
A Malware Evasion Technique for Auditing
Android Anti-Malware Solutions

Samrah Mirza§, Haider Abbas∗, Waleed Bin Shahid∗, Narmeen Shafqat∗, Mariagrazia Fugini‡,
Zafar Iqbal∗ and Zia Muhammad∗

§∗Department of Information Security, National University of Sciences and Technology, Islamabad, Pakistan
‡Professor of Computer Engineering at Politecnico di Milano, Italy

Email: ∗{haider, waleed.shahid, narmeen shafqat, zafar.ncsael, zia.ncsael}@mcs.edu.pk
Email: §samrahsamrah.bete50@students.mcs.edu.pk

Email: ‡mariagrazia.fugini@polimi.it

Abstract—In the past few years, Android security is enhanced
and state-of-the-art anti-malware tools have been introduced
to counter Android malware. These tools use both static and
dynamic analysis techniques to detect malicious applications.
Despite these, the attack surface against Android phones has
risen exponentially and malware detection tools are failed to
counter sophisticated threats. Therefore, it is a need to audit
and evaluate Anti Malware Solutions (AMTs). In our research,
we have analyzed various Android malware evasion techniques,
along with their pros and cons. Moreover, we conducted a detailed
comparison of existing anti-malware tools and measured their
efficacy against the discussed evasion techniques. Finally, a more
sophisticated anti-malware evasion technique is proposed that
uses exhaustive obfuscation and remote code execution to audit
static and dynamic detection capabilities of AMTs. The proposed
technique is practically validated and results prove that it evades
all known anti-malware solutions. This technique can be utilized
by anti-malware solution providers for making their products
more resilient and powerful.

Index Terms—Antivirus Evasion, Android Security, Malware
Analysis, Code Obfuscation, Anti-malware Tools (AMTs)

I. INTRODUCTION

Android Operating System (OS) is among one of the
most widely used platforms, deployed on over 2 billion
smartphones. This extensive usage of Android OS and its
open-source nature [1] have made it a lucrative target for
hackers and cyber offenders to spread malicious applications
and compromise the confidentiality, integrity, and availability
of victims’ data. According to the Check Point researchers,
mobile malware have become doubled as compared to their
count in 2018 [2]. An average of 23,795 malicious mobile
applications is estimated to be blocked on mobile devices each
day. Although, to enhance security and user experience, annual
Android updates are released. However, these updates are not
directed to all Android devices but, these are specific to mobile
device vendor, phone model, and users’ geographic location.
Therefore, only 20 percent of Android devices run updated
versions. This alarming situation makes it easier for attackers
to compromise outdated Android devices.

Malware authors deploy several sophisticated evasion tech-
niques like packing, obfuscation, steganography, and code
reuse to create malware variants that can evade antivirus and
other security solutions [3]. This kind of devious malware

tends to stay hidden while successfully carrying out its desired
illicit actions [4]. Therefore, there is a dire need to analyze
various antivirus evasion and bypassing techniques in order
to critically evaluate and improve the detection efficacy of
the current state-of-the-art Anti Malware Tools (AMTs). The
existing malware repositories such as Genome [5] and Drebin
[6] are outdated, anti-malware tools trained on these data-sets
are unable to counter contemporary malware. The proposed
research fills this gap by reviewing existing malware evasion
techniques with a prime focus on the Android OS and uses this
study to propose a holistic harmonized framework for auditing
anti-malware tools.

The paper is organized in the following way. Section. II
gives a brief overview of Android OS’s security. Section.
III gives an overview and comparison of various malware
evasion techniques. Section. IV provides a discussion on
why anti-malware tools fail to detect sophisticated malware.
Section. V covers performance analysis, testing and validation
of proposed methodology. Section. VI presents an evasion
technique for Android malware. Section VII validates the
proposed methodology through a practical application. Lastly,
Section. VIII concludes the paper.

II. BACKGROUND

This section explains the Android security environment,
vulnerabilities, and tools for the detection of contemporary
malware.

A. Android Security Environment

In order to get an insight into the working of AMTs,
essential components of the Android security model are briefly
described in this subsection. The Android security model
is based on application sandboxing [7]. Android achieves
application sandboxing through Linux User IDs (UIDs) to iso-
lates running applications from other applications. According
to the Android’s permission model, sandboxed applications
communicate with each other, and the system uses intent
filters to control the permissions explicitly declared in the
AndroidManifest.xml file.



B. Android Security Vulnerabilities

The monthly Android Security Bulletin maintains a database
of evolving Android-based vulnerabilities and respective secu-
rity remediation [7]. The vulnerabilities have been divided into
following categories. Table. I lists some of the severe security
vulnerabilities recently found in Android’s framework.

TABLE I: CVE Android Security Bulletin, The Year 2019.

Month CVE Description Type
Mar 2019 CVE-

2019-
2004

The presence of uninitialized data in
the events of InputTransport.cpp results
in information disclosure without addi-
tional execution privileges.

ID

Apr 2019 CVE-
2019-
2026

A possible escape from the Setup Wiz-
ard due to missing permission check in
Editor.java can cause locale EOP with-
out requiring any additional execution
privileges and user interaction.

RCE

Jun 2019 CVE-
2019-
2090

Due to a missing permission check in
PackageManagerService.java, a possi-
ble permission bypass leading to a lo-
cale escalation of privilege.

EOP

Jul 2019 CVE-
2019-
2104

A framework vulnerability that can en-
able a local malicious application to
gain access to added permissions by ex-
ploiting user interaction requirements.

RCE

• Information Disclosure (ID): These vulnerabilities are
employed to gain valuable information regarding system
or user, thereby causing privacy issues and information
leakage.

• Remote Code Execution (RCE): It allows an attacker to
remotely execute commands or code to targeted devices.

• Elevation of Privilege (EoP): Attacker employs to gain
access to protected services/ resources by exploiting
vulnerabilities in OS or applications.

C. Anti-malware tools for Android

Android anti-malware tools use both static and dynamic
techniques to analyze malware. Both of these methods have
some pros and cons. For example, in the static analysis,
applications are reverse engineered, and resultant source code
is analyzed using tools like Apktool [8] and Dex2Jar [9].
Despite being a robust technique, Static Analysis cannot detect
an obfuscated or zero-day malware. On the contrary, the
dynamic analysis evaluates malicious applications’ behavior
after their execution and, hence, detects them successfully.
Table. II lists various known anti-malware solutions that are
used to detect malware in Android devices. The table is
designed to distinguish their feature set and protection score
given by AV-TEST (an organization that evaluates antivirus
and anti-malware solutions).

III. LITERATURE REVIEW

We find a relatively limited amount of associated literature
that is specifically relevant to our domain due to our work’s
novelty. Several researchers have called various aspects of
primary malware evasion strategies that are included in this
section. Android malware can be categorized based on evasion
techniques, core functionality and behaviour such as, trojan,

TABLE II: ANDROID SECURITY APPLICATIONS.

Security
Application

Features Protection
score (6.0)

Norton Mobile
Security 4

Proactive Malware blocker, Mal-
ware protection, Anti-theft, Wi-Fi
security.

6.0

BullGuard
Mobile
Security 14.0

Antivirus, Anti-theft, Backup, Se-
curity Manager.

4.5

Trend Micro
Mobile
Security 10.1

Malware Detection, Phishing
sites, Privacy Scanner for
Facebook.

6.0

Avast Mobile
Security 6.11

Antivirus protection, Web shield
for malicious URLs, Firewall, ap-
plication scanner.

5.5

Sophos Mobile
Security 8.6

Antivirus, Web filtering, Privacy
and Security advice.

6.0

Avira Antivirus
Security 5.4

Antivirus, Antispyware, Anti-
theft, recovery tools.

6.0

AVG Antivirus
Free 6.11

Antivirus, Photo vault, Camera
and Trap feature.

5.5

Kaspersky
Internet 11.18
Security

Privacy Protection, Encryption,
Anti-Spam, Anti-malware, Fire-
wall.

6.0

McAfee 5.0 Backup, and Privacy Data. 6.0

adware, spyware, privacy leaker, root exploit and credential
stealer. Table. III gives a quick overview of malware and their
evasion techniques along with their pros and cons. Marpaung,
Sain, and Lee [10], in their research, have outlined primary
evasion techniques such as:

A. Obfuscation

Obfuscation is a process that makes it hard to understand
textual and binary data. It deceives simple methods of string-
matching used in signature-based detection by concealing the
attack payload of malware.

B. Code Reuse

This exploits legitimate system requests by executing ar-
bitrary code on a compromised machine. An attacker directs
control flow through existing code with a malicious result thus
avoids the need for explicit attack code injection on the stack.

C. Steganography

It refers to hiding the data in another medium like an image,
without incurring noticeable changes.

D. Packing

A DEX (Dalvik Executable) file is an executable file saved
in a format that contains compiled code written for Android.
The packing method encrypts malicious DEX files using
an Executable and Linkable Format (ELF) binary that only
gets decrypted in the memory at runtime and executed using
DexClassLoader.

E. Cryptography

It makes the code unreadable by applying encryption algo-
rithms such as polymorphic XOR. This section reviews these
techniques with respect to their (i) pros and cons, (ii) evasion



TABLE III: SUMMARY OF EVASION TECHNIQUES ON ANDROID.

Malware Type Evasion Technique(s) Pros Cons
Privacy leaker Obfuscation (both control and data

based).
Maximizes no. of ways to attack, min-
imizes detection.

Only bypass dynamic analysis based
AMTs.

Dynamically assembled
and loaded malware

Mystique-S: a service-oriented tool. Mystique-S developed malware that are
undetectable in case of offline detection.

Dynamic analysis tools can detect dy-
namically loaded malicious code.

Malicious Android ap-
plication (APKs)

Genetic Programming (GP). Most successful AMTs can be evaded
via GP’s attack patterns.

Application limited to few malware, ig-
nores dynamically loaded code.

Root exploit, informa-
tion exfiltration, SMS
Trojan, dynamic code
loading

Repacking, renaming identifier, package
name, disassembling reassembling, call
indirections, data encoding/ reordering,
junk code insertion, byte code encryp-
tion, and composite transformations.

This is efficient, and it is capable to
vade almost all anti-malware tools that
are available in market.

Only thwart static analysis, and not
dynamic analysis, Ignores code-level
transformations.

Credentials stealer, ad-
ware, spyware

Repackaging, and obfuscation. Can evade anti-malware tools with little
effort.

Less comprehensive transformations,
and lacks composite obfuscation.

Genome Malware
dataset (AAMO)

Obfuscation (Android specific, simple/
advanced control-flow, resource renam-
ing/ encryption).

Uses sophisticated/ automated obfus-
cation techniques to evade top AMTs
(Avast, Norton), is open source.

Only evades scan-time static analysis.

Spyware, ransomware,
banking Trojan

Code reordering based obfuscation
techniques: Method overloading, and
opaque predicate.

Decreased detection rate by 50%, em-
ploys updated malware samples that re-
tains its malicious operation.

Evades signature- based detection only
and uses code reordering obfuscation
technique only.

Data extortion, root ex-
ploits, bot activity, and
SMS Trojan

RealDroid: Static, dynamic and hyper-
visor level heuristics disguise.

AMTs failed to infer malicious behavior
of new malware. Also, no tool detected
VM evasion.

Analysis services lacking support for
native execution couldn’t be evaded.

Genome malware
dataset

Fast Fourier Transform, signal
steganography-based evasion.

Exploits malware scan and engine up-
date’s null-protection window.

Lack of new malware dataset used for
evasion.

Trojan: Android/ Op-
Fake

Monitoring of interaction patterns,
Scan-code, Device ID and Name,
Motion Events to differentiate human
user and tool.

Provides malware protection even when
analyzed on a bare-metal platform. De-
tect AMTs on the target device by inte-
grated with Android malware - evades
dynamic runtime analysis too.

The limited scope doesn’t incorporate
static analysis evasion.

OpFake alike Malicious
application from Andro
MalShare

Obfuscation (using ProGuard), Cryp-
tography (XOR), Steganography and
their blend along with dynamic code
loading and reflection.

Easy and effective evasion approach.
It also provides metrics for evaluating
AMTs against new Android malware. It
evades both static and dynamic analysis.

The approach couldn’t be evaluated as
experiments carried out using a single
malicious APK only.

Malicious Android Ap-
plications

AngeCryption: encrypt APK to valid
PNG and embed into a benign-looking
wrapping APK.

Embeds undetectable, valid, and
runnable bytecode in a benign-looking
APK which evades static analysis.

Works only on Android 4.4.2.

Malicious Android Ap-
plications

AVPass: automatically bypasses AMTs
using both obfuscation and inferring de-
tection rules for AMTs.

Bypasses AMTs and gives a good in-
sight into the detection rules of AMTs
using inferring and imitation mode.

Bypasses only static analysis, and cer-
tain features such as inferring AV fea-
tures don’t work.

tools, and (iii) detection mechanisms details are provided in
the ensuing paragraphs [11].

Mystique [12] is a malware generation framework that used
gene crossover and mutation techniques to generate evasive
malware. Mystique-S, a variant of Mystique, is focused on
malware specific to financial charge, phishing and extortion
cases [13]. It gathers client data, delivers the malware at
run time, and can evaluate real devices rather than virtual
emulators. Moreover, Using genetic operators on existing
malware, Sen, Aydogan, and Aysan [14] developed an effective
attack with evasion capability that challenges the effectiveness
of most successful security solutions.

Rastogi, Chen, and Jiang [15] developed DroidChameleon
[16] that applies various transformation techniques on malware
samples and audits ten popular mobile AMTs being vulnerable
to these transformations. However, such evasion is not very
effective owing to the signature-based detection paradigm.

Zheng, Lee, and Lui [17] developed ADAM that em-
ploys obfuscation and repackaging techniques like repacking,
assembling/disassembling, string encoding, code reordering,
junk code insertion, and renaming identifiers, but ignores
sophisticated ones such as payload and native code encryption,

array data encoding, reflection and bytecode encryption.
Preda and Maggi [18] proposed an Automatic Android

Malware Obfuscator (AAMO) to obfuscate exhaustive datasets
of Android malware using existing and new obfuscation
techniques. It employs 1,260 malware applications from the
Genome repository. Subsequently, Badhani, and Muttoo [19]
developed eight different evasion techniques to hide malware
inside an image of a wrapper Android application using
obfuscation, concatenation, steganography, cryptography and
their combinations.

Chua and Balachandran [20] presented a detailed framework
having various obfuscation techniques like switch function,
method overloading, try-catch function, and opaque predicate.
The latest malware use these techniques to bypass the detec-
tion of AMTs as listed on VirusTotal [21].

RealDroid [22] highlighted a broad range of techniques to
evade dynamic analysis in virtualized environments. A set of
repackaged malware with developed heuristics incorporation
almost evaded all malware analysis services deceiving numer-
ous analysis tools. A comprehensive analysis of the top 30
AVD (Android Virus Detectors) is presented in [23].

A mechanism to evade automated runtime analysis is pro-



posed by Diao, Liu., Li, and Zhang [24]. The proposed
mechanism gives an insight into the efficacy of the current
dynamic analysis platforms, and could be used in integration
with Android malware to monitor the system events before the
execution of actual malware.

Using Angecryption [25], it is possible to embed imper-
ceptible, valid, and executable bytecode in a benign-looking
application and static analysis can be bypassed easily. Another
tool AVPass [26], is developed to bypass Android malware
detection systems and it offers several obfuscation techniques.

All of these works are comprehensive efforts but have lim-
ited scope. For example, Mystique and Mystique-S provided
reasonable evasion in offline detection, addressed privacy
leakage, and dynamically assembled and loaded malware.
However, Mystique only e Dynamic Analysis Tool (DAT)
and is less effective. Mystique-S, too failed to evade when
dynamically loaded malware was subjected to DATs. GP
based evasion tool claimed to evade most successful AMTs.
However, it lacks dynamically loaded code features.

Among the evasion approaches discussed, DroidChameleon,
ADAM, AAMO, the system proposed by Badhani, and Muttoo
are used to test the efficacy of the current AMTs being used
for the detection of Android malware. Trivial obfuscation
techniques developed by DroidChameleon successfully thwart
static analysis but fail when DATs are employed for detection.
ADAM and RealDroid proposed both evasion and detection
frameworks. RealDroid fails to detect VM evasion. ADAM
provides reasonable evasion by repackaging and obfuscation
but lacks composite obfuscation techniques. AAMO provides
exhaustive obfuscation techniques and is flexible in terms of
its application but fails to evade DATs.

Although, aforementioned techniques are great motivation
in research, however, none of these studies audit image-based
malware. In contrast, our research work Audits 50+ malware
tools that are available on Virustotal. Furthermore, it uses ap-
plication obfuscation, dynamic code loading and stenography,
it successfully bypasses static and dynamic analysis based
malware detection techniques.

IV. PROPOSED MALWARE EVASION TECHNIQUE

To audit the detection efficacy of known anti-malware tools
against simple yet sophisticated evasion techniques, a simple,
resilient, and lightweight methodology has been proposed
in this section. Our methodology is based on application
obfuscation, dynamic code loading, and malware propagation
using images. The proposed framework consists of a series of
necessary steps illustrated in Fig. 1.

1) Firstly, the malicious application is obfuscated using
the obfuscation module. Any obfuscators can be used
such as ProGuard [27], AAMO [18], and AVPass [26].
Here we have used AVPass - an open-source obfuscator.
This step is important and can’t be skipped because it
introduced randomization and play a vital role to avoid
signature-base detection.

Fig. 1: Framework for creating malware and auditing AMTs.

2) In the second step, the obtained obfuscated application
is encrypted using AES-128 or AES-256 such that
this encryption comprises of the malicious application
followed by the inverse AES of CRC32 checksum of the
target PNG image, header chunk (IHDR), Data chunk
(IDAT), and end of data chunk (IEND). This is followed
by some dummy bytes to make the file multiple of 16
bytes as AES operates on 16 bytes block size.

3) In the third step, the malware obtained from step 2 is
crafted in an image with extension type PNG (Portable
Network Graphics) that can be done either by concate-
nation or stenography.

4) The fourth step involves placing the PNG image into
a wrapping application’s assets folder. Wrapping ap-
plication can be any benign application. Afterwards,
We created an event onClickListener that triggers the
process to decrypt the malicious application that was
placed in the assets folder. The process converts PNG
into the APK file and dynamically loads it to the phone
storage and then install it as an application update on
run-time.

5) The final step is to upload the wrapping application to
the repository of known anti-malware solutions. Also,
we upload the application to VirusTotal at each step and
gradually check the detection rates. Moreover, installa-
tion of the application on the target device is done at
each stage to validate the application’s malicious intent
and make sure the application never crashes. Similarly,
we can evade dynamic analysis using Remote Code
Execution (RCE) script residing on a remote website
instead of the target device. The malicious application
would be installed at the run time as an update to the
wrapping application. This would resist malicious code
detection on runtime hence giving complete evasion
from static and dynamic malware detection techniques.
Later, most importantly, all known licensed and open
source AMTs will be audited against the proposed
methodology to ascertain their weaknesses. Furthermore,
we have performed a case study on an existing malware
to validate the proposed technique.



V. PERFORMANCE ANALYSIS, TESTING AND VALIDATION

In this section, we analyzed the performance of our method-
ology by applying it to real malware and tested it on the
emulator. The methodology is not malware specific and it can
be implemented on any malware designed for the Android
platform. To validate the working of the proposed system, a
real malware application namely Dendroid [28] is selected.
Dendroid was designed to evade Android devices and it is a
sophisticated malware designed to spy and remotely acquire
backups. The key features of the Dendroid are as follow:

• Records messages and calls.
• Obtains the accounts that are stored in the device.
• Downloads media and images from the target device.
• Takes pictures, record audio and video of the user.
Presently, all the known anti-malware solutions, particularly

Avast, AVG, Kaspersky, Symantec, and McAfee are able to
detect it a malicious file. According to the VirusTotal, it has
a detection rate of 32/56, as illustrated in Fig. 2.

Fig. 2: VirusTotal Results for Orignal Dendroid malware.

To validate our proposed methodology, AVPass (An open
source application obfuscator) has been used as an obfuscation
module. AVPass uses obfuscation techniques such as API
reflection, string, and Variable techniques. A new APK file is
generated by applying AVPass. Then the APK was uploaded
to VirusTotal to check the results. The detection rate dropped
to almost 25%, as 14/56 antivirus solutions were able to detect
it as malicious. Results are illustrated in Fig. 3 (a).

Fig. 3: Step-by-Step Auditing of Anti Malware Solutions.

Next, we encrypted this obfuscated APK file in such a way
that the new file is a combination of payload apk, inverse
AES of the (CRC32+IHDR+IDAT+IEND) where IHDR is the
header chunk of the target PNG image, IDAT is the data
chunk where the actual image data resides and IEND being
the end chunk which is an end-of-file marker for the PNG.
This yielded quite effective results decreasing the detection
rate further, as only 5/55 anti-malware solutions were able
to detect it. Thus, we successfully achieved a visual reduction
that can be seen in Fig. 3 (b). The application was installed on
an Android emulator after each step to validate its malicious
intent and to ensure its proper working.

For better results, we further embedded the application,
attained as a result of the previous step, into a target PNG file.
At this step, we simply use the Steganography technique to
disguise a malware in an image. Afterwards, this maliciously
crafted PNG image was embedded into the assets folder of
a benign wrapping application. Subsequently, the wrapping
application had an event onClickListener that fetched the PNG
image from the assets folder, decrypted it into the malicious
app, dynamically loaded it into the SD card and installed it at
the runtime as an update to the wrapping application.

In the final step, the resultant application is uploaded again
at the VirusTotal. It is important to mention that no anti-
malware solution was able to detect the malicious application,
as indicated in Fig. 3 (c). Moreover, the application was also
successfully installed on the victim’s device. Upon installation,
the application executed its behavior as intended.

Hence, using the above mentioned simple and easy-to-
implement framework, we were able to achieve the desired
result. Fig. 4 shows stagewise Antivirus detection. This can
be seen that, initially malware was detected by 32 AMTs,
but this detection decreased gradually after applying proposed
methodology and no AMT was able to detect our final mal-
ware. Moreover, Table. IV shows that our proposed solution
has evaded well known AMTs and gives a comparison against
existing evasion techniques.

Fig. 4: Validation of Technique Across Malware Detection
Platform.



TABLE IV: COMPARISON OF DIFFERENT EVASION
TECHNIQUES.

Security
Application

Raw Angecr-
ytpion

AVPass AAMO Our
Solu-
tion

BitDefender × × × X X

Fortinet × × × × X

Trend Micro × × × × X

Avast × × × × X

Sophos × × × × X

Avira × × × × X

AVG × × × × X

Kaspersky × × × × X

McAfee × × × × X

VI. CONCLUSION AND FUTURE WORK

The proposed framework focus on malware creation and
several malware evasion techniques. There are many social
engineering and malware propagation techniques to trick
Android users into installing malware but they are not in
our scope. In our research, we proved that every new eva-
sion technique aims to render AMTs useless and motivates
security researchers to enhance and revamp their malware
detection suites. After conducting a critical analysis of existing
evasion techniques, the research proposes a mechanism to
audit advanced Android AMTs and sets a benchmark for
the progressive and sophisticated class of evasive malware
against which anti-malware tools can be tested. This research
invites Android researchers, developers, and Anti-malware
companies to investigate, audit, and enhance their malware
solutions against the latest evasion techniques. Furthermore,
this work can be implemented to test other malware variants
and platforms like iOS, Windows, and Linux.

VII. ACKNOWLEDGEMENT

This research is supported by the Higher Education Com-
mission (HEC), Pakistan through its initiative of National
Center for Cyber Security for the affiliated lab ”National Cyber
Security Auditing and Evaluation Lab” (NCSAEL), Grant No:
2(1078)/HEC/M&E/2018/707.

REFERENCES

[1] N. Elenkov, Android security internals. San Francisco, CA: No Starch
Press, 2015.

[2] Symantec.com, 2019. [Online]. Available:
https://www.symantec.com/content/dam/symantec/docs/eports/istr-
23-2018-en.pdf.

[3] Alharbi, Faris Auid, Abdurhman Mansour Alghamdi, and Ahmed S.
Alghamdi. ”A Systematic Review of Android Malware Detection Tech-
niques.” International Journal of Computer Science and Security (IJCSS)
15.1 (2021): 1.

[4] Sinha, Anukriti, et al. ”Emulation Versus Instrumentation for Android
Malware Detection.” Digital Forensic Investigation of Internet of Things
(IoT) Devices. Springer, Cham, 2021. 1-20.

[5] ”Android Malware Genome Project”, Malgenomeproject.org, 2019. [On-
line]. Available: http://www.malgenomeproject.org/.

[6] D. Arp, ”The Drebin Dataset”, Sec.cs.tu-bs.de, 2019. [Online]. Avail-
able: https://www.sec.cs.tu-bs.de/ danarp/drebin/.

[7] ”Android Open Source Project”, Android Open Source Project, 2019.
[Online]. Available: https://source.android.com/security. [Accessed: 10-
July- 2019]

[8] ”Apktool - A tool for reverse engineering 3rd party, closed, bi-
nary Android apps.”, Ibotpeaches.github.io, 2019. [Online]. Available:
https://ibotpeaches.github.io/Apktool/. [Accessed: 10- Mar- 2019]

[9] Tools.kali.org. [online] Available at: https://tools.kali.org/reverse-
engineering/dex2jar [Accessed 6 Mar. 2020].

[10] J. Marpaung, M. Sain and H. Lee, ”Survey on malware evasion
techniques: State of the art and challenges”, in 2012 14th Interna-
tional Conference on Advanced Communication Technology (ICACT),
PyeongChang, South Korea, 2012.

[11] DexClassLoader — Android Developers. [online] Available at:
https://developer.android.com/reference/dalvik/system/DexClassLoader
[Accessed 6 Mar. 2020].

[12] G. Meng, Y. Xue, C. Mahinthan, A. Narayanan, Y. Liu, J. Zhang and
T. Chen, ”Mystique: Evolving Android Malware for Auditing Anti-
Malware Tools”, 2019.

[13] Y. Xue, G. Meng, Y. Liu, T. Tan, H. Chen, J. Sun and J. Zhang, ”Au-
diting Anti-Malware Tools by Evolving Android Malware and Dynamic
Loading Technique”, IEEE Transactions on Information Forensics and
Security, vol. 12, no. 7, pp. 1529-1544, 2017.

[14] S. Sen, E. Aydogan and A. Aysan, ”Coevolution of Mobile Malware
and Anti-Malware”, IEEE Transactions on Information Forensics and
Security, vol. 13, no. 10, pp. 2563-2574, 2018.

[15] V. Rastogi, Y. Chen and X. Jiang, ”Catch Me If You Can: Evaluating
Android Anti-Malware Against Transformation Attacks”, IEEE Trans-
actions on Info Forensics and Security, vol. 9, no. 1, pp. 99-108, 2014.

[16] V. Rastogi, Y. Chen and X. Jiang, ”DroidChameleon”, Proceedings
of the 8th ACM SIGSAC symposium on information, computer and
communications security - ASIA CCS ’13, 2013.

[17] M. Zheng, P. Lee and J. Lui, ”ADAM: Automatic and Extensible Plat-
form to Stress Test Android Antivirus Systems”, Detection of Intrusions,
Malware and Vulnerability Assessment, pp. 82-101, 2013.

[18] M. Preda and F. Maggi, ”Testing android malware detectors against code
obfuscation: a systematization of knowledge and unified methodology”,
Journal of Computer Virology and Hacking Techniques, vol. 13, no. 3,
pp. 209-232, 2016.

[19] S. Badhani and S. Muttoo, ”Evading android anti-malware by hiding
malicious application inside images”, International Journal of Sys As-
surance Engineering and Management, vol. 9, no. 2, pp. 482-493, 2017.

[20] M. Chua and V. Balachandran, ”Effectiveness of Android Obfuscation
on Evading Anti-malware”, Proceedings of the Eighth ACM Conference
on Data and Application Security and Privacy - CODASPY ’18, 2018.

[21] Virustotal.com. (2019). VirusTotal. [online] Available at:
https://www.virustotal.com/ [Accessed 11 Aug. 2019].

[22] L. Liu, Y. Gu, Q. Li and P. Su, ”RealDroid: Large-Scale Evasive Mal-
ware Detection on ”Real Devices””, 2017 26th International Conference
on Computer Communication and Networks (ICCCN).

[23] H. Huang, K. Chen, C. Ren, P. Liu, S. Zhu and D. Wu, ”Towards Dis-
covering and Understanding Unexpected Hazards in Tailoring Antivirus
Software for Android”, Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Sec - ASIA CCS ’15, 2015.

[24] W. Diao, X. Liu., Z. Li, K. Zhang, ”Evading Android
Runtime Analysis Through Detecting Programmed Interactions”.
10.1145/2939918.2939926. In: WiSec ’16: Proceedings of the 9th ACM
Conference on Security & Privacy in Wireless and Mobile Networks.
NY, USA: Association for Computing Machinery, pp.159-164.

[25] A. Apvrille. A. Albertini, ”Hide Android Applications in Images,” 2014
in paper presented at BlackHat Europe, Amsterdam, NH.

[26] J. Jung, C. Jeon, M. Wolotsky, I. Yun and T. Kim, ”AVPASS: Automat-
ically Bypassing Android Malware Detection Sys,” Las Vegas, 2017.

[27] Guardsquare. (2020). ProGuard. [online] Available at:
https://www.guardsquare.com/en/ [Accessed Mar 2020].

[28] F-Secure,” [Online]. Available: https://www.f-secure.com/v-
descs/backdoor android dendroid a.shtml. [Accessed Sep 2019].


