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This review analyses the influence of technologies and saving propensities of workers

and shareholders on economic growth, considering the [1] model. We show how

investing behaviors and production peculiarities condition the evolution of capital over

time. We highlight that fluctuations and multiple equilibria arise only when the elasticity

of substitution between capital and labor is lower than one. Moreover, only production

functions with variable elasticity of substitution between inputs are able to describe the

poverty trap phenomenon. Complex dynamics emerge when the difference between the

saving propensity of the two income groups is sufficiently high.
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1. INTRODUCTION

What explains changes on the gross domestic product (GDP) of a country? Can investments
increase it? Why is GDP stagnant in non-developed or developing economies? Neoclassical growth
theory provides a theoretical framework to explain the long run behavior of an economy by
considering three driving forces: capital, labor and technology. In his essay A Contribution to the
Theory of Economic Growth, the Nobel Prize-winning [2] rejected the so called Harrod-Domar
assumption (see [3, 4]) of fixed proportions between production’s inputs and supposed the
possibility of substitution between capital and labor. He discussed how the long run behavior
of physical capital is influenced by the structure of production functions (technologies) and the
income distribution. With his contribution, Solow founded the neoclassical growth theory: growth
models á la Solow describe the evolution over time of the studied variables and they can be
formalized in continuous as well as discrete time. In discrete time, i.e., t ∈ N, a production function
F is a law that relates the GDP of a nation at time t, Yt , to the amount of capital Kt and labor Lt
utilized by the economy as well as to the technological progress A, i.e., Yt : = AF(Kt , Lt). When
a production function satisfies Constant Returns to Scale (an increase in inputs determines an
increase in output of the same proportion) then the technology may be written in intensive from as
yt = Af (kt) where yt : =

Yt
Lt

and kt : =
Kt
Lt

are, respectively output and capital per worker at time t.
Solow assumed capital per capita evolves over time following the rule:

kt+1 =
1

1+ n

[

(1− δ)kt + sf (kt)
]

(1)
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where n ≥ 0 is the labor force growth rate, δ ∈ (0, 1] is the
depreciation rate of capital, and s ∈ (0, 1) is the saving rate.
Therefore, the amount of capital at time t + 1 depends on the
existent (and depreciated) capital at time t, on the saving behavior
of the nation (the amount of production that is invested) and
on the growth of the labor force. Although the model has been
widely used to analyse fundamental issues of macroeconomics,
it always predicts convergence to a steady state and, hence,
it precludes the possibility of cycles to emerge. Moreover, it
doesn’t take into account that workers and shareholders have
different saving propensities (see [5–7]). In order to analyse
what influences boom and bust periods and to study how
different saving behaviors affect growth, the Solow model has
been extended: when different savings behaviors for workers
and shareholders are considered, the aggregate saving rate is
non-constant and depends on income distribution, being given
by

s(kt) =
sww(kt)+ srπ(kt)

f (kt)
, (2)

where sw ∈ (0, 1) and sr ∈ (0, 1) are, respectively the saving
rates of workers and shareholders, w(kt) is the wage of a
worker and π(kt) is the income per worker of a shareholder.
As an immediate implication, even under the usual neoclassical
condition on production, the model may generate multiple
equilibria and fluctuations. Following previous considerations,
Böhm and Kaas [1] assumed different saving rates in a Solow’s
type model while considering a generic production function in
intensive form. In order to study the evolution of capital per
capita, they proposed the BK model

kt+1 = φ(kt) : =
1

1+ n

[

(1− δ)kt + sww(kt)+ srπ(kt)
]

(3)

that describes the growth dynamics of an economy over time
in the neoclassical framework, with different saving propensities
between workers and shareholders. Neoclassical growth theory
usually assumes that input factors are paid their marginal
product, so that

π(kt) : = ktf
′(kt) and w(kt) : = f (kt)− ktf

′(kt) . (4)

The production function f (kt) may be classified depending on the
elasticity of substitution (ES) between capital and labor, usually
denoted by σ . The ES measures the ease with which inputs may
be substituted in production while preserving a given level of
output. For any continuous and twice differentiable production
function, the elasticity of substitution has been defined by Sato
and Hoffman [8] as

σ = −
f ′(kt)

[

f (kt)− ktf
′(kt)

]

ktf (kt)f ′′(kt)
. (5)

A linear production function implies perfect substitution
between capital and labor, consequently, σ = +∞. In contrast,
when the production function has fixed proportions, input

factors are complements and not substitutes, hence, σ = 0.
When σ is constant for any combination of the input factors,
the technology is said to have Constant Elasticity of Substitution
(CES). Conversely, when the ratio between capital and labor
influences the value of σ , the technology is said with Variable
Elasticity of Substitution (VES). The long run behavior of an
economy described by the BK model is qualitatively determined
by the saving propensities of worker and shareholders as well as
by the implied production function (whether CES or VES). In
this work, we review the literature about Constant and Variable
ES production functions as ingredients of the BKmodel and their
influence on the evolution of an economy over time. The aim is to
understand how fluctuations or complex evolutions of capital per
capita are generated and the impact of the implied technologies
on the different evolutions of non-developed, developing and
developed countries. The paper is structured as follows. Section 2
discusses the influence of different saving propensities on growth
when the BK model is considered, and presents findings about
the complex dynamics emerging from the BKmodel for a generic
production function satisfying weak Inada conditions. Section
3 analyse the influences of different technologies on growth
dynamics, and a summary about the influence of each considered
factor is given in section 4. Section 5 concludes the work.

2. AN OVERVIEW ON THE BK MODEL

We initially review the BK model in its original form without
specifying the implied technology and, consequently, while
considering a generic production function f (kt). Recall that the
BK model is given by

kt+1 = φ(kt) : =
1

1+ n

[

(1− δ)kt + sww(kt)+ srπ(kt)
]

(6)

and its formulation implies that capital per capita evolves over
time depending on technology f (kt), on the labor force growth
rate n ≥ 0, and on the saving propensities of workers and
shareholder, respectively sw ∈ (0, 1) and sr ∈ (0, 1).

2.1. Bounds of Growth
Notice that macroeconomic theories traditionally assume higher
values of saving propensity for shareholder relative to that of
workers (see [7]). Therefore, in this section, we consider the
economically meaningful condition sr > sw

1. It is worthwhile to
report the results obtained by Grassetti et al. [9] concerning the
influence of saving behaviors on the evolution over time of capital
per capita. In particular, the authors provide upper and lower
bounds for growth and analyse how different economic policies
that condition saving propensities would modify the evolution of
capital for non-developed, developing and developed countries.
The basic reasoning is the following. Consider the functions

φw(kt) : =
1

1+ n

[

(1− δ)kt + swf (kt)
]

(7)

1See [9] for results with no restrictions on parameter values.
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and

φ̂w,r(kt) : = φw(kt)+
sr − sw

1+ n
k̂f ′(k̂) (8)

where k̂ is the value of capital per capita for which the capital
income π reaches its maximum. When the used technology is
described by a non-linear function, an explicit analysis of the
dynamics generated by map φ (given by Equation 6) may be
difficult and equilibria as well as growth paths may not be given
explicitly. Functions φ̂w,r(kt) and φw(kt) are clearly easier to
analyse than the initial φ. Since we assume the savings rate of
shareholders is higher than that of workers, the upper bound of
the capital per capita level, at any time, is given by φ̂w,r(kt) while
the lower bound is given by φw(kt).

Thanks to this simple intuition on bounds (see Figure 1 for a
graphical representation), a good approximation can be given for
the evolution of capital per capita. Moreover, economic policies
designed to increase the lower level the economy can reach
during fluctuations can be discussed: the lower bound of the
capital accumulation depends only on the saving propensity of
workers while the saving behavior of shareholders influences the
maximum feasible growth. Since φw(kt) is the lower bound of

GDP, and given that ∂φw(kt)
∂sw

> 0 and ∀kt ≥ 0, a higher saving rate
of workers implies a higher bound from below for the economy.
Therefore, an economic policy intended to increase the saving
behavior of workersmay increase theminimum level an economy
may reach during fluctuations. Consider now the upper bound
φ̂w,r(kt). The first derivative with respect to sw may be written as

∂φ̂w,r(kt)

∂sw
=

f (kt)− k̂f ′(k̂)

1+ n
(9)

where, by definition, f (kt) is increasing and k̂ is the level of capital
for which the capital income reaches its maximum. It follows that

FIGURE 1 | Map φ (in blue) and its bounds φ̂w,r (kt ) and φw (kt ).

the level of production influences this bound. Precisely, when the
maximum income of a shareholder is higher than the production
per capita level, the upper bound of the economy is negatively
correlated with the saving behavior of workers and it is positively
correlated otherwise. Since GDP is a measure of development for
a nation, it is possible to conclude that an increase in sw would
increase the upper bound of countries in which production is
sufficiently high, while it would decrease that of non-developed
economies. In order to raise both bounds of the growth path for
a developed economy, a policy maker could increase the saving
propensity of workers. The same economic policy directed at
a developing country would decrease the range of oscillations
during boom and bust periods.

2.2. Weak Inada Conditions in BK Model
In their work, Böhm and Kaas [1] relaxed the assumption
on production and gave necessary conditions for a generic
production function satisfying the weak Inada conditions (see
[10]) to generate chaos. Weak Inada conditions for a generic
production function f (kt) in intensive form are given by

lim
kt→0

f (kt)

kt
= ∞ and lim

kt→∞

f (kt)

kt
= 0 (10)

and they imply unrestricted productivity of capital. Considering
this type of technology, the authors gave necessary conditions for
the existence of cycles and chaotic dynamics, as summarized in
the following Remark.

Remark 2.1. Consider a production function f : R+ → R+,
mapping capital per worker kt into output per worker yt , satisfying
the weak Inada condition given by Equation (10). Then the BK
model (Equation 6) may generate cyclical behavior iff

sr > sw or Ef ′ (kt) : =
ktf

′′(kt)

f ′(kt)
< −1 .

Moreover, ∀sw = sr − ǫ , ǫ > 0, ∃f such that map (Equation 6)
generates topological chaos. (For proof see [1].)

Conditions given in Remark 2.1 are related to income
distribution: for a production function satisfying (Equation 10),
capital income ktf

′(kt) decreases with increasing capital stock
when Ef ′ (kt) < −1. Cyclical behavior may be generated only
if shareholders save more than workers or if the curvature of
f is sufficiently small in absolute value (notice that the Ef ′ (kt)
measures the curvature of the production function f ). Lastly,
given previous assumptions, complex dynamics arise when the
saving behavior of workers and shareholders are only slightly
different. In order to asses the existence of complex behavior in
growth dynamics, a wider range of production functions have
been studied in the BK model, as we report in next section.

3. TECHNOLOGIES, ELASTICITY OF
SUBSTITUTION AND GROWTH DYNAMICS

So far we have considered how the changes in saving behaviors
of workers and shareholders affect boundaries of growth, while
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considering a generic production function2. The next step is
to analyse how different technologies influences the economic
growth of countries.

3.1. BK Model With CES Production
Function
The dynamics of the BK model with CES production function
have been studied in Brianzoni et al. [11] and Brianzoni et al. [12]
by considering the function

fc(kt) : = (1+ k
ρ
t )

1
ρ (11)

where ρ ∈ (−∞, 1), ρ 6= 0 is the parameter related to the
elasticity of substitution, so that σ = 1

1−ρ
. Notice that for this

production function, the weak Inada conditions are not satisfied.
The authors found that elasticity of substitution between capital
and labor σ is related to properties of the capital income. When
ρ > 0, it has σ > 1 and the capital income is monotonic.
In contrast, when ρ < 0, it has σ < 1 and the monotonicity
property of the capital income is not preserved. For ES higher
than one, only simple dynamics exist and they depend on the
saving behavior of shareholders: when sr is sufficiently small, a
stable fixed point emerges and the trajectories approaching it
are monotonic. Notice that, in this case, the saving behaviors of
workers and shareholders do not influence the stability of the
equilibrium: no fluctuation may arise.

When the ES falls below one, up to two stable fixed points
may exist and a poverty trap3 may emerge. Moreover, when
shareholders save more than workers fluctuations may arise
and the system becomes more complex as the elasticity of
substitution decreases. Necessary conditions on parameters for
chaotic behaviors to emerge are summarized in the following
Remark.

Remark 3.1. Consider the CES production function as defined in
Equation (11). Then the BK model (Equation 6) may generate
complex dynamics iff

sr > sw ∧ ρ ∈

(

−∞,
−sw

sr − sw

)

.

2Notice that neoclassical growth theory considers production functions that satisfy

Constant Returns to Scale (CRS), i.e., F(µKt ,µLt) = µF(Kt , Lt), ∀µ > 0.

Moreover, it assumes positive and diminishing marginal products of capital and

labor so that ∂F(Kt ,Lt )
∂Kt

> 0, ∂2F(Kt ,Lt )

∂K2
t

< 0, ∂F(Kt ,Lt )
∂Lt

> 0, ∂2F(Kt ,Lt )

∂L2t
< 0 and it

requires fulfillment of the Inada conditions (see [10]) given by

limKt→∞
∂F(Kt ,Lt )

∂Kt
= limLt→∞

∂F(Kt ,Lt )
∂Lt

= 0 ,

limKt→0
∂F(Kt ,Lt )

∂Kt
= limLt→0

∂F(Kt ,Lt )
∂Lt

= ∞ .

Notice that Inada conditions imply positive and decreasing marginal returns of

inputs. An example of technology verifying the previous conditions is the Cobb-

Douglas (CD) production function, which can be written in intensive form as

fcd(kt) : = kα
t , where α ∈ (0, 1) is the output elasticity of capital. This technology

is characterized by constant elasticity of substitution equal to one, i.e., σ = 1.

When the CD production function is considered in Equation (6), almost all initial

conditions produce trajectories that monotonically converge to the unique positive

fixed point and no fluctuations may be generated.
3The case in which an initial condition k0 > 0 generates a trajectory converging to

the equilibria characterized by 0 capital per capita.

(For proof see [11])

Notice that, due to the relation between ρ and σ , the second
condition in Remark 3.1 may be also written as σ <

sr−sw
sr

from
which follows an elasticity of substitution between capital and
labor lower than one. In the left panel of Figure 2 a boom and
bust period is visible, while the right panel shows a bifurcation
diagram proposed by Brianzoni et al. [11]: when σ is sufficiently
low, period doubling and period halving cascades exist (see [13]).
Recall that a special case of production function with constant
elasticity of substitution is the Leontief technology (see [14]), that
assumes capital and labor are not replaceable, from which σ = 0.
Tramontana et al. [15] studied the BK model while considering
the Leontief production function given by

fL(kt) : =

{

akt + c k ≤ b
a

b+ c k > b
a

(12)

where a, b and c are positive. The authors found that complex
dynamics may emerge only if the condition on parameters
summarized in the following Remark are verified.

Remark 3.2. Consider the Leontief production function as defined
in Equation (12). Then the BK model (Equation 6) may generate
complex dynamics iff

sr > sw ∧ sr >
n+ δ

a
.

(For proof see [15])

From Remarks 3.1 and 3.2 it emerges that, when a production
function with constant elasticity of substitution is considered
in the BK model, fluctuations may emerge in the economy
only if the ES is lower than one and the saving propensity of
shareholders is higher than that of workers. In the following
we report conditions on parameters for cyclical and chaotic
behaviors when considering technologies belonging to the class
of VES production functions.

3.2. BK Model With VES Production
Function
The interest on VES production functions is driven by the results
of empirical studies (see [16, 17]) that prove the validity of
this technology in representing reality. Recall that with VES
production functions the ES moves depending on changes in the
economy’s per capita capital level (for a detailed analysis of the
influence of ES on growth see [18]).

3.2.1. Revankar Production Function
In order to analyse how the VES technology influences long
run behavior of an economy we report the results obtained
by Brianzoni et al. [19] considering the Revankar production
function

fr(kt) : = Akα
t (1+ αβkt)

1−α (13)

whereA > 0measures the technological progress while α ∈ (0, 1)
and β ≥ − 1

k
refer to the output elasticity of inputs. Notice that
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FIGURE 2 | (Left) Time-line of BK model with fc production function for ρ < 0 and sr > sw. (Right) Bifurcation diagram w.t.r. ρ (parameter related to the elasticity of

substitution).

the production function does not verify one of the weak Inada

conditions, i.e., limkt→∞
fr(kt)
kt

6= 0. Following the definition

given in Sato andHoffman [8], the ES of the Revankar technology
is the linear function

σ (kt) = 1+ βkt (14)

and it varies depending on kt . As for the CES production
function, when σ > 1 only simple dynamics may arise and
the saving propensity of shareholders influences them: a stable
long run equilibrium exists when sr is sufficiently small, and
unbounded growth is observed otherwise. When the ES falls
below one, up to three attractors may exist and fluctuation arises
when the ES decreases. Necessary conditions on parameters for
chaotic behaviors to emerge are summarized in the following
Remark.

Remark 3.3. Consider the Revankar production function as
defined in Equation (13). Then the BK model (Equation 6) may
generate complex dynamics iff

sr ≥ sw ∧ b ∈ [−1, 0) .

(For proof see [19])

Notice that condition b ∈ [−1, 0) implies σ < 1, so complex
behavior may arise only when the ES is smaller than one.

3.2.2. Sigmoidal Production Function
Revankar technology satisfies limkt→0 f

′
r (kt) = +∞, that is,

infinitely high returns may be reached with a small investment
on capital when no physical capital exist. This hypothesis is
unrealistic since, for production, a previous investment on
infrastructures, machineries, as well as know-how is needed.
Driven by this consideration, Brianzoni et al. [20] studies the BK
model with the sigmoidal production function

fs(kt) : =
αk

ρ
t

1+ βk
ρ
t

(15)

with α and β positive and ρ ≥ 2. The ES for the fs technology is
given by

σ (kt) =
βρk

ρ
t

ρ(1− βk
ρ
t )− (1+ βk

ρ
t )

+ 1 (16)

and it depends on kt , so the fs technology belongs to the class
of VES production functions. Moreover, this technology does
not verify the weak Inada conditions. In this case a fixed point
characterized by zero capital per capita exists and hence the
considered production function it is able to explain the poverty
trap effect. Furthermore, the authors found that a sufficiently
low ES is needed for cycles or chaos to be observed. Necessary
conditions for fluctuations to emerge are summarized in the
following Remark.

Remark 3.4. Consider the sigmoidal production function as
defined in Equation (15). Then a ρ̄ > 0 exists such that the BK
model (Equation 6) may generate complex dynamics iff

sr > sw ∧ ρ > ρ̄ .

(For proof see [20])

Notice that the elasticity of substitution decreases as ρ increases,
so complex behavior may arise only when the ES is sufficiently
low, i.e., σ < σ̄ , where σ̄ is the elasticity of substitution for
ρ = ρ̄.

3.2.3. Shifted Cobb-Douglas Production Function
Although the sigmoidal production function fs does not allow
infinitely high returns, it still admits production when the capital
per capita approaches zero. Grassetti et al. [21] argues that a
minimum level of capital is needed before making returns and
proposed the Shifted Cobb-Douglas (SCD) production function,
compared to the sigmoidal in Figure 3.

The SCD technology is given by

fSCD(kt) =

{

0 0 ≤ kt ≤ kc

A(kt − kc)
α kt > kc

(17)
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where A > 0 is the total productivity factor, 0 < α < 1 is the
output elasticity of capital and kc ≥ 0 the minimum capital per
capita initial level needed for production. In this case the ES is

σ (kt) =

{

+∞ 0 < kt < kc

1− kc
(1−α)kt

kt > kc
.

Notice that σ is always smaller than one when output is positive,
and it varies depending on the level of capital per capita. When
the SCD function is considered, fluctuations may always emerge
(notice that σ < 1 ∀kt > kc) and, once again, multistability
phenomena exist when shareholders save more than workers.
Distinct from all previous cases, up to three attractors may exist.

3.2.4. Kadyiala Production Function
VES production functions considered in previous works show
monotone elasticity of substitution between capital and labor.
Kadyiala [22] noted that σ should increase (decrease) as the
input ratio k tends to a critical value and decrease (increase)
thereafter, making the ES symmetric for capital and labor. The
author suggested a new production function to fix this issue. The
[22] technology is given by

fk(kt) : = A
(

ak
2ρ
t + 2bk

ρ
t + c

)
1
2ρ

(18)

where a, b and c are non-negative with a+2b+ c = 1, A < 0 and
ρ ≤ 1

2 , ρ 6= 0. For this production function the ES is given by

σ (kt) =
1

1− ρ + R
, (19)

where R = −ρ(ac−b2)

(ak
−ρ
t +b)(b+ck

ρ
t )
. Notice that σ ≥ 1 if and only if ρ > 0.

When the Kadyiala technology is considered, fluctuations and
chaotic dynamics may emerge depending on parameters values,
as summarized in the following Remark.

Remark 3.5. Consider the Kadyiala production function as
defined in Equation (18). Then the BK model (Equation 6) may
generate complex dynamics iff

n+ δ

Aa
1
2ρ

> sr > sw ∧ ρ < 0 .

(For proof see [23])

Notice that ρ > 0 implies σ < 1, so once again fluctuations
may arise if and only if the elasticity of substitution is lower
than one, and the saving behavior of shareholders influences
the evolution of capital: boom and bust periods may arise only
if shareholders do not invest enough. Finally the authors find
that multistability phenomena may emerge when the elasticity of
substitution between production factors is lower than one.

4. FACTORS DETERMINING GROWTH
EQUILIBRIA AND FLUCTUATIONS

In the previous sections we analyzed the role played by
technologies and by the saving propensities of workers and
shareholders (respectively sw and sr) on the evolution of
capital per capita, when the BK model ([1]) is considered.
The main findings of each contribution on the existence
of fixed points for the economy are summarized in
Table 1.

TABLE 1 | steady states and multistability phenomena in BK model.

Technology Fixed points σ ≥ 1 Fixed points σ < 1 Multistability

CES 1 at most 2 at most no

Leontief - 2 at most yes

Revankar 1 or 2 2 or 4 yes

Sigmoidal from 1 up to 3 from 1 up to 3 yes

Shifted Cobb-Douglas 1 from 1 up to 4 yes

Kadyiala 1 at most up to 4 yes

TABLE 2 | necessary conditions for complex dynamics.

Technology Necessary conditions

Production function satisfying weak Inada

conditions

sr > sw ∨ Ef ′ < −1

CES sr > sw ∧ σ <
sr−sw
sr

< 1

Leontief sr > sw

Revankar sr ≥ sw ∧ σ < 1

Sigmoidal sr > sw ∧ σ < σ̄

Shifted Cobb-Douglas σ < 1

Kadyiala sr > sw ∧ σ < 1

FIGURE 3 | (A) Sigmoidal production function. (B) Shifted Cobb-Douglas production function.
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We recall that the saving propensity of workers influences
the lower bound that the economy may reach during boom
and bust periods (the higher sw, the higher the level of capital
per capita in bust periods),and that an increment on sw would
increase the upper bound of growth for developed economies
while decreasing that of non developed economies. Conversely,
the saving behavior of shareholders influences the maximum
feasible growth (the higher sr , the higher the upper bound of
capital per capita). It is worthwhile to highlight that only the
saving propensity of shareholders influences the existence and
stability of equilibria: when the ES is higher than one, regardless
of the considered technology, unbounded growth is possible
when shareholders invest enough. Moreover, when shareholders
save more than workers multiple attractors emerge. Concerning
the influence of elasticity of substitution on growth, it has
been found that regardless of the considered technology, the
ES determines both existence and stability of equilibria: only
for σ < 1 multistability phenomena may exist (and hence the

model is able to describe the evolution of different economies
over time) and fluctuation may arise. It is worth highlighting
that changes in the considered technology affect the existence of
poverty trap and the number of equilibria, but they do not entail
new conditions on cycles and more complex dynamics emerging.
Necessary conditions on sr , sw and σ for fluctuations, for the
analyzed technologies are summarized in Table 2.

For all the considered technologies, regardless of the
fulfillment of weak Inada conditions, complex behaviors may
emerge only when the elasticity of substitution is sufficiently
low. Notice that when workers save more than shareholders
only simple dynamics are possible, except for the case in which
the Shifted Cobb-Douglas production function is considered.
Moreover, the saving behavior of shareholders influences the
long run evolution of an economy described by the BK model.
Even though similar conditions are given for all the production
functions, it is interesting to analyse how the evolution over time
differs, when different technologies are considered. To this aim,

FIGURE 4 | Bifurcation diagram w.r.t. 1s for BK model considering CES (blue), Leontief (green), sigmoidal (red), Revankar (yellow), SCD (cyan), and Kadyiala

(magenta) technologies.
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in Figure 4 we show the bifurcation diagram for the BK model
when considering the cited technologies.

We assume1s = sr− sw and, for all the production functions,
we fix the same values of the depreciation rate of capital (δ = 0.1),
the labor force growth rate (n = 0.15), the saving behavior
of workers (sw = 0.01), the total productivity factor (A =

1) and the output elasticity of capital (a = α = 0.4). We
then analyse the bifurcation diagram for all the maps starting
from the initial condition k0 = 1. Recall that when the CES
(Equation 11), the sigmoidal (Equation 15) or the Kadyiala
(Equation 18) production functions are considered in the BK
model given by Equation (6), the final model is a continuous
and smooth map, while it is piecewise-smooth when considering
the SCD (Equation 17) or the Revankar (Equation 13) (only for
b ∈ [−1, 0), see [19]) production functions. Lastly, the final
map is piecewise-linear when adopting the Leontief technology
given in Equation (12). In blue is shown the bifurcation diagram
for the CES production function: period doubling and period
halving bifurcations (for period halving bifurcations see [13])
emerge as the difference between saving behaviors increases,
and chaotic dynamics exist. A period doubling route to chaos
(without period halving bifurcations) is clearly visible also
with sigmoidal production function (red line) as well as for
the Kadyiala one (magenta line). This is in contrast with the
Revankar technology (yellow line), where a border collision
bifurcation (BCB) interrupts a sequence of flip bifurcations (for
BCB in economic models see [24–26]) when 1s is sufficiently
high. When considering the SCD technology (cyan line), a BCB
terminates the poverty trap and a complex attractor immediately
thereafter. The bifurcation diagram for Leontief technology is
depicted in green: a sequence of BCBs occurs and cycles of

different orders emerge. It is worthwhile noting that complex
dynamics emerge when the difference between the saving rates of
the two income group are sufficiently high, and the poverty trap
phenomenon is always seen for VES production functions when
workers and shareholders have a similar saving behavior.

5. CONCLUSIONS

In this review on growth theory we analyse the influence of
technologies and saving propensities of workers and shareholders
on economic growth, considering the BK model. Our objective
was to show how investing behaviors and production peculiarities
condition the evolution of capital over time. We focused on the
existence of multistability phenomena that would explain why
GDP increases over time in developed economies while being
mainly stagnant in developing countries. We found that both
fluctuations and multiple equilibria may arise only when the
elasticity of substitution is lower than one. Savings behaviors
of workers and shareholders influence stability of equilibria
while only VES production functions are able to describe the
poverty trap without any restriction on other conditions. It
has been shown that, regardless of the considered technology,
complex dynamics emerge when the difference between the
saving propensity of workers and shareholders is sufficiently high
while a poverty trap may exist when the two income groups have
similar saving behaviors.
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