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ABSTRACT: In the last twenty years vibration-based methods for Structural Health Monitoring (SHM) have
received increasing attention by both academics and operators, due to undoubtable advantages they provide for
damage identification purposes. These are mainly related to the capability of providing continuous information
about the global state of the structure without a prior knowledge about the location of possible damages and
without the need to access the damaged portion of the structure. These methods rely on the fact that a damage
inducing a loss of stiffness results in a change of the dynamic behavior therefore, structural responses to forced or
ambient vibrations can be used to retrieve information about these changes. Despite the large amount of literature
published on these methods, their experimental validation is often limited to highly controlled laboratory con-
ditions or numerical simulations. The validation of the algorithms on real damaged structures is often hampered
by the unavailability of data and this constitutes indeed a challenge for the implementation of these techniques
at the operational level. In the first part of this paper the possible drawbacks related to the effect of uncertainties
related to the effect of environmental sources, noise in hardware systems for the acquisition and transmission of
structural responses and approximations in the adopted models. Another aspect that has slow down the practical
diffusion of these methods, and generally of SHM techniques, is the difficulty to quantify their benefits prior
to their implementation. This has sometime restraint the operators from investing on them, despite the several
advantages these systems offer in terms of maintenance optimization and emergency management. In the paper
some recent research efforts on several aspects related to the development and implementation of these methods
are illustrated.

1 INTRODUCTION

The general purpose of Vibration-Based Method
(VBM) for Structural Health Monitoring (SHM) is
to monitor the performance of structures using their
response to vibrations recorded using permanent net-
works of sensors. This enables to follow the structural
performance so that that efficient remedial actions
to counter deterioration, damage, extreme loads and
unintended use may be identified and implemented
in a timely fashion, before they pose a threat to the
structural integrity, or reduce the functionality of the
asset.

Vibration-based damage identification methods
allow assessing structural damage states mainly
induced by stiffness losses. One of the major advan-
tages of these methods is the possibility to detect
damage at a global level, using sensors not necessarily
deployed close to the – unknown – location of dam-
age. Different levels of refinement in the identification
of damage are possible, depending on the amount of
information provided by the recorded responses.

Detection, that is the identification of the existence
of damage, might be possible based on a single sen-
sor able to capture meaningful characteristics of the
structural response, e.g. the natural frequencies of the
modes sensitive to damage.

Localization requires a higher number of sensors
deployed at several locations along the structure.

The assessment of damage, that is the estimation of
its severity, usually necessitates a finite element model
that allows to map the responses recorded on the struc-
ture to different damage types and scenarios through
the physical model of the real structure.

The main idea behind Vibration-Based Methods
(VBM) for damage identification is that losses of stiff-
ness affect the dynamic behavior of the structures,
therefore they can be identified through analyses of
the changes of the modal parameters between the cur-
rent and a reference state. It is noted that VBM are not
indicated to identify damage due the strength reduc-
tion unless a correspondent reduction of stiffness is
caused.

The structural response to ambient (e.g. due to wind
or traffic) is measured and used to extract ‘damage
features’, that is parameters sensitive to damage that
can be, for example, modal or operational param-
eters. The variation of one or of a combination of
several of these parameters is assume as damage
indicator. In literature have been proposed both model-
based and response-based methods to perform damage
identification (Limongelli et. al 2016).

Model-based methods use finite elements (FE)
models, updated using measured responses. Usually in
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a first phase the model is calibrated using the response
of the structure in the reference state. The parame-
ters of the model are corrected so that the simulated
responses agree with the test results.

Usually the objective function is defined in terms of
the difference between the analytical and experimen-
tal results and minimized by adjusting the parameters
of the FE model. In the ‘inspection phase’ the cali-
bration of the FE model is repeated and new values
of the model parameters are computed. In reference
(Mottershead & Friswell 1993), is reported a survey
of Vibration-Based Methods to update FE models.
In order to overcome the problems related to the
large computational effort related to the update of
FE models, several approaches based on substructure
methods, neural networks or surrogate models have
been proposed. (Fang & Perera 2009, Gao et al. 2012,
Torkzadeh 2016).

An alternative to model-based methods are the
so-called response-based methods that, instead of
physical (FE) models use models based only on the
measured response of the structure.

Damage-sensitive features are extracted from mea-
sured data and their changes between the current
and the reference states are used to identify dam-
age. Several vibration-based methods that rely only on
recorded responses have been proposed in literature. In
references (Fan & Qiao 2011) a comprehensive survey
is reported.

Comparing the two families of methods– response-
based and model-based – two main differences
emerge: model-based methods are more demanding
due to the need of building and updating the numerical
model. However, they allow a more detailed descrip-
tion of damage, including also quantification and
prognosis. For prognosis, of course, a forecast model
of the degrading processes is needed. Response based
methods are easier to implement for real time damage
identification, but usually limited to damage detection
and localization.

2 CHALLENGES

Despite in the last decades a large research effort
has been devoted to VBM and a number of suc-
cessful applications have shown their efficacy for the
monitoring of the structural health, their large-scale
implementation for continuous monitoring is still chal-
lenged by practical and theoretical issues that still need
investigations.

2.1 Uncertainties

A first issue is related to the accurate computation of
the damage features. In real world conditions, due to
several sources of epistemic and aleatory uncertain-
ties, the vibration-based damage features can exhibit
changes even if no damage occurs.

2.1.1 Influence of environmental and operational
sources

Modal parameters, often used as damage features,
may be affected by environmental or operational
variability. It has been shown that variations of tem-
perature and humidity (moisture content) can induce
daily or seasonal variations of the modal frequencies
that easily exceed 5%–10% (Peeters & De Roeck,
2001). Therefore, changes of the damage features
due to temperature can mask or mistakenly denounce
damage.

Operational variability due to traffic (mass and
velocity of vehicles, may also induce variations of the
modal parameters higher than 5% (Kim et al. 2012)
particularly for bridges with small mass ratio between
the structure and the vehicles.

In order to avoid mistakes in the identification
of damage, either the effects of environmental and
operational variability must be eliminated from the
measured responses, or damage features not affected
by these sources should be considered.

Several techniques based on regression models or
pattern recognition have been proposed in literature to
remove the effect of temperature.

Regression models can be used when data about
the variability of the sources (e.g. temperature or traf-
fic) are available. Information on the inputs may be
extracted by deploying a small number of sensors
tracking environmental agents or traffic/train cross-
ing loads, along with the array of vibration sensors
monitoring structural response.

In these cases, linear, multilinear or polynomial
(Ding et al. 2011) regression models are fitted to the
variable relationship. If data about the environmental
or operational sources are not available, output-only
methods (unsupervised learning) must be used.

These methods aim to eliminate the influence
of operational factors based on measured responses
and/or extracted features (Kullaa 2011). Methods
such as the Principal Component Analysis (PCA)
(Magalhães et al 2012) or its nonlinear ramifications
(kernel PCA, Factor Analysis) have been employed to
solve the problem. These methods search and discard
patterns thus revealing the influence of the unobserved
input variables.

Operational sources of variability include mainly
traffic for bridges, moving machines (as lifts) or users
for buildings. Due to the relevant variation of the mass,
modal parameters can change, leading to a wrong iden-
tification of damage in a healthy structure. Velocity
and number of vehicles can be another source of varia-
tion of modal parameters (Brady, 2006, O’Brien 2009)
that can hamper a correct identification of damage.

2.1.2 Instrumental uncertainty
Beside the already mentioned environmental and oper-
ational sources of variability of the damage features,
other sources of uncertainties are due to instrumental
errors.

Measured accelerations can be affected by
systematic errors related to the characteristics
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and implementation of the monitoring hardware:
accelerometers, data acquisition system (DAQ) and
cables.

These can be errors related to the characteristics of
the sensors (cross sensitivity, low ratiometricity, sensi-
tivity to temperature) or related to the implementation
(calibration, mounting, alignment) and bias error. Sys-
tematic errors affect uniformly all the recorded signals
and specifically their accuracy, that is their capability
to provide a measurement close to the real value. Sys-
tematic errors can be removed by calibration of the
instrumentation.

Measured signals are also affected by random errors
introduced by the precision of the sensors, intended as
their capability to provide equal values for repeated
measurement of the same quantity.

Precision depends mostly by instrumental noise that
determines the minimum resolution of the sensors, that
is the smallest detectable variation in acceleration.

It is possible to reduce both types of uncertainties by
choosing high-performance sensing, acquisition and
transmission devices and accurately installing them
however the investigation of methods to reduce the
effect of noise through processing or measured data is
the focus of several research groups (see for example
Yue 2015, Liu 2016)

2.1.3 Model uncertainty
Model uncertainty depends on the mathematical
model that is used to relate the measured quantity (e.g.
acceleration) to the damage feature,

It includes errors due to signal processing, (for
example signal truncation when dealing with assumed
infinite length of the recorded signals), errors due
to the assumptions connected with the mathematical
model (for example that the excitation is a broad-
band stochastic process - white noise - not strictly and
always verified in case of ambient vibrations), errors
due to non-linear structural behavior whenever this
is not accounted for in the considered model; errors
included by the necessary simplifications related to the
representation of the structure through a finite element
model.

Most of these uncertainties can be reduced if large
set of measures can be collected on the structure.

2.2 Validation on real benchmarks

One of the main issues in the research field of VBM
is the validation on real structures of the algorithms
proposed by researchers.

The number of monitored structures is still quite
low and usually, due to economic constraints, a small
number of sensors is deployed on them.

Beside this, many of the instrumented structures
have never experienced damage and, in some cases,
even if data exist, they are not freely available for
research purposes. Due to all these facts, the algo-
rithms proposed in literature for damage identification
are often verified using data simulated using numerical

models or scaled laboratory specimens tested
under controlled conditions and damage artificially
simulated.

These conditions eliminate several sources of uncer-
tainty that, as mentioned in one of the previous
sections, can severely affect the performance of dam-
age identification algorithms. For this reason, many of
these method and the relevant damage indicators, can-
not exceed a value of the Indicator Readiness Level,
IRL= 6. (Limongelli & Orcesi, 2017, Limongelli et al.
2018) The maximum value of this index is IRL=9 for
methods and indicators that can be routinely employed
for quality checks of structures.

In the last years, several forced and/or ambient
vibration tests have been performed on full scale
structures artificially damaged for research purposes.

Data have been recorded using quite dense net-
works of sensors and made available to the scientific
community. Some examples of benchmark on forced
vibration tests on damaged structures are reported in
references (Farrar & Cone 1995, Moaveni et al 2010,
Dilena 2014).

wo examples of ambient vibrations tests on a dam-
aged bridge are reported in references (Reynders &
De Roeck 2015, VCE 2009, Sirigoringo et al 2013). In
these cases, damage was artificially inflicted through
progressive cuts of one structural element (e.g. a pier
or a beam) or of the prestressing cables.

Therefore, even if these cases are much close to
real conditions with respect to a numerical model with
simulated damage, they cannot be really considered
real case studies.

Further research developments would largely ben-
efit from the availability of responses measured on
benchmark structures permanently instrumented with
extensive sensor networks and exposed to natural
degradation and damage.

2.3 Return over investment

Permanent monitoring systems are usually installed
on strategic or landmark structures but suffer from
non-scalability due to the not negligible cost of instru-
mentation devices, installation, and maintenance.

Further to this, the difficulty to estimate the return
on investment before their implementation, creates
some reluctance in the stakeholders - from owners
and managers to sensors producers - to invest on these
systems.

A further issue is related to the lack of incentives in
the technical codes that usually do not allow to account
for the presence of a structural monitoring system in
the design of new bridges or in the retrofit of exist-
ing ones. Monitoring systems are thus perceived by
stakeholders more as a cost rather than an effective
benefit.

Recently the research project COST TU1402 on
‘Quantifying the Value of Structural Health Moni-
toring’ (Thons et al. 2017) has proposed a frame-
work based on the concept of Value of Information
from the pre-posterior Bayesian decision analyses,
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to support the cost/benefit analyses of a monitoring
system before its deployment.

In this approach, the benefit associated with the
information from monitoring is assessed for forecasted
values of the monitored parameter.

An optimization problem is solved for each fore-
casted value to identify the actions corresponding to
the lower risk (in this case lower cost/benefit ratio
connected with the design of the monitoring system).

The risk corresponding to each forecasted value is
established through probabilistic models (likelihood
functions) accounting for the uncertainty associated
with future performances of the monitored system and
with the precision of the monitoring techniques (COST
TU1402).

Accounting for the uncertainty connected with the
forecasts, the final solution of the problem is chosen
as the action corresponding to the minimum average
cost, over all the possible forecasts, each weighted
according to its probability of occurrence (likelihood
functions).

One of the bottlenecks in the application of the pre-
posterior analyses is the knowledge of the likelihood
functions.

When the monitoring system is not yet installed,
they can be inferred from data recorded on similar
monitored systems, if available.

Also, in this regard, hold the remarks reported in
the previous sections related to the importance of
benchmarks of damaged structures to retrieve the
distributions of the damage indicators in different
structural states.

3 OPPORTUNITIES

3.1 Sustainable management over life cycle

The final aim of monitoring systems is to ensure an
appropriate level of safety for users, maintaining the
quality of the environment, as well as minimizing asset
life-cycle costs. This concept spans a very wide range
of activities which, through different technologies and
algorithms, supply information about the performance
of existing and new structures over their life-cycle.

Data gathered through acquisition systems are con-
verted into information by the joint use of algorithms
for data processing and models that relate the struc-
tural response to the structural state. Information can
then support decisions about the asset management
all over the life cycle, leading to the reduction of life
cycle management cost, reduced use of non-renewable
resources, increase of safety.

Data provided by monitoring must support the
assessment of the structural performance of the moni-
tored bridges under several loading conditions (both
operational and extreme) and feed decision mak-
ing procedures related to maintenance or emergency
management.

The information that must be extracted from data
and used for decision making, depend on the goal

of monitoring. To this respect an important issue is
the integration of the collected data into Bridge Man-
agement Systems (BMS) through the use of damage
indicators obtained processing the measured data and
that provide information about possible damage sce-
narios (Limongelli 2010, Dilena 2014, Domaneschi
et al. 2016), or about parameters that can be used to cal-
ibrate performance models able predict the remaining
service life of the bridge.

3.2 Big data, machine learning, artificial
intelligence

An important issue related to data collected by perma-
nent monitoring systems is that, even small systems,
produce large amount of data.

The concept of ‘Big Data’ is described by 3Vs: Vol-
ume, Variety, Velocity that is large volumes of data
from a variety of data sources are available at high
velocity. The amount of data flow can be an issue for
the storage and processing of data that can hardly be
handled and interrogated using traditional techniques.

On the other hand, large amounts of data increase
the chances to reduce the uncertainties and to have a
reliable estimation of the damage features, provided a
proper processing of these data is carried out.

Large amount of data may reveal correlations and
dependencies that allow predictions of the future struc-
tural performance, thus fostering and informed and
rational decision-making.

Thanks to improvements in sensing capabilities,
processing power, storage capacity, software programs
and quality of internet connections, the capability of
capturing, collecting, sharing, storing and processing
massive amount of data is steadily increasing giving
the opportunity to take advantage of very large Vol-
umes of a wide Variety of data collected and analyzed
at high-Velocity.

Big Data can be supplied to Machine Learning
(ML) algorithms that can ‘learn’ from data without
having been explicitly programmed for that purpose.
ML algorithms and statistical models detect pat-
terns based on data mining, pattern recognition and
predictive analysis.

With respect to traditional algorithms they are much
more effective to deal with uncertainties, , in situations
where large and diverse datasets (i.e. Big Data) are
available.

Due to the large volumes of data, the analyses
and the detection of the correlations and relationships
between thee data might be prohibitive using tradi-
tional methods. Machine learning algorithms, such as
for example Artificial Neural Networks, are based on
the training of a model using available data (Farrar &
Worden 2013). If data about different performances of
a bridge are available (for example the response of the
bridge in different damage states) ‘supervised’ algo-
rithms based on regression, classification and pattern
recognition, can be used.

If only data relevant to a reference state, for example
the undamaged, are known, ‘unsupervised’ algorithms
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that detect deviations from the reference state, without
providing further information about the damage state
(e.g. type or severity) can be used.

Machine learning, together with pattern recogni-
tion and deep learning, are branches of the so-called
Artificial Intelligence (AI) techniques that can be
defined as the ability of a machine to mimic intelli-
gent human behavior, seeking to use human-inspired
algorithms to solve problems (Penadés et al. 2016,
Amezquita-Sanchez et al. 2016).

All the aforementioned techniques aim to process
recorded data in the most effective way in order to
retrieve directly, or using numerical or analytical mod-
els, reliable, accurate and precise indicators of the
structural state.

4 CONCLUSIONS

In this paper challenges and opportunities related to the
use of vibration-based method for health monitoring
of structures are outlined.

Challenges still exist related to the influence of
uncertainties on the outcomes of SHM systems and
to the difficulties related to the estimation of the
return over the investment of such systems, before
their installation. Both topics are the focus of intense
research activities.

The availability of large amount of data allows to
implement innovative techniques for their analyses
thus reducing the effect of uncertainties and improving
accuracy, precision and reliability of results.

This enables the optimization of maintenance inter-
ventions and of emergency management under natural
and man-made hazard.

Several procedures and algorithms for damage
identification have been proposed in literature but their
performance has never been verified on real structures.

The availability of ambient vibration responses
recorded on benchmark damaged or degraded struc-
tures would largely benefit the research efforts in this
domain.
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