK “ t 0,

?
2u, with µ1 “ 3, and µ2 “ 1. Then, setting i “ 1, and as

D is initialized as the empty matrix, then h1 “ 0 as ∆ is the empty set and we can
enter the inner while loop. The three vectors spanning Ω1 are the last three rows of
the matrix Tor that brings the system in the IRR-coordinates, namely

»

—

–

?
2

´1
´
?

2
´1

0 0 0 0 0 0

0 0
?

2
´1

´
?

2
´1

0 0 0 0

0 0 0 0 0 0
?

2
´1

´
?

2
´1

fi

ffi

fl

T

and a feasible solution that iteratively solves eqs. (15)-(17) is

D1 “ r 1 0 0 ´1 0 0 0 0 s
T ,

D2 “ r 0 0 0 0 0 0 1 ´1 sT ,

D3 “ r 0 0 ´1 1 0 0 0 0 s
T .

(27)

Hence, we can turn to i “ 2 noting that as the vector

“

´0.35 ´0.35 0.35 0.35 ´0.50 0.50 0 0
‰T

is a basis for Ω2, then h2 “ 1 as there already exists a column of D, namely D1 in eq.
(27) with nonzero projection on Ω2. Hence, as µ2 “ 1, and |ΛK| “ 2, the driver node
selection procedure comes to an end. Note that this solution achieves both the bound
given in Corollary 3 as well as that given in Corollary 5 and thus minimizes both the
number of input signals and the number of driver nodes required to stabilize Xor.

Having performed the selection of the matrix D that ensures stabilizability of the
pair pAK, DKq we can now turn our attention to designing the stabilizing signal w as

w “ ´GzK

with the matrix G being such that the eigenvalues of the matrix pAK ´DKGq are all
smaller than or equal to ´

?
2, the only negative eigenvalue of AK which we do not

move. Specifically, we design G so that all the originally nonnegative eigenvalues are
placed in ´2. This selection ensures that the slowest time constant of the transverse
dynamics is the one of the only stable eigenvalue we did not touch (1{

?
2). Note that

this placement ensures the transverse dynamics become negligible well before the time

13
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a b

Figure 2. (a) State trajectories of the original network. In red the trajectories of nodes in cluster C1 and in

yellows those of nodes in cluster C2, in blue those of nodes in cluster C3. (b) Control inputs.

tf “ 5 when the dynamics parallel to the group consensus subspace will converge to the

target state z‖p5q. The designed control inputs can be now used to steer the network
towards the group consensus state r11ˆ4 21ˆ2 31ˆ2s. In Figure 2 we report the network
state evolution (panel a) and the control inputs (panel b). As expected, the optimal
control input u˚˚ in eq. (24), shown in black in Figure 2(b) is able to steer the nodes
in C1 to 1, the nodes in C2 to 2 and the nodes in C3 to 3 at tf “ 5. In the meantime,
the stabilizing control input w makes the transverse clustered synchronous solution
stable, ensuring the network state converges on the cluster consensus subspace. Note
that as expected, this control action vanishes in time, as shown in Figure 2(b).

Applying Algorithm 1 to the eight node network in Fig. 1 yielded a selection of
six driver nodes in order to stabilize Xor, that is, 75% of the network nodes. We now
consider a larger network with N “ 48 nodes, shown in Figure 3a, obtained using
the algorithm proposed in (Klickstein & Sorrentino, 2018). We assume that the same
input signal u is injected in all the nodes i such that 21 ď i ď 35 (the yellow nodes in
the figure). A study of the symmetries of the pair pA,Bq for this network shows that
there are K “ 3 orbital clusters with C1 :“ ti : i ď 20u, C2 :“ ti : 21 ď i ď 36u, and
C3 :“ ti : i ě 37u defining the quotient network in Fig. 3b. Applying the transformation
in eq. (4) and computing the eigenvalues of the matrix AK in eq. (5), we find that
|ΛK| “ 8 and that

ř

i:λiPΛK
µi “ 19, that is, the number of eigenvectors associated to

the non-stable eigenvalues of AK is 19. Hence, in order to ensure the network in Fig. 3a
achieves group consensus we need to select an additional set of driver nodes defining
the matrix D in eq. (11). To do so, we apply Algorithm 1 finding that eight input
signals, i.e., a matrix D with eight columns, are sufficient to stabilize the dynamics
transverse to Xor. Notably, only 11 rows of the matrix D encompass at least one
nonzero entry, and thus only 11 driver nodes, roughly 23% of the network nodes, are
sufficient to stabilize Xor, five of which were already nodes in which the input signal
u is injected. In the appendix we give all the details on the driver node selection
procedure for this example, showing that the bound in Corollary 5 is achieved also for
the 48 node network considered here. Fig. 3c, shows the trajectory generated by the
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joint action of an optimal controller u˚˚ which solves the problem

min
u

1

2

ż 5

0
uT ptquptqdt

s.t.

9z‖ “A‖z
‖ `B‖u

z‖p0q “T ‖x0

z‖p1q “T ‖r11ˆ20 21ˆ16 31ˆ12s
T “ r

?
20 8 3

?
12sT

(28)

and of a stabilizing state feedback control action w designed on the pair pAK, DKq
which places all the formerly unstable eigenvalues of AK in ´10. As can be seen from
the figure, group consensus is achieved starting from an initial condition that lies
outside Xor. Figure 3d shows the control inputs u˚˚ and wiptq i “ 1, . . . , 8.

6. Conclusions

Motivated by the observation that symmetries induce both loss of controllability and
the emergence of group consensus, in this work we studied the controllability properties
of networks endowed of symmetries. We found that controllability is lost in directions
orthogonal to the group consensus subspace, but it is still possible to control the con-
sensus state either if the network initial condition belongs to the group consensus
subspace, or if the subsystem of the dynamics orthogonal to this subspace is asymp-
totically stable. Moreover, we showed that when the network controllable subspace
coincides with the group consensus subspace, we can control consensus by designing
control strategies on a lower-dimensional network, the quotient network, thus reducing
the computational burden. We also considered the issue of stabilizability of the net-
work dynamics and provided a simple algorithm to place additional control inputs that
ensure that the group consensus subspace is stabilizable. By using the IRR transfor-
mation of the network symmetry group, we provided bounds on the minimum number
of additional inputs and on the number of driver nodes that are needed to achieve
stabilizability. We demonstrated our theoretical analysis through two representative
numerical examples.

Appendix A. Stabilizing the cluster consesnsus on the example in Fig. 3

The adjacency matrix of the proposed network is

15



-120

-80

-40

0

40

80

w5

w6

w7

u**

0 1 2 3 4 5
time

w1

w2

w3

w8w4

0 1 2 3 4 5
-2

-1

0

1

2

3

time

x(t)

c d

a 

x1

..
.

x20

x21

..
.

x36

x37

..
.

x48

16
37

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

17

18

19

20

21

22

23

24

25

26

27

2829

30 31

32

33

34

35

36

38

39

40

41

42

43

44

45

46

47

48

C1

C2 C3

b 

u

6

9

6

154  5

12

Figure 3. (a) The 48 node random network with 3 orbital cluster and (b) its three node quotient network.
(c) Controlled state trajectories of the network nodes driven towards the group consensus state through the

joint action of the optimal control input u and of the stabilizing action w. In red the trajectories of the nodes

in cluster C1, in yellow those of the nodes in cluster C2, and in blue those of the nodes in cluster C3. (d) Time
evolution of the control inputs.
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—

—

—

—

—
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—

—

—

—

—

—

—

—

—

—

—

–

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0
1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 0 0 1 0 0 0 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 1 0 0 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 1 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1 0 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 1 1 1
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 1 1
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 1 1 0 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 1 0 1 1 1 1 0
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,

BT “
“

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
‰

.

17



Using the algorithm in (Pecora et al., 2014), we compute the transformation to the
IRR coordinate system of this network, that is

100 Tor “
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22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 29 29 29 29 29 29 29 29 29 29 29
22 ´22 22 ´22 22 ´22 22 ´22 22 ´22 22 ´22 22 ´22 22 ´22 22 ´22 22 ´22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´25 25 ´25 25 ´25 25 ´25 25 ´25 25 ´25 25 ´25 25 ´25 25 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´29 29 ´29 29 ´29 29 ´29 29 ´29 29 ´29 29
32 0 ´32 0 32 0 ´32 0 32 0 ´32 0 32 0 ´32 0 32 0 ´32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 0 ´35 0 35 0 ´35 0 35 0 ´35 0 35 0 ´35 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´41 0 41 0 ´41 0 41 0 ´41 0 41 0
0 ´32 0 32 0 ´32 0 32 0 ´32 0 32 0 ´32 0 32 0 ´32 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´35 0 35 0 ´35 0 35 0 ´35 0 35 0 ´35 0 35 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41 0 ´41 0 41 0 ´41 0 41 0 ´41
7 ´27´24 13 31 7 ´27´24 13 31 7 ´27´24 13 31 7 ´27´24 13 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 16 ´21´29 3 31 16 ´21´29 3 31 16 ´21´29 3 31 16 ´21´29 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
´29 24 ´17 8 2 ´12 20 ´27 31 ´32 29 ´24 17 ´8 ´2 12 ´20 27 ´31 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
´12 20 ´27 31 ´32 29 ´24 17 ´8 ´2 12 ´20 27 ´31 32 ´29 24 ´17 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 28 28 5 ´23´31´14 15 31 22 ´5 ´28´28 ´5 23 31 14 ´15´31´22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
´31´14 15 31 22 ´5 ´28´28 ´5 23 31 14 ´15´31´22 5 28 28 5 ´23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
´5 ´28 22 14 ´31 5 28 ´22´14 31 ´5 ´28 22 14 ´31 5 28 ´22´14 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
31 ´14´22 28 5 ´31 14 22 ´28 ´5 31 ´14´22 28 5 ´31 14 22 ´28 ´5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 ´19 30 ´30 18 1 ´19 30 ´30 18 1 ´19 30 ´30 18 1 ´19 30 ´30 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
´32 25 ´9 ´10 26 ´32 25 ´9 ´10 26 ´32 25 ´9 ´10 26 ´32 25 ´9 ´10 26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
29 ´27 3 24 ´31 12 16 ´31 21 7 ´29 27 ´3 ´24 31 ´12´16 31 ´21 ´7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
´12´16 31 ´21 ´7 29 ´27 3 24 ´31 12 16 ´31 21 7 ´29 27 ´3 ´24 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
´28´31´22 ´5 15 28 31 22 5 ´15´28´31´22 ´5 15 28 31 22 5 ´15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
´14 5 23 31 28 14 ´5 ´23´31´28´14 5 23 31 28 14 ´5 ´23´31´28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
32 30 25 17 8 ´2 ´11´20´26´31´32´30´25´17 ´8 2 11 20 26 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
´2 ´11´20´26´31´32´30´25´17 ´8 2 11 20 26 31 32 30 25 17 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´29 7 35 20 ´20´35 ´7 29 29 ´7 ´35´20 20 35 7 ´29 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´20´35 ´7 29 29 ´7 ´35´20 20 35 7 ´29´29 7 35 20 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 ´29 19 ´7 ´7 20 ´30 35 ´35 29 ´19 7 7 ´20 30 ´35 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´7 20 ´30 35 ´35 29 ´19 7 7 ´20 30 ´35 35 ´29 19 ´7 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´9 ´28 31 5 ´34 22 18 ´35 9 28 ´31 ´5 34 ´22´18 35 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 ´22´18 35 ´9 ´28 31 5 ´34 22 18 ´35 9 28 ´31 ´5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´22´10 3 17 27 34 35 31 22 10 ´3 ´17´27´34´35´31 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 34 35 31 22 10 ´3 ´17´27´34´35´31´22´10 3 17 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´30 11 ´18 34 30 ´11 18 ´34´30 11 ´18 34 30 ´11 18 ´34 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 ´11´37 11 ´30 11 37 ´11 30 ´11´37 11 ´30 11 37 ´11 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´16 16 ´28´35 16 ´16 28 35 ´16 16 ´28´35 16 ´16 28 35 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 45 5 6 ´21´45 ´5 ´6 21 45 5 6 ´21´45 ´5 ´6 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 ´35 0 35 ´35 0 35 ´35 0 35 ´35 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´20´20 41 ´20´20 41 ´20´20 41 ´20´20 41
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´35 20 0 ´20 35 ´41 35 ´20 0 20 ´35 41
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´20 35 ´41 35 ´20 0 20 ´35 41 ´35 20 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´38´32 6 38 32 ´6 ´38´32 6 38 32 ´6
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´15 26 40 15 ´26´40´15 26 40 15 ´26´40
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ´35´20 0 20 35 41 35 20 0 ´20´35´41
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 35 41 35 20 0 ´20´35´41´35´20 0

fi
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ffi

ffi

ffi

ffi

fl

.

Note that each row of the transformation is cluster specific, that is, each row has
non-zero entries in the elements corresponding to only one of the clusters. Applying
this transformation to our example, we obtain

Ã “

»

—

—

—

—

–

A‖ 0 0 0 0
0 A1

K 0 0 0
0 0 A2

K 0 0
0 0 0 A3

K 0

0 0 0 0 A4,...,39
K

fi

ffi

ffi

ffi

ffi

fl

,

A‖ “

»

–

6 4
?

5
?

15

4
?

5 6
?

12
?

15
?

12 9

fi

fl , A1
K
“

»

–

´2 ´9 ´3.9
´9 ´2 3.5
´3.9 3.5 1

fi

fl , A2
K
“ A3

K
“

»

–

´2 0 ´3.9
0 ´2 ´3.5

´3.9 ´3.5 ´1

fi

fl

A4,...,19
K

“ diagp´2.6,´2.6,´1.5,´1.5,´1.3,´1.3,´0.6,´0.6,´0.4,´0.4, 0.1, 0.1, 1.6, 1.6, 4.7, 4.7q

A20,...,31
K

“ diagp´2.5,´2.5,´1.2,´1.2,´0.3,´0.3, 4, 4, 0, 0, 0, 0q

A32,...,39
K

“ diagp0, 0,´2.7,´2.7,´2,´2, 0.7, 0.7q

where we have highlighted the block structure of the matrix Ã. Note that the first three
rows of Tor span the cluster consensus subspace Xor. Then we have three sets of three
rows of the so called intertwined symmetry-breaks (Pecora et al., 2014), that define
three 3ˆ 3 blocks A1

K, . . . , A
3
K of Ã each governing the dynamics along an A-invariant

subspace. Any one of these blocks is generated by three rows of the matrix Tor each
specific of a different cluster. The eigenvectors of the matrix A generating these three
dimensional invariant subspaces have therefore non-zero entries in all their elements
(since they involve all the three clusters/all the nodes of the network). The remaining
36 rows of Tor define 36 monodimensional blocks of Ã (A4

K, . . . , A
39
K ), and are therefore

themselves eigenvectors of the matrix A. The first 16 are specific of cluster C1, the
next 12 are specific of cluster C2, and finally the last 8 are specific of cluster C3.

The transverse non-stable eigenvalues that define ΛK are the 16 non-negative
monodimensional block of Ã, together with three other positive eigenvalues, one for
each fo the 3x3 blocks of AK. As a result
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ΛK “
” ı

9.9 3.7 0.1 1.6 4.7 4 0 0.7

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 2 3 ´1 ´1 3 ´1 3 0 0 0 0 0 0 0 0 0 0
´1 ´2 0 2 ´2 1 3 ´1 ´2 0 0 0 0 0 0 0 0 0 0
1 0 ´2 1 ´3 2 2 3 0 0 0 0 0 0 0 0 0 0 0
´1 2 0 0 ´3 3 0 ´2 3 0 0 0 0 0 0 0 0 0 0
1 0 2 ´1 ´3 3 ´2 0 ´3 0 0 0 0 0 0 0 0 0 0
´1 ´2 0 ´1 ´3 1 ´3 3 1 0 0 0 0 0 0 0 0 0 0
1 0 ´2 ´2 ´3 ´1 ´3 ´3 2 0 0 0 0 0 0 0 0 0 0
´1 2 0 ´3 ´2 ´2 ´2 0 ´3 0 0 0 0 0 0 0 0 0 0
1 0 2 ´3 ´1 ´3 0 2 2 0 0 0 0 0 0 0 0 0 0
´1 ´2 0 ´3 0 ´3 2 ´3 1 0 0 0 0 0 0 0 0 0 0
1 0 ´2 ´3 1 ´1 3 1 ´3 0 0 0 0 0 0 0 0 0 0
´1 2 0 ´2 2 1 3 1 2 0 0 0 0 0 0 0 0 0 0
1 0 2 ´1 3 2 2 ´3 0 0 0 0 0 0 0 0 0 0 0
´1 ´2 0 0 3 3 0 2 ´3 0 0 0 0 0 0 0 0 0 0
1 0 ´2 1 3 3 ´2 0 3 0 0 0 0 0 0 0 0 0 0
´1 2 0 1 3 1 ´3 ´3 ´1 0 0 0 0 0 0 0 0 0 0
1 0 2 2 3 ´1 ´3 3 ´2 0 0 0 0 0 0 0 0 0 0
´1 ´2 0 3 2 ´2 ´2 0 3 0 0 0 0 0 0 0 0 0 0
1 0 ´2 3 1 ´3 0 ´2 ´2 0 0 0 0 0 0 0 0 0 0
´1 2 0 3 0 ´3 2 3 ´1 0 0 0 0 0 0 0 0 0 0

2 0 2 0 0 0 0 0 0 1 ´3 ´3 3 ´2 2 0 0 0 0
´2 ´2 0 0 0 0 0 0 0 3 ´2 1 ´1 2 4 0 0 0 0
2 0 ´2 0 0 0 0 0 0 3 ´1 ´2 ´4 ´3 1 0 0 0 0
´2 2 0 0 0 0 0 0 0 4 0 3 1 ´3 1 0 0 0 0
2 0 2 0 0 0 0 0 0 3 1 3 ´3 2 ´2 0 0 0 0
´2 ´2 0 0 0 0 0 0 0 2 3 ´1 1 ´2 ´4 0 0 0 0
2 0 ´2 0 0 0 0 0 0 1 3 2 4 3 ´1 0 0 0 0
´2 2 0 0 0 0 0 0 0 0 4 ´3 ´1 3 ´1 0 0 0 0
2 0 2 0 0 0 0 0 0 ´1 3 ´3 3 ´2 2 0 0 0 0
´2 ´2 0 0 0 0 0 0 0 ´3 2 1 ´1 2 4 0 0 0 0
2 0 ´2 0 0 0 0 0 0 ´3 1 ´2 ´4 ´3 1 0 0 0 0
´2 2 0 0 0 0 0 0 0 ´4 0 3 1 ´3 1 0 0 0 0
2 0 2 0 0 0 0 0 0 ´3 ´1 3 ´3 2 ´2 0 0 0 0
´2 ´2 0 0 0 0 0 0 0 ´2 ´3 ´1 1 ´2 ´4 0 0 0 0
2 0 ´2 0 0 0 0 0 0 ´1 ´3 2 4 3 ´1 0 0 0 0
´2 2 0 0 0 0 0 0 0 0 ´4 ´3 ´1 3 ´1 0 0 0 0

1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 4 ´2 ´3 3
´1 ´3 0 0 0 0 0 0 0 0 0 0 0 0 0 ´4 ´2 ´1 4
1 0 ´3 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 4
´1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 4 ´2 3 3
1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 ´4 ´2 4 1
´1 ´3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 ´1
1 0 ´3 0 0 0 0 0 0 0 0 0 0 0 0 4 ´2 3 ´3
´1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 ´4 ´2 1 ´4
1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 4 ´1 ´4
´1 ´3 0 0 0 0 0 0 0 0 0 0 0 0 0 4 ´2 ´3 ´3
1 0 ´3 0 0 0 0 0 0 0 0 0 0 0 0 ´4 ´2 ´4 ´1
´1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 ´4 1

fi
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fl

.

where the brackets associate each λi P ΛK to the eigenvectors obtained according to
Remark 4 and spanning Ωi.

We are now ready to apply Algorithm 1 to find the driver nodes needed to stabilize
Xor.
‚ when i “ 1 we consider the eigenspace of the eigenvalue 9.9. Its dimension is 1, so

we need at least one control input and two driver nodes to stabilize it. We select
nodes 1 and 2 as drivers and thus D1,1 “ 1, D1,2 “ ´1, D1,j “ 0, j “ 3, . . . , 48.

‚ when i “ 2 we consider the eigenspace of the eigenvalue 3.7. This eigenspace is
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two-dimensional, so we need another control input and another driver node to
stabilize it. We then add a second (independent) column to the matrix D with
D2,1 “ 1, D2,4 “ ´1, D2,j “ 0, j “ 2, 3, 5, . . . , 48. We then verify that D has
now two columns with non-zero and non-parallel projection on the eigenspace
associated to the eigenvalue 3.7 by computing the elements

D2
1,1 “ r1,´1, 0sr0,´2, 2sT “ 2, D2

1,2 “ r1,´1, 0sr2, 0, 0sT “ 2,

D2
2,1 “ r1, 0,´1sr0,´2, 2sT “ ´2, D2

2,2 “ r1, 0,´1sr2, 0, 0sT “ 2,

of the matrix D2 and then verifying that this matrix is full rank as detpD2q “

8 ‰ 0.
‚ when i “ 3 we consider the eigenspace associated to the eigenvalue 0.1. Its

dimension is 2, and the vectors in D have a two dimensional projection on it as
the elements

D3
1,1 “ r1,´1, 0sr3, 2, 0sT “ 1, D3

1,2 “ r1,´1, 0sr´1,´2,´3sT “ 1,

D3
2,1 “ r1, 0,´1sr3, 2, 0sT “ 3, D3

2,2 “ r1, 0,´1sr´1,´2,´3sT “ 2,

define the matrix D3 that is is full rank as detpD3q “ ´1 ‰ 0.
‚ when i “ 4 we consider the eigenspace associated to the eigenvalue 1.1. It’s

dimension is 2, and the vectors in D have a two dimensional projection on it as
the elements

D4
1,1 “ r1,´1, 0sr´1, 1, 3sT “ ´2, D4

1,2 “ r1,´1, 0sr3, 3, 0sT “ 0,

D4
2,1 “ r1, 0,´1sr´1, 1, 3sT “ ´4, D4

2,2 “ r1, 0,´1sr3, 3, 0sT “ 3,

define the matrix D4 that is is full rank as detpD4q “ ´6 ‰ 0.
‚ when i “ 5 we consider the eigenspace associated to the eigenvalue 4.7. It’s

dimension is 2, and the vectors in D have a two dimensional projection on it as
the elements

D5
1,1 “ r1,´1, 0sr´1,´1,´2sT “ 0, D5

1,2 “ r1,´1, 0sr3,´2, 3sT “ 5,

D5
2,1 “ r1, 0,´1sr´1,´1,´2sT “ 1, D5

2,2 “ r1, 0,´1sr3,´2, 3sT “ 0,

define the matrix D5 that is is full rank being detpD5q “ ´5 ‰ 0.
‚ the eigenspaces Ωi when i ě 6 have 0 components on cluster C1. As a conse-

quence, we need to select additional drivers from the other clusters in order
to stabilize them. In particular, for i “ 6 we consider the eigenspace associ-
ated to the eigenvalue 4. It’s dimension is 2, and so we need at least 3 driver
nodes in the cluster C2 in order to have a two dimensional projection on it.
We then select D3,21 “ 1, D3,22 “ ´1, D3,j “ 0 j “ 1, . . . , 20, 23, . . . , 48 and
D4,21 “ 1, D4,23 “ ´1, D4,j “ 0, j “ 1, . . . , 20, 22, 24, . . . , 48. This achieves our
goal as the elements

D6
1,1 “ r1,´1, 0sr1, 3, 3sT “ ´2, D6

1,2 “ r1,´1, 0sr´3,´2,´1sT “ 1,

D6
2,1 “ r1, 0,´1sr1, 3, 3sT “ ´2, D6

2,2 “ r1, 0,´1sr´3,´2,´1sT “ 2,

define the matrix D6 that is is full rank being detpD6q “ ´2 ‰ 0.
‚ when i “ 7 we consider the eigenspace associated to the eigenvalue 0. It’s di-

mension is 6, but we can treat separately the first 4 eigenvectors, associated to
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cluster C2 and thus spanning Ω2
7, from the other 2 eigenvectors, associated to

cluster C3 and thus spanning Ω2
7. As |Ω2

7| “ 4, we need to select two additional
driver nodes for the matrix D to have four columns with nonzero and non-parallel
projection on it. We therefore select nodes 24 and 25 as drivers by adding to D
the columns D5,21 “ 1, D5,24 “ ´1, D5,j “ 0 j “ 1, . . . , 20, 22, 23, 25, . . . , 48
and D6,21 “ 1, D6,25 “ ´1, D6,j “ 0 j “ 1, . . . , 20, 22, 23, 24, 26, . . . , 48. As the
matrix

D7 “

»

—

—

–

1 ´1 0 0 0
1 0 ´1 0 0
1 0 0 ´1 0
1 0 0 0 ´1

fi

ffi

ffi

fl

»

—

—

—

—

–

´3 3 ´2 2
1 ´1 2 4
´2 ´4 ´3 1
3 1 ´3 1
3 ´3 2 ´2

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

–

´4 4 ´4 ´2
´1 7 1 1
´6 2 1 1
´6 6 ´4 4

fi

ffi

ffi

fl

is full rank, then the matrix D has now four columns with nonzero and non
parallel projection on |Ω2

7| “ 4.
Then, we turn our attention to Ω3

7 noting that |Ω3
7| “ 2. We therefore need

to select three additional drivers defined by D7,37 “ 1, D3,38 “ ´1, D7,j “

0, j “ 1, . . . , 36, 29, . . . , 48 and D8,37 “ 1, D8,39 “ ´1, D8,j “ 0 j “

1, . . . , 36, 38, 40, . . . , 48. As the matrix

D17 “
„

1 ´1 0
1 0 ´1

 „

4 ´2
´4 ´20 4



“

„

8 0
4 ´6



is full rank being detpD17q “ ´48 ‰ 0, then the matrix D has now two columns
with nonzero and non-parallel projection on Ω3

7.
‚ Our procedure ends with iteration i “ 8 in which we consider the eigenspace

associated to the eigenvalue 0.7. Note that the matrix D already has two columns
with nonzero and non-parallel projection on it, namely D7 and D8 as the matrix

detpD8q “ det

¨

˝

„

1 ´1 0
1 0 ´1



»

–

´3 3
´1 4
1 4

fi

fl

˛

‚“ det

ˆ„

´2 ´1
´4 ´1

˙

“ ´2 ‰ 0

is full rank. Note that our selection achieved bound on the number of driver nodes
given in Corollary 5, but not the minimum number of inputs (that are 6, applying
Corollary 3). This last achievement can easily be obtained replacing D1 and D2 with
D1 `D7 and D2 `D8, and then removing D7 and D8 from D.
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