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13 Abstract

14 Occupant behaviour is an important source of uncertainty in building energy performance simulations.  

15 This has led to the development and integration of different modelling approaches that represent the 

16 complex, stochastic nature of human-building interaction. Yet, several barriers prevent their wide use in 

17 simulation-aided building design. The procedures and practical solutions for integrating occupant 

18 behaviour models are segmented through the literature. Accordingly, this paper examines the state-of-

19 the-art in the application of occupant behaviour models. Based on the PRISMA methodology, the 

20 literature is critically analysed to: i) identify and map the barriers between theory and application; ii) 

21 propose a simulation framework establishing the steps for integrating occupant behaviour models into 

22 building performance simulations; iii) synthetise practical solutions and highlight remaining challenges 

23 towards a simulation framework adequately integrating occupant behaviour. The paper stresses the 

24 added value within the decision-making process at different building design stages. Furthermore, key 

mailto:juancamilo.mahecha@polimi.it


2

25 elements for identifying the appropriated modelling approach for each occupant behaviour aspect are 

26 presented considering factors such as type of behaviour, building type, and spatial and temporal scale. 

27 Ultimately, this critical review establishes guidelines for the integration of occupant behaviour into 

28 building design practice and defines a research pathway for bridging the gap between the OB research 

29 field and the simulation-aided building design practice. 
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32 design; Human-building interaction. 

33 Abbreviations 

34 ABM: Agent-based model; BPS: Building performance simulation; DNAS: Drivers – Needs – Actions 
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36 Energy management system; FMU: Functional mock-up interface; HVAC: Heating, ventilation, and air 

37 conditioning; IAQ: Indoor air quality; ICT: Information and communication technology; IEA: 

38 International Energy Agency; IEQ: Indoor environmental quality; NPV: Net present value; NZEB: 

39 Nearly zero-energy buildings; OB: Occupant behaviour; OBM: Occupant behaviour model; OPA: 

40 Occupant´s presence and actions; PCA: Principal component analysis; PDF: Probability density 

41 function; PI: Performance indicator; PV: Photo-voltaic; SA: Sensitivity analysis; TUS: Time use survey; 

42 UA: Uncertainty analysis.

43



3

44 Contents

45 1. Introduction .......................................................................................................................................4

46 1.1. Motivation ...................................................................................................................................4

47 1.2. Existing reviews ..........................................................................................................................5

48 1.3. This review: objectives and methodology...................................................................................6

49 2. Simulation-aided building design & OB Research field...................................................................9

50 2.1. On simulation-aided building design practice.............................................................................9

51 2.2. Progress in the OB research field ..............................................................................................12

52 2.3. The gap between OB research and OB models application ......................................................15

53 3. Integrating occupant behaviour in BPS...........................................................................................23

54 3.1. Value proposition ......................................................................................................................23

55 3.2. Identifying influential occupant behaviour ...............................................................................28

56 3.3. Choosing the most suitable OB modelling approach ................................................................30

57 3.4. Choosing and adapting the OB model.......................................................................................34

58 3.5. Implementing the OB models into the BPS ..............................................................................37

59 3.6. Performing the simulation and post-processing results.............................................................39

60 4. Discussion .......................................................................................................................................41

61 5. Conclusions .....................................................................................................................................45

62 References ...........................................................................................................................................47



4

64 1. Introduction 

65 1.1. Motivation

66 Building Performance Simulation (BPS) tools are extensively used to support the decision-

67 making process in the building design practice. Yet, a disagreement between predicted and 

68 actual building energy performance is often observed, the so-called performance gap [1]. As 

69 reviewed by Shi et al. [2] this gap could vary by a factor between 0.2 – 4, where in most cases 

70 measured energy consumption is higher. Assumptions related to occupant behaviour (OB), 

71 weather deviations, and discrepancies between design vs. as-built are acknowledged as main 

72 causes [2]. Regarding OB, its representation – comprising both occupants’ presence and actions 

73 (OPA) – in BPS in terms of static schedules and occupant-related power densities is 

74 oversimplified. Occupants are typically described as homogeneous and passive agents although 

75 they are diverse and actively interacting with the building and building systems [3].

76 To overcome this challenge, in the last four decades several methods for modelling OPA 

77 have been developed [4] aiming at capturing the stochastic nature of the behaviour, the 

78 diversity of the occupants, and the two-way interaction between the occupants and their built 

79 environment [5]. Notably, IEA-EBC Annex 66 [6] and its follow up, Annex 79 [7] have 

80 motivated an international effort for advancing on the OB research. As a result, over 310 OPA 

81 models have been produced to better describe actions such as window, shading, and lighting 

82 operation, thermostat adjustment, appliance use, and clothing adjustment [4].

83 Despite these efforts, advanced OPA modelling approaches are still mainly applied by 

84 researchers and developers as several barriers prevent their widespread application [8]. Indeed, 

85 an international survey on current OB modelling approaches revealed that most interviewed 
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86 practitioners consider OB the most important uncertainty source in BPS. However, BPS 

87 typically relies on deterministic schedules or rule-based models [9]. 

88 1.2. Existing reviews

89 Several review articles assessed crucial aspects of the OB modelling research field. For 

90 instance, Berger et al. [10] examined studies claiming OB as mainly responsible of the 

91 performance gap and assessed their evidence. Harputlugil et al. [11] focused on describing 

92 different categories of occupants, understanding occupant´s attributes, and exploring the 

93 interaction between humans and buildings. Similarly, Wu et al. [12] presented formal 

94 definitions for OB, drivers motivating OB, and the impact of OB on building energy analysis. 

95 They also started exploring BPS tools representing common OB. Stazi et al. [13] deepened the 

96 understanding of OB drivers and the influence of environmental and time-related factors. They 

97 reviewed how this information is translated into OB model variables. Different studies focused 

98 on the formalisms and application of OB modelling approaches [14–18], describing modelling 

99 requirements for different applications and related modelling approaches identifying their 

100 strengths and disadvantages, or  giving a broad view of the field and the OB impact on energy-

101 saving potential. Osman et al. [19] focused on the exploitation of Time Use Survey (TUS) data 

102 for developing OB models and their application on building energy use. Furthermore, while 

103 some researchers focused on OB modelling applied to specific contexts such as residential 

104 buildings [20], offices [3], and urban scale [21,22], Carlucci et al. [4] performed a systematic 

105 review on the modelling approaches and models developed for a wide range of building types, 

106 climates, and occupant actions. 

107 Regarding the integration and application of OB models in the building design process, Yu 

108 et al. [23] focused on the main criteria for comparing and selecting modelling approaches, as 

109 well as improving the performance of OB models. Hong et al. [1] reviewed integration 
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110 approaches of OB models into BPS, their advantages and shortcomings, how to choose them 

111 depending on the OB model, and related commercial software capabilities. Finally, Azar et al. 

112 [5] investigated simulation-aided occupant-centric design. They established and highlighted 

113 fundamental concepts and definitions for occupant-centric design, supporting mechanisms, and 

114 design methodologies.

115 Despite these efforts, most of the articles are focused on the OB research field and few on 

116 its application within simulation-aided building design. The reasons, challenges, and solutions 

117 for applying OB models are segmented across the literature. 

118 1.3. This review: objectives and methodology

119 This review aims at establishing a research pathway for bridging the gap between the OB 

120 research field and its application in simulation-aided building design. To the knowledge of the 

121 authors, this is the first review discussing in detail proposed and practical solutions to overcome 

122 the barriers preventing extensive use of advanced OB modelling approaches. This information 

123 is segmented throughout the literature without a clear proposition of the options and steps users 

124 need to address, from problem definition to informing the design decision, when implementing 

125 advanced OB modelling approaches. To this end, this critical review aims at answering: 

126 i. What is the added value of considering more advanced OB models in the simulation-

127 aided building design process?

128 ii. How to choose the most appropriate OB modelling approach and model depending 

129 on the design purpose?

130 iii. How can advanced OB models be integrated into BPS accessible and useful for 

131 supporting the decision-making process? 
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132 To clarify, in this paper and as stated by Becker and Parker [24] “a simulation enacts, or 

133 implements, or instantiates, a model. A model is a description of some system that is to be 

134 simulated, and that model is often a mathematical one. A system contains objects of some sort 

135 that interact with each other. A model describes the system in such a way that it can be 

136 understood by anyone who can read the description and it describes a system at a particular 

137 level of abstraction to be used”.  

138 This critical review is divided into two parts. In the first part, a literature survey was 

139 performed to draw a general view of the simulation-aided building design field and OB 

140 research field, thus identifying the barriers. Exploring key words such as occupant behaviour, 

141 building design, energy, performance, practice, application, and industry, 18 review articles 

142 published after 2015 focusing on the OB field and 12 articles focusing on simulation-aided 

143 building design processes were identified and included in Section 2.

144 As for the second part, a more exhaustive literature survey was performed to: i) identify 

145 novel and practical solutions to the challenges BPS users need to address for applying advanced 

146 OB representations within the building design process; ii) identify most urgent matters that 

147 would transform the current complex steps faced by an end-user into a streamlined simulation 

148 process seamlessly integrating OB (see Section 3). Using the search engine Scopus, 

149 combination of the keywords occupant, behavio*, building, model*, simulation, energy, and 

150 performance, and based on the methodology PRISMA (Preferred Reporting Items for 

151 Systematic Reviews and Meta-Analyses) [25], four steps were performed, namely 

152 identification, screening, eligibility, and inclusion of studies (see Figure 1). 
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153 The asterisk was used to simultaneously capture word variants (singular and plural as well 

154 as differences between British and American English) such as in behavio* for including 

155 ‘behaviour’ and ‘behavior’. Besides, additional articles known to the authors, and articles citing 

156 or being cited by the articles were manually added to the collection.

157 The selected articles included in this review go beyond the proposition of models but 

158 compare different modelling approaches, apply models from the literature in different contexts, 

159 or present clear model evaluation, validation, or integration methodologies. Special attention 

160 was given to studies demonstrating the application of advanced OPA models in simulation-

161 aided design practice. 

162 Accordingly, the rest of the article is structured as follows: Section 2 presents a general view 

163 of the simulation-aided building design field, the OB research field and maps the research gap 

Figure 1. PRISMA workflow - State-of-the-art on the application of OB models
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164 between them; Section 3 presents solutions for bridging this gap; Section 4 synthetises the 

165 findings and highlights urgent matters requiring further research; Section 5 gives the main 

166 conclusions.

167 2. Simulation-aided building design & OB Research field

168 2.1. On simulation-aided building design practice

169 BPS is the use of computational models to represent physical characteristics, operation and 

170 control strategies of a building and its energy systems [26]. It is adopted by building design 

171 practitioners i.e. architects, energy modelers, engineers, etc. [27] to reduce uncertainty in the 

172 performance of the building and thus assist the building design decision-making process [26]. 

173 Its application covers a range of purposes such as performing load calculations to select and 

174 size HVAC systems; demonstrating code compliance; evaluating design scenarios [28]. To 

175 better understand the different simulation requirements, input and output data, and simulation 

176 aims, Table 1 (adapted from [29]) presents different building design stages and possible 

177 simulation scenarios. This information is necessary to understand the current simulation-aided 

178 building design practice and hence the needs of the practitioners.   

179 Different disciplines play a role in the building design process (e.g., architects, energy 

180 modelers, HVAC engineers). Practitioners can work under different collaborative approaches, 

181 for example, the engineer can assist the architect, the practitioner can be both engineer and 

182 architect, or they can be partners [30]. As a result, there is a synergy between practitioners with 

183 different skills, knowledge, and expertise levels [29], where not necessarily all of them are 

184 familiar with the resources and limitations of BPS tools and how to interpret their outputs [31]. 

185 Furthermore, modelling requirements are different depending on the design stage and type of 

186 simulation to be performed [32]. Thus, BPS tools need to produce initial results from a rough 
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187 building representation and limited input data at early design phases as well as allow for 

188 detailing building components in more advanced design phases [30]. 

189

190 Table 1. Aim, inputs and outputs of BPS at different design stages. Adapted from [29]

Conceptual Design Preliminary Design Detailed Design Code Compliance 

G
en

er
al

 a
im

Examine alternative 
strategies and its impact 
on:
• Achieving the required 
indoor environment
• Investment and life-
cycle cost
• Energy consumption
• Space requirements for 
HVAC systems

Specify technical 
solutions that fulfil the 
indoor air quality and 
cost targets of the 
project:
• Definition of main 
HVAC zones
• HVAC central plant
Specific shading systems 

Definition of 
technical details and 
detailed building 
design and its 
systems.

Demonstrating the 
building design is 
compliant with 
requirements defined 
by energy codes or 
green building 
certifications

Pu
rp

os
e 

of
 si

m
ul

at
io

ns

• Impact of building 
orientation and envelope 
configuration on energy 
economy and life-cycle;
• Evaluation of 
architectural concepts 
involving alternative 
methods of energy 
savings;
• Day lighting and 
electrical lighting;
• Air flows in open areas 
of office buildings;
• Natural ventilation air 
flows.

• Computation of the 
cooling requirements of 
systems and rooms;
• Comparison of shading 
alternatives
• Comparison of HVAC 
system alternatives; 
• Analysis of the zoning 
of HVAC systems; 
• Sizing of the central 
HVAC plant; 
• Daylighting and 
electrical lighting design; 
• Air infiltration; 
• Achievement of 
satisfactory indoor 
climate.

• Detailed sizing of 
air handling and 
cooling equipment;
• Detailed 
dimensioning of 
piping and ductwork;
• Acoustic analysis of 
ductwork;
• Calibration and 
balancing of the 
piping and ductwork;
• Simulation of 
control strategies;
• Sizing of special 
systems;
• Special evaluation 
of comfort.

Calculation of key 
performance 
indicators:
• Energy related;
• Comfort related.

191

192 Regarding OB, its related uncertainty is recognised as a major challenge within the building 

193 design field. Practitioners may tend to base their assumptions on building energy codes and 

194 standards which rely on outdated and simple OB representations not suitable for every case 

195 [26]. As observed by O’Brien et al. [9], despite practitioners often acknowledge this problem, 

196 they may not implement advanced OB modelling approaches due to barriers such as time 

197 constraints, the substantial effort required, and lack of understanding and education on the 

198 topic. As a result, they favour increasing OB modelling requirements by standards together 
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199 with modelling capabilities in BPS tools. Consequently, building designers need data, models, 

200 tools, case studies and standards that support their practice including the human dimensions of 

201 energy use [33]. 

202 Finally, it has been stressed that more attention should be paid to BPS outputs. Practitioners 

203 prefer clear, concise, readable, and well documented information presented in a visual format 

204 [29]. This is necessary to promote an effective communication with the different groups of 

205 stakeholders involved in the building design decision-making process [31].

206 Summarizing, to promote the integration of OB modelling in the simulation-aided building 

207 design field, practitioners need the proper motivation, knowledge, and tools. In this view, it is 

208 needed to:

209 i. Understand the added value of including OB models in the design process

210 ii. Have policies, regulations, and building standards that promote and guide in the use 

211 of OB models within the building design process

212 iii. Be educated and guided on when and how to use the OB models considering different 

213 simulation purposes and design stages (Table 1)

214 iv. Develop BPS tools that facilitate the integration and application of OB models whose 

215 outputs effectively communicate the results.

216 2.2. Progress in the OB research field 

217 The OB research field can be described using the occupant-building interaction energy 

218 behaviour loop (see Figure 2) consisting of the three, possibly iterated, steps investigate, 

219 understand, improve [17]. This schema describes a first stage of investigation where data 

220 collection techniques are used to gather information about the occupants and how they interact 

221 with the building as defined by their presence and actions. The latter include on the one hand 
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222 adaptive behaviours such as window, light, blind and thermostat operation, intended to adapt 

223 the indoor environment, and on the other hand non-adaptive actions such as appliances use, 

224 which are not driven by physical discomfort but by contextual factors (non-physical factors 

225 affecting the behaviour, habits and attitudes of the occupants) [3]. Different studies have 

226 focused on sensing technologies [15,34,35], highlighting the link between energy consumption 

227 data and occupancy monitoring as opportunity for indirectly identifying behaviours such as 

228 appliance use [34]; proposing a categorization framework for OPA-sensing technologies [35]; 

229 emphasising the importance of sensor selection and placement arguing that not only 

230 environmental variables (e.g., CO2 concentration and temperature) should be considered but 

231 also factors such as room orientation to exclude interferences [15]. Likewise, in-situ monitoring 

232 methods such as sensor-based (i.e., to detect occupant presence, measure environmental 

233 variables, and capture occupant actions on building systems), model-based (e.g., estimating 

234 occupant presence from CO2 measurements), and surveys have been explored. As a result, the 

235 significance of conducting a monitoring campaign and a documentation process of meaningful 

236 information has been pointed out [36]. Further, surveys are recognised to have potential of 

Figure 2. Occupant-building interaction energy behaviour loop. Adapted from [17]
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237 revealing the role of socio-economic, cultural and psychological factors in the human-building 

238 interaction [37,38]. Finally, developments in immersive virtual reality [39] and the evolution 

239 of the Internet of Things (IoT) and Information and Communication Technology (ICT) [33] 

240 have made available an increasing amount of data to understand the energy-related behaviour 

241 of occupants. 

242 In the understanding stage, the data collected is analysed and modelled to identify influential 

243 factors motivating OB and quantifying its impact on building performance [17]. Here, an 

244 important milestone was the establishment of the DNAS (drivers – needs – actions – systems) 

245 ontology to describe energy-related OB where: the drivers identify the motivation behind a 

246 behaviour; the needs specify what occupants look to fulfil; actions are carried out by the 

247 occupants; the building systems are acted upon by the occupants [40]. Recently, this ontology 

248 has been extended to include socio-economic characteristics, geographical location, subjective 

249 values, occupant activities, and collective and individual adaptive actions [41]. Accordingly, 

250 several reviews focused on the drivers behind occupants’ actions exploring: fan use in different 

251 types of buildings [42]; light-switching behaviour in office buildings [43]; how climatic factors, 

252 social and personal attributes, architecture and interior design features, energy regulations and 

253 economic parameters affect the energy-related OB [12]. As a result, complex interactions have 

254 been noticed requiring the combination of multidisciplinary approaches, cognitive behavioural 

255 methods, and cognitive complex theory to provide a better understanding. This is because OB 

256 is influenced by: environmental, time-related, contextual, physiological, psychological, social, 

257 and random factors (i.e., uncertain, not quantifiable factors) [13]. 

258 The increasing knowledge on drivers of energy-related OB has led to the production of a 

259 myriad of modelling approaches and models thus, a large body of literature has focused on 

260 classifying them and identifying their limitations and opportunities. Based on the research goal 

261 OB models are classified as: agent-based modelling where agents are simulated to assess the 
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262 interaction with each other and the external environment; statistical analysis performed to 

263 discover a numerical relationship between OB and for example indoor/outdoor environmental 

264 factors; data mining approaches used to learn behavioural patterns from information such as 

265 appliance energy consumption; stochastic process modelling developed to estimate occupancy 

266 state (e.g., whether an occupant is present or not) and related energy consumption [15]. Further, 

267 depending on the action modelled, they are differentiated between occupancy, adaptive, and 

268 non-adaptive models [3]. OB models can be also classified depending on their level of 

269 complexity (listed from the lowest to the highest level): fixed schedules, data-based (non-

270 probabilistic) models, stochastic (probabilistic) models, and agent-based models (ABM) [8]. 

271 Ultimately, more than 300 models have been developed and included in dynamic open-access 

272 database [4].

273 In the improving stage (see Figure 2), simulations are performed to quantify the impact of 

274 the occupants on energy-saving strategies, low energy building, or robust building design [17]. 

275 In this context, OB models can be integrated to the BPS program using a direct input or control 

276 method, a built-in OB model, a user function or custom code, or a co-simulation scheme [1] 

277 (see Section 3.5 for details). On a higher-level perspective, the simulation-aided occupant-

278 centric building design process has been explored [5]. In this context, occupant-centric refers 

279 to considering the occupants and their well-being as the main priority throughout the building 

280 life cycle. Accordingly, occupant-centric metrics of building performance are defined covering 

281 aspects such as thermal comfort, indoor air quality (IAQ), well-being (i.e., physical, mental, 

282 emotional, and social health of a person), space planning, and energy use [5]. Finally, design 

283 strategies such as parametric design, optimization, and probabilistic design have been explored 

284 towards promoting an evolution from simple parametric design – where best/worst scenarios 

285 are employed – to probabilistic design in which stochastic models can quantify the likelihood 

286 of extreme results [5]. 
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287 2.3. The gap between OB research and OB models application 

288 This section presents the main research gaps reported in the literature that need to be 

289 addressed towards promoting the integration of OB models in the simulation-aided building 

290 design process. To this end, three knowledge domains are defined: the fundamental knowledge 

291 domain i.e., fundamental knowledge required for completely understanding the different 

292 aspects of the human-building interaction; the integrated knowledge domain i.e., the 

293 knowledge require for integrating the models within the design process; supporting tools i.e., 

294 the OB capabilities of BPS tools and post-processing modules. Table 2 presents the research 

295 gaps, their corresponding knowledge domain and related BPS user’s need. Some gaps are not 

296 directly associated with a user’s need, nevertheless they are presented in Table 2 since they 

297 need to be addressed to resolve other research gaps. 

298 Starting in the fundamental knowledge domain of the three components of the human-

299 building interaction research loop (Figure 2) an urgent need for standardized protocols is 

300 required. Notably, in the data collection area monitoring campaigns require standardized 

301 procedures for their design, execution, and documentation. This would allow to properly 

302 compare the findings from different studies. As a result, a deeper understanding of the energy, 

303 comfort, and wellbeing-related OB would be achieved, assessing the influence of contextual 

304 factors on the behaviour. Further, more data and from other domains than the ones widely
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305 Table 2. Research gaps reported in the literature

Ref. Research Gap Towards Knowledge 
Domain

Practitioners 
need

[15] The selection and placement of sensors is not well researched - Understanding the 
impact of sensor distribution on model development

[20] Encouraging mixed approaches i.e., sensor based and survey data collection 
campaigns to reduce uncertainty

Improving the quality of data 
collection processes and thus the 
quality of the developed OB 
models.

Reducing uncertainty. 

Fundamental -

[11] Multidisciplinary study of OB: Including not only environmental factors but 
demographic, psychological, and social factors

Understanding all the factors 
influencing OB. Fundamental -

[5] Need for designing and collecting large-scale measured data of occupants

[14] Lack of common occupant database for various applications

[17] Collection of adequate data using standard protocol and regulation of privacy issues

[4] Lack of standard data collection methodologies - Ontology

[11] Lack of a standard for data collection and lack of protocols for data analysis make it 
difficult to compare outcomes

[13] Lack of standardized methods for monitoring OB

Allowing comparative analysis 
between studies performed by 
different parties.

Possibility to understand 
influential factors and 
differences between contexts.

Ensuring quality of data used to 
understand and model OB.

Fundamental -

306

307

308

309
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310 Table 2. Research gaps reported in the literature (Cont.)

Ref. Research Gap Towards Knowledge 
Domain

Practitioners 
need

[4] OB research in more contexts: Climates zones, building types, OB aspects, countries

[34] Understanding influence of building size on occupants’ energy behaviour

[14] Lack of new models that meet the specific needs for the application

Allowing the understanding and 
modelling of OB for meeting 
specific needs in different 
contexts.

Fundamental Available 
models

[14] Challenge of training and validation of the developed model

[4] Lack of standard model testing framework

[4] Lack of evaluation and validation protocols of OB Models

[34] Simulation research is recommended to test and verify the assumptions used to 
develop the models

[17] Lack of standardization of OB model development

[17] Lack of verification of behaviour models

[8] Lack of model validation

[13] Lack of standardized methods for modelling OB and validating OB models

[15] Improving validation of OB models

Understanding accuracy and 
performance of OB models. Fundamental

Models’ 
strengths and 

limitations

311

312

313
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314 Table 2. Research gaps reported in the literature (Cont.)

Ref. Research Gap Towards Knowledge 
Domain

Practitioners 
need

[4] Lack of methodologies for transferring OB models between different contexts

[44] The available studies on the transferability of different machine models for 
occupancy and window-opening behaviours is limited by now.

[8] Models are developed for specific locations, which might undermine their 
generalizability to other locations

[5] Understanding application and limitation of models: Generalizability

[14] Understanding scalability of models: a simple occupancy model may not work for 
the same building type.

[34] Testing and validating the scalability of future models for different building types, 
different occupant social networks, and within multiple buildings

[20] Lack of understanding of models’ scalability: Occupant behaviour models cannot be 
extrapolated due to the direct relation with monitoring data

[17] Evaluation of applicability of behaviour model 

Understanding specific 
applicability contexts of OB 
models.

Allowing transferring models 
from one context to another.

Integrated
Models’ 

application / 
Guidelines

[8] Difficulty for choosing the most suitable model for a specific case

[8] Models are rarely developed as a simulation framework i.e., without guidelines for 
future use

[15] Lack of guidelines for choosing OB models depending on the building type

Guiding the selection of the most 
suitable OB model in each 
specific case

Integrated Guidelines

315

316
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317 Table 2. Research gaps reported in the literature (Cont.)

Ref. Research Gap Towards Knowledge 
Domain

Practitioners 
need

[4] Combined OB modelling i.e., modelling multiple aspects of OB

[14] Lack of connections among different models

[13] Lack of understanding for defining sequence of behaviours and hierarchies of 
actions

Allowing the appropriate 
simultaneous modelling of 
different OB aspects 

Integrated Guidelines

[5] Improving and updating occupant behaviour modelling requirements in building 
codes, standards, and certifications

Motivating and guiding the 
integration of OB models into 
the simulation-aided building 
design practice

Fundamental Motivation
Guidelines

[5] Occupant-centric metrics: Imbalance on the research, normalization by building 
features instead of occupants’ aspects, guidelines for their use

Developing tools for improving 
the building design decision-
making process

Fundamental
Guidelines
Supporting 

tools

[5] Demonstration of occupant-centric design using advance modelling approaches and 
techniques in actual buildings

[45]
it is necessary that the academic researchers and building practitioners community 
become in- formed about the weaknesses and strengths of the various modelling 
methods and how the developed models perform in real-world situations.

Demonstrating the added-value 
of implementing OB models in 
the building design practice.
Scaling the OB research progress 
into the building design practice

Fundamental Guidelines

318

319

320
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321 Table 2. Research gaps reported in the literature (Cont.)

Ref. Research Gap Towards Knowledge 
Domain

Practitioners 
need

[13] Lack of standardized methods for simulating OB

[34] Guidelines for integration of OB models into current BPS tools

[17] Lack of support for co-simulation

[5] Improving interoperability of OB models and BPS

[17] Inflexibility of behaviour software modules

[15] A knowledge gap exists between the integration of occupant behaviour models and 
current energy simulation software.

[8] Lack of integration of OB models in BPS software

Developing supporting BPS 
tools that integrate OB models 
thus, reducing the time and effort 
required by the BPS users

Supporting 
tools

BPS Software 
capabilities

[5] Communication strategies of BPS results using advance OB models
Post-processing BPS results to 
better inform the decision-
making process

Supporting 
tools

BPS Software 
capabilities
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323 covered in the literature (i.e., geographically from developed countries in the northern 

324 hemisphere; according to the building use, residential and commercial buildings; regarding 

325 occupant actions, window, lighting, shading, HVAC systems operation) [4], is required to 

326 allow developing models for missing contexts, testing the scalability of developed models and 

327 defining a hierarchy of actions. The last aspect is fundamental for the integration of OB models 

328 into the design practice [17] (see Section 3.5).

329 Developments in the data collection field go in parallel with the evolution of the modelling 

330 front where it is urgent to establish standardized guidelines and systematic procedures for 

331 developing new models and documenting them [13,45]. Similarly, standardized and 

332 methodical model evaluation and validation protocols are required [4,14,17,34,45]. Most of the 

333 models are developed splitting a single dataset into two parts for model development (training) 

334 and internal validation, respectively, and are therefore presented without proper external 

335 validation (including data from different contexts). Additionally, developed models must be 

336 tested in different building types, locations, seasons, etc. All in all, the robustness, scalability 

337 and transferability of OB models is not well understood [5,13,14,20,34].

338 In the simulation field three main aspects need to be addressed [5,44]. First, it is essential to 

339 develop occupant-centric metrics with corresponding guidelines for their implementation. 

340 Currently, the scope of the metrics used is limited to energy and comfort aspects, which are 

341 normalised by building features instead of occupant-related factors. Second, the development 

342 and demonstration of design methodologies using advanced OB modelling approaches need 

343 further investigation. Third, the advances in the OB field need to be demonstrated in real 

344 scenarios and building design applications. Filling these gaps will allow designing buildings 

345 that are robust to OB while reducing the energy consumption and promoting occupants’ 

346 wellbeing.                
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347 Regarding the integrated knowledge, several aspects emerge. First, guidelines for model 

348 integration need to be formulated together with the model documentation [13,15,34,45]. The 

349 lack of such guidelines results in researchers using different integration strategies, presenting 

350 the models without a simulation framework, and increasing the difficulty of making models 

351 interchangeable. Second, the most suitable modelling approach depends on the simulation aim 

352 and context, thus requiring the definition of qualitative and quantitative selection criteria [5,8]. 

353 Equally important, new OB modules need to be developed to include advanced modelling 

354 approaches in current BPS software [33].

355 Finally, based on the information presented in this section, a conceptual map of the main 

356 issues that need to be addressed for integrating OB modelling into the simulation-aided 

357 building design practice is presented in Figure 3.   

358    

Figure 3. Conceptual map - OB research gap 
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359 3. Integrating occupant behaviour in BPS

360 Following a logical workflow with the steps a user would need to address with the 

361 knowledge and tools available today, the literature is analysed to identify the propositions for 

362 facing each of the steps (Sections 3.2 - 3.6) and to draw a research pathway towards a full 

363 integration of advanced OB modelling approaches into the simulation-aided building design 

364 process. Yet, the discussion starts in Section 3.1 highlighting the added value of including OB 

365 models and supporting design practices.

366 3.1. Value proposition

367 It is necessary to explicitly review the advantages of OB models since the different 

368 stakeholders related to the building design practice are often not well informed about the added-

369 value of this approach, the contractors are typically not adding resources, neither budget nor 

370 time, to the projects for this, and codes, standards, and green certifications do not yet require 

371 or guide the application of advance OB models [9,46–48].   

372 Current standard schedules and nominal densities conventionally used to represent OB 

373 oversimplify human-building interaction [4]. As a result, buildings do not achieve the desired 

374 performance; building systems are over- or undersized; payback periods are wrongly estimated 

375 and investment decisions misled [32,49]. With Advanced OB modelling techniques modellers 

376 would have the ability to explore different occupant-related scenarios, assess building 

377 resilience, and quantify the potential for adaptive behaviour to achieve comfort in extreme 

378 situations [46]. A summary of studies highlighting the added value of using OB models in the 

379 building design practice is presented in Table 3.

380
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381 Table 3. Summary of studies showing added-value from OB models

Ref. Simulation aim Design 
stage OB Models Highlights

[32] Best performing 
shading strategy

Preliminary 
/ Detailed 

Design

Dynamic and 
stochastic models for 
lighting and blind 
operation

Without the OB models suboptimal 
strategies would be chosen. Dynamic models 
captured the influence of the design 
alternatives on OB. Therefore, the design 
decision-making process was better 
informed.

[50]

Optimize façade 
design and 
fenestration 
geometry 
considering 
energy use

Conceptual 
design

Stochastic models 
for: Occupancy, 
lighting and 
equipment use, 
thermostat 
adjustment and 
blinds operation

Building’s design alternatives could lead to 
changes in the indoor environment. 
Occupants are encouraged to use building 
components (e.g., blinds) towards reducing 
energy use. Optimal configuration calculated 
using dynamic OB (two-way human 
building interaction).

[51] Evaluating 
thermal comfort

Conceptual 
design

Stochastic models 
for window 
operation

Stochastic models can in principle better 
capture the dynamic nature of occupants’ 
actions, the study showed that a standard 
model can over-predict comfort.

[52]

Optimize façade 
design and 
fenestration 
geometry for 
thermal comfort

Conceptual 
design

Stochastic models 
for window 
operation

The deterministic model likely overpredicted 
thermal comfort and underestimated the 
need for cooling measures. The stochastic 
approach seemed to better model the 
dynamic nature of occupants’ actions and 
optimal solutions resulted in more shading 
elements.

[53]

Identifying the 
most influential 
aspects of energy 
needs

Conceptual 
design

Stochastic models 
for presence; 
windows, shading, 
and lighting use; 
heating set-point 
temperature 
adjustment.

Parameters identify for further optimisation: 
for example, intensive opening of windows 
and the temperature set-point had a more 
significant effect on heating needs than the 
orientation or the performance of the 
building.

[54]

Defining HVAC 
systems and 
evaluating 
performance of 
ground source 
heat pumps

Detailed 
design

Probabilistic model 
for Air conditioning 
operation

This study investigated thermal imbalance, 
building load, and heat pump performance. 
Information that can be used to inform 
design of HVAC systems and heat pumps 
considering the occupant behaviour, in this 
case the operation of the air conditioning 
units.

[55] Sizing HVAC 
systems

Detailed 
design

Stochastic model for 
generating lighting, 
plug-load, and 
occupancy profiles

The standard schedules used in practice are 
reason- able, though conservative compared 
to measured values for predicting peak 
internal gains, relative to stochastic synthetic 
schedules.

[56]

Identifying 
optimal 
occupant’s 
seating position 
and orientation 
considering 
visual comfort

Interior 
design

Blinds operation 
model

Performance prediction based on simulation 
using simple assumptions may deviate from 
actual performance and lead to a wrong 
decision in selecting appropriate furniture 
layout.
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382 Table 3. Summary of studies showing added-value from OB models (Cont.)

Ref. Simulation aim Design 
stage OB Models Highlights

[57]

Assessment of 
Robustness of 
energy 
performance of 
Zero-Net-Energy 
(ZNE) homes

ZNE Design

Occupant´s diversity 
represented by OB 
parameters defined 
for different energy 
use attitudes: 
austerity, standard, 
and wasteful

Diversity in occupant behaviour styles can 
be more disadvantageous for ZNE 
performance than climate change. In this 
case wasteful style occupants can double 
energy consumption compared with the 
standard occupants. OB plays an essential 
role when designing net-zero buildings.

[58]

Assessment of 
the robustness of 
building's energy 
and comfort 
performance 
against OB 

Code 
compliance 
& Building 
certifications

Stochastic model for 
generating schedules 
for: occupancy, hot 
water and electricity 
consumption, 
heating set point 
temperature and 
openings of windows

Poor robustness identified for heating 
demand, total energy use, and hours of 
discomfort
The heating set point temperature, electricity 
use, and window openings behaviour are the 
main occupant parameters impacting thermal 
comfort

[59]

Assessment of 
building's energy 
and comfort 
performance

Code 
compliance 
& Building 
certifications

Stochastic models 
for occupancy, 
lighting, and blind 
use

The results show the deviation between the 
conventional and advanced OB modelling 
approaches in the predicted energy and 
daylight performance. The stochastic OB 
modelling approach – by capturing the 
influence of design alterations over the 
occupant behaviour and vice versa – can 
realistically predict energy and daylight 
performance.

[60]

Assessment of 
energy, economic 
and emissions 
savings from 
renovation 
strategy based on 
thermal insulation 
and windows 
upgrades

Retrofitting

Occupant´s diversity 
represented by OB 
parameters defined 
for different energy 
use attitudes: 
standard and 
wasteful

The energy retrofit is economically and 
energetically feasible for a standard building 
occupation, but sometimes wrong habits can 
reduce the convenience, if energy-intensive 
behaviours occur

[61]

Assessment of 
energy and 
economic savings 
from renovation 
strategy based on 
thermal insulation

Retrofitting
Stochastic model for 
air conditioning 
operation

Results show there is a significant 
overestimation of cooling energy saving by 
standard-based AC setting. This results in 
overestimating the net present value. The 
study encourages using stochastic models 
for better informing retrofitting strategies 

[49]

Estimation of 
electricity 
demand and 
feasibility of on-
site generation 
using PV panels

Retrofitting

Electricity and gas 
demand profiles 
estimated based on 
occupancy patterns 
for household type: 
single senior, single 
adult, seniors couple, 
adults couple, three 
adults, single parent 
house- hold and 
nuclear family. 

Renovation solution that considers the 
influence of occupants in the building 
performance with the objective of 
decreasing uncertainties related to energy 
savings and return of investments. 
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383 As shown in Table 3, the benefits of OB models pertain different stages of the building life 

384 cycle. In early architectural design or conceptual design stages, it has been shown [50–52] 

385 that advanced OB modelling can help decide over factors such as aspect ratio and orientation 

386 of the building, roof type, glazing fraction, position of the windows, shading type and 

387 configuration towards reducing energy consumption, enhancing comfort, or promoting the 

388 benefits of natural ventilation. In other words, dynamic OB models allow the designer to assess 

389 how design alternatives influence adaptive behaviours to maximise comfort while reducing 

390 energy consumption. Concerning a more advanced design stage, mathematical and statistical 

391 techniques (e.g., factorial design) can be used together with advanced OB modelling 

392 approaches to find the most relevant parameters affecting specific performance indicators (PIs), 

393 e.g., heating and cooling demand. By accounting for the occupant-related uncertainty and 

394 describing PIs with probability distributions or expected ranges, it is possible to achieve more 

395 robust (i.e., the variability of the PI against OB is reduced) and resilient designs [32,53]. 

396 Concerning building systems, OB should be considered in their selection and sizing process. 

397 Occupants’ preferences in terms of the indoor environment, occupancy, appliance use levels, 

398 and the control flexibility the occupants have with each system influence system performance. 

399 An advanced OB representation gives designers the opportunity of accounting for the 

400 occupants’ diversity and their interaction with the building systems. Modellers are better 

401 informed to find more comprehensive and optimised solutions within an expected range of OB 

402 than if they use a single, averaged or conservative deterministic schedule [54,55]. 

403 The evaluation of IEQ is another important front that can profit from advanced OB modelling 

404 approaches. For example, with stochastic models capturing the occupant interaction with 

405 shading systems, daylight levels and glare can be realistically predicted for proper visual 

406 comfort assessment. This information can be used to inform interior designers regarding the 



27

407 best desk layout and seated positions [56]. By including realistic lighting and blinds use in the 

408 design of lighting and shading systems, appropriate design decisions can be taken improving 

409 visual comfort [62]. Knowing the occupants’ diverse needs and preferences regarding indoor 

410 air quality and thermal comfort, the most suitable ventilation strategy can be determined [63]. 

411 Energy-related OB has a high relative impact on the energy performance of nearly zero-

412 energy buildings (NZEBs) [49,57], plus-energy buildings etc., making the use of advanced OB 

413 models particularly important in this context. To ensure that the designs achieve desired 

414 performance targets and that they are code-compliant, the uncertainty added by the occupants 

415 needs to be minimised and the design robustness to the OB maximised [58]. To this end, 

416 multiple OB patterns can be used to generate PI probability distributions, and stochastic models 

417 can capture the influence of design alternatives over the occupants and vice versa, hence, the 

418 building performance and its potential variation can be realistically predicted [57–59]. 

419 Furthermore, the electricity demand can be better estimated so that on-site electricity 

420 generation (i.e. using PV panels) can be properly designed [49]. Finally, energy conservation 

421 measures (ECM) and retrofit strategies can be better designed and evaluated using advanced 

422 OB modelling approaches. It has been demonstrated that energy savings associated to ECMs 

423 could be significantly overestimated using traditional modelling approaches. This in turn 

424 misleads the economic assessment, i.e., Net Present Value (NPV) is overestimated [60,61,64] 

425 and the ECM prioritization process wrongly executed [65]. 

426 To summarize, there are three main characteristics of the OB models that add value to the 

427 building design process over standard representations (see Table 4).    
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428 Table 4. Potential of OB models

429 3.2. Identifying influential occupant behaviour

430 The BPS process integrates aspects of building design, weather and environmental 

431 information, and OB to estimate building performance. The complex and dynamic interaction 

432 between these elements and the non-linear nature of involved physical phenomena make the 

433 BPS process challenging [66]. Additional complexity from advanced OB models can enhance 

434 the accuracy and robustness of BPS [4], yet a balance between accuracy and complexity is 

435 required to avoid the so-called curse of dimensionality, i.e., introducing too many parameters 

Two-way human-
building interaction

Assessing how 
design alternatives 
influence adaptive 
behaviours to 
maximise comfort 
while reducing 
energy consumption

Uncertainty in PI

Estimating what is 
the range or 
expected value of 
the building 
performance 
considering 
occupants diversity - 
e.g., Probability 
distribution of PI

Robustness against OB

Assessing what is 
the impact of the OB 
on the performance 
of different design 
alternatives



29

436 with respect to available data. This is an issue that leads to further difficulty when identifying 

437 the most significant parameters within the model, so that calibrating or using BPS models 

438 become demanding tasks [8,66]. Consequently, it is essential to identify the elements of OB to 

439 which the BPS process is more sensitive, so that each element can be determined with the 

440 appropriate level of accuracy. Nonetheless, it has been demonstrated that the impact of the OB 

441 is case- and context-specific and that defining general guidelines is impossible [32] thus, 

442 identifying the most relevant aspects of the OB needs to be an integral step of the BPS 

443 procedure.

444 Sensitivity analysis (SA) and uncertainty analysis (UA) are used to reduce model complexity 

445 associated with BPS [23]: simplifying a model by screening parameters; performing robustness 

446 analysis; validating a model; and evaluating the model’s sensitivity to errors [67]. SA is a 

447 method that quantifies how the uncertainty of the inputs is propagated to the uncertainty of the 

448 output. It focuses on ranking the input parameters regarding their contribution to the output 

449 uncertainty. On the other hand, UA analyses the response of the simulation output considering, 

450 along with input variations, the lack of knowledge and errors of the model. Together, they 

451 quantify uncertainties in the inputs and outputs of the BPS process [23,66]. In this view, 

452 O´Neill et al. [66] aimed at establishing systematic guidelines for the application of SA 

453 discussing: input categories, such as urban-level and building-level design parameters, 

454 building envelope characteristics, ventilation and infiltration parameters, HVAC and other 

455 mechanical systems, OB aspects, economic factors, weather information, control strategies; 

456 output categories, namely building load and energy consumption, occupant thermal and visual 

457 comfort, indoor environmental factors, outdoor environmental factors, economic factors, 

458 equipment performance; probability density functions (PDFs) associated to uncertainties; 

459 sampling methods to propagate the uncertainty of the inputs through the whole model; SA 
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460 methodologies, such as screening, local, and global approaches; available tools for performing 

461 such SA studies (readers are referred to [66] for details).

462 As stressed by Yu et al. [23] there is a limited cover of SA and UA studies dealing with OB 

463 parameters. They showed that the main focus of SA and UA studies on OB is understanding 

464 the impact of internal gains and presence while adaptive behaviours are assumed to be fixed 

465 scenarios. These studies assume occupancy scenarios and probability distributions for 

466 occupant-related inputs or use synthetic profiles from OB models. Further, O´Neill et al. 

467 showed that OB is mostly considered together with building envelope and mechanical systems 

468 parameters to understand its impact on building load and energy consumption as well as 

469 occupants’ thermal and visual comfort. 

470 SA and UA studies might be infeasible within the simulation-aided building design practice 

471 because of the computational cost and time required i.e., large amount of runs required to 

472 evaluate all the parameter variations. Alternatively, a fast screening method was proposed for 

473 identifying the most relevant OB aspects as part of the fit-for-purpose strategy developed by 

474 Gaetani et al. [32] for choosing the most suitable modelling approach (for details see Section 

475 3.3). It quantifies in one simulation the influence of OB aspects. Instead of using different OB 

476 scenarios, it calculates impact indices for each aspect of the OB, which are expressed in terms 

477 of ratios extracted from the building energy balance. 

478 3.3. Choosing the most suitable OB modelling approach

479 For the most influential aspects of the BPS, the practitioner have the option of improving the 

480 estimations to reduce epistemic uncertainty or improving their representation to better account 

481 for their uncertainty [32,46]. As illustrated in Section 2.3, guidelines for choosing the most 

482 suitable model are still missing. To this end, this section discusses the findings reported in the 

483 literature regarding the application of advanced OB models considering: type of behaviour 
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484 (e.g., adaptive behaviours) [3,4,32,68–71]; building design stage [3,18,23,55,65,72–77]; 

485 spatial scale of the study, i.e., whether it is at room or building level [3,9,23,65,78]. This is 

486 because the aforementioned dimensions dictate the modelling requirements in terms of 

487 resolution, complexity, and accuracy [23,32,79]. 

488 Advanced OB modelling can be static or dynamic regarding the interaction with the BPS 

489 tool. The former approach generates inputs for the building energy model at the beginning of 

490 the simulation, while the latter has continuous and two-way interaction with the simulation, 

491 i.e., at each time step the output of a dynamic OB model affects the simulation, which in turn 

492 generates inputs for the OB model [65]. Therefore, presence and non-adaptive behaviours, 

493 which are mainly driven by contextual factors (e.g., occupant´s routines), are better represented 

494 by static models. Instead, depending on the degree of accuracy required, adaptive behaviours 

495 can be characterized either by static or dynamic models. For example, when estimating the 

496 total annual energy consumption of a building stock, the averaging effects of OB at large scales 

497 may allow the use of static models. In contrast, if the aim of the study is estimating the 

498 distribution of the peak load of a building, the interactions of the occupants with building 

499 systems such as thermostats and windows become highly relevant requiring dynamic models 

500 [3,9,23,65,78]. 

501 Presence and non-adaptive behaviours are typically modelled by schedules, discrete-time 

502 Markov models, and survival models [3]. Schedules can be fixed corresponding to standards 

503 (e.g., ASHRAE Standard 90.1), according to monitoring data, or considering different types of 

504 occupants (e.g., high/low occupancy scenarios) [3,68]. Markov-chain models predict the 

505 likelihood of a state to happen depending on the state of the previous time step together with 

506 state transition probabilities. The states can be defined as arrivals, departures, and breaks for 

507 office buildings [3] while in residential buildings they can be defined, for instance, as at home 

508 and active, at home and sleeping, not at home [69]. Survival models estimate the time until an 
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509 event happens, such as considering the arrival time, when the occupant will leave, or how much 

510 time passes until the TV is turned off after turning it on [70,71]. Adaptive behaviours can be 

511 modelled using schedules, rule-based models (i.e., deterministic models), stochastic models 

512 such as Bernoulli models, discrete-time or discrete-event Markov models, and data-driven 

513 models based on machine learning techniques such as artificial neural networks, deep learning 

514 algorithms, and decision trees [3,4,32]. Furthermore, it has been highlighted that despite 

515 survival models are better suited for presence and non-adaptive behaviours, they can be 

516 modified for adaptive behaviours. However, they are only recommended for infrequently 

517 executed actions such as shading systems use. This is because the survival curves are given at 

518 particular environmental conditions that can be significantly influenced by the adaptive 

519 behaviours [3].

520 Concerning building life cycle stages, some suggestions are proposed for specific modelling 

521 approaches. For example, Bernoulli models (i.e., low complexity stochastic models) predict 

522 the likelihood of the state of a building system given defined predicting parameters [73]. Since 

523 they are computationally efficient and do not require much information, they are suitable for 

524 estimating the performance at the whole building level during early design [74]. However, they 

525 should not be used for comparing design alternatives or quantifying occupant comfort metrics. 

526 This is because generally Bernoulli models do not use indoor environmental conditions as 

527 predicting variables. Therefore, the impact of design alternatives on the behaviour cannot be 

528 captured [3]. Moreover, these models predict the state of the building rather than the occupant 

529 action (e.g., having a window open vs. an occupant opening a window). Thus, they cannot 

530 predict the number of interactions between the occupant and the building systems as a proxy 

531 for occupant comfort [23]. An ABM represents the occupants as individual agents capable of 

532 interacting with other agents and their surrounding environment. The agents are characterized 

533 by personal attributes and preferences along with rules that define their interactions [18,72]. In 
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534 this way, this modelling approach can be used to represent with a great level of detail the OB 

535 and its relationship with the building performance considering not only environmental factors 

536 but psychological, social, cultural, and economic characteristics of the occupants. Therefore, 

537 an ABM can be used to reduce the occupant-related uncertainty when sizing building 

538 equipment, designing NZEBs, or assessing occupant comfort [75–77]. Nevertheless, ABMs 

539 have limited scalability. At small spatial scales (e.g., room level) few occupants can be 

540 modelled using an ABM, but at larger scales (e.g., building level) the number of occupants 

541 makes this approach impractical [15,16,55,72]. As an alternative, static-stochastic OB models 

542 can be used to generate profiles that account for occupant diversity. These models can be 

543 developed from monitored data to generate heat gains and electricity profiles for OB such as 

544 occupancy, equipment use, and lighting use. Using these synthetic profiles as inputs of BPS, 

545 peak loads and total energy use estimations can be more reliable for properly sizing, for 

546 example, HVAC and PV systems [55,65].

547 An important milestone was the fit-for-purpose strategy developed by Gaetani et al. [32] that 

548 aims at defining the most suitable level of complexity required for representing each OB aspect 

549 within the BPS study. Thus, their approach is specifically developed for supporting the building 

550 design practice in the decision-making process as well as in the selection of the most suitable 

551 modelling approach. The core of the strategy comprises three sequential steps: the impact 

552 indices method [80] (presented in Section 3.2), the diversity patterns method [79], and the 

553 Mann-Whitney U test [79]. First, the impact indices method is performed, and the lowest level 

554 of complexity (i.e., schedules and rule-based models) should be imposed for the OB aspects 

555 that show low influence on the PIs [32,80]. For the ones with a high impact, the diversity 

556 patterns method should be applied by using schedules or rule-based models to define low/high 

557 variations. Then, simulations are run to calculate the PI. This approach is applied to test the 

558 sensitivity of the results to the variations. Thus, the definition of the diversity patterns becomes 
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559 crucial [32,79]. In other words, while the impact indices method extracts the contribution of 

560 each OB aspect using a single schedule, the diversity patterns method tests the sensitivity 

561 against the variation produced by schedules representing low/high OB scenarios.  Finally, if 

562 the diversity patterns method is not conclusive, the Mann-Whitney U test would be performed. 

563 It assesses if the results from the low OB level and the high OB level simulations (i.e., from 

564 the diversity patterns) are significantly different, and ultimately which aspects of the OB are 

565 causing the spread in the results and are therefore worth focusing on [32,79].

566 In summary, systematic, and general guidelines for supporting the building design 

567 practitioner in selecting the most suitable modelling approach do not exist. Furthermore, the 

568 suggestions presented are not definitive since they are drawn from a limited number of studies 

569 that compare and apply advanced OB modelling approaches. These suggestions might be 

570 conditional to the context of each study. Despite them being a good starting point, a systematic 

571 methodology for selecting the modelling approach is an urgent matter in the field [5]. The fit-

572 for-purpose methodology developed by Gaetani et al. [32] is the only quantitative method 

573 proposed. Still, its demonstration is limited to office buildings, heating, and cooling demand 

574 estimation, and using virtual experiments instead of real case studies. Further, like any 

575 approach, its effectiveness is conditional to the validity of the specific models a practitioner 

576 chooses. 

577 3.4. Choosing and adapting the OB model

578 Carlucci et al. [4] have made available a comprehensive database containing more than 300 

579 OB models published in the literature. They cover OB aspects such as presence, window 

580 operation, lighting operation, thermostat adjustment, shading operation, appliance use, and 

581 clothing adjustment. Further, these aspects were developed from data for 17 countries, 14 

582 climate zones based on the Köppen-Geiger classification, and various building uses (offices, 
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583 commercial, residential, educational, hotels). Identifying the most suitable OB model and 

584 transferring it to a given deployment space requires analysing the motivation, drivers, and 

585 actions that characterise the OB, and the different dimensions of the deployment space (for a 

586 detailed definition refer to [78]); the evaluation and validation of OB models; procedures to 

587 transfer a model from the development space to the deployment space. On the one hand, the 

588 OB in buildings is influenced by environmental, time-related, contextual, psychological, 

589 physiological, social, and economic factors. On the other hand, OB models are mainly 

590 developed using environmental and time-related factors as predictive variables [13]. 

591 Accordingly, these models have hidden information and imprinted characteristics of the 

592 occupants that go beyond the predictive variables [20]. Therefore, the extrapolation from a 

593 development space to a deployment space must be carefully evaluated [14].

594 In the view of drivers and factors affecting OB, deep reviews have been conducted to 

595 understand the influential factors for different actions across different building types [13,81]. 

596 While definitive and general conclusions have not been reached yet, the results presented 

597 provide an idea of the differences that might exist between different contexts. For example, 

598 indoor and outdoor temperatures are the main drivers of window operation in both residential 

599 and office buildings. However, indoor air quality seems to be a relevant factor only for 

600 residential buildings. Additionally, while in office buildings arrival and departure times 

601 influence the frequency of the interactions with windows, in residential buildings this 

602 frequency is related to the different types of activities (e.g., cooking) [13,44]. Lighting and 

603 shading system uses are commonly studied simultaneously in office or commercial buildings 

604 [13]. This is because of their high correlation and their combined effect on visual comfort. The 

605 interactions of the occupants with these systems are mainly driven by time-related factors (e.g., 

606 arrival and departure events, absence duration) and visual, comfort-related factors (e.g., work 

607 plane illuminance and glare) [62]. Instead, turning off the lights is mainly driven by departure 
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608 times rather than illuminance levels [82]. In residential buildings the research on shading 

609 systems use is limited. However, it is observed to be noticeably infrequent (e.g., once shadings 

610 are open, they remain in this state for long periods) and not only driven by time-related and 

611 environmental factors but sometimes also privacy issues. Further, lighting use is mainly driven 

612 by time-related factors, type of activities, and illuminance levels [20]. Furthermore, aspects 

613 related to the building orientation can have an impact on OB. For example, drivers and 

614 frequency of shading operation could be different whether shading systems are located in a 

615 north or south façade [64]. Concerning air-conditioning, thermostats, fans, and doors, the 

616 indoor and outdoor temperatures are the main factors influencing their operation [13]. 

617 Additionally, in office buildings, the spatial scale has a big impact on OB such as lighting, 

618 shading, and window operation. For instance, in single offices the occupant is more 

619 autonomous to decide what to do, whereas in open-space office floors these behaviours are 

620 constrained by social interactions [83]. Finally, diversity, preferences, and lifestyles of the 

621 occupants have a greater impact in residential buildings, where occupants usually have 

622 complete control on the building systems, rather than in office buildings, where OBs could be 

623 limited by the building design aspects (e.g., the impossibility to open windows) and centrally 

624 controlled systems (e.g., central HVAC units). 

625 A second aspect to be considered when choosing a specific OB model is the model 

626 development and quality evaluation processes. Notably, Mahdavi and Tahmasebi [84] 

627 discussed several necessary conditions for a systematic assessment of the models: the model 

628 validation should be performed with a dataset different from the one used for model 

629 development; models from a single behavioural study should not be extrapolated to all 

630 deployment spaces; measures need to be taken to reduce bias in the evaluation process, i.e., not 

631 only an internal validation process should be performed but an external evaluation, double-

632 blind studies, and round-robin tests as well [23,70,84]. In consequence, models with 
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633 insufficient documentation or simple evaluation tests, and models developed using short 

634 monitoring periods or small sample sizes (e.g., one apartment) cannot be generalized and 

635 should be used with caution [23].

636 A third aspect to consider when using an OB model developed for a different context are the 

637 mechanisms for transferring the model. Again, studies undertaking this kind of procedures are 

638 limited. In general, models are developed and used in the same context, or they are selected 

639 without exhaustive criteria and further adaptations. However, an alternative is to obtain 

640 calibration data from the context of interest and use it for fitting probability curves of the 

641 models to obtain specific model coefficients [62,84,85]. Since existing data is not always 

642 available, the development of factors to transfer the models from one context to another would 

643 be beneficial to the design practice [86]. For example, in the residential sector, scaling factors 

644 have been proposed to adapt an occupancy model developed for the UK to the Canadian context 

645 [87]. To do so, the time occupants usually spend in different activities is compared to scale the 

646 models accordingly (e.g., from an aggregated point of view, in Canada people spend about 35 

647 minutes less at home and awake than people in the UK). This methodology is only suitable 

648 assuming that both countries have a similar lifestyle [87].

649 3.5. Implementing the OB models into the BPS

650 Advanced OB models are not readily available in most of the commercial BPS tools [5]. 

651 Therefore, dedicated integration approaches are required. Hong et al. [5] thoroughly reviewed 

652 and classified those approaches in: (a) direct input where the user defines temporal schedules 

653 for thermostat settings, occupancy, lighting, plug loads, and the HVAC system. Here, the user 

654 pre-calculates the schedules, so there is no runtime communication between the pre-calculation 

655 module and the BPS software; (b) built-in OB models in which a dedicated OB module is 

656 already implemented within the BPS software. Yet, this type of modules is found in a reduced 
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657 number of BPS programs [1] and the implemented OB models lack of conclusive evidence of 

658 their generalizability [84]; (c) user functions that allow the user to write custom functions or 

659 codes to incorporate or overwrite supervisory controls without the need for recompiling the 

660 BPS engine. Deterministic and stochastic OB models can be included using this methodology; 

661 (d) co-simulation allowing the use of different simulation tools to be integrated and run 

662 simultaneously in a coupled runtime routine. In this latter case, BPS tools specialised on 

663 different aspects can be combined to achieve a consistent analysis [5]. For example, an OB 

664 module written in Python can be used along with EnergyPlus under a two-way interaction 

665 between these components. As a result, dynamic stochastic OB models can be included in the 

666 estimation of building performance metrics [88,89]. Nevertheless, OB models have been 

667 integrated into BPS software (for a comprehensive list of key integration efforts refer to [5]). 

668 For example, Gunay et al. [90] implemented 20 OB models using Energy Management System 

669 (EMS) scripts in a user function approach for EnergyPlus. Since this approach lacks 

670 interoperability and exchangeability between OB models and BPS tools, the co-simulation 

671 approach has gained significant attention [91]. For instance, using Functional Mockup Units 

672 (FMU) different simulation tools can be compiled into units, which are then interconnected by 

673 the Functional Mockup Interface (FMI) using a combination of XML files, binaries, and C 

674 code zipped into a single file [92]. Hong et al. [93] developed the obXML and obFMU tools. 

675 The former standardizes the representation and exchange of OB models, while the latter is a 

676 software component module working as the engine to compute the OB models. Together they 

677 can be used for co-simulation with different BPS software equipped with FMI compatibility. 

678 The previous paragraph discussed possibilities for the integration of OB models into the BPS 

679 simulation from a technical point of view. Equally important, the hierarchy of OB actions needs 

680 to be discussed. It refers to the priority each occupant action has among different options to 

681 fulfil the same occupant’s need. For example, occupants could either decide to adjust their 
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682 clothing or to change their thermostat setpoint to achieve thermal comfort. This hierarchy of 

683 actions needs to be defined to implement suitable logics within the simulation framework when 

684 considering multiple models. This concept becomes relevant when developing ABMs that 

685 integrate different behavioural actions, as well as when considering multiple models for 

686 representing different behaviours in a BPS study [74]. As highlighted by Stazi et al. [13], few 

687 studies have addressed this problem. Some observations indicate that this hierarchy is 

688 conditional to the context of the study so that general conclusions cannot be defined [94]. For 

689 instance, Langevin et al. [95] noticed that clothing adjustment is preferred in both naturally 

690 ventilated and air-conditioned buildings. However, in naturally ventilated buildings window 

691 operation is chosen over fan operation whereas in air-conditioned buildings this sequence is 

692 reversed. Moreover, Kwak et al. [96] analysed the impact of implementing window and AC 

693 operation models, as well as interchanging their order of execution, in the energy consumption 

694 of a residential building. As a result, the prediction of the energy consumption has a variation 

695 of 7.5%. Considering that different actions have a different impact on occupant comfort and 

696 energy consumption, taking into account the behavioural hierarchy and assessing its influence 

697 in the BPS simulations is essential [76]. 

698 3.6. Performing the simulation and post-processing results

699 The inclusion of advanced OB models makes it necessary to review and discuss technical 

700 issues such as methods for conducting the simulations, the number of runs required, and 

701 methods for analysing the results. From the practitioner perspective, the whole BPS process 

702 must minimise model preparation and computational requirements to be feasible within the 

703 building design practice [46].

704  Azar et al. [5] exhaustively reviewed studies applying OB modelling formalisms to inform 

705 design decisions. They stressed the reduced number of works on this topic despite advances in 
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706 the modelling field as well as a general focus on providing a proof-of-concept rather than 

707 effectively applying the proposed methodologies in actual building design applications. They 

708 categorised the research in four main areas: (a) proposed workflows such as the fit-for-purpose 

709 strategy developed by Gaetani et al. [32] and the best practices book for selecting the most 

710 appropriate modelling approach by Gilani and O´Brien [65] (covered in Section 3.3); (b) 

711 parametric design propositions where the impact of extreme occupant-related conditions are 

712 evaluated using the concept of personas [5], i.e., the building performance is evaluated by 

713 implementing schedules, densities, or OB models that represent a different type of occupants 

714 such as active and passive [97–99], or austerity, normal, and wasteful [100]; (c) design 

715 optimization studies [5] in which geometric design alternatives and spatial layouts are 

716 evaluated using advanced OB models along with optimization algorithms (e.g., genetic 

717 algorithms, ant colony algorithm). Remarkably, not only energy-related performance indicators 

718 are used as optimization objectives but also organizational and productivity metrics; (d) 

719 probabilistic design methods that exploit the use of advanced OB modelling approaches and 

720 minimise the variance of non-deterministic outputs. In other words, this methodology aims to 

721 support designs that are robust to the impact of OB [5].

722 Another key point emerges when using stochastic OB models in BPS. Contrary to 

723 deterministic studies, a stochastic simulation will calculate a different output each time it is run 

724 [65]. Therefore, a criterion must be established for determining the minimum number of 

725 simulations required. Researchers often choose the number of simulations based on other 

726 references or perform simulations until certain convergence criteria are fulfilled. Different 

727 recommendations can be found varying from 10 to 100 simulations [23,32,56,62,64,101]. A 

728 common approach for defining the number of simulations is to calculate the mean value and 

729 variance of the performance indicators while the number of simulations increases. When the 

730 change in those parameters is small, the simulation process can be stopped [102]. Graphically, 
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731 the cumulative mean of the outputs is plotted, and the simulation process stopped when the 

732 curve becomes flat without an upward or downward trend. Quantitatively, the percentage 

733 variation of the cumulative output´s mean and variance is calculated and when it is smaller than 

734 a threshold (i.e., a tolerance) the simulation process is stopped [61].

735 Finally, BPS tools do not post-process the aggregate results from multiple simulation neither 

736 visually nor quantitatively. This means the practitioner will be left with a set of results for each 

737 design configuration multiplied by the number of design alternatives or scenarios studied. For 

738 the latter, the postprocessing and visualization process needs to be performed manually [46]. 

739 As a result, researchers follow different strategies for analysing and communicating the results, 

740 such as: a) box plots of the outputs [32]; b) fitting the outputs to probability distribution 

741 functions such as the normal distribution and reporting the output mean value and a confidence 

742 interval at a defined significance level [64]; c) data mining of stochastic BPS, which has 

743 recently emerged as an alternative for analysing simultaneously all the simulation results to 

744 identify the influential aspects of the BPS model. Here, correlation matrices, Pearson 

745 correlation coefficients, and  Principal Component Analysis (PCA) can be exploited to 

746 understand the role of each model parameter in the estimation of the performance indicators 

747 [53].    

748 4. Discussion

749 This article critically reviewed the efforts aiming at transferring the knowledge developed 

750 within the OB research field to the simulation-aided building design process. While involuntary 

751 exclusion of relevant articles can be a limitation of this work, the PRISMA methodology was 

752 followed to minimise this risk. In line with the research questions in Section 1.3, this review 

753 covers findings related to the building design process. Building operation and control were 

754 considered out of scope.
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755 One of the most important points addressed by this review is why advanced OB models 

756 should be included into BPS (see Section 3.1). The advantages and potential of using advanced 

757 OB models over standard representations such as fixed, periodic schedules go beyond having 

758 an exact description of the OB. This is especially important since, as stressed in Section 3.4, 

759 OB is influenced not only by environmental and time-related factors but economic, socio-

760 cultural, psychological, and physiological ones as well. Thus, developing generalized models 

761 entirely replacing standard schedules will be virtually impossible. Instead, the use of OB 

762 models gives the practitioner the possibility of a) understanding how the diversity of the 

763 occupants influences the building performance and b) predicting the probability distribution of 

764 PIs, i.e., the likelihood of a PI falling within a certain range. Second, dynamic OB models allow 

765 considering the two-way interaction between the occupants and the building and its systems. 

766 While the occupants affect the building performance passively (e.g., through OPA-related heat 

767 gains) and actively (e.g., adjusting the thermostat), the building design can influence the OB 

768 (e.g., the location and size of the windows could encourage occupants to adopt natural over 

769 mechanical ventilation modes). Including this interaction gives the designer the possibility to 

770 design a building that promotes energy-efficient behaviours and is more robust to the impact 

771 of the OPA. Accounting for the occupant-related uncertainty allows the designer to make 

772 better-informed decisions, e.g., avoiding overestimation of energy savings from ECMs.

773 It was also highlighted that it is not always necessary to use advanced OB models (See 

774 Section 3.3). Each case has specific requirements in terms of OB and energy model complexity 

775 and accuracy depending on the deployment space (i.e., climate, location, building type, use, 

776 and systems, occupant characteristics, spatial and temporal scale). As a result, identifying the 

777 OB aspects that significantly impact the PIs needs to be an integral part of the BPS process. To 

778 this end, a fit-for-purpose strategy is required so that the most adequate level of complexity can 

779 be imposed for each of them. General methodologies using a screening method are 
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780 recommended, so that subsequent analysis focuses only on a small set of parameters reducing 

781 computational cost without compromising reliability. Furthermore, since OB models are not 

782 always the answer, standard schedules should be reviewed and updated to improve the OB 

783 representation. Similarly, proposing a variety of standard schedules that represent different OB 

784 scenarios tailored to different building life cycle stages and simulation purposes can be 

785 beneficial for the practitioner to better assess the building performance.  

786 Further, the literature has shown preliminary observations regarding which modelling 

787 approaches should be used or avoided for the different dimensions of the deployment space. 

788 Regarding occupancy (i.e., presence) and non-adaptive behaviours (e.g., use of appliances) 

789 static models are recommended, while for adaptive behaviours the approach could be static or 

790 dynamic. The latter is especially recommended if different design alternatives are explored or 

791 if the PIs are related to occupant comfort. In these cases, the two-way interaction between the 

792 occupants and the building becomes highly relevant. Further, at large spatial scales (e.g., whole 

793 high-rise building) or when considering aggregated PIs (e.g., annual energy use), averaging 

794 effects are responsible for a reduced impact of the occupant diversity compared to small spatial 

795 scales (e.g., room level) or disaggregated PIs (e.g., peak load). Consequently, while in the first 

796 scenario low complexity models can be used, in the second one higher complexity is 

797 recommended. Further research is yet required to define systematic and fit-for-purpose 

798 guidelines for selecting the most suitable modelling approach. 

799 This critical review also identifies two main points that required attention for promoting the 

800 use of OB models. On the one hand, it is urgent to define systematic guidelines for evaluating 

801 and documenting the models including not only an internal but also an external and double-

802 blind process; conduct systematic monitoring campaigns to compare the differences in OB in 

803 different contexts; perform comparative studies to assess the generalizability and applicability 

804 of the models. These efforts will potentially help to define coefficients for transferring the 
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805 models from one context to another, hence enhancing the generalizability of OB models. On 

806 the other hand, understanding and defining behavioural hierarchies are required to specify 

807 which logic should be used to execute multiple OB models.

808 Regarding the automation of the BPS process, this is an important aspect to be considered 

809 in each of the steps so that practitioner´s time and effort is minimised. For example, a pre-

810 processing engine can generate a set of synthetic schedules identifying diverse scenarios 

811 depending on the application (e.g., equipment sizing, robust design), possibly along with an 

812 estimated probability measure on how often a scenario is expected to occur. This would allow 

813 designers giving appropriate weight to extreme OBs with a high potential impact on PIs but 

814 happening rarely. Then, the user could decide which subset of scenarios is worth investigating 

815 further. For stochastic OB models, a default tolerance threshold can be defined together with a 

816 maximum number of runs. The simulation would stop when one of these criteria is met. Finally, 

817 the outputs can be automatically visualized, and representative statistics computed.   

818 Finally, the reviewed articles show the possibility of exploiting the potential of advanced 

819 OB models by performing parametric studies, design optimization, and probabilistic design. 

820 Yet, few studies have demonstrated these strategies using OB models. Further, the stochastic 

821 nature of the models introduces a level of difficulty that can be overcome by automating 

822 processes (e.g., running the simulations, calculating convergence parameters) and by applying 

823 statistical and data-mining techniques for analysing the outputs to, in the end, inform the design 

824 decision.

825 All in all, with the knowledge and tools available today, the integration of OB modelling 

826 into simulation-building design practice is a complex process, almost completely manual, 

827 without proper guidance. As shown in Figure 4 (left – Today simulation framework), on top of 

828 the traditional steps problem definition, development of the energy model and informing the 
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829 decision of a BPS study, the user needs to identify relevant OPA, choose the OB modelling 

830 approaches, choose an OB model, and implement the model. Furthermore, performing the 

831 simulation and post-processing the results gain additional complexity due to the stochastic 

832 nature of OB models and increased numbers of simulations required. This paper presented 

833 solutions towards guiding and simplifying this process but more importantly, highlighted the 

834 challenges that need to be addressed for answering to the BPS user needs and fully integrating 

835 the OB models into a BPS framework as in Figure 4 (Right – Future simulation framework).

836 5. Conclusions 

837 Among other endeavours, the research community is aiming at improving the representation 

838 of the energy-related OB and, at the same time, better accounting for the occupant-related 

839 uncertainty for bridging the energy performance gap. However, as illustrated in Section 2.3, 

840 several barriers are preventing the use of advanced OB modelling approaches in the simulation-

841 aided building design field. To this aim, a simulation framework was proposed to establish a 

Figure 4. Simulation framework
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842 clear path for integrating the OB model in the building design practice. The literature on this 

843 topic was critically analysed for synthesising the practical solutions developed in each step. 

844 First, it was highlighted the added value of better representing the stochastic and dynamic 

845 nature of the OB through advanced modelling approaches. Across the different building design 

846 stages, advanced OB models contribute to desired building performance, sizing building 

847 systems, estimating payback periods, and informing investment decisions. Ultimately, it will 

848 be possible to achieve the targets imposed by the different policies for mitigating environmental 

849 problems by improving the building robustness and resilience. Second, the strategies and 

850 solutions for identifying the most influential OB aspects, the most suitable modelling approach, 

851 and the most adequate model were reviewed. It is stressed that these steps are case specific and 

852 thus require a fit-for-purpose strategy fully integrated within the simulation framework. To 

853 reach this point, it is urgent to define the scalability and applicability OB models to different 

854 contexts. In parallel, simulation software needs to evolve for automatically integrating the OB 

855 models, performing multiple simulations resulting from the application of stochastic models, 

856 and post-processing the aggregated results. This will reduce the time and effort a user needs to 

857 invest for performing the BPS.

858 In summary, the findings of this work aim to serve as guidelines for researchers and 

859 practitioners pursuing the integration of OB models in the building design process and 

860 performance evaluation. Likewise, our study presented the most urgent matters that need to be 

861 addressed for encouraging the application of OB models in building design processes. 

862 Acknowledgements

863 The authors benefited from participating in the IEA EBC Annex 79 meetings. Furthermore, 

864 this work was co-financed by the European Union, European Regional Development Fund, the 

865 Italian Government, the Swiss Confederation and Cantons, as part of the Interreg V-A Italy-



47

866 Switzerland Cooperation Program, within the context of the BIPV meets History project (grant 

867 n. 603882). 

868 References

869

870 [1] Hong T, Chen Y, Belafi Z, D’Oca S. Occupant behavior models: A critical review of 

871 implementation and representation approaches in building performance simulation 

872 programs. Build Simul 2018;11:1–14. https://doi.org/10.1007/s12273-017-0396-6.

873 [2] Shi X, Si B, Zhao J, Tian Z, Wang C, Jin X, et al. Magnitude, causes, and solutions of 

874 the performance gap of buildings: A review. Sustain 2019;11. 

875 https://doi.org/10.3390/su11030937.

876 [3] D’Oca S, Gunay HBB, Gilani S, O’Brien W. Critical review and illustrative examples 

877 of office occupant modelling formalisms. Build Serv Eng Res Technol 2019;40:732–57. 

878 https://doi.org/10.1177/0143624419827468.

879 [4] Carlucci S, De Simone M, Firth SK, Kjærgaard MB, Markovic R, Rahaman MS, et al. 

880 Modeling occupant behavior in buildings. Build Environ 2020;174:106768. 

881 https://doi.org/10.1016/j.buildenv.2020.106768.

882 [5] Azar E, O’Brien W, Carlucci S, Hong T, Sonta A, Kim J, et al. Simulation-aided 

883 occupant-centric building design: A critical review of tools, methods, and applications. 

884 Energy Build 2020;224:110292. https://doi.org/10.1016/j.enbuild.2020.110292.

885 [6] Yan D Da, Hong T, Dong B, Mahdavi A, D’Oca S, Gaetani I, et al. IEA EBC Annex 66: 

886 Definition and simulation of occupant behavior in buildings. Energy Build 

887 2017;156:258–70. https://doi.org/10.1016/j.enbuild.2017.09.084.

888 [7] Wagner A, O´Brien L. Occupant behaviour-centric building design and operation EBC 



48

889 Annex 79 October 2018 , updated after approval by IEA EBC Prepared by : 2018:2008–

890 13.

891 [8] Gaetani I, Hoes P-J, Hensen JLM. Occupant behavior in building energy simulation: 

892 Towards a fit-for-purpose modeling strategy. Energy Build 2016;121:188–204. 

893 https://doi.org/10.1016/j.enbuild.2016.03.038.

894 [9] O’Brien W, Gaetani I, Gilani S, Carlucci S, Hoes P-JPJ, Hensen J. International survey 

895 on current occupant modelling approaches in building performance simulation†. J Build 

896 Perform Simul 2017;10:653–71. https://doi.org/10.1080/19401493.2016.1243731.

897 [10] Mahdavi A, Berger C, Amin H, Ampatzi E, Andersen RK, Azar E, et al. The role of 

898 occupants in buildings’ energy performance gap: Myth or reality? vol. 13. 2021. 

899 https://doi.org/10.3390/su13063146.

900 [11] Harputlugil T, de Wilde P. The interaction between humans and buildings for energy 

901 efficiency: A critical review. Energy Res Soc Sci 2021;71:101828. 

902 https://doi.org/10.1016/j.erss.2020.101828.

903 [12] Delzendeh E, Wu S, Lee A, Zhou Y. The impact of occupants’ behaviours on building 

904 energy analysis: A research review. Renew Sustain Energy Rev 2017;80:1061–71. 

905 https://doi.org/10.1016/j.rser.2017.05.264.

906 [13] Stazi F, Naspi F, D’Orazio M. A literature review on driving factors and contextual 

907 events influencing occupants’ behaviours in buildings. Build Environ 2017;118:40–66. 

908 https://doi.org/10.1016/j.buildenv.2017.03.021.

909 [14] Dong B, Yan D Da, Li Z, Jin Y, Feng X, Fontenot H. Modeling occupancy and behavior 

910 for better building design and operation—A critical review. Build Simul 2018;11:899–

911 921. https://doi.org/10.1007/s12273-018-0452-x.



49

912 [15] Jia M, Srinivasan RS, Raheem AA. From occupancy to occupant behavior: An analytical 

913 survey of data acquisition technologies, modeling methodologies and simulation 

914 coupling mechanisms for building energy efficiency. Renew Sustain Energy Rev 

915 2017;68:525–40. https://doi.org/10.1016/j.rser.2016.10.011.

916 [16] Zhang Y, Bai X, Mills FP, Pezzey JCV. Rethinking the role of occupant behavior in 

917 building energy performance: A review. Energy Build 2018;172:279–94. 

918 https://doi.org/10.1016/j.enbuild.2018.05.017.

919 [17] Hong T, Taylor-Lange SCSC, D’Oca S, Yan D Da, Corgnati SPSP. Advances in 

920 research and applications of energy-related occupant behavior in buildings. Energy 

921 Build 2016;116:694–702. https://doi.org/10.1016/j.enbuild.2015.11.052.

922 [18] Uddin MN, Wei H-H, Chi HL, Ni M. Influence of Occupant Behavior for Building 

923 Energy Conservation: A Systematic Review Study of Diverse Modeling and Simulation 

924 Approach. Buildings 2021;11:41. https://doi.org/10.3390/buildings11020041.

925 [19] Osman M, Ouf M. A comprehensive review of time use surveys in modelling occupant 

926 presence and behavior: Data, methods, and applications. Build Environ 

927 2021;196:107785. https://doi.org/10.1016/j.buildenv.2021.107785.

928 [20] Balvedi BFBF, Ghisi E, Lamberts R. A review of occupant behaviour in residential 

929 buildings. Energy Build 2018;174:495–505. 

930 https://doi.org/10.1016/j.enbuild.2018.06.049.

931 [21] Happle G, Fonseca JA, Schlueter A. A review on occupant behavior in urban building 

932 energy models. Energy Build 2018;174:276–92. 

933 https://doi.org/10.1016/j.enbuild.2018.06.030.

934 [22] Dong B, Liu Y, Fontenot H, Ouf M, Osman M, Chong A, et al. Occupant behavior 



50

935 modeling methods for resilient building design, operation and policy at urban scale: A 

936 review. Appl Energy 2021;293:116856. 

937 https://doi.org/10.1016/j.apenergy.2021.116856.

938 [23] Li J, Yu Z (Jerry) ZJ (Jerry), Haghighat F, Zhang G. Development and improvement of 

939 occupant behavior models towards realistic building performance simulation: A review. 

940 Sustain Cities Soc 2019;50. https://doi.org/10.1016/j.scs.2019.101685.

941 [24] Becker K, Parker JR. A simulation primer. Digit. Simulations Improv. Educ. Learn. 

942 Through Artif. Teach. Environ., IGI Global; 2009, p. 1–24. https://doi.org/10.4018/978-

943 1-60566-322-7.ch001.

944 [25] Denyer D, Tranfield D. Producing a Systematic Review. SAGE Handb Organ Res 

945 Methods 2009:671–89.

946 [26] Abuimara T, O’Brien W, Gunay B, Carrizo JS. Towards occupant-centric simulation-

947 aided building design: a case study. Build Res Inf 2019;47:866–82. 

948 https://doi.org/10.1080/09613218.2019.1652550.

949 [27] Alsaadani S, Bleil De Souza C. Architect–BPS consultant collaborations: Harmony or 

950 hardship? J Build Perform Simul 2018;11:391–413. 

951 https://doi.org/10.1080/19401493.2017.1379092.

952 [28] Hong T, Langevin J, Sun K. Building simulation: Ten challenges. Build Simul 

953 2018;11:871–98. https://doi.org/10.1007/s12273-018-0444-x.

954 [29] Warren P. Bringing Simulation to Application. 2002.

955 [30] Negendahl K. Building performance simulation in the early design stage: An 

956 introduction to integrated dynamic models. Autom Constr 2015;54:39–53. 

957 https://doi.org/10.1016/j.autcon.2015.03.002.



51

958 [31] Loonen RCGM, de Klijn-Chevalerias ML, Hensen JLM. Opportunities and pitfalls of 

959 using building performance simulation in explorative R&amp;D contexts. J Build 

960 Perform Simul 2019;12:272–88. https://doi.org/10.1080/19401493.2018.1561754.

961 [32] Gaetani I, Hoes P-J, Hensen JLMM. A stepwise approach for assessing the appropriate 

962 occupant behaviour modelling in building performance simulation. J Build Perform 

963 Simul 2020;13:362–77. https://doi.org/10.1080/19401493.2020.1734660.

964 [33] D’Oca S, Hong T, Langevin J. The human dimensions of energy use in buildings: A 

965 review. Renew Sustain Energy Rev 2018;81:731–42. 

966 https://doi.org/10.1016/j.rser.2017.08.019.

967 [34] Rafsanjani HN, Ahn CR, Alahmad M. A review of approaches for sensing, 

968 understanding, and improving occupancy-related energy-use behaviors in commercial 

969 buildings. vol. 8. 2015. https://doi.org/10.3390/en81010996.

970 [35] Kjærgaard MB, Sangogboye FC. Categorization framework and survey of occupancy 

971 sensing systems. Pervasive Mob Comput 2017;38:1–13. 

972 https://doi.org/10.1016/j.pmcj.2016.09.019.

973 [36] Gilani S, O’Brien W. Review of current methods, opportunities, and challenges for in-

974 situ monitoring to support occupant modelling in office spaces. J Build Perform Simul 

975 2017;10:444–70. https://doi.org/10.1080/19401493.2016.1255258.

976 [37] Deme Belafi Z, Hong T, Reith A. A critical review on questionnaire surveys in the field 

977 of energy-related occupant behaviour. Energy Effic 2018;11:2157–77. 

978 https://doi.org/10.1007/s12053-018-9711-z.

979 [38] Carpino C, Mora D, De Simone M. On the use of questionnaire in residential buildings. 

980 A review of collected data, methodologies and objectives. Energy Build 2019;186:297–



52

981 318. https://doi.org/10.1016/j.enbuild.2018.12.021.

982 [39] Zhu Y, Saeidi S, Rizzuto T, Roetzel A, Kooima R. Potential and challenges of immersive 

983 virtual environments for occupant energy behavior modeling and validation: A literature 

984 review. J Build Eng 2018;19:302–19. https://doi.org/10.1016/j.jobe.2018.05.017.

985 [40] Hong T, D’Oca S, Turner WJN, Taylor-Lange SC. An ontology to represent energy-

986 related occupant behavior in buildings. Part I: Introduction to the DNAs framework. 

987 Build Environ 2015;92:764–77. https://doi.org/10.1016/j.buildenv.2015.02.019.

988 [41] Putra HC, Hong T, Andrews C. An ontology to represent synthetic building occupant 

989 characteristics and behavior. Autom Constr 2021;125:103621. 

990 https://doi.org/10.1016/j.autcon.2021.103621.

991 [42] He Y, Chen W, Wang Z, Zhang H. Review of fan-use rates in field studies and their 

992 effects on thermal comfort, energy conservation, and human productivity. Energy Build 

993 2019;194:140–62. https://doi.org/10.1016/j.enbuild.2019.04.015.

994 [43] Fabi V, Andersen R, Corgnati S. Accounting for the Uncertainty Related to Building 

995 Occupants with Regards to Visual Comfort: A Literature Survey on Drivers and Models. 

996 Buildings 2016;6:5. https://doi.org/10.3390/buildings6010005.

997 [44] Dai X, Liu J, Zhang X. A review of studies applying machine learning models to predict 

998 occupancy and window-opening behaviours in smart buildings. Energy Build 2020. 

999 https://doi.org/10.1016/j.enbuild.2020.110159.

1000 [45] Chen S, Zhang G, Xia X, Setunge S, Shi L. A review of internal and external influencing 

1001 factors on energy efficiency design of buildings. Energy Build 2020. 

1002 https://doi.org/10.1016/j.enbuild.2020.109944.

1003 [46] Ouf MM, O’Brien W, Gunay HB. Improving occupant-related features in building 



53

1004 performance simulation tools. Build Simul 2018;11:803–17. 

1005 https://doi.org/10.1007/s12273-018-0443-y.

1006 [47] O’Brien W, Tahmasebi F, Andersen RK, Azar E, Barthelmes V, Belafi ZD, et al. An 

1007 international review of occupant-related aspects of building energy codes and standards. 

1008 Build Environ 2020;179:106906. https://doi.org/10.1016/j.buildenv.2020.106906.

1009 [48] Park JY, Ouf MM, Gunay B, Peng Y, O’Brien W, Kjærgaard MB, et al. A critical review 

1010 of field implementations of occupant-centric building controls. Build Environ 

1011 2019;165:106351. https://doi.org/10.1016/j.buildenv.2019.106351.

1012 [49] Guerra-Santin O, Bosch H, Budde P, Konstantinou T, Boess S, Klein T, et al. 

1013 Considering user profiles and occupants’ behaviour on a zero energy renovation strategy 

1014 for multi-family housing in the Netherlands. Energy Effic 2018;11:1847–70. 

1015 https://doi.org/10.1007/s12053-018-9626-8.

1016 [50] Ouf M, O’Brien W, Gunay HBB. Optimizing building performance using stochastic 

1017 occupant models. ASHRAE Trans., vol. 125, 2019, p. 96–105.

1018 [51] Marschall M, Tahmasebi F, Burry J. Including occupant behavior in building simulation: 

1019 Comparison of a deterministic vs. a stochastic approach. Simul. Ser., vol. 51, 2019, p. 

1020 185–8.

1021 [52] Marschall M, Burry J. Can the use of stochastic models of occupants’ environmental 

1022 control behavior influence architectural design outcomes? Intell. Inf. - Proc. 24th Int. 

1023 Conf. Comput. Archit. Des. Res. Asia, CAADRIA 2019, vol. 1, 2019, p. 715–24.

1024 [53] Darakdjian Q, Billé S, Inard C. Data mining of building performance simulations 

1025 comprising occupant behaviour modelling. Adv Build Energy Res 2019;13:157–73. 

1026 https://doi.org/10.1080/17512549.2017.1421099.



54

1027 [54] Qian M, Yan D, An J, Hong T, Spitler JD. Evaluation of thermal imbalance of ground 

1028 source heat pump systems in residential buildings in China. Build Simul 2020;13:585–

1029 98. https://doi.org/10.1007/s12273-020-0606-5.

1030 [55] O’Brien W, Abdelalim A, Gunay HBB. Development of an office tenant electricity use 

1031 model and its application for right-sizing HVAC equipment. J Build Perform Simul 

1032 2019;12:37–55. https://doi.org/10.1080/19401493.2018.1463394.

1033 [56] Yao J. IDENTIFYING OCCUPANTS’ APPROPRIATE SEATING POSITION AND 

1034 VIEW DIRECTION IN OFFICE BUILDINGS: A STOCHASTIC SHADE CONTROL 

1035 BASED MULTIOBJECTIVE VISUAL COMFORT OPTIMIZATION. J Green Build 

1036 2020;15:15–36. https://doi.org/10.3992/1943-4618.15.1.15.

1037 [57] Picard T, Hong T, Luo N, Lee SHSH, Sun K. Robustness of energy performance of 

1038 Zero-Net-Energy (ZNE) homes. Energy Build 2020;224. 

1039 https://doi.org/10.1016/j.enbuild.2020.110251.

1040 [58] Rouleau J, Gosselin L, Blanchet P. Robustness of energy consumption and comfort in 

1041 high-performance residential building with respect to occupant behavior. Energy 

1042 2019;188:115978. https://doi.org/10.1016/j.energy.2019.115978.

1043 [59] Gilani S, O’Brien W, Gunay HBB, Carrizo JSJSJS, O’Brien W, Gunay HBB, et al. Use 

1044 of dynamic occupant behavior models in the building design and code compliance 

1045 processes. Energy Build 2016;117:260–71. 

1046 https://doi.org/10.1016/j.enbuild.2015.10.044.

1047 [60] Ascione F, Bianco N, De Masi RF, Mastellone M, Mauro GM, Vanoli GP. The role of 

1048 the occupant behavior in affecting the feasibility of energy refurbishment of residential 

1049 buildings: Typical effective retrofits compromised by typical wrong habits. Energy 

1050 Build 2020;223:110217. https://doi.org/10.1016/j.enbuild.2020.110217.



55

1051 [61] Yao J. Building cooling energy uncertainty and life cycle economic performance: A 

1052 stochastic air conditioning behavior model based comparative analysis. J Clean Prod 

1053 2020;266:121910. https://doi.org/10.1016/j.jclepro.2020.121910.

1054 [62] Ding Y, Ma X, Wei S, Chen W. A prediction model coupling occupant lighting and 

1055 shading behaviors in private offices. Energy Build 2020;216:109939. 

1056 https://doi.org/10.1016/j.enbuild.2020.109939.

1057 [63] Neves LOO, Hopes APP, Chung WJJ, Natarajan S. “Mind reading” building operation 

1058 behaviour. Energy Sustain Dev 2020;56:1–18. 

1059 https://doi.org/10.1016/j.esd.2020.02.003.

1060 [64] Yao J, Zheng R. Uncertainty of Energy and Economic Performance of Manual Solar 

1061 Shades in Hot Summer and Cold Winter Regions of China. Sustainability 2019;11:5711. 

1062 https://doi.org/10.3390/su11205711.

1063 [65] Gilani S, Brien WO. Best Practices Guidebook on Advanced Occupant Modelling. 

1064 Ottawa, Canada: Human Building Interaction Lab, Carleton University; 2018.

1065 [66] Pang Z, O’Neill Z, Li Y, Niu F. The role of sensitivity analysis in the building 

1066 performance analysis: A critical review. Energy Build 2020;209:109659. 

1067 https://doi.org/10.1016/j.enbuild.2019.109659.

1068 [67] Hopfe CJ, Hensen JLM. Uncertainty analysis in building performance simulation for 

1069 design support. Energy Build 2011;43:2798–805. 

1070 https://doi.org/10.1016/j.enbuild.2011.06.034.

1071 [68] Zhang C, Jia Q-SS. A review of occupant behavior models in residential building: 

1072 Sensing, modeling, and prediction. Proc. 28th Chinese Control Decis. Conf. CCDC 

1073 2016, IEEE; 2016, p. 2032–7. https://doi.org/10.1109/CCDC.2016.7531318.



56

1074 [69] Fabi V, Andersen RV, Corgnati S, Olesen BW. Occupants’ window opening behaviour: 

1075 A literature review of factors influencing occupant behaviour and models. Build Environ 

1076 2012;58:188–98. https://doi.org/10.1016/j.buildenv.2012.07.009.

1077 [70] Gunay HBB, O’Brien W, Beausoleil-Morrison I. A critical review of observation 

1078 studies, modeling, and simulation of adaptive occupant behaviors in offices. Build 

1079 Environ 2013;70:31–47. https://doi.org/10.1016/j.buildenv.2013.07.020.

1080 [71] Abdallah M, Clevenger C, Golparvar-Fard M. Developing a Thermal Comfort Report 

1081 Card for Building. In: Chong, WO and Chang, J and Parrish, K and Berardi, U, editor. 

1082 Procedia Eng., vol. 118, 2015, p. 675–82. https://doi.org/10.1016/j.proeng.2015.08.502.

1083 [72] Langevin J, Wen J, Gurian PLPLPL. Simulating the human-building interaction: 

1084 Development and validation of an agent-based model of office occupant behaviors. 

1085 Build Environ 2015;88:27–45. https://doi.org/10.1016/j.buildenv.2014.11.037.

1086 [73] Haldi F, Robinson D. The impact of occupants’ behaviour on building energy demand. 

1087 J Build Perform Simul 2011;4:323–38. https://doi.org/10.1080/19401493.2011.558213.

1088 [74] Yan D Da, O’Brien W, Hong T, Feng X, Burak Gunay H, Tahmasebi F, et al. Occupant 

1089 behavior modeling for building performance simulation: Current state and future 

1090 challenges. Energy Build 2015;107:264–78. 

1091 https://doi.org/10.1016/j.enbuild.2015.08.032.

1092 [75] Andrews CJ, Yi D, Krogmann U, Senick JA, Wener RE. Designing buildings for real 

1093 occupants: An agent-based approach. IEEE Trans Syst Man, Cybern Part ASystems 

1094 Humans 2011;41:1077–91. https://doi.org/10.1109/TSMCA.2011.2116116.

1095 [76] Lee YS, Malkawi AM. Simulating multiple occupant behaviors in buildings: An agent-

1096 based modeling approach. Energy Build 2014;69:407–16. 



57

1097 https://doi.org/10.1016/j.enbuild.2013.11.020.

1098 [77] Berger C, Mahdavi A. Review of current trends in agent-based modeling of building 

1099 occupants for energy and indoor-environmental performance analysis. Build Environ 

1100 2020;173:106726. https://doi.org/10.1016/j.buildenv.2020.106726.

1101 [78] Mahdavi A, Tahmasebi F. The deployment-dependence of occupancy-related models in 

1102 building performance simulation. Energy Build 2016;117:313–20. 

1103 https://doi.org/10.1016/j.enbuild.2015.09.065.

1104 [79] Gaetani I, Hoes P-J, Hensen JLM. On the sensitivity to different aspects of occupant 

1105 behaviour for selecting the appropriate modelling complexity in building performance 

1106 predictions. J Build Perform Simul 2017;10:601–11. 

1107 https://doi.org/10.1080/19401493.2016.1260159.

1108 [80] Gaetani I, Hoes P-JPJ, Hensen JLMJLM. Estimating the influence of occupant behavior 

1109 on building heating and cooling energy in one simulation run. Appl Energy 

1110 2018;223:159–71. https://doi.org/10.1016/j.apenergy.2018.03.108.

1111 [81] Schweiker M, Carlucci S, Andersen RK, Dong B, O’Brien W. Occupancy and 

1112 Occupants’ Actions. Explor. Occupant Behav. Build., Cham: Springer International 

1113 Publishing; 2018, p. 7–38. https://doi.org/10.1007/978-3-319-61464-9_2.

1114 [82] Correia da Silva P, Leal V, Andersen M. Occupants’ behaviour in energy simulation 

1115 tools: lessons from a field monitoring campaign regarding lighting and shading control. 

1116 J Build Perform Simul 2015;8:338–58. https://doi.org/10.1080/19401493.2014.953583.

1117 [83] Yan D Da, Feng X, Jin Y, Wang C. The evaluation of stochastic occupant behavior 

1118 models from an application-oriented perspective: Using the lighting behavior model as 

1119 a case study. Energy Build 2018;176:151–62. 



58

1120 https://doi.org/10.1016/j.enbuild.2018.07.037.

1121 [84] Mahdavi A, Tahmasebi F. On the quality evaluation of behavioural models for building 

1122 performance applications. J Build Perform Simul 2017;10:554–64. 

1123 https://doi.org/10.1080/19401493.2016.1230148.

1124 [85] Zhu P, Gilbride M, Yan D, Sun H, Meek C. Lighting energy consumption in ultra-low 

1125 energy buildings: Using a simulation and measurement methodology to model occupant 

1126 behavior and lighting controls. Build Simul 2017;10:799–810. 

1127 https://doi.org/10.1007/s12273-017-0408-6.

1128 [86] Schweiker M, Haldi F, Shukuya M, Robinson D. Verification of stochastic models of 

1129 window opening behaviour for residential buildings. J Build Perform Simul 2012;5:55–

1130 74. https://doi.org/10.1080/19401493.2011.567422.

1131 [87] Rouleau J, Ramallo-González APAP, Gosselin L, Blanchet P, Natarajan S. A unified 

1132 probabilistic model for predicting occupancy, domestic hot water use and electricity use 

1133 in residential buildings. Energy Build 2019;202:109375. 

1134 https://doi.org/10.1016/j.enbuild.2019.109375.

1135 [88] Feng X, Yan D, Hong T. Simulation of occupancy in buildings. ENERGY Build 

1136 2015;87:348–59. https://doi.org/10.1016/j.enbuild.2014.11.067.

1137 [89] Hong T, Sun H, Chen Y, Taylor-Lange SC, Yan D. An occupant behavior modeling tool 

1138 for co-simulation. Energy Build 2016;117:272–81. 

1139 https://doi.org/10.1016/j.enbuild.2015.10.033.

1140 [90] Gunay HBB, O’Brien W, Beausoleil-Morrison I, Brien WO, Beausoleil-Morrison I, 

1141 Gunay HBB, et al. Implementation and comparison of existing occupant behaviour 

1142 models in EnergyPlus. J Build Perform Simul 2016;9:567–88. 



59

1143 https://doi.org/10.1080/19401493.2015.1102969.

1144 [91] Lindner AJM, Park S, Mitterhofer M. Determination of requirements on occupant 

1145 behavior models for the use in building performance simulations. Build Simul 

1146 2017;10:861–74. https://doi.org/10.1007/s12273-017-0394-8.

1147 [92] Blockwitz T, Otter M, Akesson J, Arnold M, Clauss C, Elmqvist H, et al. Functional 

1148 Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation 

1149 Models. Proc 9th Int Model Conf Sept 3-5, 2012, Munich, Ger 2012;76:173–84. 

1150 https://doi.org/10.3384/ecp12076173.

1151 [93] Hong T, D’Oca S, Taylor-Lange SC, Turner WJN, Chen Y, Corgnati SP. An ontology 

1152 to represent energy-related occupant behavior in buildings. Part II: Implementation of 

1153 the DNAS framework using an XML schema. Build Environ 2015;94:196–205. 

1154 https://doi.org/10.1016/j.buildenv.2015.08.006.

1155 [94] Rijal HB, Tuohy P, Humphreys MA, Nicol JF, Samuel A. Considering the impact of 

1156 situation-specific motivations and constraints in the design of naturally ventilated and 

1157 hybrid buildings. Archit Sci Rev 2012;55:35–48. 

1158 https://doi.org/10.1080/00038628.2011.641734.

1159 [95] Langevin J, Gurian PL, Wen J. Tracking the human-building interaction: A longitudinal 

1160 field study of occupant behavior in air-conditioned offices. J Environ Psychol 

1161 2015;42:94–115. https://doi.org/10.1016/j.jenvp.2015.01.007.

1162 [96] Mun SH, Kwak Y, Huh JH. Influence of complex occupant behavior models on cooling 

1163 energy usage analysis. Sustain 2021;13:1–20. https://doi.org/10.3390/su13031243.

1164 [97] Moghadam ST, Soncini F, Fabi V, Corgnati S. Simulating Window Behaviour of 

1165 Passive and Active Users. Energy Procedia 2015;78:621–6. 



60

1166 https://doi.org/10.1016/j.egypro.2015.11.040.

1167 [98] Parys W, Saelens D, Hens H. Coupling of dynamic building simulation with stochastic 

1168 modelling of occupant behaviour in offices – a review-based integrated methodology. J 

1169 Build Perform Simul 2011;4:339–58. https://doi.org/10.1080/19401493.2010.524711.

1170 [99] Belazi W, Ouldboukhitine S-ES-E, Chateauneuf A, Bouchair A. Experimental and 

1171 numerical study to evaluate the effect of thermostat settings on building energetic 

1172 demands during the heating and transition seasons. Appl Therm Eng 2019;152:35–51. 

1173 https://doi.org/10.1016/j.applthermaleng.2019.02.020.

1174 [100] Sun K, Hong T. A framework for quantifying the impact of occupant behavior on energy 

1175 savings of energy conservation measures. Energy Build 2017;146:383–96. 

1176 https://doi.org/10.1016/j.enbuild.2017.04.065.

1177 [101] Fabi V, Buso T, Andersen RKRK, Corgnati SPSP, Olesen BWBW. Robustness of 

1178 building design with respect to energy related occupant behaviour. Proc. BS 2013 13th 

1179 Conf. Int. Build. Perform. Simul. Assoc., Chambery: 2013, p. 1999–2006.

1180 [102] Yun GYGY, Tuohy P, Steemers K. Thermal performance of a naturally ventilated 

1181 building using a combined algorithm of probabilistic occupant behaviour and 

1182 deterministic heat and mass balance models. Energy Build 2009;41:489–99. 

1183 https://doi.org/10.1016/j.enbuild.2008.11.013.

1184

1185

1186 Occupant behaviour modelling and building design practice: 

1187 Towards bridging the gap between the academy and the industry



61

1188 Highlights

1189  The application of OB models in the building design process is reviewed.

1190  The role of OB models for a robust and resilient built environment is highlighted.

1191  The gap between the occupant behaviour research field and the end-users is mapped.

1192  A simulation framework for integrating OB models in the design practice is 

1193 proposed.

1194  Criteria for evaluating, choosing, and adapting OB models are given.
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