
Definition of Simplified Frequency-Domain Volterra Models With 
Quasi-Sinusoidal Input

Marco Faifer, Senior Member, IEEE, Christian Laurano, Student Member, IEEE, Roberto Ottoboni, Fellow, IEEE, 
Marco Prioli, Sergio ToscaniID, Member, IEEE, and Michele Zanoni, Student Member, IEEE

Abstract— The Volterra approach to the modeling of nonlinear systems has been employed for a long time thanks to its conceptual simplicity 
and flexibility. Its main drawback lies in the number of coefficients, which rapidly grows with memory length and nonlinearity order. In some 
important cases, such as power system applications, the input signal is periodic and contains a fundamental component that is much larger 
with respect to the others. This peculiarity can be exploited in order to dramatically reduce the number of coefficients defining the frequency-
domain Volterra model with slight drawbacks in terms of accuracy. A systematic procedure for the definition of simplified, frequency-domain 
models of arbitrary order is proposed. Thanks to the simplification, very high orders of nonlinearity can be managed. The proposed approach 
has been employed to model the behavior of two electrical devices with different amount of nonlinearity, and that of a power grid containing 
linear and nonlinear loads. Accuracy is discussed and compared with that obtained with a conventional Volterra model defined by a similar 
number of coefficients. Results show the effectiveness of the approach, which is particularly suitable to model and test voltage and current 
transducers as well as other ac power system devices.

Index Terms— Nonlinear systems, power quality, Volterra series, transducer, system identification.

I. INTRODUCTION

All physical systems exhibit a certain degree of non-
linearity. However, in many cases, nonlinear systems are 
modeled by using the conventional, well-known linear 
time invariant (LTI) approach, thus avoiding the inherent
complication of nonlinear modeling [1]–[4]. This is possible
only when the impact of the nonlinearities on the output is 
small with respect to the target accuracy, thanks to the limited
range of the input signal or to the weakly nonlinear behavior 
of the system. When this condition is not met, models able
to take into account also nonlinear effects are required. Since
the complexity of the phenomena to be studied as well as 
the accuracy requirements are continuously growing in the
last years, nonlinear modeling is becoming more and more
important.

Nonlinear modeling is somewhat a hard topic, especially
when there is lack of knowledge about the structure and the 
operating principle of the device to be represented. In this
case, a black-box, nonparametric model has to be adopted [5]. 
A broad variety of techniques based on very different 
approaches can be found in the literature [6]. Among them, the 
Volterra approach to the modeling of nonlinear time invari-ant 
(NTI) systems [7], [8] has been employed for a long time, and 
it is still widely employed in many applications [9]–[13].
 The main advantage lies in its conceptual simplicity, since it 
represents a blend between the usual LTI system theory (both 
in time and frequency domain) and the Taylor series expan-
sion. For this reason, models based on the truncated Volterra 
series are often called polynomial models [14]. The main 
drawback is that a (discrete) Volterra model is defined by a 
number coefficients that grows more than exponentially with 
the considered order of nonlinearity [14]. For this reason, only 
very low orders of nonlinearity (usually second and third) are 
employed in most practical applications [9], [10]–[13]: 
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 otherwise, the computational burden and the identification 
pro-cedure become troublesome. Similarly to a low-order 
Taylor expansion, such polynomial models may be not 
accurate for a broad input range, and in any case they are not 
the proper tools to represent strong nonlinearities. For this 
reason, several techniques able to simplify (or “to prune”) 
Volterra models have been studied and proposed in the 
literature [15]–[21]. Most of these methods are specifically 
devoted to the behav-ioral modeling of radio frequency power 
amplifiers and, in general, to communication system 
application. The time-domain formulation of truncated Volterra 
systems is con-sidered, and kernels are pruned assuming a 
“near-diagonal” structure, exploiting some a priori knowledge 
or using matching pursuit techniques.

However, sometimes the target is predicting the steady-state 
response of a system to a periodic input containing a fairly low 
number of spectral components: a frequency-domain Volterra 
approach is usually much more effective [8], [14],[22], [23]. 
Albeit it is not as widely employed as the cor-responding time-
domain counterpart, in this case it often allows a considerable 
reduction in the number of coefficients. Furthermore, in some 
important applications, such as in ac power systems, the input 
(voltage or current) contains a fundamental spectral 
component that is much larger than its harmonics. This 
characteristic of the input signal can be exploited to drastically 
reduce the number of coefficients, thus enabling the 
employment of frequency-domain Volterra models of 
unprecedented order. The approach has been applied in [24] to 
a fifth order polynomial system.

In this paper, a systematic procedure to define and identify 
simplified frequency-domain polynomial models having an 
arbitrary order of nonlinearity is presented.
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The proposed technique is particularly suited to obtain a
behavioral representation of power system components, when
a physically-based model is not available, difficult to be iden-
tified, or not accurate enough. As case studies, the technique
is applied to model two power system devices, having a dif-
ferent level of nonlinearity: a saturable inductor and a voltage
transformer. Furthermore, the approach is applied to represent
the current-voltage relationship of a simple grid made up of
the connection of both linear and nonlinear loads. Simplified
models up to the eleventh order are employed. Obtained
accuracy is discussed and compared with that achieved with a
well-known reference method, namely a full frequency-domain
Volterra model described by a similar number of coefficients.

II. THE VOLTERRA REPRESENTATION OF NTI SYSTEMS

A. Time-Domain Volterra Models

Let us consider a NTI, single input-single output system; its
generic Volterra-series representation is given by the following
expression

y (t) = h0 +
∞∑

i=1

yi (t) (1)

h0 is a constant that represents the system output y when
the input is identically zero; without loss of generality, the case
h0 = 0 will be considered in the following. Under this
assumption, the output y can be decomposed into the sum
of an infinite number of terms yi , each representing the
contribution of a so-called i -th order homogeneous subsystem.
In turn, the output of the subsystem is obtained as the
i -fold convolution between a function hi of i variables and
the input x :

yi (t) =
+∞∫

−∞
. . .

+∞∫

−∞
hi (τ1, .., τi )

i∏

p=1

x
(
t − τp

)
dτp (2)

The time-domain behavior of the i -th order subsystem is
defined by hi which is called i -th order kernel. The similarity
of (2) with respect to the convolution representation of linear
systems is evident; in particular, it can be noticed that the first
order subsystem is LTI. For this reason, hi is also known as
the generalized impulse response of the i -th order subsystem.
Physical systems are causal: this implies that the generalized
impulse responses must be zero when at least an argument
is negative. Therefore, the lower integration limits appearing
in (2) can be set to zero.

The number of kernels defining a Volterra model is infinite,
hence a practical implementation is not feasible. For this
reason, the maximum order I of the homogenous subsystems
has to be finite, like when a C∞ function is approximated
by its truncated Taylor expansion. The sum appearing in (1)
has to be upper bounded to I , so that an I -th order Volterra
(or polynomial) system is obtained.

Polynomial models are typically implemented as discrete-
time systems by means of digital signal processing techniques.
Input and output are assumed to be properly sampled sig-
nals (thus avoiding aliasing artifacts) therefore the kernels

become functions of discrete variables. The multiple integra-
tions in (2) reduce in cascaded summations containing infinite
terms. Being it not possible from a practical point of view,
summation indexes are limited to a finite number of sam-
ples K-1, which is called memory length. This corresponds to
the assumption that the amplitudes of the generalized impulse
responses become negligible after K samples. Following these
considerations, the generic expression of a causal, discrete-
time I -th order Volterra system with finite memory length
becomes:

y (n) =
I∑

i=1

yi (n)

yi (n) =
K−1∑

k1=0

. . .

K−1∑

ki =0

hi (k1, . . . , ki )

i∏

p=1

x
(
n − kp

)
(3)

The kernel hi belonging to the i -th order homogeneous
subsystem is a function having i arguments, each of them
assuming a finite number K of values. Therefore, hi can be
represented as an i -dimensional matrix, thus consisting of
K i coefficients. The behavior of the whole system is char-
acterized by a number cT D of coefficients:

cT D =
I∑

i=1

K i (4)

It can be noticed that when the arguments of hi in (3)
are permuted, the quantity to be multiplied, which is the
product between different samples of the input signal, remains
the same. This means that the same input-output relationship
of the Volterra model can be obtained with infinite sets of
kernels, because not all of the coefficients are independent.
It is possible to show that cT D,ind , namely the number of
independent coefficients of an I -th order Volterra system
having a memory length of K samples, is [14]:

cT D,ind =
I∑

i=1

(K + i − 1)!
(K − 1)!i ! (5)

In order to remove this dependency, the generic i -th order
kernel hi can be replaced with its symmetric representation
hi

sym , which is invariant with respect to the permutation of the
arguments. The symmetric form implicitly contains constraints
between the coefficients, so that a one-to-one correspondence
between input/output relationship of an i -th order homoge-
neous system and its symmetric kernel is established. In any
case, it should be noted the number of independent coefficients
rapidly grows with I and K , thus preventing the employment
of high-order Volterra systems.

B. Frequency-Domain Volterra Models

In some applications it is interesting to predict the steady-
state response to a periodic excitation, characterized by the
fundamental angular frequency ω0 and the maximum harmonic
order NX , so that the two-sided input spectrum consists of
M = 2NX +1 (complex) components. In this case a frequency-
domain approach is generally preferred, since the output can



be computed starting from a partial knowledge of the model.
For example, under the LTI assumption, only its frequency
response function evaluated at the input harmonics is required.
The things are obviously trickier when an I -th order Volterra
model is considered. Having assumed that both the input and
output signals are properly sampled (thus supposing negligible
aliasing and spectral leakage), the discrete Fourier transform
can be applied to (3), which allows obtaining the frequency-
domain representation of the Volterra system. Considering
the symmetrical form of the kernels, the following relation
between the input spectrum X (jnω0) and output spectrum
Y (jmω0) is derived:

Y (m) =
I∑

i=1

Y i (m)

Y i (m) =
∑

−N≤n1,...,ni≤N

H i (n1, . . . , ni )

i∏

p=1

X
(
n p
)

(6)

Subject to:

i∑

p=1

n p = m (7)

For the sake of brevity, the input and output spectra X (jnω0)
and Y (jmω0) are indicated as X (n) and Y (m), where n
and m denotes the generic harmonic orders of the input
and output spectral components respectively. From (6), the
m-th output harmonic is due to the sum of different contribu-
tions, each produced by a homogeneous subsystem. In turn,
the contribution of the i -th order subsystem results from the
products between i spectral components of the input subject
to (7) (hence the sum of their harmonic orders is equal
to m) weighted by H i . The latter can be represented as
an i -dimensional matrix that associates a complex number
to a set of i spectral components of the input signal. It is
obtained by applying a multivariate discrete Fourier transform
to the generalized impulse response hi . Because of the evident
analogy with the frequency domain representation of LTI sys-
tems, H i is often denoted as i -th order generalized frequency
response function (GFRF). Since the input spectrum contains
M harmonics, H i consists of Mi elements, but as for the time-
domain representation not all of them are independent. Instead,
it can be easily shown that cF D,ind , namely the number
of independent coefficients defining the frequency-domain
I -th order polynomial system is given by (5), but substituting
K with M:

cF D,ind =
I∑

i=1

(M + i − 1)!
(M − 1)!i ! (8)

Even in this case, it is possible to use special forms of
the GFRFs, such as the symmetric representation, in order to
remove the indetermination of its coefficients.

In many practical applications, M is considerably smaller
than K . This obviously happens when the number of input
harmonics is fairly low, and also when the system dynamics
is slow, but the spectral content of the input signal demands
for a fairly high sampling rate. It should be noted that while

the coefficients defining a GFRF are complex, those appearing
in a generalized impulse response are real numbers. On the
other hand, assuming that the system input and output are real,
the circular Hermitian symmetry (called Hermitian symmetry
in the following for the sake of brevity) of their spectra further
reduces the number of independent coefficients [14], [22].

III. MODEL REDUCTION WITH QUASI-SINUSOIDAL

EXCITATION

Although the frequency-domain approach allows a consis-
tent simplification in modeling the steady-state response of a
Volterra system to periodic inputs, the number of coefficients
rapidly grows with the number N of input harmonics and
nonlinearity order I . However, it is possible to exploit a
peculiarity of the input signal in order to achieve a consistent
reduction in the number of coefficients. In some important
cases, such as the modeling of ac power system devices,
the (real) input signal contains a main, fundamental component
that is much greater than its harmonics. As explained in
the previous section, the output spectrum results from I
homogeneous subsystems; the contribution of the i -th order
subsystem is a weighted sum of i -th order intermodulation
products, where the weights are given by the corresponding
GFRF. Because of the spectral power distribution of the
input signal, the highest i -th order intermodulation prod-
ucts are those containing solely the fundamental component,
while the lowest ones are those involving only harmonics.
In [24] it has been proposed to simplify the frequency-domain
Volterra model by neglecting the contributions to the output
due to intermodulation products containing more than a har-
monic. The class of input signals such that this approximation
leads to results complying with the target accuracy is defined
as quasi sinusoidal. The proposed approach was applied to
a 5th order Volterra system, but a systematic procedure to
implement the method for a generic order of nonlinearity and
number of input harmonics, which is target of this paper, was
not developed.

A. Generalized Frequency Response Functions Under
Quasi-Sinusoidal Conditions

Let us consider an I -th order polynomial system satisfying
the quasi-sinusoidal assumption. Let us suppose that the input
signal x is real, periodic and characterized by the fundamental
angular frequency ω0. In order to define the simplified, i -
th order GFRF it is easier to start from the spectrum of
the output signal y, thus identifying all the intermodulation
products that may contribute to the m-th harmonic component
Y (m), where:

0 ≤ m ≤ NY (9)

On the one hand, being y real, it is possible to con-
sider just the right part of its spectrum. On the other hand,
it is useful to employ the two-sided representation of the
input signal spectrum. In this case, the terms having the
highest amplitude are X (1) as well as its conjugate X (−1),
because of the quasi-sinusoidal assumption. While studying
the contribution of the i -th order subsystem, the fundamental



(or its complex conjugate) appears at least i − 1 times in a
generic intermodulation product W i , which therefore can be
written as:

W i (i p, im, n
) = X (1)i p X (−1)im X (n) (10)

Subject to the condition:

i p + im + 1 = i (11)

Considering the symmetrical form of the GFRF, the contri-
bution of the i -th order subsystem to the m-th output harmonic
results:

Y i (m) =
∑

−N≤n≤N

H i
sym

(
i p, im, n

)
W i (i p, im, n

)
(12)

Having introduced:

H i
sym

(
i p, im , n

) = H i
sym

⎛

⎜⎝1, . . . , 1︸ ︷︷ ︸
i p

,−1, . . . ,−1︸ ︷︷ ︸
im

, n

⎞

⎟⎠ (13)

According to (7), the output harmonic order and the com-
ponents appearing in the intermodulation product must satisfy
the constraint:

i p − im + n = m (14)

From these considerations, the i -th order GFRF coefficients
contributing to the m-th output harmonic are those identified
by i p , im , n satisfying the constraints:

⎧
⎪⎨

⎪⎩

im = i − 1 − i p

n = m − i p + im

0 ≤ i p ≤ i − 1

(15)

It can be noticed that the number of coefficients for each
output harmonic and order of nonlinearity is equal to i .
Therefore, (12) can be written in vector form as:

Y i (m) = WiT
m Hi

m (16)

Wi
m and Hi

m are i × 1 vectors containing respectively
the intermodulation products and the coefficients of the
i -th order subsystem affecting the m-th output harmonic. In
turn, the output of the I -th order polynomial system is:

Y (m) = WT
mHm =

⎡
⎢⎢⎢⎢⎢⎣

W1
m

W2
m
...

WI−1
m

WI
m

⎤
⎥⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎢⎣

H1
m

H2
m
...

HI−1
m

HI
m

⎤
⎥⎥⎥⎥⎥⎦

(17)

Where Wm and Hm are column vectors whose length is:

L =
I∑

i=1

i = I (I + 1)

2
(18)

Since the output spectrum is characterized by NY + 1
independent components, the overall number of coefficients
defining the I -th order polynomial system is:

cQS = (NY + 1)
I (I + 1)

2
(19)

B. Removal of Redundancies

The reduction in the number of coefficients with respect to
the complete Volterra model is evident when (19) is compared
with (8): now it is approximately proportional to the square of
the nonlinearity order. However, some of the cQS coefficients
under quasi sinusoidal conditions are redundant. Dependen-
cies result from the selected problem formulation, expressed
by (13). While it allows an easy, automated implementation, its
drawback is that the same intermodulation product is indexed
by two different sets of i p , im and n. In fact, for each i p and
im subject to (11), it follows:

W i (i p, im , 1
) = W i

(
i ′

p, i ′
m,−1

)

⇔ ∃ 0 ≤ i ′
p, i ′

m ≤ i − 1 :
{

i ′
p = 1 + i p

i ′
m = 1 − im

(20)

Redundancies have to be searched in the same vector Wi
m

since duplicated intermodulation products necessarily affect
the same output harmonic. Wi

m can be written as:

Wi
m =

⎡
⎢⎢⎢⎢⎢⎣

W i (i − 1, 0,−i + m + 1)

W i (i − 2, 1,−i + m + 3)
...

W i (1, i − 2, i + m − 3)

W i (0, i − 1, i + m − 1)

⎤
⎥⎥⎥⎥⎥⎦

(21)

The k-th element of this vector can be written as:

Wi
m (k) = W i (i − k, k − 1,−i + m − 1 + 2k)

1 ≤ k ≤ i (22)

Wi
m contains no more than a duplicated element; in fact,

there is at best only an integer ki
m solving:

−i + m − 1 + 2ki
m = −1

1 ≤ ki
m ≤ i (23)

It results:

i ≥ 2 + m

ki
m = i − m

2
(24)

Therefore, from (24), a redundancy may be present in Wi
m

only if both i and m are even or odd. ki
m , if exists, represents

the index of the duplicated element to be removed from Wi
m .

It is useful to graphically represent the vectors Wi
m containing

redundancies, as shown in Fig. 1, which also reports the
indexes of the elements to be deleted.

While considering the i -th order subsystem, the number of
redundant coefficients is equal to the number of red squares
appearing in the i -th row of Fig. 1. It is easy to notice that
said number corresponds to the integer part of i /2. Therefore,
by using a well-known expression, the overall number of
duplicated intermodulation products cd to be omitted from the
whole model results:

cd =
I∑

i=1

⌊
i

2

⌋
=
⌊

I 2

4

⌋
(25)

where �·	 denotes the integer part.



Fig. 1. Redundant intermodulation products to be removed from W i
m .

Numbers in the red squares are their indexes ki
m .

Unfortunately, the model contains other redundant coeffi-
cients. The reason is that the constraint about the real-valued
output signal has not been fully imposed. Only the right
(positive) part of the spectra has been considered as in (9),
which corresponds to impose that the ac part of the output
signal has to be real-valued. However, also the dc component
at the output must be real-valued. Let us consider the generic
vector Wi

0, having removed the redundant element in position
ki

0 = i /2 when i is even, as pointed out by Fig. 1; follow-
ing (21) this vector can be written as:

Wi
0 =

⎡

⎢⎢⎢⎢⎢⎣

W i (i − 1, 0,−i + 1)

W i (i − 2, 1,−i + 3)
...

W i (1, i − 2, i − 3)

W i (0, i − 1, i − 1)

⎤

⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎣

X (1)i−1 X (−1)0 X (−i + 1)

X (1)i−2 X (−1)1 X (−i + 3)
...

X (1)1 X (−1)i−2 X (i − 3)

X (1)0 X (−1)i−1 X (i − 1)

⎤

⎥⎥⎥⎥⎥⎦
(26)

Having removed the redundancies, the total number of
elements in Wi

0 is always odd. Let us introduce the
index ki

c of the middle element:

ki
c =

⌊
i + 1

2

⌋
(27)

Since the input signal is real, its spectrum is Hermitian;
therefore, from (26) it can be easily checked that the vec-
tors Wi

0 are Hermitian. The dc output component has to be
real; considering (16) with m =0 implies that also Hi

0 have to
be Hermitian. From these considerations, it follows:

Y i (0) = WiT
0 Hi

0

= 2

⎡

⎣
ki

c−1∑

k=1

Wi
0 (k) Hi

0 (k)

⎤

⎦+ Wi
0

(
ki

c

)
Hi

0

(
ki

c

)
(28)

Hence, considering just the first ki
c elements of Hi

0 and Wi
0,

it is possible to rewrite (28) as:

Y i (0) = 

(

WiT
0 Hi

0

)
(29)

Considering all the contributions to the dc output component
Y (0):

Y (0) = 

(

WT
0 H0

)
= 


⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎡

⎢⎢⎢⎢⎢⎢⎣

W1
0

W2
0

...

WI−1
0

WI
0

⎤

⎥⎥⎥⎥⎥⎥⎦

T ⎡

⎢⎢⎢⎢⎢⎢⎣

H1
0

H2
0
...

HI−1
0

HI
0

⎤

⎥⎥⎥⎥⎥⎥⎦

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(30)

As from (28) Y i (0), which is the contribution to the DC out-
put component related to the i -th order subsystem, can be
written as a linear combination of ki

c intermodulation products.
This means that, for the i -th order subsystem, ki

c − 1 coeffi-
cients are redundant. The total number cd,0 of coefficients that
have to be removed from the polynomial model is:

cd,0 =
I∑

i=1

(
ki

c − 1
)

=
I∑

i=1

⌊
i − 1

2

⌋
=
⌊

(I − 1)2

4

⌋
(31)

Finally, using (19), (25) and (31), the overall number
of independent coefficients cQS,red defining the simplified
Volterra model results:

cQS,red = (NY + 1)
I (I + 1)

2
−
⌊

I 2

4

⌋
−
⌊

(I − 1)2

4

⌋
(32)

I of them are real-valued, the remaining are complex
numbers.

It should be noticed that the number of coefficients defining
the I -th order simplified Volterra model has been obtained by
counting all possible intermodulation products that may con-
tribute to an output spectral components. Therefore, in prac-
tice, the actual number of coefficients may be lower than
cQS,red . This typically happens at the highest values of m
because the input signal is band-limited.

IV. CASE STUDIES AND NUMERICAL SIMULATIONS

In the previous section, a method that allows obtaining
simplified frequency-domain polynomial models having arbi-
trary nonlinearity order has been explained. Identifying such a
model means, for each output harmonic order m, inverting (17)
in order to compute Hm . As discussed in [24], this is not pos-
sible by measuring the response to a single input signal (unless
I = 1), since the problem is undetermined. Instead, the system
response to a proper set of P quasi-sinusoidal identification
signals has to be considered. For a generic m-th order output
harmonic, a column vector Yid,m containing the P system
responses to the set of identification signals can be defined.
As from (17), for each input signal a vector of intermodulation
products affecting the m-th order output harmonic can be
written. A matrix Wid,m is obtained by horizontally concate-
nating these vectors. Therefore, the following matrix equation
is introduced:

Yid,m = WT
id,mHm (33)

The vector of coefficients Hm can be obtained in a least
square sense by using the left inverse of WT

id,m .

Hm =
(

WT
id,m

)†
Yid,m (34)



Fig. 2. Equivalent circuit of the nonlinear inductor.

TABLE I

NONLINEAR INDUCTOR PARAMETERS

First of all, this requires that P has to be greater or equal
than L, namely the maximum length of Hm obtained by (18).
In addition, the spectral content of the set of identification
signals has to be properly designed such that WT

id,m has full
row rank.

It is clear that uncertainties affecting input and output
signal measurements may play a significant role in the model
accuracy. Since the target of this paper is evaluating the
intrinsic impact of the proposed simplification, the technique
is applied by simulating the measurement process. For this
purpose, equivalent circuits of two typical nonlinear devices
that can be found in power grids, and that of a more complex
electrical network have been implemented. Input and output
signals have been sampled with a 10 kHz sampling rate, and
the proposed simplified polynomial modeling technique has
been applied to represent the behavior of these systems.

The first case study consists of modeling the voltage-current
relationship of a saturable inductor, representing a typical
passive, nonlinear load. The second example consists in repre-
senting the response of a voltage instrument transformer (VT)
to a distorted input voltage. This device has considerably
weaker nonlinearities; nevertheless a much smaller target accu-
racy is required in this case. The equivalent circuits of both
the devices have been implemented, and their input-output
relationships have been represented with simplified frequency-
domain polynomial models of different orders (from 1 to 11).
The target of the third example is predicting the current
supplied by a distorted ac voltage generator to a grid made
of three different loads: a linear load, a saturable inductor and
an ideal full-bridge diode rectifier having an ohmic-inductive
load connected to its dc side.

A. Saturable Inductor

The proposed model has been applied to represent the
frequency-domain relationship between the voltage vs and the
current iL of an iron core inductor. The input voltage is sup-
posed to be quasi-sinusoidal, containing a 50 Hz fundamental,
harmonics up to the 7th order and a dc component.

The inductor has been simulated by implementing the
equivalent circuit shown in Fig. 2. The parameters are listed
in TABLE I, being N the number of turns, A the core

Fig. 3. Single-valued b-h curve of the core material.

cross-sectional area, l the average length of the magnetic
circuit, R the winding resistance, Vn the rated rms voltage
(50 Hz rated frequency). The single-valued b-h curve of the
iron core material is reported in Fig. 3; the flux linkage to
current relationship is easily obtained by using the geometrical
parameters.

The target is identifying simplified Volterra models of
different orders I , ranging from 1 (linear model) to 11.
For each nonlinearity order, a set of 30 L quasi-sinusoidal
voltage signals has been employed for computing the coef-
ficients, so that in any case the inverse problem is heavily
overdetermined.

These identification signals consist of a fundamental com-
ponent whose amplitude is randomly extracted by using a
uniform probability density function in the range between
60% and 120% of the rated voltage. The dc component and
the harmonics have the same amplitude, corresponding to 2%
of the fundamental component. The polarity of the dc term
is random while the harmonic phases have been randomly
obtained considering a uniform probability density function in
the interval [−π , π]. The coefficients of the eleven simplified
polynomial models have been obtained from (34).

The accuracy of the different models in predicting the
generic m-th order harmonic of the current IL (m) for a given
input voltage spectrum has been evaluated by using the total
vector error with respect to the fundamental component:

TVE1(m) =
∣∣IL (m) − I act

L (m)
∣∣

∣∣I act
L (1)

∣∣ (35)

It represents the distance on the complex plane between the
predicted and the actual amplitude of the system output (IL(m)
and I act

L (m) respectively) with respect to the amplitude of the
actual fundamental output component (I act

L (1)). TVE1(m) has
been computed for every model considering each identification
signal; as synthetic performance indexes, the 95th percentile
values TVE1

95(m) have been obtained for each model and
output harmonic; results are shown in Fig. 4 while the most
significant values are summarized in TABLE II.

As expected, the employment of a linear model results
in extremely high errors in predicting the output harmonics.
Considering the fundamental component, TVE1

95 is about
54%. Errors reduce dramatically by employing the proposed



Fig. 4. Accuracy comparison between simplified polynomial models of the
nonlinear inductor.

TABLE II

NONLINEAR INDUCTOR TVE1
95: LINEAR AND SIMPLIFIED

POLYNOMIAL MODELS

approach and increasing the order of nonlinearity. For exam-
ple, the eleventh order model achieved a TVE1

95 below 0.6%
at the fundamental, and lower than 4.5% for all the considered
harmonics.

In addition, as performance benchmark, the nonlinear induc-
tor has been modeled with a well-known reference method:
the complete, third-order, frequency-domain polynomial rep-
resentation [22]. It has been implemented by following the
systematic method presented in [25], that allows writing the
structure of frequency-domain Volterra models of arbitrary
order excited by periodic multisine inputs.

The identification procedure has been carried out as for
the simplified models, and the TVE1

95(m) values have been
computed. It should be noticed that the full third-order
Volterra model is defined by 248 coefficients, slightly higher
than the number of those characterizing the simplified ninth-
order model (231). Therefore, it is interesting to compare
the accuracy of the complete third order polynomial model
not only with the simplified one having the same order of
nonlinearity (counting only 38 coefficients), but also with
the ninth order which has a similar complexity. Results are
reported in Fig. 5 and TABLE III.

In spite of the considerably higher number of coefficients,
the accuracy of the complete third order model is only
marginally better than that of the simplified one. On the
contrary, the simplified ninth order model is much more
accurate, especially at the low harmonics order. For example,
the complete third order model achieves a TVE1

95 equal to
15.1% and 32.3% in predicting the fundamental and third order

Fig. 5. Comparison between linear, complete third order, simplified third
order and simplified ninth order polynomial models of the nonlinear inductor.

TABLE III

INDUCTOR TVE1
95: COMPLETE AND SIMPLIFIED POLYNOMIAL MODELS

current harmonics, while the simplified ninth order model
results in significantly lower values, namely 0.61% and 1.96%
respectively.

Finally, it is interesting to compare the actual cur-
rent waveform with that predicted by using the proposed
approach. A new set of periodic input voltages has been
generated for this purpose; each signal consists of a 50 Hz
fundamental component with a random amplitude between
80% and 120% of the rated value (uniform probability density
function), dc and harmonics (up to the 7th) whose magnitudes
are obtained from a uniform probability density function
ranging between 1% and 5% of the fundamental component,
and random phases in the interval [−π , π]. The same voltage
signals have been applied to the actual system and to the poly-
nomial models; their outputs have been compared in the time-
domain. For each signal, the discrepancy between the predicted
and the actual current waveforms can be evaluated computing
the Normalized Root Mean Square Error (NRMSE):

NRMSE =

√√√√√√√√

Ns∑
n=0

(
iL (nTs) − i act

L (nTs)
)2

Ns∑
n=0

(
i act
L (nTs)

)2
(36)

where Ts is the sampling time and Ns the number of samples
per period. The average value of the NRMSE (NRMSEm)
achieved by each simplified polynomial model is reported



Fig. 6. Comparison between the average NRMSEs achieved by the simplified
Volterra models of the nonlinear inductor.

Fig. 7. Predicted current waveforms: linear and eleventh order simplified
polynomial model.

in Fig. 6. As expected, when the linear model is consid-
ered, NRMSEm is fairly high, being equal to 35%, while
increasing the nonlinearity order up to the eleventh it is
reduced below 2.5%, that is more than ten times lower.
It should be noticed that the complete third order model
results in a NRMSEm of 13.1 %, marginally lower than that
of the simplified third-order model (14.7%). In comparison,
the simplified ninth order model having similar complexity
achieves a considerably lower NRMSEm equal to 3.64%. An
example of reconstructed current signal is reported in Fig. 7,
which shows the remarkable accuracy that can be obtained in
predicting the output of a heavily nonlinear system by using
the proposed approach.

B. Voltage Transformer

In the previous paragraph, the proposed modeling approach
has been applied to predict the output of a strongly nonlinear
system such as a saturable inductor. Now the target is to
accurately model the behavior of a typical power system
component characterized by much weaker nonlinearities, such
as the input-output relationship of a voltage transformer (VT).

A VT can be represented by the usual equivalent circuit
shown in Fig. 8. R1, R2 and Ll1, Ll2 represent the wind-
ing resistances and leakage inductances, Lm the nonlinear
magnetizing inductance, N1:N2 the turn ratio and RL the

Fig. 8. Equivalent circuit of the voltage transformer.

TABLE IV

VOLTAGE TRANSFORMER SIMULATION PARAMETERS

Fig. 9. Flux linkage-current characteristics of the magnetizing inductance.

burden resistance. The values of the parameters, listed in
TABLE IV, refer to an actual class 0.5 VT having 50 Hz
rated frequency, 200 V rated primary voltage and 20 VA rated
burden. The magnetizing inductance, which is the reason for
the nonlinear behavior, is characterized by the single-valued
flux linkage-current curve depicted in Fig. 9.

The input voltage is supposed to be periodic, with a
main 50 Hz fundamental component and harmonics up to the
nineteenth order. Simplified frequency-domain Volterra models
having different orders of nonlinearity (from 1 to 11) and a
conventional third-order Volterra model have been employed
to represent the relationship between the spectrum of the
primary voltage vs (input) and that of the secondary voltage
v2 (output). Also in this case, model identification has been
performed by using (34) and considering, for each order of
nonlinearity, a set of 30 L quasi sinusoidal excitations. These
signals contain a fundamental 50 Hz component having ran-
dom amplitude between 80% and 120% of the rated pri-
mary voltage with uniform probability density function. All
the harmonics, from the second to the nineteenth have the
same amplitude (2% of the fundamental) and random phases,
obtained from a uniform probability density function in the
range [−π , π].

For each identification signal, model and harmonic order m,
the total vector error has been evaluated as indicator of the



Fig. 10. Accuracy comparison between simplified polynomial models of the voltage transformer.

TABLE V

VOLTAGE TRANSFORMER TVE95

Fig. 11. Comparison between linear, complete third order, simplified
third order and simplified eleventh order polynomial models of the voltage
transformer.

accuracy. It is defined as:

TVE(m) =
∣∣V2(m) − V act

2 (m)
∣∣

∣∣V act
2 (m)

∣∣ (37)

The difference with respect to (35) is that now the error is
referred to the amplitude of the m-th order output harmonic.
The reason is that now the target is to model the impact
of the VT nonlinearities on the measurement accuracy of
the harmonics. As before, the 95th percentiles of TVE(m)
have been computed as synthetic indexes of the accuracy;
results are reported in Fig. 10, Fig. 11 and summarized in
TABLE V. As for the fundamental component, it can be
noticed that the voltage transformer nonlinearities have a very
small impact, being TVE95(1) below 0.04% even when the

linear model (frequency response) is employed. Nevertheless,
using a simplified polynomial model it can be reduced below
10−4% (eleventh order model). Nonlinear effects become
evident for the other harmonics, especially for the odd ones.
The proposed approach is able to take into account these
phenomena with excellent accuracy thanks to the spectral
content of the input signal. A frequency response-based model
achieves a TVE95 slightly lower than 5% for the 150 Hz output
component; it drops to 0.01% for the eleventh order simplified
Volterra model. Also in this case, simulation results show that
a complete third order Volterra model results in a accuracy
which is just barely better than that achieved by using the
simplified approach (Fig. 11 and TABLE V).

It should be noticed that a third order, full polynomial model
requires to estimate 3389 coefficients, while this number is
reduced to 108 thanks to the quasi-sinusoidal assumption.
On the other hand, a simplified eleventh order model is defined
by 1074 coefficients and is far more accurate than a complete
third-order model having a number of coefficients which is
three times higher.

In order to evaluate the performance of the different
polynomial models in reconstructing the secondary voltage
waveform, the NRMSEs defined in (36) have been evaluated.
The comparison between the average NRMSEs obtained by
using the simplified models is reported in Fig. 12. As for the
TVE, the NRMSEm values are, in general, very low; however
a considerable accuracy improvement can be noticed when
the nonlinearity order increases from one (0.04%) to eleven
(0.002%). The full third order model achieves an average
NRMSE of 0.0111%, five times higher with respect to the
simplified eleventh order representation, and just slightly better



Fig. 12. Comparison between the average NRMSEs achieved by the
simplified Volterra models of the voltage transformer.

Fig. 13. Equivalent circuit of the grid.

TABLE VI

GRID SIMULATION PARAMETERS

than that obtained by using the simplified model having the
same nonlinearity order (0.0115 %), albeit the huge difference
in complexity.

C. Grid With Nonlinear Loads

In this example, the proposed modeling technique is applied
to predict the output current iG of a distorted ac voltage
generator feeding a grid consisting of three different loads: a
linear, series RL load, a nonlinear inductor (the same described
in Section IV-A) and an ideal full-bridge diode rectifier con-
nected to an ohmic-inductive DC load. The equivalent circuit
is shown in Fig. 13, while the simulation parameters are listed
in TABLE VI.

The voltage vG is periodic having 50 Hz fundamental
frequency and harmonics up to 1 kHz. The magnitude of the
fundamental component has been sampled from a uniform
probability density function between 80% and 120% of the

Fig. 14. Comparison between linear, complete third order, simplified third
order and simplified eleventh order polynomial models of the grid.

Fig. 15. Comparison between the average NRMSEs achieved by the
simplified Volterra models of the grid.

rated rms voltage Vn = 230 V. All the other harmonics have
the same amplitude (2% of the fundamental) and random
phases, also in this case extracted from a uniform probability
density function in the range [−π , π]. A dc component having
amplitude equal to 2% of the fundamental and random polarity
has been superimposed.

The simplified polynomial models having nonlinearity order
from one to eleven have been identified as usual by considering
a set of 30 L random excitation signals. As in the previous
examples, results have been compared to those obtained with
the reference method, namely a full, third order Volterra model
identified under the same conditions.

The TVE1 defined by (35) has been computed for each
model, excitation signal and spectral component. Fig. 16 sum-
marizes the TVE195th percentile values for the different sim-
plified models.

Nonlinear effects are rather evident in this case study: focus-
ing on the third harmonic component, the linear representation
of the system results in a TVE1

95 above 4.5%. The employment
of the simplified Volterra model allows a dramatic accuracy
improvement in predicting current harmonics, since the error
falls below 0.07 % (eleventh order model). These considera-
tions apply similarly for all the other spectral components.

Simulation results show also in this case that the simplified
and the full third-order models achieve comparable accuracy,



Fig. 16. Accuracy comparison between simplified polynomial models of the grid.

TABLE VII

GRID CURRENT TVE1
95

as reported in Fig. 14 and in TABLE VII, beside the difference
in complexity (121 coefficients instead of 4505). On the other
hand, a simplified eleventh order model requires estimating
1231 coefficients and results in remarkably better performance.

The overall accuracy of the models is evaluated in terms
of NRMSE. For each simplified model the average NRMSE
is shown in Fig. 15; its value falls below 0.34% when the
eleventh order model is employed. The full and the simplified
third order models achieve average NRMSEs of 0.84% and
0.97% respectively.

V. CONCLUSION

In some applications, such as in ac power systems, nonlinear
devices are subject to an input signal containing a strong
fundamental component and harmonics that are much smaller
in amplitude. This characteristic can be exploited to drastically
reduce the number of coefficients of their frequency-domain
polynomial models with a negligible impact in terms of
accuracy. In this paper, a procedure to define these simplified
Volterra models for a generic order of nonlinearity and number
of input harmonics has been defined. The algorithm can
be easily implemented, and the quasi sinusoidal assumption
allows employing high nonlinearity orders which are otherwise
unpractical. As case studies, the proposed technique has been
employed to represent the input-output relationship of two
typical power system devices, showing a very different degree
of nonlinearity, and a more complex electrical grid. In all
cases, the simplified models achieved remarkable performance.
On the one hand, the simplified third order models are almost

as accurate as the complete ones beside their considerably
lower number of coefficients. On the other hand, the simplified
Volterra models allow much better accuracy for the same
complexity.
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