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ABSTRACT 
 
As Artificial Intelligence (AI) assistance tools become more ubiquitous in engineering design, it becomes 

increasingly necessary to understand the influence of AI assistance on the design process and design 

effectiveness. Previous work has shown the advantages of incorporating AI design agents to assist human 

designers. However, the influence of AI assistance on the behavior of designers during the design process 

is still unknown. This study examines the differences in participants' design process and effectiveness with 

and without AI assistance during a complex drone design task using the HyForm design research platform. 

Data collected from this study is analyzed to assess the design process and effectiveness using quantitative 

methods, such as Hidden Markov Models and network analysis. The results indicate that AI assistance is 

most beneficial when addressing moderately complex objectives but exhibits a reduced advantage in 

addressing highly complex objectives. During the design process, the individual designers working with AI 

assistance employ a relatively explorative search strategy, while the individual designers working without 

AI assistance devote more effort to parameter design. 

 

INTRODUCTION 
 

Engineers regularly face complex design tasks that could be completed more 

rapidly or effectively with Artificial Intelligence (AI) assistance. When designing complex 

engineering systems, the task itself requires managing coupled design parameters and 

multiple interrelated factors, making the design process difficult and stressful [1,2]. To 

overcome such challenges, AI tools have been implemented to support human designers 

as they solve complex design problems. AI assistance for design allows human designers 

to work faster with increased effectiveness and efficiency; therefore, improving a 
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company's competitiveness in today’s fast evolving market. For example, designers have 

used AI tools to design products and explore the solution space more rapidly [3] and 

different AI approaches have been used to support different stages of the engineering 

design process including concept generation [4], concept evaluation [5], prototyping [6], 

and manufacturing [7]. Moreover, research involving 1500 companies where humans 

and AI worked together found a significant improvement in their overall performance 

[8,9]. However, Zhang et al. [10] highlighted the problems in human-AI collaboration by 

reporting that AI can hinder the performance of teams, especially high-performing ones. 

Multiple studies have investigated the implementation of AI to assist engineers 

with specific design activities, including decision-making, optimization, and 

computational tasks [11,12]. However, to achieve efficient human-AI collaboration, 

there must be a better understanding of how AI can enhance human performance and 

design effectiveness. Amabile [13] argued that researchers should study the impact of AI 

and computer-assisted human intelligence on the design outcomes of humans, 

organizations, and society. As much of the previous literature has focused on developing 

and implementing AI assistance for product and service development, little is known 

about the effect of AI assistance on design process effectiveness. A sufficient 

understanding of how AI assistance influences designers and the design process during 

complex design problems will aid the development and implementation of better AI-

based design tools in the future. These AI design tools will not only improve the 

outcomes of the design process but may also improve designers’ well-being and 

experiences during the design process.  
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The following section of the paper presents the relevant literature, followed by 

the research questions for the current study. Next, a description of the research 

platform and methods used for data analysis is presented. Then, the results section is 

followed by a discussion section, and the paper ends with an examination of the 

limitations of this study and future work. 

 

RELEVANT LITERATURE 
 

AI has been used in various ways to improve new product development [11]. In 

this era of global competition where there is a constant need for high-quality and 

appropriately priced products, AI tools can quickly guide designers as they respond to 

evolving consumer demands. Previous literature investigates AI tools ranging from a 

knowledge-based tool for ethical engineering design [14] to an AI-based tool to help 

designers build safer buildings [15]. Improved AI-based tools for design can be used in 

industrial practice to improve design outcomes [11]. Furthermore, AI tools are 

facilitating the manufacturing process by developing new models and forms [16]. In 

architecture, AI expert systems assist designers in identifying potential failures in the 

design specifications solutions [17]. According to Boden [18], AI can be used to create 

new ideas by (1) producing novel combinations of familiar ideas, (2) exploring the 

potential of conceptual spaces, and (3) making transformations that enable the 

generation of previously impossible ideas.  

AI tools can also provide designers with decision-support to select suitable 

design alternatives [19] and produce solutions by learning from users' needs [20]. 
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Designers view their collaboration with AI as a potential way to add value to their design 

practice [21]. This is supported by research that has shown that co-creation practices 

between humans and AI may result in creative outcomes [22] and affect humans’ social, 

functional, and behavioral outcomes [23]. However, little can be said about AI’s impact 

on designers’ cognition during the design process. 

Recently, there has been increasing awareness concerning cognitive health as it 

impacts individuals’ ability to think, learn, and remember [24]. One indicator of 

cognitive health during complex engineering design tasks is participants' cognitive load 

[25]. Cognitive load affects working memory, making it an indicator of the task’s 

complexity and the participant’s ability to complete the task [25]. A high level of 

cognitive load may result in human errors [26]. Moreover, cognitive load has also been 

linked to mental stress [27–30]. Improved understanding of how to ease cognitive load 

could maximize human performance and well-being, ultimately reducing errors. 

Although AI has advanced to be an effective tool for task-specialized problem 

solving, AI by itself cannot solve complex problems requiring general intelligence or 

abstraction, such as creativity and intuition [31]. By combining the complementary 

strengths of AI tools and humans, they can together overcome such limitations [32]. 

While some research has already shown that combining humans with AI assistance 

improves performance [8,9,33,34], this work will further investigate the influence of AI 

assistance on design effectiveness and the design process. 

 

Research Questions 
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This study examines how the assistance of an AI agent for drone design impacts 

the design process and outcomes during an individual design activity (as seen in Figure 1). 

To accomplish this, the following research questions (RQs) are addressed:  

RQ1: How does AI assistance impact drone design effectiveness across problems 

of varying complexity?  

RQ2: How does AI assistance affect the drone design process of individual 

designers? 

 
Fig. 1. Overview of the current work 

 

Some of the metrics to evaluate the effectiveness of engineering design 

outcomes are novelty, exploration (variety), quality (value), and quantity [35,36]. Design 

effectiveness can be captured using the metrics proposed by Shah et al. [35]. According 

to Shah et al. [35], novelty measures the unusual nature of an idea when compared to 

other ideas. Exploration (variety) quantifies the explored solution space during ideation. 

Quality is assessed in terms of usefulness, indicating a solution's ability to meet the 

design requirements. Quantity is the total number of ideas generated. Similarly, in this 
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study, the design effectiveness is evaluated in terms of drone design quantity, quality, 

exploration, and novelty. 

This paper also explores the drone design process in terms of designers’ efforts 

and search strategies to explore the design space and designers’ cognitive workload 

during the complex design task. In this work, design effort refers to the number of 

actions and the amount of time required for a human designer to complete an 

objective. Some factors that cause a variation in the effort for engineering design tasks 

include product complexity, technical difficulty, design experience and skill, team size 

and structure, methods of communication, and use of new technology [37,38]. Among 

those factors, product complexity is considered to be the dominant factor in 

determining design effort [38]. In the current work, each designer was randomly 

assigned to either have or not have access to AI assistance for drone design. Since 

designers only experienced one of the two experimental conditions, the research 

questions will be answered by drawing only between-group comparisons.  

 

DATA AND METHODS 
 

In this study, participants are challenged to design drones following specific 

objectives for range, velocity, payload, and cost using an online research platform called 

HyForm [1]. Timestamped design actions with the corresponding evolution of design 

solutions are recorded. Qualitative data collection is conducted using mid- and post-task 

questionnaires. 
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Participants 
 

This institutional review board-approved study recruited undergraduate and 

graduate students from 18 universities in the United States. Seventy-one participants 

participated in this study. The survey data from 4 of these participants was removed 

from analysis due to technical difficulties and participant non-compliance. Of the 67 

participants who were included for survey data analysis, 47 participants identified as 

male, and 19 participants identified as female (1 participant chose not to disclose their 

gender identity). Participant ages ranged from 18 to 36 years of age (1 participant chose 

not to disclose their age), with the median age being 22 years. When asked how 

participants racially/ethnically identified, 33 identified as white, 27 identified as Asian, 2 

identified as black or African American, 2 identified as multiracial, and 3 chose not to 

answer.  

Most participants had limited engineering design experience with 6 participants 

reporting having never done design, 22 considered themselves beginners, 33 with 

intermediate experience, 5 experienced, and 1 expert. Participants had reported similar 

experience with computer-aided design (Never = 5, Beginner = 13, Intermediate = 32, 

Experienced =16, and Expert =1). When asked about their experience with computer-

based simulations, 9 reported having never used them, 29 used them one to two times, 

12 used them three to five times, and 17 used them more than five times. Additionally, 

an overwhelming majority of participants reported that they were not professionals in 

the areas of building (N= 62) and operating (N = 57) drones. All participants completed 
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two consecutive 20-minute design sessions and were compensated with a $20 USD e-

card for completing the study. 

 

HyForm Experimental Research Platform 
 

In this experiment, participants were asked to design drones with specific design 

requirements and fulfill the design objectives using an online collaborative design 

environment that partners AI agents and humans called HyForm2 [1]. Although created 

for multi-discipline and multi-user collaborative design experimentation, in this work it 

is used to study individual designers only focusing on drone design. As seen in Figure 2A, 

HyForm allows users to assemble and evaluate drones. Drones can be created using four 

types of components, and each has a variety of size options: 1) battery with 65 different 

sizes, 2) clockwise (CW) motor and rotor pair, 3) counterclockwise (CCW) motor and 

rotor pair, each with 50 different sizes, and 4) airfoil with 100 different sizes. A large 

drone space is enabled by various drone configurations with distinct component sizes.  

At the beginning of the study, all participants start with a same basic drone 

design, as shown in Figure 2A. Starting from the basic drone, participants can explore 

the design space by adding or removing components with connections and changing 

component sizes. After building a drone, participants can evaluate its performance in 

terms of range, velocity, cost, and payload. HyForm records all the drone design actions, 

drone configurations, and performance metrics. Additionally, the platform has a chat 

 
2 https://github.com/hyform 
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tool that allows participants to communicate with an experimenter when they 

encounter problems during the study. 

 
(A) 

 
(B) 

Fig. 2. HyForm drone design interface. (A) Basic drone design configuration. (B) Drone 
designs returned by the AI design agent. 

 

Additionally, HyForm incorporates an AI design agent, which aids designers in 

creating drones. This design agent can recommend multiple drone designs by exploring 

the neighborhood of the current valid drone design, each optimizing one performance 

metric, such as range, velocity, cost, and payload, as seen in Figure 2B. The 

recommended drones are from an extensive preestablished drone database, which is 

produced through a generative design algorithm that employs a character-based 

Recurrent Neural Network (Char-RNN) and represents each drone design using a string 
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grammar [1,39,40]. The string grammar defines all drone features such as the 

configuration of the two-dimensional layout, component types, and component sizes. In 

each iteration of the generating process, the Char-RNN is trained on a set of valid drone 

designs, which is updated iteratively by including newly generated higher-performance 

designs from the current iteration to replace the lower-performance designs in the 

training dataset. On this basis, the designs returned by the AI agent are selected from 

the Pareto front of the generated drone database to maximize range, payload, and 

velocity, and minimize cost. Therefore, the design AI agent is trained to recommend 

high-performance designs. By manipulating participants' access to the AI agent, 

individual designers are allowed to work with AI assistance (i.e., AI-assisted designers) or 

without AI assistance (i.e., solo designers), respectively. 

 

Design Problem and Procedure 
 

Participants were randomly assigned as AI-assisted (𝑁 = 38) or solo (𝑁 = 33) 

designers. At the beginning of the study, participants received documents describing 

how to use HyForm to design drones, a problem brief explaining the experimental task, 

and a document with the drone design objectives they were required to meet. The five 

drone development objectives were tailored by the researchers to be challenging to 

finish in the allotted time (Table 1). Additionally, each subsequent objective was 

designed to be more complex than the previous one, and participants were given 

instructions that the objectives needed to be completed in sequential order.  

Table 1. Drone design objective requirements 
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Objective & 
Subobjectives 

Range  Payload Cost Velocity 

1  1a   ≥20 mi         

1b   ≥50 mi         

1c      ≥10 lbs      

1d      ≥20 lbs      

2 
  

2a   ≥15 mi  ≥20 lbs   ≥5 mph  

2b   ≥20 mi  ≥15 lbs   ≥5 mph  

2c   ≥30 mi  ≥10 lbs   ≥5 mph  

2d   ≥40 mi  ≥5 lbs   ≥5 mph  

3 3a   ≥18 mi  ≥25 lbs  ≤$5000     

3b   ≥35 mi     ≤$5000  ≥8 mph  

3c   ≥20 mi     ≤$5000  ≥10 mph  

4 
 
 

4a   ≥18 mi  ≥15 lbs  ≤$4000  ≥10 mph  

4b   ≥20 mi  ≥8 lbs  ≤$4000  ≥8 mph  

4c   ≥30 mi  ≥10 lbs  ≤$4000  ≥6 mph  

4d   ≥40 mi ≥5 lbs   ≤ $4000  ≥6 mph  

5 
 

5a   ≥18 mi  ≥15 lbs  ≤$3500  ≥8 mph  

5b   ≥20 mi  ≥10 lbs  ≤$3500  ≥15 mph  

5c   ≥30 mi  ≥20 lbs  ≤$3500  ≥6 mph  

 

After reading the problem brief and platform instructions, participants were 

given an initial 20-minute session to attempt as many drone development objectives as 

possible. After the first session was complete, participants were given a break and were 

asked to complete a mid-task questionnaire. Then, participants were instructed to 

continue finishing the drone development objectives. The second session was again 20 

minutes in duration and was followed by a post-task questionnaire to complete the 

experiment. Among all the participants, only one AI-assisted designer did not design and 

submit drones as required by the instructions. Thus, the data of 37 AI-assisted designers 

and 33 solo designers was analyzed.  

The mid-task questionnaire included demographic questions, previous relevant 

experience questions, a question querying the number of objectives completed, and an 

expanded version [29,30] of the NASA-Raw Task Load Index (NASA-RTLX) [41,42]. The 
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NASA-RTLX was used to evaluate each participant’s perceived mental workload and 

unlike the traditional NASA-TLX, participants did not weigh each of the subscales in the 

NASA-RTLX. The post-task questionnaire contained the same question querying the 

objectives completed and the expanded version of the NASA-RTLX. Demographic 

questions included age, gender, and race/ethnicity. Previous experience questions 

included previous experience with engineering design, computer-aided design, 

computer-based simulation, operating drones, and building drones. Details about the 

experimental design, procedure, and corresponding data collection and analysis for this 

study can be found in Zhang et al. [43]. 

 

Measures 
 

In addition to the questionnaires, detailed design action and outcome data was 

collected directly using HyForm. This data log enables various data-driven analyses on 

the design effectiveness and design process to answer the proposed research questions. 

Specifically, design effectiveness is evaluated through the number of drones submitted 

and drone design exploration, novelty, and quality scores. The design process 

investigation includes design effort, search strategy, and mental workload.  

Exploration and Novelty 
 

Drone designs are evaluated through exploration and novelty scores. The metrics 

reflect how a specific drone differs from the basic drone or all other drones. The 

calculation of both exploration and novelty is based on the similarity between a pair of 

drones. In HyForm, the components of a drone are arranged at squared grid nodes. 
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Design similarity is measured according to a vector representation of drones (Figure 3A), 

which is described in four steps. First, each drone is represented by two 𝑛 × 𝑛 matrices, 

indicating the component type at each grid node while the other indicating the 

corresponding normalized component size (Equation 1): 

Normalized component size =
𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑠𝑖𝑧𝑒− 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑠𝑖𝑧𝑒𝑚𝑖𝑛

𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑠𝑖𝑧𝑒𝑚𝑎𝑥− 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑠𝑖𝑧𝑒𝑚𝑖𝑛
.   (1) 

Second, the two matrices are converted into two 𝑛 × 𝑛  vectors by traversing them 

column-wise. Third, the two vectors are converted to a 3𝑛 × 𝑛 vector by extending one 

element in the component size vector to three consecutive elements, each representing 

a distinct component category. Among the three consecutive elements, the 

corresponding value in the component type vector indicates the position of the 

corresponding normalized component size value, and all values at the other positions 

are 0. Till now, each drone can be represented as a 3𝑛 × 𝑛 vector. Fourth, cosine 

similarity, the cosine value of the angle between the two vectors respectively 

representing two drones, is calculated for pairwise drone similarity. Since the same 

drone can be arranged in different orientations, resulting in different vectors, the 

drones are reoriented to maximize the cosine value between a pair of drone vectors 

(e.g., 𝑉𝑖 𝑎𝑛𝑑 𝑉𝑗) when calculating similarity. As a valid drone (𝑉𝑖) exhibits either point-

symmetric or axisymmetric structures3, rotating the original drone respectively by 90 

degrees (𝑉𝑖−90), 180 degrees (𝑉𝑖−180), and 270 degrees (𝑉𝑖−270) will obtain all possible 

 
3 The drones are strictly symmetric in terms of component type and approximately symmetric in terms of 
component size. 
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arrangements of the same drone, as shown in Figure 3B. The unified similarity is the 

maximal value of all the possible values (Equation 2): 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖,𝑗 = max (cos(𝑉𝑖 , 𝑉𝑗) , cos(𝑉𝑖−90, 𝑉𝑗) , cos(𝑉𝑖−180, 𝑉𝑗) , cos(𝑉𝑖−270, 𝑉𝑗)). 

(2) 

  
                                        (A)                                                        (B) 

 
(C) 

Fig. 3. Calculation of exploration and novelty. (A) Vector representation of drone 
designs. (B) Possible orientation of a drone. (C) Drone examples. 

 

Figure 3C shows a few example drones including the basic drone and their 

corresponding vector representations. According to the drone configurations and 

vectors, the ranking of the similarity scores between the example drones and the basic 

drone is Drone 1 > Drone 2 > Drone 3. Similarly, Drone 1 is more similar to Drone 2 

compared to Drone 3. On this basis, design exploration of a drone is calculated as 1 

minus the cosine similarity between this drone and the basic drone (Equation 3): 

0 0 0 0 0 0 0

0 0 0 2 0 0 0

0 0 1 2 3 2 0

0 2 2 1 2 0 0

0 0 3 2 1 0 0

0 0 2 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 a 0 0 0

0 0 b c d e 0

0 f g h i 0 0

0 0 j k l 0 0

0 0 m 0 0 0 0

0 0 0 0 0 0 0
[0,0,0,0,0,0,…0,0,0,b,0,0,0,c,0,0,0,d,0,e,0,…0,0,0,0,0,0,0]

Component Type Matrix

Component Size Matrix

[0,0,0,…,0, 0,    0,       1,       2,       3,       2,    0,  0,…, 0, 0, 0]

Values indicate 
component types

Values indicate 
normalized 

component sizes
[0,0,0,…,0, 0,    0,       b,       c,       d,       e,    0,  0,…, 0, 0, 0]

Indicate the value

Determine the position

Component Size Vector

Component Type Vector

Battery - “1”

CW and CCW Motor & rotor pair  - “2”

Foil  - “3”

Output: Vector representing the drone

90 degree

180 degree 270 degree

V1 V1-90

V1-180 V1-270

(B)

Input

Basic Drone Drone 1 Drone 2 Drone 3

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,a,0,0,0,0,0,a,0,0,0,0,

0,0,0,0,0,0,a,0,0,0,0,0,0,0,0,
0,0,0,0,a,0,0,0,0,0,a,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,b,0,0,0,0,0,b,0,0,0,0,
0,0,0,0,0,0,a,0,0,0,0,0,0,0,0,
0,0,0,0,b,0,0,0,0,0,b,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,b,0,0,0,0,0,b,0,0,0,0,

0,0,b,0,0,0,a,0,0,0,0,0,0,0,b,
0,0,0,0,b,0,0,0,0,0,b,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

[0,b,0,0,0,0,0,0,0,0,0,0,0,b,0,

0,0,0,0,0,b,0,0,0,0,0,b,0,0,0,

0,0,b,0,0,0,a,0,0,0,0,0,0,0,b,
0,0,0,0,0,b,0,0,0,0,0,b,0,0,0,
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𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑖 = 1 − 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖,𝑏𝑎𝑠𝑖𝑐 .        (3) 

The novelty of a drone is calculated as 1 minus the average cosine similarity between 

this drone and all the other drones designed by the participants (Equation 4): 

𝑁𝑜𝑣𝑒𝑙𝑡𝑦 𝑖 = 1 −
∑ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑖,𝑗

𝑁
𝑗≠𝑖

𝑁−1
.       (4) 

Drone Quality 
 

The quality of a drone design is calculated according to its performance metrics. 

In HyForm, a drone's performance is evaluated using four metrics, cost, range, payload, 

and velocity. In general, drone designers aim to design drones that exhibit high ranges, 

payloads, and velocities with costs as low as possible. A utility function is built 

accordingly to calculate the overall drone quality based on these four metrics. Drone 

quality is calculated through Equation 5 and then normalized by Equation 6:  

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 0 =
𝑅𝑎𝑛𝑔𝑒 ×𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ×𝑃𝑎𝑦𝑙𝑜𝑎𝑑

𝐶𝑜𝑠𝑡
;       (5) 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 =
𝑄𝑢𝑎𝑙𝑖𝑡𝑦0− min (𝑄𝑢𝑎𝑙𝑖𝑡𝑦0)

max (𝑄𝑢𝑎𝑙𝑖𝑡𝑦0)− min (𝑄𝑢𝑎𝑙𝑖𝑡𝑦0)
.      (6) 

Hidden Markov Model 
 

A Hidden Markov Model (HMM) is a statistical model to capture hidden 

temporal patterns from sequential observations (e.g., in this work, team actions) [44–

46] and is particularly useful for assessing design behavior [44,47–50]. An HMM models 

a system as a Markov process transitioning between a finite number of discrete states 

hidden from the observer with unknown parameters. The training process of an HMM 

determines the hidden parameters, the transition matrix, and the emission matrix from 

the observable parameters. Specifically, the transition matrix has a size of [𝑚 × 𝑚] 
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where 𝑚 is the number of hidden states, containing the probability of transitioning from 

the current state to a future state. The emission matrix has a size of [𝑚 × 𝑛], where 𝑛 is 

the number of unique actions, containing the probability of an action being emitted 

from a given state. The relations are summarized in Figure 4. Through the training 

process, the hidden states represent the underlying cognitive or procedural states that 

the participants transition through during the experiment [44]. 

 

 

Fig. 4 Hidden states and observed actions in an HMM. 
 

An HMM is employed to investigate the influence of AI assistance on designers' 

aggregate design process using design action data. In this study, each designer's design 

process is treated as a sequence of design actions, and the whole data set consists of 70 

samples. The Baum-Welch algorithm [45] is employed to train the HMM by maximizing 

the observations' likelihood. Since the ideal number of hidden states to use for 

modeling the aggregate problem-solving process is unknown, several models with the 

values of m varying from 1 to 11 (the number of unique actions) are trained and 

compared for selecting the best model. Higher values of m are not necessary for 

maintaining the independence of the emission probabilities of the states. For any 𝑚 

values within the given range, models are trained 70 times each with 69 samples; 
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leaving one of the samples out as the testing sample to increase the generalizability of 

the results. The average testing log-likelihood (i.e., an indicator of the model’s ability to 

describe the test sample) is calculated over the varying 𝑚 values. Then, the best model 

is identified by selecting the value of 𝑚 for which the test log-likelihood is highest. The 

captured hidden states are interpreted as categories of design activities in this study. 

 

RESULTS 
 

All designers submitted a total of 585 drones, each aiming to fulfill a specific 

objective. Since a same drone may meet distinct objectives and be submitted multiple 

times, the submitted drone set contains 296 unique drones. The submitted drone 

designs are categorized into four groups according to the objective categories they meet 

(no submitted drone meets objective 5 in Table 1). Each unique drone is only counted 

once in the highest objective category. The drone designs in a specific objective category 

satisfy at least one sub-objective in this objective category. While they may also satisfy 

any prior objectives, they do not meet any subsequent objectives. In Figure 5, the drone 

similarity network provides an overview of the drone space explored by the participants 

during the study. 

In the network, each node represents a unique drone design submitted by the 

designers (Figure 4). The node color intensity informs the highest objective met by the 

drone design, and the node size indicates how many times a drone design is submitted. 

The distance between each pair of drones informs the dissimilarity between them; a 

shorter distance indicates higher similarity. The entire layout of the network is 
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determined by the pairwise similarities between the corresponding drones. The links of 

the network are not shown for clarity. A few drone examples from the design space are 

presented. The highlighted region in the network labelled No Foil covers all drone 

designs without foils (including the basic drone) and splits the space into two 

predominant areas. Area 1 consists of drones that are less similar to the basic drone 

with a larger number of foils and mainly generated by AI-assisted designers. In 

comparison, Area 2 incorporates drones that are more similar to the basic drone with a 

smaller number of foils and primarily developed by the solo designers. The evolution 

paths of the only two designers (one AI-assisted designer and one solo designer) who 

fulfilled all the objectives 1 through 4 are highlighted in the network.  

 

AI-assisted: Obj 1

AI-assisted: Obj 2

AI-assisted: Obj 3

AI-assisted: Obj 4

Solo: Obj 1

Solo: Obj 2

Solo: Obj 3

Solo: Obj 4

AI-assisted & solo: Obj 1

Solo: No obj fulfilled

Condition: Fulfilled objective

Example evolution path

AI-assisted designer 1

Solo designer 1

Basic drone

Area 1

Area 2

No Foil
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Fig. 5. Solution space defined by the submitted drones meeting objectives 1-4. The 
highest objective met by a drone design is informed by the node color intensity, and the 

frequency of a drone being submitted is indicated by the node size. The distance 
between a pair of nodes indicates the pairwise dissimilarity between the corresponding 

drones. Links between nodes are removed for clarity. The evolution path of the two 
representative designers and the representative drone designs are also shown. 

 

The following subsections explore the solution space depicted by the network 

quantitatively to assess the designers’ design effectiveness and design process. 

 

Design Effectiveness 
 

First, design effectiveness is measured via the quantity, exploration, novelty, and 

quality of the submitted drone designs. 

Quantity 
 

On average, AI-assisted designers tend to submit a greater number of drones (t = 

1.969, p = 0.053, d = 0.469)4, as shown by Figure 6A. Considering that one drone design 

can be submitted for multiple sub-objectives and different drone designs can share the 

same drone configuration (i.e., have the same component type at each same position) 

with different component sizes, the number of unique drone designs and drone 

configurations are further compared. As seen in Figures. 6B and 6C, the AI-assisted 

designers submit significantly more unique drone designs (t = 2.295, d =0.548, p = 0.025) 

and unique drone configurations (t = 4.069, d = 0.979, p < 0.001). These results inform 

 
4 The statistics in this paper are obtained using either parametric independent t-tests or non-parametric 
Mann-Whitney U tests, respectively for distributions following and not following normal distribution. For 
parametric tests, the t-statistic (t), p-value (p), and Cohen’s D (d) are reported; for non-parametric tests, 
the Z-statistic (Z), p-value (p), and effect size (r) are reported. 
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that the AI agent assists designers in diversifying their solutions to fulfill the design 

objectives. 

 
(A) 

 
(B) 

 
(C) 

Fig. 6. Average number of submissions. (A) Submitted drones. (B) Unique drone designs. 
(C) Unique drone design configurations 

 
As shown in Figure 7, the AI-assisted designers submit more drones that meet 

sub-objectives in objectives 2-4 compared to the solo designers, with a more prominent 

effect on moderately complex objectives 2 and 3 (objective 2: Z = 1.901, p = 0.046, r 

=0.317; objective 3: Z = 3.551, p < 0.001, r =0.609; and objective 4: Z = 1.049, p = 0.036, r 

=0.177). Conversely, the solo designers submitted more drones that only meet objective 

1 sub-objectives (Z = 2.143, p = 0.026, r = 0.373). However, the AI-assisted and solo 

designers respectively accomplish 3.8 and 3.54 out of 4 sub-objectives of objective 1 on 

average. Therefore, the fewer unique AI-assisted drone designs for objective 1 are likely 

because AI-assisted designers act more proactively to design drones that aim at less 

complex sub-objectives (e.g., objective 1) and happen to meet the requirements of 

more complex sub-objectives (e.g., objective 2 or 3). In contrast, solo designers tend to 

create drone designs that do not exceed the given sub-objective requirements. Acc
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Fig. 7. The average number of unique drones meeting the given objectives 

Exploration and Novelty 
 

Exploration and novelty, as previously defined (Equations 2 and 3), measure the 

differences between a submitted drone with the basic drone (i.e., the common starting 

point of all designers) and all the other submitted drones, respectively.  

As seen in Figures 8A and 8B, the AI-assisted drone designs present significantly 

higher exploration (objective 1: Z = 2.973, p < 0.001, r = 0.308; objective 2: Z = 8.446, p < 

0.001, r = 0.765; objective 3: Z = 5.087, p < 0.001, r = 0.562) and novelty (objective 2: Z = 

3.057, p < 0.001, r = 0.520; objective 3: t = 2.114, p = 0.037, d= 0.429) scores than the 

solo drone designs for objectives 1-3 (except the novelty score for objective 1), with 

more prominent influences seen for objectives 2 and 3. 
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(A) 

 
(B) 

Fig. 8. Dissimilarity metrics of drone designs. (A) Exploration. (B) Novelty 

 

However, the effect of AI assistance is not significant for the high complexity of 

objective 4. Moreover, the evolution from objective 1 to objective 4 shows that under 

the AI-assisted condition, the drone exploration and novelty scores rise substantially 

first and then converge towards a moderate value as the designers approach the more 

complex objectives. Under the solo condition, the drone exploration and novelty scores 

mildly rise and incrementally approach the scores of the AI-assisted condition for solving 

the highly complex objective 4. These results are consistent with the distribution of the 

drones under each objective category in the solution space (Figure 5). 

Quality 
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Drone quality results are presented in Figure 9A. AI assistance significantly 

improves the drones' quality scores, satisfying objectives 1, 2, and 3 (objective 1: Z = 

5.012, p < 0.001, r = 0.520; objective 2: Z = 6.093, p < 0.001, r =0.552; objective 3: t = 

2.997, p = 0.003, d= 0.660; and objective 4: t = 1.942, p = 0.061, d= 0.684). However, 

there is no significant difference in drone quality between the experimental conditions 

for objective 4. Furthermore, an apparent increase in drone quality is seen as the solo 

designers’ approach higher objectives from objective 1, indicating that incremental 

skill/learning is accumulated. In contrast, the AI assistance enables the designers to 

make more significant improvements in drone quality as they approach the moderately 

complex objectives and maintain their performance for the following objectives. When 

the designers reach highly complex objective 4, the accumulated skill/learning weakens 

the advantage of using AI assistance.  
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(B) 

Fig. 9. Drone design quality. (A) Quality. (B) Correlations between drone quality and foil 
utilization. 

 

The evolution trends over objectives 1-4 shown in Figures 8A and 9A imply that 

the solo designers exhibit an incremental learning process in general. They tend to 

extend their exploration scope and improve the drone quality only when the 

increasingly more complex design objectives drive it. In contrast, the AI-assisted 

designers expand their exploration and improve drone quality proactively during the 

moderately complex objectives. In summary, AI assistance is more beneficial for 

moderately complex objectives and has a reduced impact on highly complex objectives. 

Moreover, when comparing the example drones shown in Figure 5, the drones 

designed by the AI-assisted designers (primarily located in Area 1) differ from the drones 

designed by the solo designers (pervading the No Foil region and Area 2). Specifically, 

the drones designed by AI-assisted designers are more likely to incorporate a higher 

number of foils – thus, AI assistance facilitates foil utilization. Figure 9B suggests that 

AI assistance im proves drone exploration and novelty scores. Its effect is m ost 
prom inent for m oderately com plex objectives. 

!

!
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drone quality is positively correlated with the number of foils incorporated by a drone 

for both sets of drones designed by the AI-assisted and solo designers, respectively. The 

results, in line with literature on the design of drones [51], help to explain why and how 

AI assistance improves drone quality. 

 

Design Process 
 

The log data from HyForm and the questionnaire data are analyzed to 

understand the design process with and without AI assistance. 

Design Effort 
 

The effort invested by the designers during the design process is measured by 

the number of actions and the average time taken for designing a drone in each 

objective category based on what each designer has achieved. The results are presented 

in Figures 10A and 10B. The most evident differences caused by the AI assistance are 

seen for objectives 1 and 2. The AI assistance enables a higher action efficiency at the 

beginning (e.g., objective 1) for the AI-assisted designers (Z = 2.532 p = 0.033, r =0.283), 

while the solo designers achieve higher time efficiency than the AI-assisted designers for 

objective 2 (Z = 2.190, p = 0.033, r =0.255). Although the AI-assisted designers perform 

fewer actions (Figure 10A), they did not spend significantly less time designing a drone 

for objective 1 (Figure 10B), indicating that the AI-assisted designers took more time 

making design decisions rather than performing more actions.  

Moreover, considering the evolution over objectives 1-4 in Figures 10A and 10B, 

it can be seen that the solo designers take more design actions to successfully design 
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single drones satisfying objective 1. Then, they gain higher action and time efficiencies 

in designing drones for objective 2. In contrast, AI-assisted designers do not exhibit 

improved action and time efficiencies in the transition. The solution space evolution 

visualized in Figure 5 explains this: in the transition from objective 1 to objective 2, the 

solo designers make shorter moves; in comparison, the AI-assisted designers navigate to 

relatively distant areas with quite different drone configurations, which requires more 

design efforts. Finally, solo designers reach similar action and time efficiencies to the AI-

assisted designers as the design objectives got more complex. The results further 

support that the AI influences decrease as the design objective complexity increases and 

as participants become more familiar with the design task. 

 

 

(A) 

 
(B) 

Fig. 10. Design efforts. (A) Average action count. (B) Average amount of time for 
designing a drone in each objective category. 
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Search Strategy 
 

In this subsection, the designers’ search strategy is compared between the AI-

assisted and solo design conditions by looking at designers’ behavior and design 

evolution process. The designers’ action data is analyzed using an HMM [44,45] to 

assess their behavior during the design process.  

The training process of the HMM results in an optimal model of four hidden 

states, representing four categories of emergent design activities that illustrate the 

aggregate design process. These states are used to understand how participants 

complete the drone design tasks. The transition matrix between the detected hidden 

states and the emission matrix between the hidden states and the design actions are 

shown in Figure 11A. According to the associations between the hidden states and the 

design actions (Figure 11B), these four states are named as State 1: drone configuration 

design (changes to the component type), State 2: evaluation and management of drone 

designs, State 3: drone parameter design, and State 4: drone configuration design 

(adding or removing components). The prominence of these states is compared in 10-

minute periods between the two conditions, as shown in Figure 11C. The AI-assisted 

designers allocate more action resources toward evaluating and managing drones and 

fewer action resources toward drone parameter design than the solo designers (State 2 

– Period 1: Z = 1.371 p = 0.160, r = 0.228; Period 2: Z = 2.473 p = 0.052, r = 0.407; Period 

3: Z = 3.359, p = 0.013, r = 0.568; Period 4: Z = 3.061 p = 0.011, r = 0.510. State 3 – Period 

1: t = 1.371, p = 0.175, d = 0.223; Period 2: t = 2.473, p = 0.016, d = 0.378; Period 3: t = 

3.061, p = 0.003, d = 0.590; Period 4: t = 3.359, p = 0.001, d = 0.520). Herein, “parameter 
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design” refers to changing component sizes, while “configuration design” represents 

changing drone configuration by adding or removing components and changing 

component type. The solo designers focus more on parameter design for their 

exploration compared to the AI-assisted designers. 

 
 

(A) 

 
(B) 

 

(C) 
Fig. 11. Hidden Markov Model describing the aggregate design process. (A) The 

transition matrix between the hidden states and the emission matrix between the 
hidden states and the design actions. (B) The associations between the hidden states 

and the design actions. Only associations with probabilities higher than 0.005 are 

Designers with AI assistance devote more efforts to drone evaluation and management, 
while designers without AI assistance spend more time in parameter design.

State 1: Change component Type

State 2: Evaluate and manage drones

State 3: Parameter design

State 4: Configurational design

State 2: Evaluation and 
management of drones

State 3: Drone 
parameter design

State 1: Configuration 
design (change 

component Type)

State 4: Configuration 
design (add /remove 

components/connectors) 
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shown. (B) Evolution of the composition of designers’ activities over time. Each subplot 
represents the percentage of the actions associated with the corresponding hidden 

state. 
 

Next, the size of a stepwise move is assessed, as defined by the dissimilarity 

between two consecutive drone designs generated by a same designer. Note that the 

moves made by the AI-assisted designers are separated into two groups, the moves 

made by human designers and the moves made by the AI agent (examples shown in 

Figure 12A). As shown in Figure 12B, the AI-assisted designers, on average, made similar 

stepwise moves as the solo designers, while the AI agent makes bigger moves than both 

AI-assisted designers (Z = 28.352, p < 0.001, r = 0.771) and solo designers (Z = 32.609, p 

< 0.001, r = 0.800). These results indicate that the AI assistance enables human 

designers to expand their exploration in the solution space more efficiently. Moreover, 

these results explain the differences between the two conditions in solution space 

exploration (Figure 5) and the drone exploration and novelty scores (Figure 8). In 

summary, with similar action efforts (Figures 11C), the AI-assisted designers employ a 

more explorative search strategy and obtain more unique drone design configurations 

(Figure 6C). In comparison, the solo designers focus more on local optimization through 

parameter design (Figure 11C). 
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(A) 

 

(B) 
Fig. 12. Design search strategy indicated by stepwise moves. (A) Examples of stepwise 

moves. (B) Average stepwise move. 
 

Mental Workload 
 

Differences in the mental workload of the AI-assisted and solo designers could 

explain the differences in their design processes. The mental workload for each 

participant is determined by calculating their average mental workload score for all 

NASA-RTLX measures. Figure 13 shows the variability in each of the NASA-RTLX 

dimensions by design condition. 

 
Fig. 13. Mental workload measures 

The average mental workload score for the two sessions is used for the AI-

assisted designers (M = 55.31, SD = 11.41) and the solo designers (M = 58.87, SD = 

Example of drone design evolution of an AI-

assisted designer:

1 2 876543

Drones designed by human designers 

Drones returned by the AI agent

Moves made by AI-assisted designers

Moves made by the AI agent
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12.12). No significant difference in average mental workload is found for the AI-assisted 

designers compared to the solo designers (t = -0.892, p = 0.376, d = 0.11). Results do not 

change when the expanded measures from the workload questionnaire are included in 

the analysis. This result indicates that the novel use of AI assistance for drone design 

does not increase designers' mental workload during the task. This result contradicts 

previous research, which has suggested that AI can reduce participants’ mental 

workload [52,53] but aligns with a more recent study that found mental workload is not 

impacted by cognitive assistance for simple tasks [54,55]. 

 

DISCUSSION 

Individual designers were tasked with completing increasingly complex drone 

design objectives either with or without AI assistance, using the design research 

platform, HyForm. The log data from HyForm records the details for every action and is 

analyzed to understand the influences of the AI assistance on design effectiveness and 

process. In terms of design effectiveness, the AI assistance enables the AI-assisted 

designers to achieve more unique drone designs and configurations (Figures 6B and 6C). 

Furthermore, over objectives 1 through 4, the AI assistance has the most prominent 

effects on the moderately complex objectives 2 and 3 but has reduced, i.e., not 

statistically significant, effects on the highly complex objective 4, as indicated by the 

comparison in drone quantity, exploration, novelty, and quality metrics between the 

two conditions. These findings complement the findings from a prior study showing that 
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the same design agent improves team performance in designing and operating a drone 

fleet [39]. 

With regard to the design process, the AI-assisted designers start the design 

process more efficiently, whereas the solo designers take more action effort per drone 

(Figure 10A). As the designers become familiar with the solution space during objective 

1 and approach objective 2, the AI-assisted designers act proactively to explore new 

areas (Figures 5, 8, and 9). In comparison, the solo designers tend to expand their 

exploration conservatively and incrementally, relying more on local optimization 

(Figures 5, 8, and 9). Hence, the large drops in design effort (in terms of action count 

and amount of time to build a drone) are seen in the transition from objective 1 to 

objective 2 for the solo designers but not for the AI-assisted designers (Figure 10). 

Accordingly, the AI-assisted designers allocate less action effort for parameter design 

(Figure 11C) and make bigger stepwise moves with the AI assistance (Figure 12B) than 

the solo designers. These findings indicate their differences in search strategies. By 

utilizing the drone designs returned by the AI agents, the AI-assisted designers are more 

efficient and confident to explore new drone configurations, which remains challenging 

for the solo designers. Therefore, the AI-assisted designers employ a more explorative 

search using the AI agent, whereas the solo designers prefer optimization-driven search 

through parameter design. However, when examining the paths of the two best-

performing designers, one AI-assisted and one solo designers (Figure 5), observation 

suggests that both designers properly integrate the two search strategies to complete 

all the objectives 1 through 4. 
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The findings in this paper inform the development of design AI assistance from 

two perspectives. First, design AI assistance, which can enable a more efficient and 

broader exploration in the solution space, potentially benefits the design process and 

outcomes. This provides a direction for conceiving new design AIs. Second, addressing 

design objectives with varying complexity requires efficient adaptation of the strategy. 

The current AI assistance facilitates the adaptation of the incremental optimization-

driven search strategy towards an explorative search strategy, which is most beneficial 

for moderately complex objectives. However, the AI assistance exhibits a weakened, not 

statistically significant, impact on the adaptation towards a proper integration of the 

two search strategies, which is likely required for solving highly complex objectives, such 

as objective 4. With the limitations of the current AI agent in mind, this study is hoped 

to encourage researchers to explore AI’s characteristics beyond capability, such as 

adaptability to problem complexity, and to develop advanced AI agents able to 

overcome similar limitations. 

 

LIMITATIONS & FUTURE WORK   

While the results of this work are promising, this study does have some 

limitations. This study's primary limitation was the use of only one type of AI assistance 

for design, which may limit the generalizability of these results to other types of design 

tasks. Moreover, limited qualitative data was collected during this study to understand 

the participants’ experiences during the design tasks. When analyzing the data, the 

differences in demographic dimensions and the participants' mental or physical state 
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prior to the beginning of the experiment were not considered, which might have 

affected participants’ cognitive demand, effort, attitudes towards designing, and their 

behavior. Additionally, while the measures used for design effort and mental workload 

were appropriate for this online experiment, future work should include additional 

measurements including observation and in-person data collection mechanisms.  

Future research should be conducted to verify and expand the results of this 

study. Qualitative analysis and user interviews should be incorporated in future work to 

draw inferences regarding human designers' trust in AI design solutions, design effort, 

and mental workload. As the current work used only one type of AI assistance for 

design, in the future, a broader selection of AI design assistance capabilities should be 

explored to investigate and compare the generalizability of these results to other types 

of design and collaboration tasks. These efforts are essential to the design of effective 

collaborative AIs. Furthermore, future studies could extend the current work by drawing 

comparisons between expert and novice designers to highlight the benefits and 

limitations of AI design assistance. 

 

CONCLUSION 

Through a design experiment asking participants to fulfill increasingly complex 

design objectives, this study shows that the effect of AI assistance on design 

effectiveness varies with the complexity of the task. The AI-assisted and solo designers 

use different search strategies where the former engage in more explorative search with 
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the AI assistance, while the latter pursues more optimization-driven search through 

parameter design. 
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