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Abstract: In the last decade, control algorithms designed for Artificial Pancreas (AP)
systems were characterized by significant progresses. In particular, the Control-to-Range Model
Predictive Control (MPC) showed its effectiveness and safety in several real life studies. Recent
studies on model individualization and the enhanced quality of glucose sensors further improved
the efficacy of MPC, thus allowing moving from a Control-to-Range to a Control-to-Target
approach. In this study, an integral action in the MPC approach (IMPC) is proposed. This
ensures beneficial effects in terms of regulation to the target in presence of disturbances such as
delays, pump limitation and model uncertainties. The integral action is even more important
when model individualization is performed since, during the identification phase, it allows to
focus on the identification of the dynamical part of the model rather than to the static gain.
The patient models considered in this contribution have been identified through a constrained
optimization approach. A procedure for tuning the IMPC aggressiveness by considering both the
glucose control performance and the integral of the error with respect to the target is described.
Finally, in silico experiments are presented to assess the effectiveness of the proposed IMPC.
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1. INTRODUCTION

Type 1 diabetes mellitus (T1DM) is an important health
problem in the world, affecting people during the teenage
years, adults, and also very young children. T1DM is an
autoimmune disease that leads to the irreversible destruc-
tion of the pancreatic beta cells, which are in charge of
producing and releasing insulin. Since the pancreas is no
longer able to produce this hormone, which regulates the
glucose level in the blood (glycemia), the subject can ex-
perience chronic hyperglycemia, with an increasing risk of
life-threatening events and severe long-term complications.

Self-monitoring of glycemia is extremely important for
individuals with T1DM, which have to maintain the blood
glucose concentration inside the euglycemic range, span-
ning from 70 to 140 mg/dl. If on one hand external insulin
supplies are needed to avoid hyperglycemia phenomena,
on the other hand hypoglycemia can be caused by possible
erroneous insulin overestimation. T1DM patients usually
provide the needed insulin through the conventional ther-
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apy, which is composed of basal insulin, used to maintain
a stable glycemia during fasting periods, and insulin bo-
luses used to compensate the glucose rise caused by meals
intake.

Insulin administration can be performed through subcu-
taneous insulin pumps that can be programmed with a
patient-specific conventional therapy, and are in charge
of continually infusing insulin micro-boluses. The subcu-
taneous glucose concentration is measured through con-
tinuous glucose monitor (CGM) devices, which allow to
perform measurements up to 5 minutes per sample. The
combination of subcutaneous pump and CGM defines the
sensor augmented pump (SAP) therapy, which assists the
patient in maintaining the glucose concentration within
the euglycemic range. SAP therapy, however, needs man-
ual interventions on the pump to properly adjust the
insulin administrations, and the evaluation of possible crit-
ical hypo- and hyperglycemia phenomena are demanded to
the patient. The automation of insulin infusions based on
automated glycemia readings has been investigated since
the seventies, when the first concept of artificial pancreas
(AP) appeared in the literature [Cobelli et al., 2011].
The AP system aims to a complete automatic closed-
loop glucose control and, thanks to the latest technological
and methodological developments, the system has become
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wearable and minimally invasive [Thabit and Hovorka,
2016].

One of the most recent AP architectures is composed of
a control algorithm that communicates with a CGM and
with a subcutaneous pump through wireless connections
[Messori et al., 2015]. This architecture is the results of
several clinical studies promoted by the Juvenile Diabetes
Research Foundation, the European Commission, and the
National Institutes of Health [Bequette, 2012; Cobelli
et al., 2009; Breton et al., 2012; Doyle et al., 2014; Russell
et al., 2014; Del Favero et al., 2015; Thabit et al., 2014;
Kropff et al., 2015].

The core of the AP system is the control algorithm,
which is in charge of estimating the proper quantity of
insulin to infuse during fasting, meal, and postprandial
periods. This task is particularly challenging because of
the system architecture, which uses a subcutaneous route
both for insulin infusion and glucose sensing. Indeed,
subcutaneous pumps are affected by inherent delays due
to the insulin absorption dynamics, whereas subcutaneous
glucose measurements are normally affected by CGM
sensor noise. Among the possible control strategies, which
include classical Proportional-Integral-Derivative (PID)
control or Fuzzy Logic (FL), Model Predictive Control
(MPC) resulted to be a very effective and promising
solution [Hovorka et al., 2004; Magni et al., 2007; Wilinska
et al., 2009; Grosman et al., 2010; Doyle et al., 2014].

The MPC considered in this study is described in [Toffanin
et al., 2013], and has been successfully used in an out-
patient clinical study in 2013. Subsequently, it has been
used in the first randomized crossover clinical trial per-
formed in free-living conditions [Kropff et al., 2015] later
followed by an additional extension study [Renard et al.,
2016]. Although the good glucose control performance, the
MPC described in [Toffanin et al., 2013] is synthesized by
considering a non-individualized linear model. Thus, since
diabetic patients are affected by significant inter-subject
variability, further improvements could be achieved by
considering patient-individualized models. To this aim,
two novel identification approaches that can be used for
individualizing linear glucose-insulin models have been
introduced in [Messori et al., 2016].

In this study, an individualized integral MPC (IMPC)
is proposed. The individualized models are identified
through the constrained optimization (CO) procedure de-
scribed in [Messori et al., 2016]. This procedure may result
in individualized models that could be affected by steady-
state errors, an effect that was not predominant in the
non-individualized linear model. Thus, the integral action
is added to increase the glucose control robustness with
respect to model uncertainties, moving from a Control-
to-Range (CTR) to a Control-to-Target (CTT) approach.
Moreover, the presence of the integral action eases the
identification process, since the control designer can focus
on the identification of the dynamic part of the individu-
alized model rather than to the static gain.

Since different patients are usually characterized by differ-
ent insulin sensitivity, a procedure for tuning the IMPC
aggressiveness is also presented.

2. INTEGRAL MODEL PREDICTIVE CONTROL

In this section the CTT IMPC is discussed. The main
ingredients to design the IMPC are the definition of an
augmented system (which takes into account the integral
action), a cost function, a model-based optimization prob-
lem, and the so-called Receding Horizon (RH) criterion.

2.1 Glucose-Insulin Model

MPC algorithms are intrinsically based on the knowledge
of a model describing the dynamics of the system under
control. In this paper, the proposed IMPC is synthesized
on a linear time-invariant model, the structure of which is
obtained from the linearization around a suitable working
point of the more complex nonlinear model described
in [Dalla Man et al., 2014]. In particular, the model
considered in the controller has the following form:{

x(k + 1) = Ax(k) +Bu(k) +Md(k)
y(k) = Cx(k)

(1)

where x and y are the differential states and output (i.e.
subcutaneous glucose) with respect to their steady-state
values, respectively, u represents the differential insulin
with respect to the basal insulin ib, and d represents the
amount of carbohydrates (CHO) associated to the meals
announced to the controller. The model (1) is identified
through the CO approach described in [Messori et al.,
2016], which is a grey-box identification approach able to
identify linear time-invariant models having a pre-defined
parametric structure.

2.2 Augmented system

In order to introduce the integral action in the controller,
it has to be synthesized on the enlarged system composed
of both the process and the integrator. The integrator can
be described in state variables by the following system

v(k + 1) = v(k) + e(k)
e(k) = ysp(k)− Cx(k) .

(2)

Then, the enlarged system including process and integra-
tor, with inputs u and d and outputs y and v, is{

x̄(k + 1) = Ax̄(k) +Bu(k) +Md(k) +Bspysp(k)
ȳ(k) = Cx̄(k)

(3)

where x̄ = [x(k) v(k)]T ∈ Rn+1 is the augmented state,
ȳ = [y(k) v(k)]T ∈ R2 is the output, and where the
augmented matrices are

A =

[
A 0
−C 1

]
∈ R(n+1)×(n+1), B =

[
B
0

]
∈ R(n+1),

M =

[
M
0

]
,∈ R(n+1) Bsp =

[
0
1

]
∈ R(n+1),

C =

[
C 0
0 1

]
∈ R2×(n+1)

(4)

with n denoting the number of states of the original model
(1).

2.3 Cost function

Assuming that the triplet (A,B,C) is both stabilizable
and detectable, the IMPC control action is the result of
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announced to the controller. The model (1) is identified
through the CO approach described in [Messori et al.,
2016], which is a grey-box identification approach able to
identify linear time-invariant models having a pre-defined
parametric structure.

2.2 Augmented system

In order to introduce the integral action in the controller,
it has to be synthesized on the enlarged system composed
of both the process and the integrator. The integrator can
be described in state variables by the following system

v(k + 1) = v(k) + e(k)
e(k) = ysp(k)− Cx(k) .

(2)

Then, the enlarged system including process and integra-
tor, with inputs u and d and outputs y and v, is{

x̄(k + 1) = Ax̄(k) +Bu(k) +Md(k) +Bspysp(k)
ȳ(k) = Cx̄(k)

(3)

where x̄ = [x(k) v(k)]T ∈ Rn+1 is the augmented state,
ȳ = [y(k) v(k)]T ∈ R2 is the output, and where the
augmented matrices are

A =

[
A 0
−C 1

]
∈ R(n+1)×(n+1), B =

[
B
0

]
∈ R(n+1),

M =

[
M
0

]
,∈ R(n+1) Bsp =

[
0
1

]
∈ R(n+1),

C =

[
C 0
0 1

]
∈ R2×(n+1)

(4)

with n denoting the number of states of the original model
(1).

2.3 Cost function

Assuming that the triplet (A,B,C) is both stabilizable
and detectable, the IMPC control action is the result of

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

8014

an optimization procedure that consists of minimizing the
following quadratic cost function:

J(x̂(k|k), v(k|k), u(·), k) =
N−1∑
i=0

(
qy(y(k + i)− ysp(k + i))2 + qvv

2(k + i)+

+ (u(k + i)− u0(k + i))2
)
+ ‖x̄(k +N)‖2P (5)

subject to

x(k) = x̂(k|k)
v(k) = v(k|k)
x̄(k + i+ 1) = Ax̄(k + i) +Bu(k + i)+

+Md(k + i) +Bspysp(k + i)
ȳ(k + i+ 1) = Cx̄(k + i+ 1)
u0(k + i) = uOL(k + i)− ib(k + i)

where qy > 0 is the weight associated to the first output,
qv ≥ 0 is the weight associated to the integral of the
error e, y is the subcutaneous glucose concentration, v is
the output of the integrator, ysp = 120 (mg/dl) is the
constant glucose set-point, uOL is the insulin that would
be injected by the open-loop therapy, which is taken as
input reference, and x̂(k|k) is provided by a Kalman Filter,
as discussed in [Toffanin et al., 2013]. Moreover, N is
the prediction horizon, ‖·‖p denotes the p-norm, and P
is the unique non-negative solution of the discrete-time
Riccati equation for the corresponding Linear Quadratic
Regulator (LQR) problem with infinite horizon.

2.4 Closed-form of the IMPC law

The closed-form of the IMPC law can be achieved by
relying on the Lagrange formula. The model output and
state predictions within the horizon N can be obtained
through the following formula

Y (k) = Ac ˆ̄x(k) + BcU(k) +McD(k) + Bsp,cY0(k) (6)

where ˆ̄x(k) = [x̂(k|k) v(k)]T is the augmented linear
model state at time k, with the state prediction x̂(k|k).
As for the other terms, one has that the output is Y (k) =

[ȳ(k + 1), ȳ(k + 2), · · · , ȳ(k +N − 1), x̄(k +N)]
T
, while

Y0(k) = [ysp(k), ysp(k + 1), · · · , ysp(k +N − 1)]
T
, and

inputs D(k) = [d(k), d(k + 1), · · · , d(k +N − 1)]
T

and

U(k) = [u(k), u(k + 1), · · · , u(k +N − 1)]
T
. Instead, Ac,

Bc, Mc, Bsp,c are matrices properly defined according to
the discrete-time Lagrange formula. Note that, according
to the cost function (5), the last element of Y (k) represents
the model state prediction and the integrator state, x̄(k+
N), at the end of the horizon. The predicted trajectory
Y (k) depends on the applied input trajectory U(k), which
is obtained after an optimization procedure consisting of
minimizing the cost (5). By defining the weight matrix Q
as

Q =




Q 0 · · · 0

0
. . .

. . . 0
...
. . . Q

...
0 · · · 0 P


 ∈ R(2(N−1)+n+1)×(2(N−1)+n+1) (7)

with Q = diag(qy, qv), the controller cost function can be
rewritten as follows:

J(ˆ̄x(k), u(·), k) =(
Ac ˆ̄x(k) + BcU(k) +McD(k)+

+Bsp,cY0(k)− Ysp(k)
)T

Q
(
Ac ˆ̄x(k) + BcU(k)+

+McD(k) + Bsp,cY0(k)− Ysp(k)
)
+

+
(
U(k)− U0(k)

)T(
U(k)− U0(k)

)

(8)

where Ysp and U0 are defined as Ysp(k) =
[
ysp(k +

1), 0, ysp(k + 2), 0, · · · , ysp(k + N − 1), 0, 0, · · · , 0
]T

and U0(k) =
[
u0(k), u0(k + 1), · · · , u0(k + N − 1)

]T
,

respectively. By zeroing the gradient with respect to U ,
the vector Uo containing the optimal input trajectory is
achieved in the following closed-form:

Uo(k) =
(
BT
c QBc + I

)−1(− BT
c QAc ˆ̄x(k)+

−BT
c QMcD(k)− BT

c QBsp,cY0(k)+
+BT

c QYsp(k) + U0(k)
) (9)

where I is an identity matrix with proper dimensions.
Hence, according to the RH criterion, the time-invariant
IMPC control law is given by

uMPC(k) =
[
1 0 · · · 0

](
−Kx̄ ˆ̄x(k)−KdD(k)+

−KY0
Y0(k) +KYsp

Ysp(k) +KU0U0(k)
) (10)

where the gain matrices Kx̄, Kd, KY0
, KYsp

, and KU0 are
defined as

Kx̄ =
(
BT
c QBc + I

)−1 BT
c QAc

Kd =
(
BT
c QBc + I

)−1 BT
c QMc

KY0 =
(
BT
c QBc + I

)−1 BT
c QBsp,c

KYsp
=

(
BT
c QBc + I

)−1 BT
c Q

KU0 =
(
BT
c QBc + I

)−1
.

(11)

Note that, due to the unconstrained nature of the IMPC,
as discussed in [Toffanin et al., 2013] for an MPC without
integral action, the control action in (10), obtained by
applying the RH criterion, includes some a posteriori
saturations and constraints on the insulin delivery.

As for the choice of qy and qv, these values must be set on
the basis of the estimated insulin sensitivity of the patient.
The tuning of these weights is performed in two different
steps. The first step is the calibration of the value qy by a
trial and error procedure as discussed in [Soru et al., 2012],
by posing qv = 0. The second step consists in the definition
of a constant value qv. Note that, in this preliminary study,
a constant value of qv has been considered for all the
patients and has been tuned by a trial and error approach.

2.5 In Silico Scenario

The simulations are carried out on 100 virtual adult pa-
tients of the UVA/PADOVA simulator presented in [Dalla
Man et al., 2014; Kovatchev et al., 2009]. The constant
insulin sensitivity of each virtual patient is randomly var-
ied by a ±25 % factor, and the controller is blind to these
variations. Moreover, the simulated CGM measurements
are affected by the error model described in [Toffanin et al.,
2013]. The simulation scenario consists of five meals: the
first is compensated in open-loop through the conventional
therapy, while the remaining meals are compensated in
closed-loop. The simulation scenario starts at 6:00 and
lasts 34 hours, and the loop is closed at 8:00, within the
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Fig. 1. Blood glucose profiles achieved through CO-MPC and CO-IMPC in the simulation scenario for patient #95.
The perturbed cases with insulin sensitivity varied by a ±25% factor are shown.
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Fig. 2. Distribution of the differences of the glucose level
at the end of night between CO-IMPC and CO-MPC
for patients controlled via CO-MPC with glucose level
inside the range 105-135 mg/dl (LVG) and out of the
range 105-135 mg/dl (HVG) at end of the night (from
6:00 to 7:00), respectively.

postprandial period of the open-loop compensated meal.
This contributes to increase the variability associated with
the closed-loop starting conditions. Meal amounts are 50 g
CHO for the first breakfast, 60 g CHO for the second one
(both at 7:00), 60 g for the two lunches (at 12:00) and 80
g CHO for the dinner (at 18:00). Postprandial periods are

Table 1. Results obtained by simulating the
strategies CO-MPC and CO-IMPC both for
LVG and HVG patients. p-value (p) signifi-
cance levels are: a := p < 0.05, b := p <

0.01, c := p < 0.001

LVG HVG

A (mg/dl)
CO-MPC 117.05 (± 7.41) 134.07 (± 31.74)

CO-IMPC 115.16a (± 6.81) 127.17c (± 24.36)

SD (mg/dl)
CO-MPC 0.61 [0.43, 1.16] 0.68 [0.38, 1.07]

CO-IMPC 0.64 [0.37, 1.19] 0.61 [0.31, 1.19]

Ttt (%)
CO-MPC 100.00 [100.00, 100.00] 100.00 [13.98, 100.00]

CO-IMPC 100.00 [100.00, 100.00] 100.00 [98.73, 100.00]

Tb (%)
CO-MPC 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]

CO-IMPC 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]

defined as 4-hour time intervals starting from each meal
time. Night period starts at 23:00 and lasts eight hours.

2.6 Outcome metrics

In order to assess the performance of the individualized
IMPC, standard indices in evaluating AP clinical trials
[Maahs et al., 2016] have been considered: average glucose
(A), glucose standard deviation (SD), time in tight target
or percentage of time spent within 70-140 mg/dl (Ttt),
and time below target or percentage of time spent below
70 mg/dl (Tb).

3. SIMULATION RESULTS

The beneficial effects of the integral action are more
evident by scrutinizing the individuals of the population.
For instance, in Figure 1, the glucose profiles achieved
through CO-MPC and CO-IMPC are shown for patient
#95 with insulin sensitivity varied by a ±25 % factor.
In particular, one can observe that the glucose at the
end of the night (where the patient is supposed to be
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Fig. 2. Distribution of the differences of the glucose level
at the end of night between CO-IMPC and CO-MPC
for patients controlled via CO-MPC with glucose level
inside the range 105-135 mg/dl (LVG) and out of the
range 105-135 mg/dl (HVG) at end of the night (from
6:00 to 7:00), respectively.

postprandial period of the open-loop compensated meal.
This contributes to increase the variability associated with
the closed-loop starting conditions. Meal amounts are 50 g
CHO for the first breakfast, 60 g CHO for the second one
(both at 7:00), 60 g for the two lunches (at 12:00) and 80
g CHO for the dinner (at 18:00). Postprandial periods are

Table 1. Results obtained by simulating the
strategies CO-MPC and CO-IMPC both for
LVG and HVG patients. p-value (p) signifi-
cance levels are: a := p < 0.05, b := p <

0.01, c := p < 0.001

LVG HVG

A (mg/dl)
CO-MPC 117.05 (± 7.41) 134.07 (± 31.74)

CO-IMPC 115.16a (± 6.81) 127.17c (± 24.36)

SD (mg/dl)
CO-MPC 0.61 [0.43, 1.16] 0.68 [0.38, 1.07]

CO-IMPC 0.64 [0.37, 1.19] 0.61 [0.31, 1.19]

Ttt (%)
CO-MPC 100.00 [100.00, 100.00] 100.00 [13.98, 100.00]

CO-IMPC 100.00 [100.00, 100.00] 100.00 [98.73, 100.00]

Tb (%)
CO-MPC 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]

CO-IMPC 0.00 [0.00, 0.00] 0.00 [0.00, 0.00]

defined as 4-hour time intervals starting from each meal
time. Night period starts at 23:00 and lasts eight hours.

2.6 Outcome metrics

In order to assess the performance of the individualized
IMPC, standard indices in evaluating AP clinical trials
[Maahs et al., 2016] have been considered: average glucose
(A), glucose standard deviation (SD), time in tight target
or percentage of time spent within 70-140 mg/dl (Ttt),
and time below target or percentage of time spent below
70 mg/dl (Tb).

3. SIMULATION RESULTS

The beneficial effects of the integral action are more
evident by scrutinizing the individuals of the population.
For instance, in Figure 1, the glucose profiles achieved
through CO-MPC and CO-IMPC are shown for patient
#95 with insulin sensitivity varied by a ±25 % factor.
In particular, one can observe that the glucose at the
end of the night (where the patient is supposed to be
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Fig. 3. Blood glucose profiles achieved through CO-MPC and CO-IMPC in the simulation scenario both for LVG (top)
and HVG (bottom) patients. Glucose profiles are shown in terms of median (solid lines) surrounded by colored
regions representing the glucose 25-th and 75-th percentiles.

in a quasi-steady state condition) is evidently closer to
the target when the integral action is applied in case of
insulin sensitivity varied by a -25 %. Furthermore, it is
worth noticing that, even when the insulin sensitivity is
varied by a +25 %, the performance are not deteriorated
by the integral action, but the glucose level is similar for
both CO-MPC and CO-IMPC.

Figure 2 shows the distribution of glucose differences at
the end of the night between CO-IMPC and CO-MPC,
distinguishing among patients with glucose level inside the
range 105-135 mg/dl (LVG) and out of the range 105-135
mg/dl (HVG) at end of the night (from 6:00 to 7:00),
respectively, when CO-MPC (i.e., without integral action),
is used. Note that CO-IMPC allows to decrease the glucose
level of HVG patients (n=19) without worsening glucose
level of the remaining LVG patients (n=81).

Table 1 shows the outcome indices achieved by the indi-
vidualized MPC and IMPC based on the models identi-
fied through constrained optimization (CO-MPC and CO-
IMPC, respectively). Each index is evaluated at the end of
night (from 6:00 to 7:00). Normal data are shown as mean
(standard deviation) while non-normal data are shown as
median [25-th, 75-th percentiles]. Data normality is eval-
uated through the Lilliefors test. The clinical relevance on
the indices differences is evaluated through statistical com-
parisons performed through the paired t-test for normal
data, and through the Wilcoxon signed-rank test for non-
normal data. CO-IMPC improves the control performance
in terms of average glucose with respect to CO-MPC for
both LVG and HVG patients.

In Figure 3, the glucose profiles are illustrated in terms
of median surrounded by vertical bars representing the

glucose 25-th and 75-th percentiles for LVG (top) and
HVG (bottom) patients. As expected, CO-IMPC allows
to reach the glucose set-point more precisely, as shown by
the lower nighttime median glucose.

4. CONCLUSIONS

An APMPC strategy with integral action aimed at moving
from a CTR to a CTT glucose regulation has been pro-
posed. IMPC has shown good properties in terms of regu-
lation to the target in presence of disturbances and model
uncertainties. Moreover, it has improved the performance
achievable with an individualized MPC for some criti-
cal patients, without worsening the overall performance.
Beneficial effects of the MPC integral action are present
even during the identification phase driven by the CO
procedure, allowing to focus on the identification of the
dynamical part of the model rather than to the static gain.
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