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pacity of renewable energy sources (RES) has almost doubled since
2006 (1036 GW in 2006 vs.1985 GW in 2015) [31]. A significant part
of this increase is connected with the larger capacity of photovol-
taic (6 GW vs. 222 GW) and wind energy (73 GW vs. 440 GW).
Therefore, the power generation sector is facing significant chal-
lenges in the reliability and control of the power transmission
system. Because of the higher share of variable RES, grid operators
must control a variable power supply together with the variable
demand.

Furthermore, the “day-ahead electricity market” is a market for
wholesale electricity trading where prices and exchanged quanti-
ties are defined for the following day, hour by hour. In Italy, the
market session begins at 8 p.m. of the ninth day before the delivery
day and it closes at 9.15 p.m. of the day before the delivery day.

Two options are available for controlling the grid while using
it (E. Ogliari).

ailable under the CC-BY-NC-
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different methods for PV plant output power forecasts of the next
24 hourly samples, which are estimated the day before on the basis
of the available weather forecasts (this approach is called “day-
ahead forecast”) [7].

The existing approaches of forecasting models can be classified
into the following three categories: physical, statistical and hybrid
[35].

Physical models describe the conversion processes, from solar to
electricity, in PV modules and we adopted them to predict the daily
generated power by using the expected weather conditions in a
given day.

On the contrary, statistical methods are based on the concept of
persistence, or stochastic time series, and are typically relying on
machine learning methods. They can be applied in the field of the
power forecast from renewable energy sources, because it is
possible to train them through historical data (for example: a
certain daily power measured in correspondence to certain
weather forecasts, which is called “supervised learning”) with the
aim of returning a power value foreseen also starting from new
ND 4.0 license http://creativecommons.org/licenses/by-nc-
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Nomenclature

AEmax Maximum Absolute Error (W)
ANN artificial neural network
C Net Capacity of the plant (W)
DC Direct Current (W)
e Error (W)
GPOA Plane Of Array total solar irradiance (W$m�2)
GHI Global Horizontal Solar irradiance (W$m�2)
I Current (A)
ID Current across the PN junction (A)
I0 Reverse saturation current (A)
IPV Light-generated current (A)
Kd Number of days included in the training and validation

datasets
MAE Mean Absolute Error (W)
MBE Mean Biased Error (W)
MLP Multilayer Perceptron
n Diode ideality factor
N number of hours in the time span (h)
Nd maximum number of available days in the training and

validation datasets
NMAE Normalized mean absolute error (%)
NOCT Nominal Operating Cell Temperature (K)
P Output Power (W)

PHANN Physical Hybrid Artificial Neural Network
PV Photovoltaic
RS Series resistance (U)
RSH Shunt resistance (U)
T Temperature (K)
V Voltage (V)
Vt Thermovoltage (V)
Xd Forecast day

Greek symbols
b Tilt angle (�)
s Pearson standard deviation
s2 variance

Subscript
amb ambient
c cell
p forecasted value
m measured value
M module
h hourly average sample
d day
ref parameter reference value

IPV ID ISH

I

VRSH,c

RS,c

Fig. 1. Equivalent circuit representing the five-parameter model.
data. This is called: “generalization capability”.
With respect to these statistical methods, ANNs have been

successfully applied for the forecasts of fluctuating energy supply
[17,21,25]. These methods learn to recognize patterns in data using
training data sets, which is also their main disadvantage. Yet in a
review [1] they are proved to be the most applied techniques. In
Ref. [35] any combination of two or more previously described
physical/statistical methods leads to a hybrid model. The idea is to
combine different models with unique features to overcome the
single negative performance and finally improve the forecast [6,30].

There are many papers dealing with a comparison among
forecasting techniques, between physical/deterministic or statisti-
cal approach, but they are not including ANN and they mainly
consider the short-term time frame. For example [36] focuses PV
power forecasts by comparing the support vector regression (SVR)
and a physical method, in the range of 15 min to 5 h ahead.

The aim of this study is to present comparison of the PV output
power day-ahead forecasts performed by different methods by
providing the same weather forecasts to different models:

� deterministic (3 and 5 parameters PV models, with NOCT PV
cells thermal model);

� hybrid (PHANN e Physical Hybrid Artificial Neural Network)

We also found out, on average, the most effective forecasting
model starting from the first day of the PV plant operation. While
deterministic models are employable from the beginning, the
hybrid method requires historical data to be trained.

For this reason we aim also to determine the most performing
features, in terms of accuracy provided by different approaches in
the training set composition as a function of the increasing training
set size.

This comparison and analysis was realized on experimental data
recorded from a PVmodule at SolarTechLab located in Milano [34]e
Italy e assessing the day-ahead forecast with the most common
error definitions.

This paper is structured as follows: from Section 2 to Section 4
the physical and stochastic models are described. Section 5 pre-
sents the test case selected for the analysis and the results are re-
ported in Section 6. Finally, section 7 reports the main conclusion of
the work and outlines additional research directions for the future
activities.

2. Deterministic models

The deterministic models are based on a physical representation
of a PV cell by equivalent electrical circuit and the PV module is an
extension of the single cell considering the adequate number of
cells in series. The sunlight conversion into electricity occurring in
the PV cell can be represented either by a current generator. This
simple representation is typically named three parameters model
from the number of parameters required to define the I-V curve
[9,10]. The electric equivalent representation can be more complex
as in the five parameters equivalent circuit (see Fig. 1)
[4,8e10,13,14,24,27,32,19]. In this case, there are two resistances,
the light-generated current (IPV) and the electrical behavior of the
PN junction (ID). The cell series resistance (RS,c) and the cell shunt
resistance (RSH,c) are connected in series to the cell terminals and in
parallel to the current generator, respectively. In particular, RS,c and



Fig. 2. PHANN model.
RSH,c represent the Ohmic losses and the recombination losses
occurring in the cell. The five-parameter model is described in Eq.
(1):

I ¼ IPV � I0$

0
B@e

VþRS;c$I

n$Vt � 1

1
CA� V þ RS;c$I

RSH;c
(1)

In particular, Vt is the thermovoltage, I0 and n represent the
reverse saturation current of the pn-junction and the diode ideality
factor, respectively.

Other more complex representations, namely six or seven pa-
rameters, are available in literature but not reported here for sake of
brevity. In fact, in this work, the three parameters and the five
parameters approaches are evaluated. The former is the simplest
which requires a limited amount of information (OC, SC and MPP)
for its characterization and the latter is a good compromise be-
tween complexity and accuracy as also demonstrated in a previous
work [10].

The parameters for the three- and five-parametermodels can be
determined either by using the information reported in the data-
sheet, or starting frommeasured values. Being the three-parameter
approach quite simple, the datasheet information is enough to
characterized it, while the definition of the five-parameter model
requires a full I-V curve measurements. In this work, the five pa-
rameters are fitted from the experimental I-V curves of the
considered modules minimizing the square error. For further in-
formation about the approach, it can be referred to [10].

Once determined the parameters of the equivalent circuit rep-
resentation, the I-V characteristic can be drawn and the generated
power calculated accordingly, assuming that the PV module always
operates at the maximum power point.

In this paper, on the basis of theweather forecasts provided at 11
a.m. of the previous day, the three-parameter (from datasheet) and
the five-parameter (fitted from I-V curve) models are employed to
perform the PV output power forecast. Previous work [10] demon-
strated that the combination of three-parameterandfive-parameter
with datasheet and experimental I-Vmeasurements guarantees the
best results in terms of accuracy and computational efforts.

3. The stochastic artificial neural network model

Artificial Neural Networks (ANN) are employed in the field of
the artificial intelligence with the aim of reproducing activities
typical of the human brain, among which the perception of images
and patterns, the comprehension of speech and the motor/sense
coordination.

The structure of an ANN [22] imitates the biological neural
networks typical of the nervous system, composed of billions of
neurons. The artificial neuron, the basic unit of this network, has
typically many inputs and only one output. Every input has a
certain associated weight, which gives the conductivity of the
corresponding input channel. The weighted total of the inputs of a
neuron determines the neuron activation.

The ANN research activity mainly focuses on the learning phase
which consists of the input set definition for its training. Once the
training set is defined, the output processed by the network should
be compared with the actual value and the model should be
adjusted through selected weights to keep the error below a certain
fixed threshold. For this “learning phase” there are various mech-
anisms which can be applied, each one characterized by certain
mathematical rules regarding the weights adjustment. The Error
Back Propagating (EBP) method suggests to calculate the error
made by a neuron of the last hidden layer by propagating back-
wards the error calculated on the output neurons connected with
such neuron (the same procedure is repeated for all the neurons of
the penultimate hidden layer, and so on).

In this work, in order to perform the one day-ahead forecast,
historical data are provided to the Neural Network Toolbox™ [3] in
Matlab software.

The output of the neuron is calculated applying the activation
function (also called “transfer function”) to the weighted amount of
the inputs (also called “net”).

In this work layered neural networks are applied with double
hidden layers and we refer to an “x-y” ANN (with x and y integers)
as to a multilayer perceptron (MLP) with x neurons in the first
hidden layer and y neurons in the second hidden layer. The correct
functioning of a neural network depends first of all on the archi-
tecture of the network [5] (determination of the layers number and
of the neurons number in every layer) and on the choice of the
activation function.

This analysis is consistent with previous works where double
layeredMLP have been adoptedwith specific features which are the
result of an accurate sensitivity analysis [11,16]. Therefore in this
study, a MLP with 11 and 5 neurons respectively in the two hidden
layers and the Levenberg-Marquardt training algorithm are
employed. As a non-linear output function of the network neurons,
we usually adopt a tan-sigmoid function which is derivable
(requirement to be utilized in this training method) and produces
values between 0 and 1.

In this paper a particular hybrid forecasting method (PHANN e

Physical Hybrid Artificial Neural Network) is adopted as it is
demonstrated that the outcome of the forecast is improved (A.
[9,10]. Subsequently, we also inspected training data set composi-
tion as it is a key aspect in stochastic approaches [2,12,15,37].
4. The Physical Hybrid Artificial Neural Network model

Hybrid methods are any combination between the two groups
of models (stochastic and deterministic) to overcome their weak-
nesses. Fig. 2 shows the PHANN which has been employed in this
work. This method, which mixes the physical Clear Sky Solar Ra-
diation algorithm (CSRM) by Hottel [18] and the stochastic ANN
method, is able to improve the forecast of the PV output power.

Once the network is trained with the historical data (both of the
PV plant power production and the weather forecast) by providing
the same weather parameters, which are estimated 24 h in
advance, it is able to give the hourly profile of the power output
from the PV plant.

Furthermore, as this is a strongly stochastic method, the outputs
(which are called “trials”) of N networks in parallel are averaged in
an “ensemble forecast”. It is already proved [16] that the ensemble
forecast provides better results and that the absolute hourly errors,
calculated in thewhole period, are lower than those from the single
trials. Therefore, in this work 10 trials in the single day “ensemble
forecast” are performed.

As one of the main objective of this work is to analyze the role of
the training set in the PHANN output, two different setting



Fig. 4. Flow chart of the training method B employed.
approaches of this crucial step have been examined in depth. Hence
the results of the forecasts by these approaches have been reviewed
and consequently compared.

In the proper Neural Network nomenclature they use to refer to
the “test set” as to the group of samples which have to be forecasted
after the training and the validation step.

The “training set” is the group of samples employed in the
process of identifying the weights which minimize the error in the
forecast performed on the same samples. Instead, the validation
step proves the goodness of the training step weights on additional
samples (the “validation set”) which have not been previously
included in the training set. The purpose of this step is to test on a
new dataset the generalization capability of the neural network. In
our case, as we are performing the one day-ahead forecast of a PV
plant production in a specific “day Xd”, the test set consists of 24
hourly samples; while both different dataset sizes and different
approaches in the composition of the training and validation sets
have been adopted.

4.1. Training method A e moving window with hourly samples
randomly drawn from the previous Kd days

The first approach consists of a “moving window”, namely to
include in the training set the data of Kd days before the forecasted
one. This rigid training time frame of Kd days is moving forward for
all the Ndþ1 available days in the dataset. For example, if the day
after the forecasted day (Xd þ 1 day) is going to be forecasted, the
previous Kd days are grouped in the training and validation data-
sets, including also the historical data belonging to the former “day
Xd” too.

Finally, the 90% of these hourly samples are randomly deployed
in the training while the remaining 10% of the previous Kd days are
randomly used for the validation. We refer with the expression of
“equivalent day” to a generic group of 24 random hourly samples.

As a time limited database covering nearly one year of the PV
output power hourly samples has been considered, a further clar-
ification is necessary.

In fact, as it is shown in Fig. 3, a circular trend-wise training of
the PHANN has been adopted. For example, in this way to forecast
the PV power production of the last day, corresponding to the 14th
December, the PHANN is trained with the previous available days in
the dataset, which are not always following the chronological
continuity because of the monitoring system or sensors failures
resulting in missing data. This aspect reveals two important issues
in reality:

1. Historical data are not always available and not chronologically
continuous,

2. When available, it is reasonable to adopt historical data either of
the same season even if they belong to a different year, or of an
adjacent season if belonging to the same year.
Fig. 3. “Moving window” training employed in the m
For these reasons, when the forecasting day is the first one in the
dataset (8th February), the corresponding training set, consisting in
the previous Nd days, will be composed of the last days available in
the same dataset which, in this case, ends on 14th December.
ethod A for every day forecasted in the dataset.



Table 1
Main features of the adopted training approaches.

Training method A B

Short explanation “Moving window” training set with random hourly
samples taken from the previous days

Growing training set with random hourly samples, taken
from the whole database. Samples are kept constant in each trial

Training and Validation set size From 10 to 215 days, with a rate of 5 days:
- Training ¼ 90%
- Validation ¼ 10%

From 10 to 215 days, with a rate of 5 days:
- Training ¼ 90% (fixed hourly samples)
- Validation ¼ 10% (fixed hourly samples)
4.2. Training method B e hourly samples randomly taken by the
whole dataset

The second training set approach requires hourly samples
randomly drawn from the whole dataset, in order to constitute a
training set of N equivalent days. In fact the picked hourly samples
easily belong to different days. These hourly samples are kept equal
during the training of each trial, consequently providing an
“ensemble forecast” derived from a common training set. After-
wards, the same day forecast is performed and the length of the
training set is increased by adding further random hourly samples
in the rate of 1 day each forecast until all the samples in the
database are used up. In this case, the 90% of the randomly chosen
hourly samples are employed for the training of the network and
the remaining 10% are used for the validation (see Fig. 4). These
shares of training and validation samples are chosen after a pre-
vious work [16,29] in which they were more effective. The main
features of these methods are listed in Table 1 hereunder.
5. Case study and forecasting methods assessment

The different models were compared with experimental data
recorded at the laboratory SolarTechLab [34], Politecnico di Milano,
the coordinates of which are latitude 45� 300 10.58800 N and
longitude 9� 90 23.67700 E. During the year 2014, the output power of
a single PVmodulewith the following characteristics was recorded:

- PV technology: Silicon mono crystalline
- Rated power: 245 Wp
- Net capacity1 of the PV module (the maximum measured DC
output power): 223 Wp

- Azimuth: �6�30’ (assuming 0� as South direction and counting
clockwise)

- Solar panel tilt angle (b): 30�

- PV module label: “F5-50”

The monitoring activity lasted from 8th February to 14th
December 2014, but the employable data, without interruptions
and discontinuities amount to 216 days. These hourly samples,
night hours included, are used as the database for the forecasting
methods comparison.

The PV module is linked to the electric grid by a micro inverter,
guaranteeing the optimization of the production. Its operating
parameters, DC power included, are transmitted to a computer
desktop for storage using a ZigBee protocol wireless connection, in
real time.

The weather forecasts employed are delivered by a weather
service each day at 11 a.m. of the day before the forecasted one. The
historical hourly database of these parameters is used to train the
neural network and include the following parameters: ambient
temperature (�C), GHI (W/m2), GPOA (W/m2), wind speed (m/s),
1 The PV plant “net capacity” is “gross capacity” which the parasitic loads have
been subtracted from Ref. [28].
wind direction (�), pressure (hPa), precipitation (mm), Cloud Cover
(%) and Cloud Type (Low/Medium/High).

In addition to these parameters, in order to train the PHANN
method, also the local time (hh:mm) of the day and the CSRM (W/
m2) are provided. As regards the physical models, only the GPOA

solar irradiance and the ambient temperature are used for the
forecasting.

In order to assess the forecasting methods accuracy, some of the
most common error indexes in literature [7,26,35] have been
considered in this work.

The common error definition for the assessment is the hourly
error eh, which is defined as:

eh ¼ Pm;h � Pp;h (10)

where Pm;h is the average actual power in the hour and Pp;h is the
prediction provided by one of the forecasting methods. Starting
from the hourly error definition, the other error indexes adopted for
the assessment can be derived as follows:

� Mean biased error (MBE)

MBE ¼ 1
N

XN

i¼1

�
Pm;h � Pp;h

�
(11)
� Mean absolute error (MAE)

MAE ¼ 1
N

XN

i¼1

���Pm;h � Pp;h
��� (12)
� Normalized mean absolute error NMAE% which is MAE based on
net capacity of the plant C. In this analysis C is the maximum DC
output power measured in the whole period and is expressed in
Watt:

NMAE% ¼ 1
N,C

XN

i¼1

���Pm;h � Pp;h
���,100 (13)

In all of these definitions, N is the number of hours considered in
the evaluated period (i.e. 24 h in a daily error basis calculation).

As it was already mentioned in Ref. [16] the abovementioned
error indexes are strongly correlated to each other and a single
index can be equally adopted to describe the global trend of the
others (even if in a different scale). For this reason, in this work, we
adopted NMAE as the main error index for evaluating the forecast.

Finally, the coefficient of determination R2 is also calculated [7].
This coefficient represents the accuracy of the forecasting models
compared with the trends in measured values by dividing the
relevant statistical variances s2:



Table 3
R2, MAE and MBE with the relative standard deviation for the 3 and 5 parameters
model and the global horizontal irradiance provided by the weather service 24 h in
advance. Where Pref equals 245 W for PV module and it equals 1000 W/m2 for the
GHI.

3 parameters 5 parameters Weather service
GHI 24 h

R2 0.658 0.645 0.776
MAE(W) 19.1 20.2 64
MAE/Pref,100 7.80 8.24 6.4
Std Dev absolute

error: s(|eh|)
32.7 33.6 103.5

s(|eh|)/Pref,100 13.3 13.7 10.35
MBE(W) �12.6 �14.3 �34.7
Std Dev error: s(eh) 35.8 36.5 116.7
R2 ¼ 1�
s2

�
Pp;h � Pm;h

�

s2
�
Pm;h

� (15)

For perfect forecasting, R2 ¼ 1.

6. Results

This section presents the results of the forecasts performed by
the different methods and approaches previously exposed.

Table 2 shows the mean errors of the deterministic methods,
calculated over the whole period (216 days). The indexes calcula-
tion considers all the 24 h in a day. Table 2 also gives the maximum
absolute error occurred on 11th October 2014 at noon. In general,
the three-parameters model shows slightly higher accuracy, but the
trend of the two models is similar.

In Fig. 5 on the left, the global horizontal irradiance provided by
the weather service 24 h in advance is shown together with the
actual values. On the right, in the same figure the DC output power
measured in blue and forecasted in red are respectively depicted.
The maximum absolute error is marked as a dashed green line
around 12 p.m.

The direct correlation between the irradiance and the PV output
power, both in the forecasted and in the measured values, high-
lights how the inaccuracy in the weather forecasts affects the
deterministic model prediction.

In Table 3, referring to thewhole database, theMAE and theMBE
values for the global horizontal irradiance (GHI) provided by the
weather service and for the deterministic methods with the rela-
tive standard deviations are reported. What is more remarkable is
the strong correlation between the two deterministic methods and
the weather forecasts: there is a substantial overestimation of the
forecasts compared to with the measured values of PV power and
irradiance. Finally, the restrained standard deviation of about
35e36W, particularly referred to the MBE, suggests that the hourly
errors are generally close to their mean values.

In a previous work [9,10], the NMAE calculated on daylight
hours of the same deterministic models based on actual weather
measurements was below 5%.
Table 2
Maximum absolute error and mean error indicators of the deterministic forecasting
methods.

Equivalent model AEmaxðWÞ MBEðWÞ MAEðWÞ NMAE%

3 parameters 199.5 �12.6 19.1 8.56
5 parameters 200 �14.3 20.2 9.05

Fig. 5. Global horizontal irradiance on the left and DC output power on the right. Measu
maximum absolute error is the green dashed line. (For interpretation of the references to c
6.1. Method A - moving window with limited random hourly
samples

Method A is adopted for all the forecasted 216 days of the whole
dataset. Besides two different sizes in the “training plus validation”
datasets are considered: a small one of 10 days and a large one of
215 days. These different sized datasets are separately provided to
the same neural network of 11 and 5 neurons in the hidden layers.
Finally, 10 days have been selected as the smallest size of the
training set in order to guarantee at least 1 equivalent day of vali-
dation after 9 equivalent days of training.

After the forecast has been performed with these settings, the
results are comparedwith the ones obtained with the deterministic
models (see Fig. 6).

Fig. 6 shows the NMAE% calculated for every forecasted day. On
the left the errors of the output provided by the PHANN trained
with 10 equivalent days are compared with the results obtained
with the three-parameters model output.

In this case, the PHANN with the smaller training set (10 days)
has lower daily errors in 76% of the forecasted days. Furthermore,
Fig. 6 shows on the right, the comparison between the same layered
PHANN trained with 215 days and the three-parameters deter-
ministic model is shown. Also in this case almost 77% of the days
shows a more accurate power forecast by the hybrid method if
compared with the deterministic model.

In order to better understand global trends, Fig. 7 on the left
shows again the daily NMAE% of the PHANN trained with different
training set sizes and the relative average values calculated over the
entire period. The comparison here depicted includes the two
different time frames of 10 and 215 equivalent days before the
forecasted one employed for the training setting. From this picture
we can see that the larger training set provides slightly better
red values are in blue, the forecasted values with the 5 parameter model in red. The
olour in this figure legend, the reader is referred to the web version of this article.)



Fig. 6. Daily NMAE% of the 11-5 PHANN trained with 10 days (on the left) and with 215 days (on the right) compared with the five-parameters model.

Fig. 7. On the left 11-5 PHANN trained by different dataset sizes daily NMAE% comparison and on the right sorted absolute hourly errors comparison committed in the whole period
of 216 days.
results, but the two averages are pretty close.
In the same figure on the right, the absolute hourly errors |eh|

calculated over the whole period, are shown in descending order of
magnitude.

With respect to these hourly errors, the maximum absolute
value of 138.8 W belongs to the PHANN which is trained with the
largest set (215 days) and occurred during 19th September 2014 at
2 p.m. as it is shown in Fig. 8 on the right by a vertical yellow line.
Instead, the PHANN trained with the smallest training set (10 days)
committed the highest error on the same date (19th September
2014) at 1 p.m. with the similar value of 137W. It can be highlighted
that, only by looking at Fig. 7 on the right, the two maxima are very
Fig. 8. Irradiance provided by the weather service Gp, and the actual one Gm measured on th
trained with 10 days in red, with 215 days in green and Pm measured in blue (right). (For inte
web version of this article.)
close, therefore it’s impossible to claim which is the best training
set size only on this basis. Nevertheless, it must be noted that the
absolute hourly errors are generally lower for the PHANN with the
largest training set, depicted with the dashed red line, on the
overall period. If we consider the date in which the highest hourly
error occurred, in Fig. 8 on the left, the global irradiance provided
by the weather service for that day is depicted in red while the
actual global irradiance is in blue.

If we compare these trends with the forecasted PV power output
by the PHANN in the same figure on the right, it can be noted that
the PHANN forecast with only 10 days of training and validation
(the dashed red line) is closer to the forecasted irradiance Gp trend
e plant during 19th September 2014 (left) and power output forecasted by the PHANN
rpretation of the references to colour in this figure legend, the reader is referred to the



on the left (the solid red line). This sounds reasonable as the solar
irradiance is the key parameter in a photovoltaic plant power
production. Instead, with 215 days of training and validation, the
forecasted output (the dashed green line) is more accurate. In fact,
the daily error indexes in this case are lower than those of the 10
equivalent days of training and validation.

Therefore, the larger daily errors committed in “day 262” by the
PHANN with 10 days of training are likely attributable to the
weather service inaccuracy. In the case of the PHANN trained with
10 days, the inaccuracy of the PV output power forecast might be
related to the PHANN which has not been properly trained.

As the maximum entity of the hourly error barely gives any clue
of definitive evidence on which is the best training set size
approach, the worst and the best cases of the daily NMAE% should
be considered.

Theworst case for the 10 equivalent days of training occurred on
23rd September 2014 with the highest NMAE% daily value of 19.4
(see Fig. 9 on the left), while for the largest training set of 215
equivalent days it happened on 8th October 2014 (see the same
figure below on the right).

For the PHANN trained with 10 equivalent days, the best case
occurred on 19th February 2014 (see Fig. 10 on the left) and on 10th
February 2014 the PHANN trained with 215 equivalent days (in the
Fig. 9. Worst case with the maximum daily NMAE% error for th

Fig. 10. Best case with the minimum daily NMAE% error for the PHANN trained with the w
provided by the weather service 24 h in advance is red, while the actual values are blue. (For
the web version of this article.)

Table 4
Mean errors calculated over the whole period of 216 days according to the different trai

Number of Neurons (Number of days) Training/Validation

11e5 (10) 9/1
(215) 194/21
same Fig. 10 on the right) was more accurate than the other. The
two small boxes within Fig. 10 show the forecasted plane of the
array irradiance Gp in red and the measured one Gm in blue for the
relative days.

First of all, it is strange to find such an accuracy in both of these
cloudy day types. Actually, it would have been more likely to find
such an accurate forecast on a sunny day rather than on a totally
cloudy day. Mid-February for the given location is usually rainy or
snowy as it is still winter time.

However, the irradiance forecasts employed to perform the PV
power forecast in these cases are very accurate and the largest
training set size provided comparable results to the smaller training
set. This conclusion is strengthened by Table 4 showing the mean
figures of the two training set sizes here adopted. The difference is
not essential to discriminate which training set size is successful for
an accurate forecast with Method A.

Finally, by looking at the hourly errors boxplots in Fig. 11, it is
evident how the central daily hours (from 11 a.m. to 3 p.m.) are the
most critical ones showing the lowest accuracy. The only difference
related to the two set sizes is the value of the hourly absolute error
which is slightly lower in the case of the PHANN trained with 215
days. Again we can assume that this trend is mainly affected by the
inaccuracies of the weather forecasts provided as an input to the
e PHANN trained with 10 days (left) and 215 days (right).

ith 10 days (on the left) and 215 days (on the right). In the small boxes the irradiance
interpretation of the references to colour in this figure legend, the reader is referred to

ning set size for “Method A” training.

AEmaxðWÞ MBEðWÞ MAEðWÞ NMAE%

137 0.9 13.25 5,94
138.8 0.3 12.46 5,58



PHANN, which is a slightly mitigated with a large training set.
6.2. Method B - hourly samples randomly taken from the whole
dataset

In this approach, the hourly samples are randomly drawn from
the whole database of 216 days and grouped in a dataset kept fixed
in every trial. At the beginning the length of the dataset accounts 10
equivalent days. After performing the ensemble forecast for one
given day, the training set is increased by adding more hourly
samples, which are again randomly drawn from the whole dataset.
In this way the new data are added to the previous ones enlarging
the training set size with 5 equivalent days.

Fig. 12 shows the results of the forecasts performed with this
training method: on the left the shortest training set size of 10
equivalent days (in blue) and on the right the longest one of 215
days. Furthermore, the comparison with the daily errors of the
three-parameter physical model are shown in red, and the relative
overall period averages NMAE% of the two methods are traced as
constant blue lines. It is evident that the hybrid method generally
performs better, especially when trained with the largest dataset.

In addition, all the averages of the error indicators listed in
Fig. 11. Hourly absolute errors boxplots, according to the hour of the days for the 11-5 PH
equivalent days on the right.

Fig. 12. Comparison of the daily NMAE% between the deterministic (empty red circles) and t
the left) and 215 equivalent days (on the right). The average values are also marked. (For inte
web version of this article.)

Table 5
Mean errors calculated over the whole period of 216 days according to the different trai

Number of Neurons (Number of days) Training/Validation

11e5 (10) 9/1
(215) 194/21
Table 5 clearly show the better behavior of the largest dataset if
compared with the smallest.

Focusing on NMAE% column, it is more evident that, in this case,
the 11-5 PHANN forecast improves by increasing the number of
training samples. Note that, if we compare these average values
with the relative column in Table 4, which is related to Method A,
numbers are decreasing while in the previous case, they are nearly
constant. We will discuss more about this trend in the next
paragraph.

7. Discussion and comparison of results

The main purpose of this analysis is to determine the most ac-
curate forecast model and the most effective technique in the
PHANN training.

Fig. 14 on the left shows the average of the daily error definition
NMAE% calculated over the entire period of the 216 days forecasted
with the analyzed methods, according to the number of days
employed in the training (the deterministic methods are depicted
by two horizontal lines).

Furthermore it is evident that PHANN always gives the lowest
errors after 10 days of the PV plant operation.
ANN, trained with different training set size: 10 equivalent days on the left and 215

he PHANN (solid blue circles) forecasts. PHANN was trained with 10 equivalent days (on
rpretation of the references to colour in this figure legend, the reader is referred to the

ning set size for the training method B.

AEmaxðWÞ MBEðWÞ MAEðWÞ NMAE%

140.1 0.6 14.3 6.40
141.3 0.4 12.5 5.59



Thus the most interesting trend is provided by the comparison
between different PHANN training approaches. By looking at Fig. 14
on the left it is evident that when only few days are available, for
example when the PV plant has just started to operate, Method A is
more effective. In fact, the proximity of the training samples with
the forecasted day is stronger than in using Method B, which is
randomly drawing the samples from a larger period. In this case the
neural network with Method B is undertrained, if compared with
Method A, but it has a significantly decreasing trend with the
increasing of the days in the training set.

This is true until 50 days, but after 65 with Method B the PHANN
is more capable of generalization and is generally committing a
lower error, while Method A is substantially constant with some
fluctuations around 5.9e6.

By reaching the maximum available number of training samples
the two methods obviously converge to the same values, being
finally Method A equivalent to B, both picking randomly from the
whole available dataset of 215 days.

Another significant difference is evident by considering the
probability densities of the maximum absolute errors committed
daily by the different forecasting methods (see Fig. 14 on the right)
Table 6
Summary of the main error indicators calculated for each forecasting method.

Forecasting method (# of days) Tra/Val AEmax (W) MBE (W) Std

3 PARAM e 199.5 �12.6 35.
5 PARAM e 200 �14.3 36.
PHANN A (10) 9/1 137 0.87 27.

(215) 194/21 138.8 0.25 25.
PHANN B (10) 9/1 140.1 0.6 27.

(215) 194/21 141.3 0.4 25.

Fig. 13. Hourly error boxplots of PHANN train

Fig. 14. NMAE% forecasting methods comparison according to the training set size (on the l
the right).
despite of their magnitude.
The maxima calculated every day are statistically centered

around 1 p.m. winter time with a peak in the probability density of
nearly 14%. The deterministic methods are flatter and involve the
early morning hours (from 5 a.m.) and late evening (to 9 p.m.).

In the case of the PHANN methods the probability densities of
the maximum hourly errors are narrower and they are centered
again in the mid-day hours with peaks near 20%. This means that
within 45 days among the 216 forecasted, the daily maximum ab-
solute error occurred at 1 p.m.

Furthermore, considering the longest training set size (215 days)
the narrowest bell-shaped curve is obtained. This means that such
training set size provides a more accurate forecast in the tail hours
of the day.

Table 6 summarizes themain error indicators calculated over the
whole period. Focusing on theMBE, it can be noted how the PHANN
methods record the lowest values and that their standard deviations
are more restrained, if compared to the deterministic methods. The
coefficient of determination R2 confirms the NMAE% trend.

These results are totally in line with the boxplots shown in
Figs. 13 and 11.
Dev s(eh) (W) MAE (W) Std Dev s(|eh|) (W) NMAE% R2

8 19.1 32.7 8.56 0.658
5 20.2 33.6 9.05 0.645
7 13.25 23.78 5.94 0.849
1 12.46 21.78 5.58 0.873
7 14.3 23.7 6.4 0.796
2 12.5 21,9 5.59 0.831

ed by 10 days (left) and 215 days (right).

eft) and daily maximum absolute errors probability density according to the hours (on



8. Conclusions

This work provided an assessment between different fore-
casting methods for the day-ahead output power of the same PV
module: physical-deterministic methods based on the NOCT ther-
mal model of the PV module and a hybrid stochastic-deterministic
one whichmerges the CSRM and ANN.Within the first category the
three-parameter and the five-parameter electric circuit models
were considered, whereas for the hybrid one (PHANN) different
approaches in the training set composition and dimension were
analyzed. In this last group, historical data recorded at SolarTechLab

in Milane Italye in the year 2014, amounting to 216 available days,
have been exploited to train the PHANNmodel. The daily PV power
output was forecasted starting from the weather parameters sup-
plied 24 h in advance by a weather service provider.

In the analysis carried out in this work, some of the most
common error definitions were considered, but ultimately the
normalized mean absolute error (NMAE%) was mainly adopted as it
showed the same trend and a correlation with the other errors.

By comparing the mean NMAE% (NMAE%) calculated considering
all the 216 available days forecastedwith the different methods, the
three-parameters method performs slightly better than the five-
parameter one (8.5% vs. 9.0% respectively), on the other hand
PHANN always shows higher accuracy in the range of 6%.

As regards PHANN, the training based on hourly samples
randomly taken by the whole dataset (Method B) has scored better
results starting from datasets of 50 days or more, while the use of a
moving window with limited random hourly samples (Method A)
better performed with shortest training set. In this last case a
greater “proximity effect” of the training set on the forecasted day is
inferable, as regards the better performances which have obtained
on average. Furthermore, by increasing the training set size with
any composition approach, forecasting errors are generally low-
ered. This result is reasonably due to the capability of the hybrid
method to learn both the inaccuracies of the provided weather
forecasts and the peculiarities of the PV plant (shadowing, etc.).

In conclusion, this study shows that the day-ahead output po-
wer forecast in a just commissioned PV plant should be first per-
formed with the three-parameter model. After few days of
operation (from 10 to 50 days) an accurate forecast can be per-
formed by the PHANNmodel, trained with Method A. Starting from
the 50th day on, the PV output power forecast could be reached by
adopting Method B.
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