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Abstract—In this work, a novel approach to water segmen-
tation of Synthetic Aperture Radar images is presented. The
proposed methodology, suitable for any VV-VH dual-pol data
source, it is based only on the statistical and morphological
content of the two polarimetric channels. No external infor-
mation or supervision is required to successfully complete the
segmentation task, allowing a complete automation of the process.
The methodology has been applied to Sentinel-1 Interferometric
Wide-Swath data and validated using very high-resolution optical
images acquired by an Unmanned Aerial System over two Italian
rivers, during different seasons. The performances of the algo-
rithm have been estimated carrying out a pixel-based validation,
deriving from the binary confusion matrix two classical figures
of merit such as Global accuracy and F1-score. In the validation
procedure, it has been assessed an overall Global Accuracy of
0.92 and an overall F1-score of 0.81, suggesting that the presented
methodology applied to S-1 data is well-suited for the monitoring
of rivers characterized by a wet channel width greater than 60
m.

Index Terms—SAR, water mapping, segmentation, Sentinel-1

I. INTRODUCTION

Water mapping is one of the main research topics in
Synthetic Aperture Radar (SAR) imaging, with applications
in a wide number of different areas of the environmental
monitoring, spanning from water resource management to in-
land water monitoring [1]. Beside the classical advantages (i.e.
active illumination, atmosphere penetration), SAR imaging has
among all the other imaging systems the best capabilities in
detecting water surfaces. When illuminated, water surfaces
reflect the signal according to a single bounce mechanism,
resulting in low amplitude areas in the SAR image. Thus,
when water is present in the scene, it is possible to observe
in the image histogram a bimodal distribution. The two
modalities are generated from the two different scattering
mechanism of water and land surfaces. In principle, it is
possible to segment water surfaces in the scene identifying
the associated distribution from the histogram and applying
a threshold [2]. This approach corresponds to the underlying
principle of a very high number of methodologies, which try
to overcome through more sophisticated adaptation (e.g. split-
based, tiling, statistical modelling) the severe mixture of the
distributions, that occurs due to the speckle power and land-
water ratio in the scene [3], [4]. Here, I propose an approach
for unsupervised water segmentation that is not affected by

image scale and allows the unbiased classification of water
and land. The remainder of this work is organized as follow:
Section II describes the proposed methodology, in Section III
are presented the validation results and Section IV hosts a brief
discussion.

II. THE PROPOSED METHOD

Are assumed two multi-temporal stacks SV V and SV H

of co-registered SAR amplitude images, characterized by a
spatial resolution δa in azimuth and δr in range, acquired
under the same observation geometry and equally spaced in
time (e.g. every six days) of an interval ∆t, corresponding
to the revisit time of the constellation. The pre-processing
required to generate the stack is not in the scope of this work
and will not be analyzed.

Fig. 1. Flowchart of the described steps.

The two stacks are filtered in order to reduce the speckle
power (Section II-A) and classified (Section II-B) separately,
producing for each epoch two different water masks for VV
and VH polarization. The two masks are then combined with a
heuristic filter (Section II-C) in a single final mask, refinement
of the first two classifications as shown in Figure 1.
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A. Speckle Filtering

In single look SAR images, the speckle power is such to
hinder the correct segmentation of distributed targets, thus
whatever the classification approach it is necessary to first
increase the Equivalent Number of Look (ENL), filtering
the image. Averaging n independent, identically distributed,
from here homogeneous, pixels it is possible to reduce the
speckle power of a factor

√
n. The choice of the speckle filter

does not modify the functioning principle of the classification
algorithm, but it affects the final performance of the whole
methodology. Thus, it is presented a simple resolution-saving,
nonlinear, spatiotemporal filter optimized for the water seg-
mentation task. It is considered a tridimensional convolution
kernel K of size h, w and d, which operates over the stack S.
The spatial dimensions of the kernel are set accordingly with
the following:

h =
δL

δa
(1)

w =
δL

δr
(2)

where δL is the minimum target size for the segmentation task.
Furthermore, in order to exploit the multi-temporality of the
stack, it is assumed that water bodies area extent function has
a step-like dynamics, rather than impulse-like, in the interval
∆T [5], when interested by external forcing (e.g. rain, snow
melting). Under this hypothesis, setting d = 3, at least 2∗h∗w
samples are homogeneous. In order to have a more robust
estimate of the filtered amplitude not affected, in the worst
case, by the h∗w heterogeneous sample the median is chosen
as operator over the sampled population.

Fig. 2. Single look image (left) and its filtered version (right).

In Figure 2 it is shown a comparison between a single look
Sentinel-1 (S-1) Interferometric Wide-Swath (IW) 20 − by −
5m resolution amplitude image (left) and its filtered version
(right), obtained convolving the multitemporal stack with a
1− by − 5− by − 3 median window.

B. Classification

Usually, a binary segmentation task is modelled as a prob-
lem where the image is composed of two classes Ω1 and Ω2,
described by two probability density functions (pdf) pdf1 and
pdf2. As introduced in the beginning, in this framework such
an approach suffers the severe mixture of the two pdfs, and it
does not allow to recover Ω1 and Ω2. Rather, here it is assumed

that the image is composed by a number N of subclasses ωi,
which belong to Ω1 or Ω2. The subclasses are built following
these steps:
• The image dynamic range (DR) upper bound is saturated

to cut out extreme values generated from dihedral scat-
tering;

• The saturated DR is divided in a number N of radiometric
intervals of width δx, such that pixels in the intervals
change at the feature scale δL. The radiometric intervals
composed by less of Nmin pixels are rejected;

• Iteratively, the ωi subclass is built collecting the radiomet-
ric values of all the pixels in the 3−by−3 neighborhood
of the pixels belonging to the radiometric interval i;

• Iteratively, the pdfi describing the ωi sub-class is built
through a simple gaussian model, estimating the sample
mean and variance:

pdfi = G(µi, σi) (3)

Fig. 3. Ensemble of the N locally estimated pdfs. Colors refer to the
amplitude value of the ith interval upper bound.

The N pdfs from Equation 3 are evaluated over the
amplitude image and the maximum probability image is
built as follow:

Imaxl,j
= max

i∈[1,N ]
G(Ii,j , µi, σi) (4)

where l and j refer to the pixel coordinates of the image.
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Fig. 4. Image of maximum probability as from Equation 4.

The image of maximum probability can be binarized,
since it does not suffer of the issues encountered in the
amplitude domain.
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Fig. 5. Histogram relative to the image of maximum probability (Figure 4).

As shown in Figure 5 there is only one peak associated to the
background of the image, water pixels are mapped unbiasedly
to very high values of probability (right of the peak). This
behavior is controlled by the residual speckle in the image,
which, being multiplicative, is lower for the water and higher
for other distributed features, meaning in a lower variance
for water sub-classes (as can be seen also in Figure 3). In
this methodology, the homogeneity of water features also
contributes to maximize the separation from the background
in the probability domain, further lowering the variance of the
subclasses.

C. Heuristic Filter

The classification algorithm is run on both the SV V and
SV H stacks, producing a stack of logical water masks. For
each epoch, the VV mask and the VH mask are combined
and filtered to obtain a unique refined classification. In order
to separate the pixels which have been classified positively in
both polarizations from the pixels which have been classified
positively just in once, the two masks are summed together.
Pixels from the first group are accepted in the final classifica-
tion only if they are at least adjacent to another pixel of their
group. This criterion, based on the continuity of water surfaces,
allows removing outliers introduced by the fluctuation of the
residual speckle or by misclassification, such as patches of
saturated soils. Pixels from the second group are accepted
in the final classification only if they are at least adjacent
to one pixel of the refined first group. This second criterion
allows to filter out outliers introduced by depolarization effects
introduced by the geometry of the targets.

Fig. 6. Sum of VV and VH classification masks (left) and filtered classifi-
cation mask (right). VV-VH positive blue, VV positive red and VH positive
green.

In Figure 6 it is shown the result of the heuristic filtering

operation. In conclusion, in the post-processing step the stack
of water masks is geocoded in cartographic or geographic
coordinate system.

III. VALIDATION

The algorithm has been validated applying the methodology
described in Section II to S-1 IW-TOPS data and comparing
the output classifications to ground truths derived from pho-
tointerpretation of very-high resolution images acquired by an
Unmanned Aerial System (UAS).

Fig. 7. UAS acquisition (left), ground-truth from photointerpretation (center)
and water mask (right).

A. Validation Area

Po and downstream Sesia rivers (Piedmont, Italy) have been
chosen as test areas. Different scenes have been acquired
during 2017 and 2018, according to different seasonality.
Acquisitions are listed in the following table.

ID UAS S-1
SC 2017 07 19/07/17 19/07/17
PO 2017 09 16/09/17 14/09/17
SC 2018 0 16/04/18 18/04/18

PO 2018 04 17/04/18 16/04/18
SC 2018 09 22/09/18 21/09/18
PO 2018 09 20/09/18 19/09/18

B. Validation Strategy

The validation has been performed on a pixel basis un-
dersampling with a mode interpolation the 40cm resolution
ground truth on the same grid of the 20m resolution S-1
classification.

Fig. 8. Undersampled ground-truth (left), pixel based classification (right):
turquoise false positives, blue true positive, light brown false negative, dark
brown true negative.
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C. Validation Results

As shown in Figure 8, for every classification ground-truth
pair the confusion matrix is computed as well as the Global
Accuracy and the F-1 score, defined as follow:

ACC =
TP + TN

TP + TN + FP + FN
(5)

F1 =
2 ∗ TP

2 ∗ TP + FP + FN
(6)

Computing the confusion matrix over the whole classification
dataset, it has been assessed an overall Global Accuracy of
0.92 and an overall F-1 score 0.81. The results for the single
observation are listed in the following table.

ID ACC F1
SC 2017 07 0.888 0.667
PO 2017 09 0.941 0.81
SC 2018 04 0.920 0.773
PO 2018 04 0.914 0.853
SC 2018 09 0.887 0.702
PO 2018 09 0.943 0.855

IV. DISCUSSION

From the scatterplot Global accuracy versus F-1 score
shown in Figure 9 it is evident that the performances depend
from the wet channel width of the monitored river (dot color).

Fig. 9. Scatterplot of Global Accuracy and F-1 score. The color of the dots
refers to the wet channel width of the river during the acquisition.

The performances which have been assessed in the vali-
dation phase are satisfying for the purpose of continuously
monitoring rivers characterized by a channel width greater
than 60m. This result is more significant in the light of the fact
that the procedure can be fully automatized and it may allow
further studies on the possibility of retrieving the discharge
from remote-sensed data [6].
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