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We address a particular pick-up and delivery vehicle routing problem arising in the collection and disposal of

bulky recyclable waste. Containers of different types, used to collect different waste materials, once full, must

be picked-up to be emptied at suitable disposal plants and replaced by empty containers alike. All requests

must be served and routes are subject to a maximum duration constraint. Minimizing the number of vehicles

is the main objective, while minimizing the total route duration is a secondary objective. The problem

belongs to the class of Rollon-Rolloff Vehicle Routing Problems (RR-VRPs) though some characteristics of

the case study as the free circulation of containers and the limited availability of spare containers, allow us

to exploit them in the solution approach. We formalize the problem as a special VRP on a bipartite graph,

we analyze its structure and we compare it to similar problems emphasizing the impact of limited spare

containers. Moreover we propose a neighborhood based metaheuristic which alternatively switches from one

objective to the other along the search path, and periodically destroys and rebuilds parts of the solution.

The main algorithm components are experimentally evaluated on real and realistic instances, the largest of

which fail to be solved by a MILP solver. We are increasingly competitive with the solver as the instance

size increases, especially regarding fleet size. In addition the algorithm is applied to the benchmark instances

for the RR-VRP.

Key words : waste management; Rollon-Rolloff VRP; distance constrained VRP; hierarchical neighborhood

search; spare containers

1. Introduction

In recent years, bulky waste recycling started to be extensively promoted on a large scale by local

authorities. While the collection of small recyclable household waste is carried out according to a

door-to-door collection pattern or by way of dedicated bins which get periodically emptied on site,

the bulky waste collection service is deployed according to a different logistic. Indeed, items have to

be conveyed by the owners to dedicated conveyance centers rather than being periodically collected
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on site by company vehicles. Both in Europe and in North America, several conveyance centers

have been established, so called Recycling and Disposal Stations or multi-purpose recycling sites

(rdss). rdss are usually located in the proximity of industrial settings, in the outskirts of large

urban areas, or incorporated within existing solid waste transfer stations. Residents bring their

bulky waste material to the closest rds and dispose it into dedicated containers. Several types

of materials can be disposed at an rds. The list includes batteries, garden trim-yard, cardboard,

furniture, electric appliances, metals, wood, and rubble, plus many others, except for industrial

and construction debris. Each rds hosts several containers, each one devoted to a single type of

waste material. Containers are classified depending on access side (left, right or rear access skips)

and compacting equipment; however, the container type dedicated to a given material may vary

from rds to rds, as it may depend on the layout of the site.

Once a container is full, its content must be carried to a Material Reclaimer Facility (mrf)

equipped to process that particular material. This is usually done by loading the container on a

vehicle at the rds and transporting it to an mrf where it is emptied. Due to the size, vehicles

can transport one container at a time. At the original rds, the full container must be replaced by

an empty one of the same type, potentially not necessarily by the original container itself once it

has been emptied at an mrf. In the following we call this operation a service request. Requests

are served when rdss are not open to the public, typically one day a week, which allows a certain

degree of freedom regarding the scheduling of picking up the full container and delivering an empty

one. The multiplicity of container types, rdss, and mrfs and potential spare containers make

the problem of optimizing the container disposal operations rather complex and call for efficient

optimization methods, especially in light of the fact that the quantity of recyclable waste constantly

increases (almost doubling every two years in Italy according to Aringhieri et al. (2004a)).

In this paper we consider the problem faced by Gesenu (www.gesenu.it), a waste management

company in central Italy, where the concern is both on the minimization of the number of vehicles

needed to carry out the service and on the minimization of the total travel time. At the time

this study was started, the service used to be manually managed as it involved few rdss and few

vehicles, however the imminent extension of the covered area and of the fleet size suggested the

managers to adopt an optimization based solution approach.

1.1. Problem Statement

Let us consider: a set of locations, i.e., rdss, mrfs, and the depot; a set of container types; a set of

materials. Every rds issues a set of service requests. Every request involves the rds, a container

type, and a material type, and it is made of two elementary requests. The full elementary request

concerns a full container to be carried to a proper mrf to be emptied. The empty elementary
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request concerns its replacement by any empty container of the same type, with no synchronization

constraints and regardless of the material type previously hosted in the empty container.

The vehicle is stationed at the mrf during emptying operations and must carry away the con-

tainer right afterward. Several requests can be present at the same rds. There is no one-to-one

correspondence between a container type and a material type, so that the matching can vary from

rds to rds. Each mrf can process only a given set of materials. The depot hosts vehicles and a

limited set of spare containers for each type. Vehicles are identical and carry at most one container

at a time, either empty or full. Vehicle routes start and end at the depot. A portion of a route

between two successive passages by the depot is called a tour : a route is made of one or more tours.

Travel times between each pair of locations are known, and may differ depending on the loading

state of the vehicle. All requests must be served and routes are subject to a maximum duration con-

straint. Minimizing the number of vehicles is the highest priority, while minimizing total duration

is a secondary objective. We call this problem the Ecological 1-Load Container Routing Problem

(e1lcrp).

Figure 1 An E1LCRP solution on the physical network for an instance with five requests located at three RDSs

and two MRFs, the first handling paper (P) and metals (M), and the second wood (W), glass (G) and

paper. Black and white circles represent the elementary requests full and empty, respectively. Two

vehicles are used to dispose the waste: their route is depicted in solid line (first vehicle), dotted line

(first tour second vehicle), and dashed line (second tour second vehicle).
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Figure 1 depicts a problem instance and a feasible solution on the physical network. The first

vehicle (solid line) leaves the depot with no container, arrives at rds 1, loads the full metal container
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(M) and carries it to mrf 1 to empty it; then, the vehicle brings the empty container to rds 3

and switches it with the one full of wood (W); the wood is later disposed of at mrf 2; the empty

container is carried back to rds 1 and placed in the metal slot. Finally, the vehicle returns to the

depot. In this case, wood at rds 3 and metal at rds 1 are stored into containers of the same kind.

The route of the second vehicle is made of two tours. In the first tour (dotted line) the vehicle loads

an empty spare container available at the depot which is of the same type as the one full of paper

(P) located at rds 1. This container is carried to rds 1 and swapped with the full one, which is

loaded on the vehicle, carried to mrf 1, and emptied. After paper disposal, the empty container

is carried to rds 2 and switched with the one full of paper (P) present there; this is carried to

mrf 1 where paper is disposed. Finally, the empty container is returned to the depot. Along this

tour, the vehicle travels loaded by containers of the same type. In its second tour (dashed line), the

second vehicle leaves the depot unloaded heading to rds 2 where the full glass container is loaded

and carried to mrf 2. Glass is disposed and the vehicle takes the empty container back to its slot

at rds 2 before heading back to the depot.

This example shows that a request can be served according to three different patterns: i) bring

an empty container to an rds and swap it with a compatible full one: paper requests (P) at rds

1 and 2 are both served according to this pattern in the first tour of the second vehicle; ii) take a

full container to an mrf, empty it there, and bring it back to its original location: the glass request

(G) at rds 2 is served according to this pattern in the second tour of the second vehicle; iii) serve

independently the two elementary requests full and empty a service request is made of, as it is

the case of the metal request (M) at rds 1 in the route of the first vehicle, where full is served at

the beginning of the route and empty at the end; in general, full and empty are potentially served

by two different vehicles, with no precedence relation nor synchronization between them. Pattern

i) is termed a swap, pattern ii) is termed a petal. Finally, note that a tour can start with a swap

only provided that spare containers are available at the depot.

1.2. Contributions and Paper Organization

The paper is organized as follows. We analyze previous studies on similar problems concerning

waste container routing, enlightening the main differences with e1lcrp and summarizing the

proposed solution approaches (Section 2). We show that e1lcrp is a general framework able to

formalize other problems in the class of Rollon-Rolloff VRP (RR-VRP). e1lcrp is then modeled

as a duration constrained vehicle routing problem on a bipartite graph in Section 3. The solu-

tion approach is described in Section 4 where first the complexity is addressed, a constructive

procedure is sketched and its correctness is proved, and the building blocks of the neighborhood

search meta-heuristic are illustrated. One method to compute lower bounds for both total route
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duration and fleet size is described in Section 5, based on a mixed integer linear programming

model. An experimental analysis of the impact of each neighborhood search component is reported

in Section 6. In the same section, computational results are discussed, obtained on real instances

as well as on more challenging larger realistic instances envisioning the extension of the service.

Furthermore, the approach is tested on benchmark instances from the literature with unbounded

additional containers to compare with different algorithms developed for similar problems.

This paper builds on a previous work, Aringhieri et al. (2004b), where e1lcrp was originally

introduced as a particular case in single-load waste container routing and the issue of limited

spare containers was mentioned for the first time. The main contributions of this paper are: the

detailed description of a new graph model for the problem; a systematic review of the literature; a

neighborhood search meta-heuristic that exploits route decomposition into tours to pursue minimal

fleet size and devises moves tailored on the e1lcrp graph structure to minimize tour duration;

a constructive procedure able to handle a limited number of spare containers; an experimental

analysis of the different components of the algorithm on realistic instances, with a special emphasis

on the impact of the number of additional spare containers.

2. Literature Review

Several papers in the literature deal with the many different variants of the Vehicle Routing Problem

(VRP) arising in waste collection; see Beliën et al. (2013) for an overview on this topic. Despite of

the hardness of VRP, relatively simple heuristics seem to provide good quality results in the field

of industrial waste collection, when the problem is defined on special graphs modeling the routing

of containers which are carried on tractors as a single load; these problems are often referred to as

Rollon-Rolloff Vehicle Routing Problems. In this paper we discuss another case that supports this

claim, and analyze which problem features may explain such behavior.

We start by reviewing the six studies of De Meulemeester et al. (1997), Bodin et al. (2000),

Archetti and Speranza (2004), Baldacci et al. (2006), Wy and Kim (2013), Derigs et al. (2013)

addressing RR-VRP closely related to e1lcrp and underline which issues have a direct impact on

the solution approach. These problems and e1lcrp share the following features:

• a fleet of identical vehicles (homogeneous fleet) is located at a single depot;

• routes start and end at the depot and their duration cannot exceed a given threshold;

• several types of containers may be given and each vehicle can carry containers a) of any type,

b) one at a time, either empty or full;

• requests concern: collection of full containers to be removed from a given site in order to be

either emptied or relocated somewhere else; deliveries of empty containers at a given site;

• each request concerns a specific container type; when it involves a full container, it also

concerns a specific type of waste material;
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• waste material type unequivocally determines a subset of mrfs;

• company containers are interchangeable within each type, and can be passed from one client to

another, whereas privately owned containers, when present, must be returned to their original

site;

• empty spare containers are available;

• there is a one to one correspondence between a route, a driver’s shift, and a vehicle.

Actually, Archetti and Speranza (2004) considers an heterogeneous fleet but the following restric-

tions hold: i) all requests are swaps; ii) there are two types of vehicles and two types of containers,

each vehicle type is bound to a container type; iii) the vehicle always leaves the depot loaded by

an empty container and performs a sequence of swaps before returning to the depot; iv) the depot

is the only place where a container type can be changed. Therefore, when the driver returns to

the depot and changes vehicle, it changes container type as well. It follows that the problem can

be reformulated as if the fleet were homogeneous so that Archetti and Speranza (2004) shares the

above mentioned features with De Meulemeester et al. (1997), Bodin et al. (2000), Baldacci et al.

(2006), Wy and Kim (2013), Derigs et al. (2013) and e1lcrp. Nevertheless, the work of Archetti

and Speranza (2004) structurally differs from the other studies since it considers a few constraints

coming from the specific real case under study, in particular: (i) demand satisfaction and route

duration are treated as soft constraints (overtime work and unsatisfied requests are allowed and

yield penalties); (ii) time windows are client dependent; (iii) the number of routes (drivers) is

bounded from above. These features require ad hoc solution approaches, therefore we drop it from

our analysis.

For sake of completeness, beside Archetti and Speranza (2004) we mention a few recent papers

tackling real life vehicle routing problems which can be seen as a generalization of the pure RR-

VRP, such as Wy et al. (2013), Hauge et al. (2014), le Blanc et al. (2006), Elbek and Wøhlk (2016).

Likewise Archetti and Speranza (2004), each one addresses a few application-specific requirements

and priorities that call for tailored solution approaches. In particular: Elbek and Wøhlk (2016)

tackles a multi-period problem; in le Blanc et al. (2006) and Hauge et al. (2014) the single load

capacity constraint is relaxed, as vehicles can carry from two (le Blanc et al. (2006)) to eight (Hauge

et al. (2014)) containers at a time; Wy et al. (2013) considers several scheduling restrictions: time

windows at clients sites, at yards, and at the disposal plants, drivers lunch breaks, and early service

preference for special trips that complete a service that was started the day before. Finally, other

related studies such as Imai et al. (2007) and Jula et al. (2005) concern full container loads with

time constraints: in those cases, though, the container is never emptied so it does not circulate on

the network except for its shipping from origin to destination. Note that Wy et al. (2013) is the only

study to mention a limited number of spare containers that are stored at each individual yard but
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apparently there is a sufficient number of containers, as a whole, to satisfy all the requests, whatever

the schedule. The authors tackle this issue algorithmically, during the solution construction phase,

whereas in this paper we formalize this issue directly into the network model that supports the

solution approach.

From here on, we disregard RR-VRP generalizations and concentrate on comparing e1lcrp

with De Meulemeester et al. (1997), Bodin et al. (2000), Baldacci et al. (2006), Wy and Kim

(2013), Derigs et al. (2013). In these problems, overtime is forbidden, time windows at requests are

identical since those are induced by maximum route duration, the number of routes is unbounded

since vehicles and drivers are such, therefore no request is ever rejected. In particular, Bodin et al.

(2000), Wy and Kim (2013) and Derigs et al. (2013) all tackle the same problem first introduced

by Bodin et al. (2000) and only differ regarding the solution approach.

Hereafter, we focus on the three issues that, in our opinion, most characterize this class of

problems, i.e., request types, spare containers, and objective function.

Composite requests

Given the two elementary requests introduced earlier, i.e., full container disposal (full) and empty

container delivery (empty), additional request types can be built by sequencing full and empty;

Bodin et al. (2000) introduce the following four request types and the associated trips: trip T1 corre-

sponds to serving a composite request of the kind full-empty; trip T2 corresponds to empty-full

at the same rds, i.e., a swap; trip T3 corresponds to the elementary request empty; trip T4 corre-

sponds to the elementary request full. When the two rdss involved in the two elementary requests

part of a T1 trip coincide, we get a petal pattern. In all but De Meulemeester et al. (1997) most

T1s are petal patterns.

An additional trip type T5 is introduced by Baldacci et al. (2006) which consists in the relocation

of a partially filled container from a site to another one without detouring to the dumping site:

T5 can be modeled as a composite request full-empty concerning a new type of container and

a new material whose dumping site is on the shortest path between the two sites. The five trips

are depicted in Figure 2 while petal patterns and swap patterns are depicted in Figure 3. Note

that, if the number of empty and full requests for each container type is not balanced, then there

must be at least one container repository where spare containers are available or can be stored

after usage. Regarding trip types, it can be observed that if all requests were T1 trips, then the

problem would reduce to a distance constrained VRP. If all requests were swaps and unlimited

spare containers were available at the mrfs, the problem would reduce to a Bin Packing Problem

(BPP). Furthermore, we argue that any trip type proposed so far can be reformulated in terms of

a composite request made of elementary empty and full requests. In our opinion, even the two
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Figure 2 T1, T2, T3, T4 and T5 in the scenario with no spare containers. Black and white circles represent the

request of full container disposal and the request of delivering an empty container, respectively.
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additional trips T6 and T7 introduced in Wy et al. (2013), namely BTY and FFD, can be cast

in our framework, provided the following adjustments. FFD concerns picking up a full container

from the depot and emptying it at a disposal site. In our framework it can be modeled by an ad

hoc rds at zero distance form the depot where a full request is the only request located there.

BTY requires to bring an empty container from a client site to a yard; it can be modeled as an

empty request at each yard and a full request at the client site, involving a new container type

not considered by any other request. In particular, each such empty request models the potential

return of an additional container, which in our framework does not need to be necessarily served,

as explained in the next section. The vehicle reaches full unloaded (as for any other full request)

and proceeds to the most convenient empty request along its route.

Spare containers

e1lcrp is the only study, among the six discussed, dealing with a limited number of spare con-

tainers. This bound acts as a global constraint and ties decisions related to different routes: for

example, modifying the service sequence of the requests in a route may require using a spare con-

tainer which may or may not be available depending on whether it has been used by another route.

We believe this feature makes our problem more challenging, as discussed hereafter.

Spare containers increase the degree of freedom in the routing. Without spare containers,

sequences of requests are subject to compatibility constraints: for example, prior to serving a given

empty request, an unloaded vehicle must first serve a full request concerning a container of the

same type. On the contrary, if spare containers are available, an unloaded vehicle can load one

container of the desired type at the repository and proceed to serve the selected empty request,
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whatever the previous served request was. Conversely, a vehicle loaded by an empty container may

unload it at a repository and proceed to serve any full request. Without repositories of spare

containers, a compatible empty request should be served first in order to unload the vehicle. In

other words, a detour by a container repository changes the status of the vehicle as wanted (from

loaded to unloaded and vice versa, or changing the type of the container the vehicle is loaded with),

thus allowing any sequence of requests to become feasible.

Three aspects related to spare containers impact on the problem difficulty: the number of con-

tainer repositories, their locations, the number of spare containers stationed at each site, which

can be either finite or unbounded for each container type.

Spare container repositories’ cardinality. The more repositories are, the higher chances are that the

status of a vehicle can be modified by a short detour to a repository, thus increasing the number

of feasible routes. Moreover, any set of disjoint sequences of trips, where all sequences start and

end at the same repository, can be combined into routes by solving a (modified) BPP regardless

of the order in which they will be executed within the route.

Repository locations. Concerning repository locations, the previous effect is amplified when repos-

itories coincide with network locations that must be visited along a route. In particular, when

repositories are located at the mrfs, the opportunity for a change of status comes after each full

request at no extra travel time. On the contrary, when the same company owns the vehicles as well

as the containers, these are usually located at the depot. This is the case of most waste management

companies in Italy.

Bounded spare containers. Spare containers are a shared resource by the vehicles, even if each one

can be used at most once. It follows that bounded spare containers yield a global constraint on the

solution, so that the feasibility of individual routes is not sufficient for the feasibility of the whole

solution. This issue was first raised in Aringhieri et al. (2004b) of which this paper is a follow up.

In Wy et al. (2013), where spare containers are stocked in limited quantities at different yards, this

feature is handled algorithmically, during the solution construction phase, when selecting the yard

at which an empty container will be picked up given the current solution. On the contrary, in our

case, the additional containers are part of the network model, as explained in the next Section.

Objective functions

A solution can be evaluated according to either fleet size, which models capital cost, or routing

cost, modeling operational costs; the latter is the most common objective, either expressed in terms

of distance, duration, or monetary cost of the routes; this criterion is usually correlated to the

maximum duration constraint holding on individual routes. Optimizing capital cost is challenging

since the most efficient routing does not imply minimum fleet size. Vice versa, the minimum fleet
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solution may be operationally expensive, although within each route the routing must be optimized

with respect to this criterion in order to fit maximum duration. Often a hierarchical objective

function is used, which incorporates both aspects, but the solution is challenging since the two

objectives can be conflicting, as shown by Li et al. (1992).

Table 1 A summary of comparison over the literature.

feature De Meulemeester et al. Bodin et al. Archetti and Speranza Baldacci et al. e1lcrp

1: mrf M S M MM MM
2: mrf location d, any any any any d, any
3: spare containers ∞ ∞ ∞ ∞ ≤
4: repositories S S S M S
5: repository locations d mrf d mrf d
6: requests T3,T4 T1-T4 T2 T1-T5 T1-T7
7: balance E F 6= 6= = 6= =
8: constraint distance time time time time
9: constraint vs OC = = 6= 6= =
10: I o.f. OC OC MC OC+V V

II o.f. – V – – OC
11: fleet size ∞ ∞ ≤ ∞ ∞

Table 1 provides a concise picture of how each study is positioned with respect to the previous

issues. Since Wy and Kim (2013) and Derigs et al. (2013) address the same problem as Bodin et al.

(2000), we report for Bodin et al. (2000) only. Each row addresses the following issue: 1 reports

the number of mrfs: M stands for multiple, S for single. If some kind of waste can be assigned to

more than one mrf we use the symbol MM; 2 reports the location of the mrfs: at the depot (d)

or anywhere else in the region (any); 3 reports the number of spare containers, either unbounded

(∞) or bounded (≤); 4 reports the number of container repositories and their location is given

in 5; 6 reports which types of trips are handled, and 7 tells whether empty and full requests are

balanced for each container type; 8 concerns the criterion used in the route feasibility constraint,

i.e., distance or duration (time); 9 highlights whether the above criterion is the same (=) or it

is different from ( 6=) the one involved in the operational costs (OC); 10 concerns the objective

function: OC stands for operational costs, MC for monetary costs which include OC and penalties,

V for the fleet size; a two-levels hierarchical objective function is denoted by I o.f. and II o.f.;

finally, 11 tells whether the fleet size is bounded or unbounded.

The information provided in Table 1 suggests the following insights. Waste type determines the

(set of) mrfs at which a full container can be emptied. In case of a single mrf (as in the work

of Bodin et al. (2000), Wy and Kim (2013), Derigs et al. (2013)), such node has to be visited once

for each trip of type T4 and its successor in the route can be any T3 trip without additional travel

time. Moreover, when such unique mrf coincides with the container repository, the possibility for
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the vehicle of changing status comes at no extra cost after T4. Therefore, T4 trips can be the

predecessors of any other trip type, while T3 trips may follow any other trip. This allows to consider

all the sequences of trips that start and end at the mrf as building blocks of the solution, which

can be assembled in any order into routes, regardless of the solution cost. Note that, while e1lcrp

is tailored to exploit the case |E|= |F |, it can be generalized to handle all kinds of trips, from T1

to T7, as discussed in Section 3.

Finally, we comment on the solution approaches developed in each work, that are designed to

address the specific problem features listed above.

In the work of Archetti and Speranza (2004), where only T2 trips are considered and the depot

hosts the spare containers, the vehicle is tied to the same container type in between any two

successive passages by the depot. In this approach, the main difficulty is the trip selection. Indeed,

a big effort is put on setting up a penalty system able to reflect the consequence on solution quality

of postponing a request vs. using an extra vehicle or paying for overwork. Computational results

are provided on real data with up to 35 requests per day, but no lower bound is provided.

In the problem solved in Bodin et al. (2000), Wy and Kim (2013) and Derigs et al. (2013),

a single container repository is located at the unique mrf. In Bodin et al. (2000) the authors

exploit the predominance of T2 trips which shifts the problem structure towards a BPP. They

compare several approaches, and a simple heuristic performs almost as well as a sophisticated exact

approach, exploiting this problem structure. Wy and Kim (2013) and Derigs et al. (2013) were

published almost at the same time and report results on the same data set as Bodin et al. (2000):

both propose several variants of a Large Neighbourhood Search combined with local improvements

and Local Search. In both cases results marginally improve Bodin et al. (2000) (more on total

duration than on fleet size) with a comparable number of iterations.

Baldacci et al. (2006) involves multiple disposal facilities at which an unlimited number of empty

containers are available. They further generalize the problem considering arc cost and arc weight

as different and independent functions, so that, given a set of nodes, the cheapest route may not

be feasible whilst a more expensive one is. A column generation framework is developed which is

also suitable for the Vehicle Routing Problem with Time Windows (TW-VRP). The authors use

an additive bounding procedure to obtain a tight lower bound and generate a promising set of

routes which are passed to a commercial software as the columns of a set partitioning problem.

De Meulemeester et al. (1997) solves a version with unlimited spare containers minimizing total

duration. The depot acts as the only repository and hosts the dump of so called domestic requests,

thus providing several possibilities of starting and ending a route at no extra cost. Trips are

sequenced with the only aim of minimizing total duration, and the prevalence of domestic customers

makes the maximum duration constraint easier to be satisfied. The solution approach exploits a
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tight lower bound coming from the solution of a cycle cover on the compatibility graph whose

nodes are the elementary requests in T3 and T4. It consists in building a heuristic initial feasible

solution to be improved by classical VRP moves.

In e1lcrp trips are in equal number T3 and T4. Nevertheless the approach allows to handle

all the kinds of trips described so far. e1lcrp generalizes the problem of De Meulemeester et al.

(1997) since it considers a bounded number of spare containers and therefore it cannot be solved

by any of the six reported approaches. Any demand pattern can be modeled in terms of elementary

requests suitably sequenced, so that any trip type can be modeled in e1lcrp by a partial fixing of

the routing decisions. Moreover, a proper number of spare containers for each type must be added

to balance the demand or to model the unbounded containers situation (one for each request).

However, e1lcrp differs from the problems of Bodin et al. (2000), Wy and Kim (2013), Derigs et al.

(2013), Baldacci et al. (2006) concerning the number and location of the container repositories. In

fact, in e1lcrp the unique container repository is located at the depot. This feature allows for an

intermediate structure in between nodes and routes, that we term a tour. Tours can be sequenced

disregarding compatibility of the vehicle status, and can be assembled into routes regardless of the

order. Note that the total duration component of the objective function depends on the solution

tours, while the fleet size component depends on how tours are partitioned into routes; this last

step reduces to a Bin Packing Problem. This two-level structure could explain why very difficult

problems such as those aforementioned could be handled so well by relatively simple solution

approaches.

3. A Network Model for the Ecological Single Load Container
Routing Problem

Let R= {1, . . . , n} be the set of service requests. Each request i is characterized by a material type

µi, an rds γi, and a container type βi among the K available types {1, . . . ,K}. Requests i and j are

said to be compatible if they involve the same type of container, i.e., βi = βj. e1lcrp can be modeled

as a D-VRP on a digraph G= (N,A) representing actions rather than the physical network. Let

N include E ∪ F ∪ {d} where d is the depot and sets E,F model service requests as follows:

∀i∈R, fi ∈ F represents the action of bringing the full container to an eligible mrf (equipped to

process material µi) and emptying it there, while ei ∈E represents the action of taking an empty

container of type βi to γi in order to replace the full one. Clearly, |E|= |F | and both sets E, F can

be partitioned according to container type into E =
⋃
k∈{1,...,K}Ek and F =

⋃
k∈{1,...,K}Fk, where

Ek = {ei ∈E : βi = k} and Fk = {fi ∈ F : βi = k}, ∀k ∈ {1, . . . ,K}.
The arc set A is made of two classes of arcs: Loaded arcs (AL) model vehicles activities when

loaded with a container, either full or empty, while unloaded arcs (AU) model any vehicle trip
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without container. A loaded arc (fi, ej) models the following sequence of actions: transporting the

full container of request i from γi to an mrf, emptying the container, and delivering it to γj. Notice

that the selected mrf is the eligible one for material µi on the cheapest detour from γi to γj.

Disposal plants are thus embedded into loaded arcs, whose cost includes travel times, dumping and

unloading times. Loaded arcs connect fi to ej for any pair of compatible requests (i, j). However,

we restrict this set to those arcs such that the duration of the operations associated with the path

made of the nodes d, fi, ej, d does not exceed the maximum duration, for feasibility purpose. Such

closed path is termed a basic tour. Remind that, if the two requests are co-sited and compatible,

i.e., γi = γj and βi = βj, then arc (fi, ej) models the so called petal pattern, that is, the action

of bringing back a container to its original rds as soon as it has been emptied (see Figure 3a).

Note that the cost of a petal pattern depends on the distance from the rds to the chosen mrf,

which in turn depends on µi, the material of fi. Therefore, in case of multiple requests at one rds

concerning the same container type, say two requests i and j, then both loaded arcs (fi, ej) and

(fi, ei) model a petal pattern with the same cost, and for each solution involving arc (fi, ej) an

equivalent solution exists using arc (fi, ei).

Figure 3 A petal pattern (a) and a swap pattern (b) are depicted as they are modeled in the physical network

(on top) and in the abstract graph G (at the bottom). Dashed arcs are unloaded while solid arcs are

loaded.

(a) petal pattern (b) swap pattern

Unloaded arcs connect ei to fj, ∀i, j ∈ R, regardless of container types. Arc (ei, fj) models a

vehicle that travels unloaded from γi up to γj where it picks-up the full container of request j. Its

cost includes the travel time from γi to γj plus container loading time. Note that the arc is defined

only given that its duration plus the travel time from d to γi and from γj to d passing by the closest

mrf, does not exceed the maximum duration. If γi = γj and βi = βj, an arc is said co-sited : co-sited
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unloaded arcs have a null trip and model the swap pattern, i.e., bringing an empty container to a

site and swap it with a compatible full one (see Figure 3b).

Note that a vehicle changes its status from loaded to unloaded, and vice versa, according to the

last of the actions associated with each arc. Indeed, it is unloaded when outcoming from an ei

node, and loaded when outcoming from an fj node.

If no spare container is available, a vehicle must leave and return to the depot unloaded. However,

the availability of spare containers at the depot allows to deliver an empty container as a first

action, or to return to the depot just after a dumping action at an mrf with the vehicle being

still loaded by an empty container. Spare containers are modeled by the two sets of dummy nodes

Φ =∪kΦk and Υ = ∪kΥk, where each subset Φk or Υk, k ∈ {1, . . . ,K}, refers to containers of type

k, and mk = |Φk| = |Υk| is the number of additional spare containers of type k available at the

depot. Let Rk be the subset of requests involving a container of type k, then an instance with

unbounded spare containers is modeled by a graph with mk = |Rk|.
Each dummy node φ ∈ Φ models the pick-up of an empty container at the depot, while each

node υ ∈Υ models its return. Therefore, since vehicles may also leave and return to the depot as

loaded, AU also includes arcs: (d, fi), (ei, d), (d,φ), (υ,d) ∀i ∈ R, ∀φ ∈ Φ, ∀υ ∈ Υ, whereas AL also

includes arcs (φ, ei) and (fi, υ) for each compatible pair, i.e., ∀i∈R, ∀φ∈Φk, ∀υ ∈Υk s.t. βi = k.

In summary, G= (N,A) where N =E ∪F ∪{d}∪Φ∪Υ and A=AU ∪AL. Graph G becomes a

weighted network by introducing a cost function on A as summarized in Table 2 and depicted in

Figure 4.

Let us extend the notation as follows: P is the set of mrf (Pµi are those processing material

µi); tij is the travel time from the physical location i to the physical location j, where by physical

location we intend either an rds, the depot or an mrf; σp is the time required for emptying a

container at mrf p, ∀p ∈ P ; τL and τU are the time for loading and unloading, respectively, a

container from the vehicle. The cost of an arc is given by the overall time required to carry out the

sequence of actions modeled by the arc. In particular, arc (fi, ej) is unequivocally associated with

the mrf p∈ Pµi along the shortest detour from βi to βj.

On the graph G so far defined, any feasible activity of a vehicle can be represented, including

switching the type of the container of a loaded vehicle when spare containers are available. Indeed,

the pair of arcs (υ,d) and (d,φ), with υ ∈Υk and φ ∈Φk′ , models the substitution of a container

of type k with a container of type k′ at the depot. Notice that the vehicle starts and finishes its

daily itinerary at the depot, but it may pass by it several times in order to load, unload or change

container type, since spare containers are stored at the depot. Therefore, the vehicle itinerary can

be partitioned into smaller portions of activities between successive passages by the depot. This

suggests two scheduling levels, tours and routes which are formally defined below.
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Table 2 Cost definition of the arcs in graph G.

(u, v) cuv nodes
(d, fi) tdγi + τL ∀fi ∈ F
(d,φ) τL ∀φ∈Φ
(φ, ei) tdγi + τU ∀ei ∈E, ∀φ∈Φk: k= βi
(ei, d) tγid ∀ei ∈E
(υ,d) 0 ∀υ ∈Υ
(fi, υ) minp∈Pµi{tγip +σp + tpd + τU} ∀fi ∈ F , ∀υ ∈Υk:k= βi
(ei, fj) tγiγj + τL ∀ei ∈E, ∀fj ∈ F
(fi, ej) minp∈Pµi{tγip +σp + tpγj + τU} ∀fi ∈ F , ∀ej ∈E:βi = βj

Figure 4 Exemplification of arc costs.

Depot

τL

tγid tdγj + τL

ei fj
tγiγj + τL

min
p∈Pµj

{tγjp + σp + tpγi}+ τL

min
p∈Pµj

{tγjp + σp + tpd}+ τL tdγi + τL

0 �⌫

A tour is an elementary cycle through d in G whose nodes are an alternating sequence in the

sets E ∪Υ and F ∪Φ. A route is a collection of tours disjoint on N \ {d} with total duration less

than or equal to a given D. A feasible solution is a collection of routes passing exactly once by

each fi ∈ F and ej ∈E and at most once by each υ ∈Υ and φ∈Φ.

Any solution approach has to handle the special features of the graph: the graph G is bipartite

(no triangular inequalities) other than at the depot; the reverse of a loaded arc is unloaded, and vice

versa, however, while an unloaded arc is always defined, the loaded one depends on compatibility;

the cost matrix is highly asymmetric since loaded arcs hide detour by mrf. Figure 5 compares the

representation of the solution for a 3 requests instance on the physical graph and on the bipartite

graph. Our approach works on G and exploits its structure, while handling explicitly the two

scheduling levels, tours and routes.

4. Solution Algorithm

In this section, we discuss the computational complexity of the problem (4.1) and the basic compo-

nents of the solution approach, namely: the construction of the starting solution (4.2), the neigh-

borhood search, the efficient merge of tours into routes, the use of a variable objective function to

handle the two objectives, the intensification and diversification strategies (4.3).
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Figure 5 A solution to E1LCRP with 3 requests is depicted on the physical network (4 represent recycling plants, the vehicle
is unloaded on dashed arcs, loaded by an empty container on regular arcs and by a full one on bold arcs), as well
as on the bipartite graph (� model additional containers). Arc ids (·) represent the visit sequence. Arcs (d,φ1) and
(v1, d) are unlabeled since the operation of loading and unloading a spare container at the depot is implicit in the
physical graph.

(a) physical graph

Dep.

(1)

(8)

(7)

(4)

(9)

(10-11)

(10-11)

(2-3)

(5-6)

(8)
Pick up spare 
container

Return spare 
container

(b) bipartite graph

4.1. NP-Completeness

The version of e1lcrp that minimizes the fleet size is strongly NP-hard by reduction from the

D-VRP (Li et al. 1992, Nagarajan and Ravi 2012). Consider an instance of D-VRP given by an

undirected graph G̃= (Ñ ∪ {0}, Ã), where each node of Ñ is a customer, 0 is the depot, the arc

set Ã represents all the pairs of customers that can be visited by a vehicle, t̃ij is the shortest

distance from node i to node j for each (i, j) ∈ Ã and D̃ is the maximum distance that can be

traveled by each vehicle. We can build an e1lcrp instance where the depot coincides with 0, no

spare containers are available, a service request corresponds to each customer of N and for each

request a different container type and a different material is involved, the mrf location and the

rds location coincide and the time required for loading, unloading and emptying a container are

negligible (i.e., τL = τU = σp = 0 for each rds p). Moreover concerning the time spent to go from

the rds of a service request i to the rds of a service request j let be tij = t̃ij if (i, j) ∈ Ã and

tij =∞, otherwise. Let D̃ be the maximum duration of each vehicle route. It is easy to see that

each feasible solution of the e1lcrp on such an instance, if any, corresponds to a feasible solution

of the D-VRP on the original instance with the same number of vehicles and overall distance.

The version of the e1lcrp where the number of vehicles is given and the total duration of

the vehicle routes is minimized is strongly NP-hard as well, since it contains the TSP as special

case (when the number of vehicles is one). Note that the problem of approximating the version of

e1lcrp where the number of vehicles must be minimized within a relative factor of 2 is NP-hard.

The proof follows immediately from the fact that it holds for the D-VRP (Theorem 2 of Li et al.

(1992)) and the reduction from D-VRP to e1lcrp used in the proof of Theorem 1 is gap-preserving,
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since the e1lcrp optimal value for the transformed instance coincides with the D-VRP optimal

value for the original instance.

4.2. Starting Solution

The tours of the starting solution are computed by a modified version of the well-known Clarke

and Wright’s algorithm (m-cw) for the VRP. In fact, the parallel version of Clarke and Wright’s

heuristic proved successful in tackling the problem addressed by De Meulemeester et al. (1997)

and it provided the starting solution for a neighborhood based improving algorithm in Bodin et al.

(2000). However, the algorithm has to be modified in order to achieve feasibility regarding the

limited availability of spare containers.

m-cw works on the auxiliary graph G̃ = (Ñ , Ã), where Ñ = E ∪ F ∪ {d} and Ã = (E × F ) ∪
({d} × E) ∪ (F × {d}) ∪ {(fi, ej) ∈ AL} ∪ ({d} × F ) ∪ (E × {d}), as in De Meulemeester et al.

(1997). In G̃ there are no spare container nodes, as they are implicitly modeled by the arcs in

({d}×E)∪ (F ×{d}), i.e., (d, ei) models the pick up of one spare container of type βi, while (fj, d)

models the drop off of one of type βj. m-cw starts from a set of elementary tours, one for each

node in E∪F either of the kind (d, ej, d) or (d, fi, d). Since each elementary tour either picks up or

returns a spare container, the initial solution is container-wise infeasible whenever spare containers

are bounded, that is, when the spare containers available are less than the requests for at least one

container type. m-cw is composed of two distinct phases.

• Phase 1: seeking spare containers feasibility while maintaining duration feasibility. Starting

from the elementary tours, the only merging operations allowed are those that save one spare

container by inserting a loaded arc (fi, ej)∈AL and deleting arcs (fi, d) and (d, ej): it merges

two elementary tours into one so called basic tour. Among the merging operations allowed, at

each iteration the one with highest saving is chosen. Note that if (fi, ej) exists in Ã then the

basic tour yielded by the merge is time-feasible, due to the definition of AL.

• Phase 2: Clarke and Wright saving procedure. If container-wise feasibility is reached in phase

1, the second phase of m-cw proceeds as the standard Clarke and Wright algorithm, checking

the maximum tour duration when merging. Two types of merging operations are now allowed:

either a spare container is saved, as before, by merging (fj, d) and (d, ei) into (fj, ei), or a

detour by the depot is skipped by deleting (ei, d) and (d, fj) to insert the unloaded arc (ei, fj).

Basically, for each container type k, of which mk is the number of spare containers, phase 1

procedure tries to operate enough merges so to leave at most 2mk elementary tours involving

containers of type k. The intuition is that the arcs in the basic tours induce a matching in the

bipartite graph Gk with nodes Fk ∪Ek, whose edges are those induced by the arcs in AL∩Fk×Ek;
the procedure looks for a matching leaving at most 2mk free nodes. It pursues this target in a greedy
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way, guided by highest savings, and when it fails it backtracks according to different strategies

depending on which case holds among the followings.

HP A: All compatible requests fi and ej are linked by an arc, i.e., the basic tour (d, fi, ej, d) is not

longer than D.

HP B1: For each request i ∈ R the length of the basic tour made of the petal pattern does not

exceed D. Such tours have the form (d, fi, ej, d) : γi = γj.

HP B2: All non-cosited compatible requests fi and ej are linked by an arc, i.e. each basic tour

(d, fi, ej, d) : γi 6= γj ∧βi = βj is not longer than D).

HP C: The duration of any elementary tour is not longer than D.

The phase 1 procedure goes as follows.

• Case 1: (A): Savings are computed and ranked as usual. Starting from the ones with highest

saving, elementary tours are merged into basic tours. As soon as container-wise feasibility

is reached for a container type k, no further merge involving type k takes place. Since full

and empty requests are balanced for each container type, i.e., |Ek|= |Fk| ∀k, container-wise

feasibility is always reached.

• Case 2: (B1 ∧ ¬B2): Apply the procedure provided for case (A), merging elementary tours

into basic tours. Either container wise feasibility is reached or, for at least a container type k,

no more merge is possible but there are more elementary tours left than twice the available

containers mk. The backtracking procedure proceeds as follows. Since (B1) holds, some of the

computed basic tours are not petal patterns. Recall that highest saving merges are operated

first, and these do not necessarily yield petal patterns. In such a case, some of these tours are

broken and their nodes are reconnected to form petal patterns, as follows. Let us focus on

container type k. Note that, at each rds, all the elementary request nodes of type k still part

of an elementary tour (unmerged nodes) must belong either to Fk or to Ek, since otherwise an

additional merge yielding a petal pattern could be operated. Moreover, considering all rdss

as a whole, such unmerged nodes are equally divided between Fk and Ek, since each merge

allowed in the first phase involves one node for each set. Suppose that there are 2nk unmerged

nodes and mk < nk spare containers available. For nk −mk times, do the following: select at

random an unmerged node fi ∈ Fk and a merged node ej ∈Ek that are cosited. There must

be at least one such ej, since elementary requests at each rds are balanced (each request

i ∈ R yields fi ∈ F and ei ∈ E). Brake the basic tour ej belongs to, and merge ej with fi

producing a petal pattern. Let fi′ ∈ Fk be the node preceding ej in the broken tour: if fi′ has

a cosited unmerged node in Ek, then build a basic tour connecting fi′ to that node, according

to the petal pattern. Otherwise iterate the procedure on fi′ . The procedure converges since

Ek and Fk are balanced at each rds, and each merge involves one node for each set. Once the
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procedure has been applied nk −mk times, the remaining nodes in the elementary tours can

be served by the available spare containers. Container-wise feasibility is thus achieved since

all petal patterns are feasible according to (B1). Note that the sequence of nodes involved

into each backtracking operation corresponds to an augmenting alternating path in Gk.

• Case 3: (¬B1 ∧B2): Consider separately each container type k. First, all basic tours made

of petal patterns are built by merging, if any. Then, all other merges are carried out, always

according to the highest saving priority rule. The procedure fails to return a feasible solution if

the unmerged nodes in Fk∪Ek outnumber 2mk. Note that such nodes must all be cosited and

located at the same rds, say γ, and are present in equal number in the two sets Fk and Ek.

The procedure iteratively backtracks, breaking one at a time one of the basic tours produced

by the previous merges involving only rdss different from γ. Each such broken tour releases

two nodes fi′ , ej′ : γi′ , γj′ 6= γ each of which is merged with one unmerged node located in γ, say

ej and fi respectively, thus yielding two new basic tours both having one node located at rds

γ. If container-wise feasibility is not reached, then the instance is container wise infeasible.

The proof is given below, see 1.

• Case 4: (¬B1 ∧ ¬B2 ∧ C): Apply the procedure provided for case (A). If it fails to reach

container wise feasibility for at least one k and nor (B1) neither (B2) holds, there is no

guarantee that a feasible solution exists. For each such k build the bipartite graph Gk and

compute a maximum cardinality matching starting from the matching induced by the arcs in

AL selected in the current tours. If, for each type of container k, the number of free nodes is

no more than twice the number of spare containers of type k, then a feasible solution exists;

if not, the problem is container-wise infeasible. For a formal proof see 1.

Proposition 1 (feasibility). m-cw returns a feasible solution, if any.

Proof of Proposition 1: It suffices to prove it for case 3 and 4. Consider case 3:

We have to prove that if container-wise feasibility is not reached, then the instance is not container

wise feasible. Suppose that the backtracking procedure has terminated with still more unmerged

nodes in Fk ∪Ek at some rds γ than 2mk but no more basic tours to brake (not involving rds γ).

Consider the bipartite graph Gk. It suffices to prove that the matching associated to the current

solution is a maximum cardinality matching. Ad absurdum, suppose an augmenting alternating

path exists in the graph: it should start and end at unmerged nodes in rds γ (otherwise an

additional basic tour could be obtained), and it should contain at least one matched edge none of

whose vertices belongs to rds γ, thus contradicting the hypothesis that the backtracking procedure

had terminated.
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Consider case 4: compute a maximum cardinality matching in Gk: two cases are possible.

i) For each k, the number of free nodes is no greater than twice the number of spare containers

of type k. A feasible solution can be computed by building one basic tour for each edge in the

matching, and an elementary tour for each free node. Since requests are balanced, for each k there

are as many free nodes in Ek as in Fk. Therefore, the associated elementary tours can be feasibly

operated by way of the available spare containers.

ii) For at least one container type, k, the number of free nodes in the matching is greater than

twice the number of spare containers of type k. Hereafter, we show by contradiction that a feasible

solution can not exist.

Denote by Pk be the set of edges in the matching on the bipartite graph Gk, involving container

type k, with |Pk|= pk. Let rk be the number of requests involving containers of type k, and mk

the number of spare containers of this type. Let free(k) be the number of nodes in Ek ∪ Fk left

unmatched in the maximum cardinality matching solution Pk: as mentioned, such nodes are equally

divided between Ek and Fk. According to ii), free(k) = 2(rk − pk) > 2mk holds. Suppose that a

feasible solution, say Sol, exists, i.e., Sol is a collection of elementary and basic tours in G̃ such

that each node in Ek ∪Fk belongs to either one of the former or one of the latter. We show that

this leads to a contradiction.

Let tk be the number of loaded arcs of type k in Sol. Recall that, in a feasible solution, from a

node fi there is either an outgoing loaded arc or the arc (fi, d); likewise, into a node ej is either

entering a loaded arc (fi, ej) or the arc (d, ej). Therefore, the number of arcs (d, ej) and (fi, d)

related to type k is 2(rk − tk). Since Sol is feasible, (rk − tk)≤mk. Therefore, loaded arcs in Sol

provide a feasible matching with tk ≥ rk−mk while in Pk we have rk−mk > pk leading to tk > pk,

thus contradicting the maximality of matching Pk. �

Figure 6 Counter example: no feasible solution exists with no spare containers
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Finally, notice that A≡ (B1∧B2), both A and B1 are sufficient conditions for feasibility, while

B2 is not. In fact, if A then there is a feasible solution made of basic tours, which uses no spare

containers; if B1, then there is a solution made of basic tours each made of one petal pattern. If
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B2, thought, a counter example can be easily built that does not admit a solution with no spare

containers (see Figure 6). Finally, each of A, B1, and B2 implies C, which in turn is a necessary

condition for a feasible solution to exist, due to triangular inequalities on distances on the physical

graph. m-cw returns a set of tours, among which some can be elementary and basic. These tours

are iteratively improved and merged into routes as described in Section 4.3.

4.3. Neighborhood Search

Neighborhood search based metaheuristics have been successfully applied to solve several versions

of VRPs as shown by Laporte et al. (2000) and Toth and Vigo (2014), due to their flexibility in

handling most types of constraints.

Since we deal with both minimum total duration and minimum fleet size our algorithm operates

at two different levels of granularity, namely tours and routes as defined in Section 3. Tours are

used when minimizing the total duration whilst the algorithm works with routes to minimize the

fleet size. This idea will be motivated in the remaining of the Section.

With respect to a given a feasible solution, let us define z as the number of routes, ωv the

duration of route v, for v= 1, . . . , z , ω = max{ωv : v= 1, . . . , z } the duration of the longest route,

and ω =
∑V

v=1ωv the total duration.

Any tour can be seen as an alternating sequence of ei and fj nodes, that is an alternating

sequence of loaded and unloaded arcs. Tours start and end with unloaded arcs. Loaded arcs connect

compatible nodes while unloaded arcs may connect nodes related to containers of any kind. Such

particular graph topology suggests several neighborhood structures that can be exploited within a

local search framework.

All the neighborhoods aim at reducing the total route lengths with inter-tour moves (neighbor-

hoods N1 and N2) and intra-tour moves (neighborhood N3): some neighborhoods can be seen as

the specialization of classical VRP moves to G (see, e.g., Aarts and Lenstra (1997) and Toth and

Vigo (2014)), while others have been suggested by the particular structure of G.

Neighborhood N1: String Exchange and Relocation of Unloaded Arcs Consider any

arc sequences s1 and s2 belonging to disjoint tours, that start from a node in F ∪ Φ and end

in a node of E ∪ Υ, that is sequences whose first and last arcs are loaded; let σ1 ≥ σ2 ≥ 0 be

their sizes (i.e., their number of arcs). Note that in the degenerate case σ2 = 0 and s2 is the null

sequence, denoted as s2 = ∅, where the preceding unloaded arc coincides to the following unloaded

arc. The two sequences are swapped as usual: s1 and s2 are removed from their tour by deleting

the four unloaded arcs that precede or follow each sequence, and are inserted into the other tour,

thus reconnecting each of them in the only possible way without reversing, by inserting four new

unloaded arcs. An example is depicted in Figure 7.
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Figure 7 N1 move: an example of swapping
d d

d d

X X

XX

We take into account some special inter-tour cases: 1) if both s1 and s2 contain all loaded arcs

in their own tour, that is, the four unloaded arcs preceding and following the sequences belong to

δ(d), then the move returns the original tours. 2) If s2 = ∅, the move removes s1 from its tour and

relocates it into the tour of s2. In particular, if s1 contains all loaded arcs of its tour, this move

merges one tour into another. 3) If both sequences are either at the end or at the beginning of

their own tour, the move performs a cross (see the example depicted in Figure 8).

Figure 8 N1 move: the case of a cross
d d

d d

X

X

Finally, consider the intra-tour case, when s1 and s2 are disjoint sequences in the same tour.

When s2 = ∅, the move yields a relocation of s1 before or after its current position. According to

the classic moves description, such a move can be described as a 3-opt move without arc reversing,

performed on a single tour and restricted to triplets in AU . Relocation is the only intra-tour move

allowed in N1.

Move N1 can be used to enforce an efficient pattern in the current solution related to swaps.

Recall that an arc is said to be co-sited when its two vertices model requests that share the same

rds. In particular, loaded co-sited arcs model a petal pattern while unloaded co-sited arcs model

a swap. Swaps can provide a substantial saving since have null travel time. If two co-sited nodes ei

and fj belong to different tours, they can be sequenced by applying an N1 move. Otherwise, when

they belong to the same tour, but are not adjacent, they can be sequenced by a relocation where

s1 is made of node fj and its outgoing arc while s2 = ∅ involves the unloaded arc outgoing from ei.

Note that the swap idea can be generalized to a pair of co-sited nodes of different container type.

Due to the large dimension of neighborhood N1, its exploration could be controlled by bounding

σ1.

Neighborhood N2: String Cross of Loaded Arcs The exploration of N2 considers a pair of

compatible loaded arcs in different tours. These arcs are then deleted, and the tours recomposed

to yield a cross.
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Figure 9 N2 move: an example
d d

d dX

X

Neighborhood N3: Intra-tour Additional Empty Container Moves generated by neigh-

borhood N3 exploits the availability of an additional container of a given type. This is suitably

inserted into a tour, thus involving the reversing of some loaded arcs as depicted in Figure 10. The

opposite move, which removes an additional empty container from a tour, is also considered in N3.

Figure 10 N3 move: an example

d dX X X

4.3.1. From Tours to Routes Given a set of tours satisfying our set of requests R, they

have to be partitioned and merged to yield feasible routes. The neighborhoods illustrated before

aim at reducing the total duration ω, although case 2) of move N1 decreases z if the route of N1 is

made of a single tour. Indeed, a move that reduces total duration does not necessarily lead towards

a set of tours that allows a better partitioning into routes. On the other hand, working directly on

routes would require the use of complex moves, made of non monotonic steps with respect of total

duration, aiming at spreading one route on to the others in a feasible way. The following example

illustrates this situation.

Figure 11 3 routes that cannot be merged

d d1
v

d d
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2

2
v

d d

s
1

3
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ω  = 7.5            ω = 23
2

ω  = 7.5
1

3
ω  = 8.0

Figure 11 depicts 3 routes v1, v2 and v3 whose durations are respectively 7.5, 7.5 and 8. The

corresponding total duration ω is equal to 23. Note that z =3 and no two routes can be merged

into a feasible one since D = 13. However, z can be decreased by two non improving moves as

follows.

In Figure 11 are highlighted a pair of sequences s1 and s2 with σ2 = 0, that are used in a N1

type move yielding the routes in Figure 12. Note that ω increases.
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Figure 12 A move N1 relocates part of v3 into v2 while increasing ω
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Figure 13 A move N1 merges v3 with v1
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Now, a move of type N1 on s3 and s4 merges v3 into v1 so that z = 2 as depicted in Figure 13.

We tackle this issue by working on two levels of granularity, i.e., tours and routes. The composi-

tion of tours into routes is directly dealt with by a Bin Packing approach. Considering the standard

BPP (Martello and Toth 1990), objects and bins model tours and routes respectively, and each

bin has a maximum capacity equal to D. Notice that a route (bin) is composed by a set of tours

starting and ending at the depot d. In BPP the insertion order of the items within the same bin

does not influence the residual capacity. On the contrary, according to how tours are sequenced in

the route, some savings can be achieved. In particular there are two cases as depicted in Figure 14.

First, when the last node of a tour is any ei and the first node of the following tour is any fj,

a shortcut that skips the depot is possible as in case (a). Second, when a tour ends with a node

υ ∈Υk and the first node of the next tour is φ ∈ Φk, a shortcut skipping υ, φ and d is possible,

as shown in case (b). Note that, the tours are not actually merged but the potential saving is

considered when computing the duration of the route.

Figure 14 A shortcut skipping the depot (a) and a shortcut skipping the depot and saving one spare container

(b)

d d

d d

(a)

(b)

X X

X X

We generalize the well-known Best Fit Decreasing algorithm into the modified Best Fit Decreasing

(m-bfd) in order to deal with the sequencing of tours taking into account the potential savings. To

deal with a fixed number of routes (see line 21 of Algorithm 1), a further version of m-bfd, called

m-bfd-f, is also provided: the algorithm proceeds as m-bfd until it is possible to insert tours into
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routes maintaining the feasibility; as soon as the insertion of a tour makes infeasible the whole

solution, m-bfd-f inserts a tour into a route r in such a way to minimize the infeasibility of the

routes, that is ωr−D. In the following, we refer to the two algorithms as m-bph, i.e., Modified Bin

Packing Heuristics.

4.3.2. Infeasible Solutions and a Variable Objective Function The exploration of infea-

sible solutions during the neighborhood search has been proved useful in determining better solu-

tions for Vehicle Routing Problems as described in Gendreau et al. (1994), where overcapacity

and overtime are allowed along the search although penalized by two self-adjusting parameters.

Accordingly, we admit intermediate solutions which violate the duration constraint ω, i.e., some

routes can last longer than D. In order to minimize both fleet size and total duration, the objective

function leading the search must depend on both z and ω. At the same time, overtime is penalized

as defined in formula (1): ϕ(sol) is a variable objective function adding an extra cost to the cost

of a solution sol when sol is infeasible; this extra cost is set to the maximum constraint violation

(ω −D) times the number of routes z.

ϕ(sol) =

{
z D+ω , if ω ≤D
z ω +ω , if ω >D

(1)

When D < ω , the inequality z D + ω < z ω + ω holds, so that no feasible solution can be

discarded in favor of an infeasible one with the same number of vehicles.

4.3.3. Intensification and Diversification Strategies In order to better explore the solu-

tion space, we introduce two strategies to intensify and diversify the search when particular con-

ditions hold.

The intensification strategy consists in confining the search for a given number of iterations kint

into a subregion characterized by a fixed number of routes, one less than the number of routes in

the solution just before the intensification. Clearly, this can lead far out of the feasible region, but

the variable objective function ϕ(sol) is designed so that it leads the search back towards feasibility,

within the forced subregion. The idea of forcing the reduction of (quite) flat objective functions

adopting also a variable objective function has been proved effective in Aringhieri and Dell’Amico

(2005).

Whenever m-bph decreases z to z′ < z is the condition needed to start the intensification strat-

egy. In order to obtain the reduced solution (in terms of number of routes), the tours belonging

to the shortest route are spread on to the other routes obtaining a solution with z′ − 1. In the

following kint iterations, m-bph is forced to use z′− 1 bins in order to allow neighborhood search

to reach again the feasibility. If feasibility is not regained, the search resumes from a solution with

at least z′ routes at the next application of m-bph without restrictions.
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We observed that the neighborhood search and m-bph tend to generate routes with bigger, at

least one, tour inside. The diversification strategy occurs after kdiv consecutive iterations monoton-

ically non decreasing, as follows: all routes composed by one tour are recomputed by splitting the

single tour in two separate tours, and the broken arcs are made tabu in order to avoid successive

merges. The basic idea is to give more degree of freedom both to neighborhood search and to the

m-bph.

4.3.4. HNS Algorithm Finally, we briefly describe the whole algorithm putting together all

the building blocks discussed before. The pseudo code is described in Algorithm 1. Our algorithm

for e1lcrp is a Hierarchical Neighborhood Search (hns) that starts its search from the solution sol0

computed by m-cw. The initial solution is then improved by a neighborhood search (lines 3– 18)

and by the exploitation of some intensification (lines 19– 29) and diversification (line 31) strategies.

At the end a new iteration starts until the maximum number of iterations kmax has been reached.

The solution obtained at the k− th iteration is indicated with solk.

According to the computational experience on the Capacitated Asymmetric VRP reported

in Vigo (1996), better results can be achieved by using a larger neighborhood obtained by the

union of the moves provided by the single neighborhoods, namely relocate, exchange and cross,

rather than cycling iteratively from one to the other. We adopt these advice concerning N1 and

N2, while we resort to N3 as a sort of mild diversification move.

Therefore, our neighborhood search generates new solutions, exploring N =N1∪N2∪N3, which

are evaluated using the variable objective function ϕ(sol) described by formula (1): the best move,

taking into account also the solutions satisfying the usual aspiration criteria, are then applied. If

this move decreases ω, we apply the m-bph trying to reduce the total number of routes z . Two

tabu lists of fixed length are used: `1 avoids moves involving nodes used in the previous |`1| moves

whilst `2 avoids a node to return to the tour from which it was removed for |`2| moves. Clearly,

|`1|< |`2|. After each move, the conditions which control the intensification and the diversification

strategies are verified and, if satisfied, the corresponding strategy is applied.

5. Lower Bounds

e1lcrp is a special case of Distance constrained uncapacitated VRP (D-VRP). D-VRP arises

whenever in a VRP the sum of the (positive) arc weights in each route is bounded from above. D-

VRP is not as much studied as its two well known generalization, namely the Distance constrained

Capacitated VRP (DCVRP)and the Time Window VRP (TW-VRP), and despite its many appli-

cations, tailored approaches for the pure D-VRP are still few (see Laporte et al. (1984), Li et al.

(1992) for the exact approaches and Nagarajan and Ravi (2012) for approximation of the min fleet

size D-VRP). Actually, D-VRP is a relaxation of the formers since it lacks the additional structure
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Algorithm 1 Pseudo code for hns
1: sol0 = m-cw; sol∗ = sol0; k= 1; intPhase = divPhase = false; kd = 0;

2: while (k≤ kmax) do

3: if (¬(intPhase∨divPhase)) then . Neighborhood Search

4: solk = arg min{ϕ(sol) : sol ∈N1 ∪N2 ∪N3};
5: if (ω(solk)<ω(solk−1)) then

6: solk = m-bph(solk);

7: if (ϕ(solk)<ϕ(sol∗)) then sol∗ = solk end if

8: if (z (solk)< z (solk−1)) then

9: z′ = z (solk)− 1;

10: solk = spreadShortestRouteTours(solk);

11: intPhase = true; ki = 0;

12: end if

13: kd = 0;

14: else

15: kd = kd + 1;

16: if (kd ≥ kdiv) then divPhase = true end if

17: end if

18: k= k+ 1;

19: else if ( intPhase ) then . Intensification Phase

20: solk = arg min{ϕ(sol) : sol ∈N1 ∪N2 ∪N3};
21: solk = m-bph(solk, z

′); . Force m-bph to use z′ bins

22: if (isFeasible(solk)) then

23: intPhase = false;

24: if (ϕ(solk)<ϕ(sol∗)) then sol∗ = solk end if

25: else

26: ki = ki + 1;

27: if (ki >kint) then intPhase = false end if . Temporary infeasible solution

28: end if

29: k= k+ 1;

30: else . Diversification Phase

31: solk = splitSingleTourRoutes(solk−1); divPhase = false; kd = 0; k= k+ 1;

32: end if

33: end while

provided by the capacity constraint, which allows for Bin Packing Problem relaxations in DC-VRP,

as well as the partial order relation on the requests that time windows induce when they differ from

one another, as in TW-VRP. This lack of structure makes tight lower bounds hard to compute.

The objective function of e1lcrp is twofold, considering both total duration ω and fleet size z.

Since z is the leading component, the total traveling time of any solution to e1lcrp is bounded

from below by the shortest duration ω∗ of the single-objective D-VRP minimizing ω, so we are
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interested in lower bounds for each of both objectives in a single-objective D-VRP formulation.

Moreover, although ω and z are potentially conflicting, any lower bound on either z or ω can be

exploited to provide a valid lower bound on the other component.

Deriving a tight lower bound on z∗ can be quite challenging if neither ω∗ nor a lower bound ωLB

are available, whereas a straightforward one can be computed as the ceiling of the ratio of ω∗ over

D, i.e., zLB = dω∗/De ≤ z∗, or zLB = dωLB/De ≤ dω∗/De ≤ z∗.
Given either z∗ or zLB, a straightforward, though quite loose, lower bound on the total duration

is given by ωLB = (D/2 + 1) (dzLBe − 1) +D/2. Indeed, if at least two vehicles were traveling no

longer than D/2, their routes could be merged, yielding a time-feasible solution with one less

zLB − 1 vehicles.

More sophisticated lower bounds can be obtained by mathematical programming relaxation tech-

niques of different MILP models, as for example in Baldacci et al. (2006) where the set partitioning

formulation is exploited, providing tight but computationally expensive bounds. On the contrary,

hereafter we consider a MILP model for e1lcrp whose relaxation can be easily computed by a

commercial solver for real life size instances.

5.1. A Mixed Integer Linear Programming Model

e1lcrp can be formulated as a Mixed-Integer Linear Programming (MILP) problem by an arc

based flow model on the following extended graph G′ = (N,A′). In order to model fleet size as

an objective function, each arc outgoing from the depot node d is associated with the use of an

additional vehicle. Therefore, the arc set A needs to be extended to A′ =A∪Λ, where Λ = {(υ,φ) :

υ ∈Υk, φ ∈Φk′ , ∀k, k′, k 6= k′}, is a new set of arcs that explicitly model the change of container

type from k to k′ which takes place at the depot along one route. These arcs have cost τL, that is

the time required to load a container. Note that in G′ a route is an elementary cycle containing d

while a tour in general is not. Solving the corresponding D-VRP on G′ would solve e1lcrp, and

this provides a mathematical model for the problem, as follows.

Consider a binary variable xuv for each arc (u, v) in A′ and a continuous variable tu ≥ 0 for

each node u∈N , td = 0. Let δ+(u) := {v ∈N : (u, v)∈A′} and δ−(u) := {v ∈N : (v,u)∈A′} for all

u∈N , as usual. Recall that D is the maximum route duration. A MILP model for e1lcrp follows.

min (M z + ω) (2)

∑

v∈δ+(d)

xdv = z (3)
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∑

(u,v)∈A′
cuvxuv = ω (4)

∑

v∈δ+(u)

xuv = 1 ∀u∈ F ∪E (5)

∑

v∈δ+(u)

xuv ≤ 1 ∀u∈Φ∪Υ (6)

∑

v∈δ+(u)

xuv =
∑

v∈δ−(u)

xvu ∀u∈N (7)

∑

(u,v)∈A′
cuvxuv ≤D

∑

v∈δ+(d)

xdv (8)

tu + cuvxuv ≤ tv + D̃ (1−xuv) ∀(u, v)∈A′ \ {(u,d) : u∈ δ−(d)} (9)

tu + cudxud ≤D ∀u∈ δ−(d) (10)

xuv ∈ {0,1} ∀(u, v)∈A′ (11)

tu ≥ 0 ∀u∈N (12)

The objective function (2) is the weighted sum of the fleet size component modeled by z, defined

by constraints (3) (one vehicle for each route), and the total duration component, modeled by

ω, defined by constraints (4). By setting M to a suitably big constant, fleet size minimization

becomes the main objective so that a solution with a minimum total duration is selected among

those having the minimum fleet size. Constraints (5) impose that requests are covered exactly once;

constraints (6) ensure that each additional container be used at most once; constraints (7) are flow

conservation constraints; constraint (8) relates fleet size to total duration, since it imposes that

the number of routes must be not lower than the total duration divided by the maximum route

duration; constraints (10) impose maximum route duration. Constraints (9) are the classical Miller-

Tucker-Zemlin like subtour breaking constraints, strengthened by setting D̃=D− t̃ud− t̃dv, where

t̃ud denotes the duration of the shortest path from node u to the depot (t̃ud = tud for u ∈E ∪Υ),

and t̃dv denotes the duration of the shortest path from the depot to node v (t̃dv = tdv for v ∈ F ∪Φ).

In order to compute a lower bound on total duration ωLB in a reasonable time we solve (2)–(12)

by setting M = 0, relaxing (11) into xuv ≤ 1, and imposing integrality on z =
∑

u∈δ+(d) xdu that is

the outflow of the depot. A trivial lower bound on z is obtained as mentioned at the beginning of

the section that is zLB = dωLB/De.

6. Experiments and Results

The aim of this section is to provide some computational insights regarding the capability of the

proposed algorithm hns. To this end, we report an extensive computational analysis solving three
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sets of instances based on real and realistic data. Afterward, we test our approach on benchmark

instances from the RR-VRP literature (the 20 test instances introduced in Bodin et al. (2000)) to

verify its capability in handling problems with similar structure and to compare it with specialized

algorithms.

Section 6.1 concerns real instances and Section 6.2 the realistic ones, built to have more challeng-

ing tests, providing all the technical specifications about the data generation process. In Section 6.3,

we evaluate the impact on the solution quality and the running time of each component of hns.

Section 6.1 and Section 6.5 report a comparison of hns with the lower bound obtained by solving

the MILP model in Section 5 with a general purpose MILP solver.

The proposed algorithm is coded in C language and compiled by gcc 4.6.0, and the bound is

computed using Gurobi 4.5.1. Parameters kmax and kdiv have been calibrated on each instance set,

according to the problem size, while the values of σ1 and σ2 in neighborhood N1 are not relevant

since the route duration limit keeps the average number of nodes in a route sufficiently small. All

the computational tests are performed on a 2.40 GHz Intel Xeon E5620 double processor, with 18

GB of memory, under Linux operating system.

6.1. Results on real instances

The first set of instances B1 was provided by Gesenu and describes real cases in representative

days that were perceived as challenging by the company, given that, at the time of this study, the

scheduling was solved by hand. Each instance is characterized by the number of service requests

and the number of available containers at the depot. Set B1 is made of problems with |R| ≤ 11 and 6

containers of different types (i.e., mk = 1 and K = 6, according to notation of Section 3). This yields

graphs having at most 35 nodes, since the number of nodes is given by |N |= 2|R|+ 2
∑K

k=1mk + 1.

Computational results are reported in Table 3: instance name is in the first column. We com-

pare four solutions: the actual solution adopted in Gesenu (column Company), the exact solution

obtained by solving the MILP model presented in Section 5 (column MILP) by Gurobi, the solution

computed after the constructive step (column m-cw), and the solution computed by our algorithm

(column hns). For each solution, the number of vehicles (z) and the total duration (ω) of the routes

are reported. Parameter calibration on the B1 instances yielded kmax = 500 and kdiv = 50.

The solutions provided by the company are mainly based on the simplest procedure from an

operational point of view, that is the petal pattern. This implies that the company does not exploit

the availability of empty containers which are only used as a safety stock, and the possibility of

circulating containers among rdss. On the contrary, our approach fully exploits this fact. This

allows us to obtain better solutions than those provided by the company even on instances small

enough to be within the reach of a skilled operator. The quality of our solutions is also certified
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Table 3 Comparing results for real instances with |N | ≤ 34

Company MILP solver m-cw hns
Instances z ω z ω z ω z ω

B1.0 3 789 2 668 2 668 2 668
B1.1 3 813 2 701 2 709 2 709
B1.2 3 686 2 665 2 665 2 665
B1.3 3 1001 3 843 3 966 3 843
B1.4 3 975 3 839 3 839 3 839
B1.5 3 1075 3 878 3 878 3 878

by the comparison with the optimal ones computed by Gurobi. It can be observed that in all but

one case the constructive step already computes the (sub) optimal solution returned by hns, thus

confirming the findings reported in De Meulemeester et al. (1997) regarding the performance of

the Clarke and Wright procedure, of which our m-cw is a variant.

6.2. Setting up the computational experiments: realistic instances

In order to test our approach on more challenging instances, we build realistic instances exploiting

the real data on the Gesenu service network made of the actual depot, rdss, and mrfs, using real

travel and service times. In fact, based on the existing facilities of the company, if we suppose

that all of the 10 different waste materials can be stored at each of the 10 rds, we can generate

instances with up to 100 different service requests. Since in general 2|R|+1≤ |N | ≤ 4|R|+1, in case

of unbounded spare containers the corresponding graph may reach 401 nodes. The set of realistic

instances B2 is generated by randomly selecting the required number |R| over the 100 possible

service requests. In detail, B2 consists of 5 subsets of 10 instances each, differing for the number

of requests, i.e., cardinality of |R|= 20, 30, 40, 60, 80. Each instance is replicated by changing the

container setup, i.e., the number of empty containers available at depot: type “0”, “1”, “µ”, and

“∞” denotes 0, 1, an average number and a large number of containers available for each container

type whilst “def” denotes the actual company container stock, i.e. six containers of different types.

The ∞ setup consists in fixing the number of empty containers equal to the number of requests

requiring this type of container; the µ setup is given by the ratio of the number of requests requiring

a given container over the average number of requests.

In order to generate larger instances, we added 16 new rdss in such a way to cover all the main

areas of Umbria region, envisioning the extension of the service. A picture describing the complete

rds network is reported in Aringhieri et al. (2008). The new setting allows the generation of the

benchmark set B3, composed of more challenging instances: 10 with |R|= 100, 10 with |R|= 150

and 10 with |R|= 200. Each instance has two different versions: D0 has the |R| requests clustered on

the minimum number of rdss (e.g., |R|= 100 requests are clustered on 10 rdss randomly selected)

while D1 equally distributes them among all the rdss (e.g., each rds has about |R|
26

requests).
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Finally, each instance has been replicated changing the container setup as described before. We do

not report the results for the µ setting since they coincide with those of ∞ setting due to the fact

that even in the larger instances (|R|= 200) the use of spare containers in any solution is much

below the number of available ones.

In terms of number of instances, we have |B2| = 250 and |B3| = 120. Table 4 summarizes the

features of the benchmarks in B2 and B3. For all instances, the maximum route duration is D= 375.

All the three benchmark sets are available at http://www.di.unito.it/˜aringhie/benchmarks.html.

Table 4 Description of benchmarks B2 and B3.

|R| 0 1 ∞ µ def
|N | # inst. |N | # inst. |N | # inst. |N | # inst. |N | # inst.

B2

20 41 10 51 10 81 10 47 10 53 10
30 61 10 71 10 121 10 71 10 73 10
40 81 10 91 10 161 10 99 10 93 10
60 121 10 133 10 241 10 147 10 133 10
80 161 10 173 10 321 10 195 10 173 10

50 50 50 50 50

B3

100 201 10 213 10 401 10 – – 241 10
150 301 10 313 10 601 10 – – 341 10
200 401 10 413 10 801 10 – – 441 10

30 30 30 30

The hns parameters have been calibrated by a series of preliminary computational tests and

have been set to the following values for both B2 and B3: kmax = 60000, kdiv = 300, kint = 20,

σ1 = σ2 = 25, `1 = 5 and `2 = 20.

6.3. Evaluation of the algorithm components

In this section we compare the performance of several variants of hns obtained by enabling or

disabling the ad hoc components of the algorithm that is: the infeasibility handled by the objective

function, the set of restarts (intensification and diversification strategies) and the use of neighbor-

hood N3 as a sort of mild diversification. The experiments have been performed on the 50 instances

in B2 having |R|= 40, which are sufficiently difficult not to be solved to optimality by the solver,

but for which good lower bounds are attained.

Table 5 reports the results of the computational test: the first four columns summarize the mix

of tested components; the fifth column reports the total duration average gap with respect to the

available exact solutions; the sixth and seventh columns report for how many instances the hns

solution reached the lower bound on the number of vehicles and the lower bound plus 1, respectively.

For all variants running times are comparable. Notice that the intensification component requires

the management of infeasibility.
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Table 5 evaluating HNS components (“n.a.” means not applicable).

Mix of hns with: avg. gap # instances
components infeasibility intensification N3 (ω−ωb)/ωb zb zb + 1

(A) × × × 0.44% 32 18
(B) × × 0.82% 30 20
(C) × × 0.72% 27 23
(D) × 1.41% 26 24
(E) n.a. × 0.79% 29 21
(F) n.a. 0.83% 28 22

The analysis proves the effectiveness of ad hoc components for hns when they are all enabled

(mix (A)). In particular the addition of neighborhood N3 has always a positive impact. Moreover

also infeasibility seems a crucial issue: without handling infeasibility (mix (E) and (F)) in hns, the

gap on ω doubles, more vehicles are used and computational times are longer. However, infeasibility

deteriorates the search when used alone (mix (D)).

6.4. Results on large realistic instances

Benchmarks B2 and B3 are introduced to evaluate the algorithm behavior on a larger but lifelike

settings.

Table 6 (HNS,M-CW) vs. lower bound: number of vehicles.

absolute gaps w.r.t. lower bound
|R| # inst. 0 1 2 3 4 5 6 ≥ 7

B2

20 50 42 7 8 32 0 10 0 1 0 0 0 0 0 0 0 0
30 50 35 0 14 0 1 26 0 20 0 4 0 0 0 0 0 0
40 50 32 1 18 15 0 29 0 5 0 0 0 0 0 0 0 0
60 50 19 0 31 1 0 15 0 22 0 12 0 0 0 0 0 0
80 50 17 0 30 0 3 2 0 14 0 26 0 8 0 0 0 0

B3

100 40 0 0 2 0 5 0 12 1 13 2 2 4 0 2 6 31
150 40 0 0 0 0 0 0 1 0 8 0 4 0 7 1 20 39
200 40 0 0 0 0 0 0 0 0 1 0 6 0 3 0 30 40

Table 6 reports the comparison between hns and m-cw as far as the gap with the lower bound

on the number of vehicles z is concerned: gaps from 0 to 6 and ≥ 7 are considered separately. The

value of the gap is reported at the heading of each column. Below, for each such column and for

each set of instances in B2 and in B3, the number of instances solved by hns (on the left) and

by m-cw (on the right) with such gap is reported. The gap is computed with respect to the lower

bound introduced at the end of Section 5.

As expected, the gap provided by hns is quite small for the instances in B2 while the quality

deteriorates for the instances in B3. Concerning benchmark set B3, no instance can be solved

with gap 0, and for 150 and for 200 requests only one instance can be solved with gap 3 and 4,
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respectively, while most instances are solved with gaps higher than 6. Probably this is also due to

the bound deterioration.

We remark that hns largely improves the initial m-cw solution. In particular, the improvement

increases with the size of the instances. Indeed, hns on B2 computes a solution having a gap equal

to 2 only for 4 instances, while for the other instances, the gap is less than or equal to 1; on the

contrary, m-cw is able to compute a gap less than or equal to 1 only for 56 instances, while the

remaining 194 have a gap equal to or greater than 2.

6.5. Comparison with the MILP solver

In the following we present a sequence of Tables reporting a comparison with the MILP solver.

Table 7 reports an equal effort comparison meaning that we use the MILP solver in a single-thread

mode imposing a time limit equal to the average total running time of hns when solving instances

having the same number of requests R. We report the number of instances for which hns computes

a better solution than the MILP solver, and vice versa. We propose two types of comparison: the

first one takes into account the total duration ω of the solution when the value of z is the same;

the second one takes into account only z. The last column reports also the number of instances in

which the MILP solver “fails”, that is when it reaches the time limit without providing a feasible

solution.

Table 7 HNS vs. MILP solver: equal effort comparison. The number of instances for which a method

outperforms the other is reported.

comparing z and ω comparing only z
|R| # inst. hns MILP tie hns MILP tie MILP fail

B2

20 50 4 16 30 3 2 45 0
30 50 3 18 29 3 2 45 0
40 50 6 16 28 3 1 46 0
60 50 42 7 1 34 0 16 0
80 50 47 3 0 46 0 4 3

B3

100 40 32 8 0 31 5 4 0
150 40 31 9 0 30 8 2 10
200 40 36 4 0 35 4 1 9

The results showed the superiority of hns as soon as the number of requests is greater than or

equal to 60. Note that taking into account only the value of z, we remark that our algorithm provides

the best solution more often than the MILP solver. As expected when the number of requests

increases the MILP solver fails more frequently. Conversely, the MILP solver seems competitive

only when solving instances up to R= 40.

Table 8 reports the average running time in seconds of hns and the MILP solver. It also reports

the average running time of computing the first solution having the same value of z and ω of the
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best solution yielded by hns at the end of the computation. While the MILP solver is generally

faster than hns on smaller instances, we remark that hns requires, on average, 5.05% and 21.83%

of the whole running time to compute a solution having the best possible value of z for instances

in B2 and B3, respectively.

Table 8 HNS vs. MILP solver: average running time in seconds. For HNS the iteration and time at which the

best solution is reached are reported.

total running time hns
|R| # inst. hns MILP 1st iter z time 1st iter ω time

B2

20 50 103.3 44.6 1084 1.8 16347 28.1
30 50 251.7 126.0 2543 10.7 18238 76.5
40 50 566.7 339.5 786 7.4 14095 133.1
60 50 559.1 549.9 3688 34.4 28014 261.0
80 50 1228.1 1228.7 7061 144.5 33253 680.7

B3

100 40 3643.9 3644.4 13246 804.5 27323 1659.4
150 40 12699.6 12700.6 10541 2231.2 18797 3978.7
200 40 24816.2 24817.5 15496 6409.4 19512 8070.3

6.6. The impact of spare containers on the hardness of the problem

As mentioned in the paper, the peculiarity of our approach is to explicitly deal with a limited

number of spare containers. The main concern of this section is to evaluate, from a computational

point of view, the impact of the number of spare containers on the hardness of the problem. Our

claim is that a limited number of spare containers makes the problem more difficult. To support

our claim we investigate how the gap on z changes with respect to the different spare containers

settings.

We present results on the B3 instances disregarding B2 since the majority of the instances in

B2 are solved with a null gap on the fleet size. A comparison of the gap between z and the lower

bound for hns and m-cw is reported in Table 9. For each instance, a pair of columns report the

absolute gap for the four different spare container settings.The last row reports the sum of the

gaps of the corresponding column. Instances are identified through the random seed used in the

generator, the requests number and their version (D0 or D1).

The results for instances with |R| = 100 show a worsening of the gap as soon as the number

of the spare containers reduces: actually, the sum of the gaps for hns and m-cw are respectively

23 and 50 with setting “∞” while this sum is 47 and 109 with setting “1” and 59 and 104 with

setting “0”. Note that the same behavior is confirmed for instances with |R|= 150 and |R|= 200

as reported in the remaining of Table 9.

Furthermore, the average gap of hns and m-cw is respectively 12.05% and 27.12% for instances

with |R| = 100, 15.66% and 29.41% for instances with |R| = 150, and 15.55% and 27.70% for
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Table 9 Comparing the gap on z of HNS and M-CW; instances with |R|= 100,150,200.

# spare containers 0 1 def ∞
Instances hns m-cw hns m-cw hns m-cw hns m-cw

B3.0.R100 D0 4 12 8 11 4 7 3 5
B3.1.R100 D0 4 11 4 12 3 8 3 3
B3.2.R100 D0 4 9 4 10 3 6 2 4
B3.3.R100 D0 4 10 4 11 5 5 3 6
B3.4.R100 D0 7 9 10 10 4 7 2 5
B3.0.R100 D1 8 10 4 12 5 6 3 6
B3.1.R100 D1 8 10 4 10 3 8 1 5
B3.2.R100 D1 3 11 3 10 3 5 2 5
B3.3.R100 D1 4 8 2 7 2 5 1 4
B3.4.R100 D1 13 14 4 16 3 11 3 7

total gap 59 104 47 109 35 68 23 50

B3.0.R150 D0 15 17 15 17 6 18 4 8
B3.1.R150 D0 12 19 7 20 7 17 4 7
B3.2.R150 D0 6 14 5 15 5 15 4 6
B3.3.R150 D0 17 19 13 19 7 20 4 7
B3.4.R150 D0 11 18 14 18 6 20 4 7
B3.0.R150 D1 13 19 7 19 19 21 4 8
B3.1.R150 D1 10 14 7 14 5 14 4 8
B3.2.R150 D1 7 17 13 18 6 18 4 8
B3.3.R150 D1 15 18 6 18 6 19 3 7
B3.4.R150 D1 7 15 7 16 6 17 5 9

total gap 113 170 94 174 73 179 40 75

B3.0.R200 D0 13 21 13 22 9 24 6 10
B3.1.R200 D0 17 23 10 24 9 23 5 11
B3.2.R200 D0 14 22 9 23 8 23 6 8
B3.3.R200 D0 10 20 10 21 9 21 5 10
B3.4.R200 D0 18 25 20 26 9 26 5 8
B3.0.R200 D1 9 21 9 21 10 21 4 10
B3.1.R200 D1 9 19 8 20 9 19 5 10
B3.2.R200 D1 21 22 12 24 8 26 6 10
B3.3.R200 D1 16 21 20 23 21 23 5 9
B3.4.R200 D1 20 21 9 21 18 22 5 8

total gap 147 215 120 225 110 228 52 94

instances with |R|= 200. This means that the average gap is quite stable with respect to the size

of the instance considered.

Finally, we would like to analyze the number of vehicles used to show the impact of a different

spare container setting on the final solution. Table 10 reports the average number of vehicles

computed by hns and m-cw for the instances in B3 for “0”, “1”, “def” and “∞” spare container

settings.

The results confirm the claim reported above. Moreover, the number of vehicles used with setting

“0” are about 20% more than those used with setting “∞”. In addition, note that these results

also confirm the capability of hns to improve the solution computed by m-cw as already reported

in Table 6.
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Table 10 Average number of vehicles used by HNS and M-CW.

# spare containers 0 1 def ∞
|R| hns m-cw hns m-cw hns m-cw hns m-cw

100 40.8 45.3 38.7 44.9 36.2 43.0 34.5 37.2
150 63.8 69.5 60.9 68.9 57.1 67.7 52.2 55.7
200 85.5 92.3 81.7 92.2 78.7 90.5 70.1 74.3

6.7. Tests on Rollon-Rolloff benchmark instances

In Section 2 we pointed out that the e1lcrp can be adapted to model other problems in the

class of RR-VRP by suitably modifying the input, adding a proper number of nodes of type ν,φ

representing spare containers, fixing some arcs in the graph and changing the costs. Note that our

algorithm is not specialized for this general class of problems. In particular, it takes advantage

of the fact that the container repository is located at the depot. This allows us to easily switch

from one objective function to the other one, and easily assemble tours into routes without major

modification to the total distance. Our algorithm, especially in m-bph, may be less effective when

this feature is no longer present. Moreover, since e1lcrp handles any number of spare containers

(either 0, a few, or unbounded), it can not take advantage of a granted unlimited container stock.

We tested our algorithm on the benchmark instances proposed in Bodin et al. (2000) and used

also in Derigs et al. (2013) and in Wy and Kim (2013). The benchmark instances include T1, T2,

T3 and T4 trips and unbounded spare containers of a single type, located at mrf. In order to apply

our graph representation to the RRVRP benchmark and handle unbalanced requests, we modeled

each trip T1 as the arc (fi, ei) with no other arc in the forward star of fi and in the backward star

of ei. Likewise, each trip T2 is modeled as an arc from ei to fi, being it the only arc outgoing from

ei as well as the only one entering fi. Finally, each trip T3 requires to introduce one dummy node

φ and the arc (φ, ei) while each trip T4 requires a dummy node 3 and the arc (fi,3). This type of

input may lead to some inefficiencies in the search with respect to specialized algorithms. In fact,

the resulting bipartite graph is sparser than the graph G introduced in Section 3, even though it

reaches the maximum number of nodes with respect to |R| (each T1 or T2 yields four nodes in G).

We carried out these tests fixing the number of iterations to kmax = 40000 and the number of not

improving iterations to kdiv = 200: such values are those giving the better improvements among

any pairs of values in kmax = {30000,40000,50000} and kdiv = {50,100,200,300}. In Table 11 we

report the original absolute values of Bodin et al. (2000) and compare them with the more recent

results of Wy and Kim (2013) and Derigs et al. (2013) by reporting the gaps of the two objective

function components, and finally in the last two columns we report the gaps of hns. Note that,

in accordance with Bodin et al. (2000), we report only the deadhead time (DH), i.e., the total

duration minus the service time in minutes.
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Table 11 Comparisons on the Rollon-Rolloff benchmark instances

Instances Bodin Wy (gaps) Derigs (gaps) hns (gaps)
z DH z DH DH % z DH DH % z DH DH %

50

A 10 337 0 -4 -1.19% 0 -6 -1.78% 0 -2 -0.59%
B 10 238 -1 0 0.00% -1 -2 -0.84% -1 0 0.00%
C 9 159 0 0 0.00% 0 0 0.00% 0 0 0.00%
D 7 194 0 -3 -1.55% 0 -3 -1.55% 0 -3 -1.55%

75

A 16 491 0 -5 -1.02% -1 -8 -1.63% 0 -3 -0.61%
B 15 374 0 -6 -1.60% 0 -8 -2.14% 0 -2 -0.53%
C 13 211 1 1 0.47% 1 1 0.47% 1 1 0.47%
D 11 256 0 -4 -1.56% 0 -4 -1.56% 0 -4 -1.56%

100

A 20 682 0 -15 -2.20% 0 -19 -2.79% 0 -13 -1.91%
B 19 511 0 -9 -1.76% 0 -8 -1.57% 0 -4 -0.78%
C 17 289 0 0 0.00% 1 6 2.08% 0 3 1.04%
D 14 323 0 -3 -0.93% 0 -3 -0.93% 0 0 0.00%

150

A 29 800 0 -8 -1.00% -1 -21 -2.63% 0 -5 -0.63%
B 28 714 0 -1 -0.14% 0 -9 -1.26% 0 1 0.14%
C 26 448 -1 -13 -2.90% 0 -2 -0.45% 0 -1 -0.22%
D 21 423 0 -26 -6.15% 0 -26 -6.15% 0 -24 -5.67%

199

A 38 1067 0 -19 -1.78% 0 -42 -3.94% 0 -11 -1.03%
B 37 897 -1 -25 -2.79% -1 -29 -3.23% 0 -3 -0.33%
C 34 553 0 0 0.00% 0 0 0.00% 0 -1 -0.18%
D 27 511 0 -18 -3.52% 0 -18 -3.52% 0 -12 -2.35%

Average gaps
improving Bodin -10.60 -2.01% -13.00 -2.25% -6.29 -1.28%
worsening Bodin 0.20 0.09% 1.75 0.64% 0.83 0.28%

With respect to the minimization of z, the four algorithms computes the same solution 14 times

over 20 instances. On the remaining 6 instances, the behaviour of the four algorithms is different.

All the algorithms compute the best value except for Bodin on instance 50B while, on the contrary,

Bodin is the only one computing the best value for instance 75C. Derigs is the unique algorithm

that computes the best values for the instances 75A, 150A, while is the only one that is not able

to compute the best value for the instance 100C. The best value for the instance 199B is computed

both by Derigs and Wy, while Wy is the unique algorithm that computes the best values for the

instances 150C.

With respect to the minimization of the secondary objective of hns, i.e., the deadhead time,

our algorithm is always better or equal to Bodin, except for instances 75C, 100C and 150B. Note

that also Derigs and Wy do not compute better solution than Bodin on instances 75C and 100C.

hns is the algorithm that computes the best DH value for instance 199C. On average, the best

improvement of the deadhead times is computed by Derigs, and then Wy. However, the maximum

deadhead time absolute gap between any possible pair of algorithms is almost negligible, since its

value is approximately 1 minute per vehicle, on average.

In the light of the above analysis, we can affirm that there is not a clear dominance of one of the

four algorithms even if the algorithm by Derigs et al. (2013) seems the best one while, considering
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also the average worsening with respect to the Bodin’s solutions, the algorithm by Wy and Kim

(2013) seems the most robust one.

Finally, we performed a test motivated by our experience with the Gesenu company, where the

current practice was to solve the problem as a sequence of petal patterns. On the contrary, managing

containers as a shared commodity by allowing their free circulation can lead to a substantial

improvement, reformulating each request T1 and T2 in terms of pairs of elementary requests T3

and T4, thus obtaining a relaxation with respect to the original RR-VRP instances.

Table 12 Evaluating the impact of managing containers as a shared commodity using HNS

A B C D
z DH DH % z DH DH % z DH DH % z DH DH %

50 -1 -139 -41.99% 0 -82 -34.75% 0 -34 -21.38% 0 -19 -9.95%
75 0 -188 -38.92% -1 -124 -33.88% 0 -61 -28.91% 0 -36 -14.29%
100 -1 -264 -39.82% -1 -171 -34.06% 0 -95 -32.87% 0 -41 -12.81%
150 -1 -302 -38.77% -1 -248 -35.18% 0 -94 -21.61% 0 -59 -14.86%
199 -1 -485 -47.32% -1 -329 -37.90% -1 -130 -23.51% 0 -84 -17.04%

Avg. value -275.6 -41.36% -190.8 -35.15% -82.8 -25.66% -47.8 -13.79%

Table 12 reports the results of our test showing the improvements in terms of the number of

vehicles and the percentage of the deadhead time with respect to the best results among those

reported in Bodin et al. (2000), Derigs et al. (2013) and Wy and Kim (2013). The results show

a significant reduction of the deadhead time. In particular, the instances with higher percentage

of trips T1 and T2 (instances A and B) mostly benefit from managing containers as a shared

commodity. Indeed, for all but one case in both sets A and B, the deadhead reduction allows to

save one vehicle.

7. Conclusions

Recycling is the compulsory final step of most products life cycle and an essential part of integrated

waste management. Bulky items are part of this process through a network of collection points

(rdss) established all over the territory, where large containers devoted to different materials are

hosted. The Municipal Agency is in charge of the material final trip from an rds to an mrf. A

fleet of dedicated vehicles is devoted to bring full containers to mrfs to be emptied, and to bring

them back to an rds. To take advantage of economies of scale, Agencies tend to manage all the

rdss in the same region as a whole, yielding large scale vehicle routing problems which can not be

efficiently solved by state of the art MILP solvers.

We addressed a real life problem in this class, formalized it as a special VRP on a bipartite graph,

analyzed its structure, compared it to similar problems in the wider class of RR-VRP, emphasized
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those issues that most affect the problem hardness, and discussed for the first time the impact of

limited additional containers. In particular, we studied a hierarchical bi-objective (fleet size and

total distance), distance-constrained VRP, provided a specialized variant of the Clarke and Wright

constructive procedure able to manage limited additional containers, and proposed a neighborhood

based metaheuristic which exploits the problem structure, alternatively switches from one objective

to the other along the search path, and periodically destroys and rebuilds parts of the solution.

The main algorithm components are experimentally evaluated on real and realistic instances, the

largest of which fail to be solved by a MILP solver. We are increasingly competitive with the solver

as the instance size increases, especially regarding fleet size. On the larger instances, the solution

quality is addressed by comparing with a lower bound. Providing tight bounds to the fleet size

objective is a challenging task due to the distance constraint, which makes hard even the feasibility

check of a solution.

Our approach was also tested on instances from the literature against sophisticated algorithms

previously proposed for a slightly different problem, i.e., the RR-VRP where spare containers are

not limited and are stationed at the mrf. We proved competitive on solution quality although our

approach is not tailored for that case. Moreover, we experimentally showed the potential improve-

ment that can be gained by treating containers as a general commodity that can be exchanged

from site to site.

Computational results provided experimental evidence to our claim that this class of challenging

real problems can be efficiently tackled by specialized though simple ad hoc algorithms, able to

deal with the global constraint related to limited spare containers, allowing Municipal Agencies

to optimally deal with a demanding operational task which has to be solved on a weekly base. In

particular, decomposing each service request concerning a full container to be emptied into the

removal of the full container and the delivery of an empty one, provides additional chances for

optimization, specially in case of an integrated management of several rdss, yielding large scale

problems that our solution approach is able to handle.
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