
1

Symbolic analysis of higher-order side channel

countermeasures
Elia Bisi, Filippo Melzani, Vittorio Zaccaria

Abstract

In this paper, we deal with the problem of efficiently assessing the higher order vulnerability of a hardware

cryptographic circuit. Our main concern is to provide methods that allow a circuit designer to detect early in the

design cycle if the implementation of a Boolean-additive masking countermeasure does not hold up to the required

protection order. To achieve this goal, we promote the search for vulnerabilities from a statistical problem to a purely

symbolical one and then provide a method for reasoning about this new symbolical interpretation. Eventually we

show, with a synthetic example, how the proposed conceptual tool can be used for exploring the vulnerability space

of a cryptographic primitive.

Index Terms

Embedded systems security, cryptographic implementations, side channel analysis, higher order differential anal-

ysis.

I. INTRODUCTION

Cryptography’s current research trends show that there is an increasing concern about identifying if a side-channel

countermeasure is vulnerable to higher-order attacks. The problem is even more amplified as several previous

countermeasures [1], [2], which were considered robust at the higher order, have turned out to be vulnerable [3],

[4].

In this paper, we introduce a mathematical tool to assess the higher order vulnerability of a hardware cryptographic

circuit. The method empowers the circuit designer to detect if the chosen countermeasure, where sensitive data are

combined in a Boolean additive way with random masks (e.g., Boolean masking or a threshold implementation [5]),

is effective up to the desired order. Our overarching goal is to promote the implied statistical reasoning behind the

countermeasure into a symbolical one, eventually extending ordinary computer aided design of integrated circuits.

E. Bisi is with the Department of Statistics, University of Warwick, Coventry - UK.

Email: e.bisi@warwick.ac.uk

F. Melzani is with STMicroelectronics, Agrate Brianza - Italy.

Email: filippo.melzani@st.com

V. Zaccaria is with the Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano - Italy.

Email: vittorio.zaccaria@polimi.it

This project has been partially funded by EU’s H2020 grant n. 644052 - HECTOR.

2

Admittedly, this is neither the first nor the most general proposal addressing such an ambitious goal. A considerable

number of recent works tackle the problem from the “information flow” point of view, by recasting it into either type

checking or formal proof verification [6]–[8]. One peculiar characteristic of the most recent works is the introduction

of probabilistic reasoning to produce formal proofs of cryptographic programs (e.g., EasyCrypt [9]). While these

techniques look promising, they require deep expertise in formal software verification and we believe that our

approach provides a lightweight alternative that can be readily adopted by a much larger audience of hardware

designers. On the other hand, the conventional, and more practical, approach to assessing the vulnerability of a

circuit is simulation-based (see [10] for a comprehensive summary of state-of-the-art techniques). The limits of

this approach, however, are twofold; firstly, the scalability is critically impacted by the simulation time. Secondly,

the reliability of the outcome is very brittle, i.e., one can practically fail to generate the simulation scenario that

produces a specific vulnerability. In contrast, our unique approach allows lifting the problem into a symbolic setting,

allowing deterministic reasoning and avoiding simulations.

First of all, in Section II we introduce precise definitions of n-th order and uni/multivariate vulnerability and shed

some new light on the connection between combining functions and vulnerability itself. In Section III, under some

stricter hypotheses, we promote the search for vulnerabilities from a statistical problem to a purely symbolical one.

We then provide a method for reasoning about this new symbolical interpretation, by introducing new conditions

for vulnerability (i.e., the XOR-condition) and by exploiting a few classical results of linear algebra in the binary

field F2. Eventually, in Section IV we apply our method to analyze a realistic higher order countermeasure.

II. NOTATION AND PROBLEM DEFINITION

To define the notation used throughout this paper, we follow some common standards [11]. We use calligraphic

letters for sets, e.g. X , and capital letters, e.g. X , for random variables. A generic but deterministic value in X is

denoted by lowercase x. A vector in Xm is denoted by x = (xi)
m
i=1, where xi ∈ X for all i = 1, . . . ,m. We will

denote by H(x) the Hamming weight of a binary string x.

If A and B are events, the notations P(A) and P(A | B) refer to the probability of A and to the conditional

probability of A given B. Similarly, if X and Y are random variables, E[X] and E[X | Y] refer to the expectation

of X and to the conditional expectation of X given Y respectively. Finally, the expectation of X given the event

that Y takes the deterministic value y is denoted by E[X | Y = y].

A. Univariate vulnerability

In our work, we define as side-channel any physically observable outlet that unintentionally leaks some informa-

tion from a hardware cryptographic primitive. A side-channel attack corresponds to a set of queries to a physical

observable whose aim is to identify the value of a master key/sub-key K of the primitive [12].

Cryptographic primitives may expose, through a side-channel, one or many intermediate Boolean values, which

we call visible variables and denote by the letter V because they are effectively processed by the hardware. On the

other hand, we call sensitive variables the values that are deterministic functions of both the master key K and the

3

public input P ; we denote them by S = S(K,P) [13] [14]. For the moment, we note that visible variables are not

always sensitive themselves.

Information about a visible value V , hence possibly about some sensitive values, can be derived from observations

of a (data dependent) leakage [11]:

L = ψ(V) +N . (1)

Here, ψ is a pseudo-Boolean function1, while N is a Gaussian random variable which is commonly used to

account for measurement noise.

Under the assumption that V is actually a sensitive value S, one might consider a prediction function L̂

L̂(k, P) = ψ̂(S(k, P)) ,

where k is any possible value of the key and P is a random plain text. A side-channel attack can thus be mounted

by using a distinguisher function

D(L(K, ·), L̂(k, ·))

monotonically related to the statistical dependency between the actual leakage L(K,P) measured with several

random plain texts P , and the leakage model value L̂(k, P) computed using the same plain texts [11]. The attack

consists in the optimization problem that aims to find the key guess kg maximizing the distinguisher:

kg = argmaxkD(L(K, ·), L̂(k, ·)) . (2)

It is thus natural to make the following definition of vulnerability to side-channel attacks.

Definition 1 (Vulnerability). We say that a leakage L is vulnerable (to a side-channel attack) if it is statistically

dependent on a sensitive value, i.e.

P(L = l | S = s1) 6= P(L = l | S = s2) (3)

for some s1, s2 ∈ S and l ∈ L.

If such a vulnerability exists, then a distinguisher D may be used to mount an attack.

Example 1 (Correlation Power Analysis Attack of AES). In this type of attack [15] [14], the side-channel considered

is the power consumption of the device. The assumption is that a visible value V is actually sensitive, for example

it corresponds to the output of the AES SBOX in the first round:

V = S(K,P) = SBOX(P ⊕K) .

Assuming that the leakage is dependent on the Hamming weight of V , the attacker can use the prediction function

L̂(k, P) = H(S(k, P)) ,

and the Pearson’s correlation coefficient as a distinguisher to detect the linear statistical dependence between L̂ and

L and thus derive the best guess for k.

1Namely, ψ is a mapping from the Boolean space where V takes values to the real line. It is often defined to be the Hamming weight of the

underlying intermediate value V encoded in binary form.

4

B. Masking and higher order attacks

To safeguard against the vulnerability expressed in eq. (3), a customary solution is to prevent a sensitive value

S to become visible, by splitting S into d shares V1, . . . , Vd, which are actually processed instead. This means that

S = V1 ? V2 ? · · · ? Vd , (4)

where ? is a group operation (usually the bitwise XOR), V2, . . . , Vd are random uniformly distributed values called

masks, and V1 is the masked variable defined in such a way that eq. (4) holds. Thus, each of the shares turns out

to be statistically independent of S and cannot be used alone to mount an attack.

However, this procedure does not remove any possible vulnerability: if the leakage L involves more than one

share, it might still depend on S. This dependence is often revealed by a combining function C(L) of the leakage:

if the expected value of C(L) given S is not constant, then an attack can still be mounted. See [16] for an in-depth

analysis of available combining functions. In most cases, C is a polynomial of order greater than one, so that the

term higher order attack is commonly adopted:

Definition 2 (Vulnerability to an n-th order attack). We say that L is vulnerable to an n-th order attack if one of

its n-th conditional moments given S is not constant, i.e. there exists an n-th degree polynomial C(L) such that

E[C(L) | S = s1] 6= E[C(L) | S = s2] (5)

for some s1, s2 ∈ S.

Example 2 (Second-order univariate CPA). Let us consider the same scenario of Example 1, assuming now that

the device uses a first-order countermeasure. The value S = S(k, P) is thus never explicitly processed, but it is

replaced by V1 = S ⊕M and V2 = M , where M is a mask. Suppose that it is possible to observe a leakage that

depends on both shares2:

L(V) = H(V1) +H(V2) +N .

The expectation E[L | S] does not depend on S, showing that a first order attack fails. However, setting

C(L) = (L− E[L])2 , (6)

the second central moment E[C(L) | S] does depend on S. As shown in [16], this combining function can be used,

together with the correlation distinguisher, to derive an optimal key guess.

C. Multivariate vulnerability

The concept of vulnerability stated in Definition 1 can be directly extended to the case where the visible variables

are spread over several leakages L = (Li)
l
i=1. If an attack exploits the information given by a vector of l leakages,

we say that such an attack is l-variate. Definition 2 can be generalized to the case of multivariate leakages, by

considering an n-th degree polynomial C(L) : Rl → R in l variables as a combining function, so that the two sides

of inequality (5) are mixed conditional moments.

2This corresponds to the case when both shares are processed at the same time by different computational blocks.

5

Example 3 (Second-order bi-variate CPA). Let us go back to Example 2, assuming now that the implementation

processes only one single share at a time instead of both at the same time. We then have two leakages related to

the same sensitive variable S:

L1 = H(V1) +N , L2 = H(V2) +N ,

where V1 = S⊕M and V2 = M , being M a mask. The second central mixed moment E[C(L) | S] corresponding

to the combining function

C(L) = (L1 − E[L1]) · (L2 − E[L2]) (7)

depends on S and can be used to mount a second order bivariate attack, as shown in [16].

D. Remarks on moment-based attacks

Formulas (6) and (7) suggest that statistical moments play an important role in pointing out the vulnerability

of a circuit. In fact, some scholars have already noticed that vulnerability arises when a difference in conditional

distributions can be detected by looking at the statistical moments through suitable polynomial combining functions.

Actually, as demonstrated in [16], there exist some non-polynomial functions that work as well, although not as

efficiently.

Nevertheless, we can ask ourselves the following question: if no n-th order attack can be mounted for any n,

might the leakage be still vulnerable? The answer is fortunately negative, as we shall see. Let us first clearly state

our leakage model:

Assumption 1. The components of the leakage vector L = (Li)
l
i=1 are of the form

Li = ψi(V) +Ni ,

where ψ1, . . . , ψl are pseudo-Boolean functions and N1, . . . , Nl are Gaussian random variables independent of each

other and independent of any other variable.

Under this assumption, it is possible to prove the following theorem, which answers our question:

Theorem 1. Under Assumption 1, a leakage vector is vulnerable if and only if it is vulnerable to an n-th order

attack for some n.

Proof. See Appendix.

It is worth noting that some different attack approach that is more general (such as MIA [14]), or more efficient, in

practical scenarios may exist. Yet, theorem 1 ensures that if a vulnerability is present, there must exist a corresponding

polynomial combining function. Accordingly, the analysis performed on such polynomial combining functions is

sufficient to assess the presence or lack of any vulnerability.

III. A METHOD FOR DETECTING HIGHER ORDER VULNERABILITY

In this section, we introduce a method to detect higher-order leakage vulnerability by directly analyzing the

relationship between visible variables and sensitive ones. This could be extremely useful when the designer of a

6

(hardware) countermeasure wants to make sure that the device does not leak any information up to a certain attack

order without performing a full-blown statistical analysis at design time.

Throughout this section, for convenience, we consider all the sensitive, mask and visible bits in column vectors

S = (Si)
s
i=1 ∈ Fs2, M = (Mi)

m
i=1 ∈ Fm2 and V = (Vi)

v
i=1 ∈ Fv2 .

We now restrict the leakage model described in Assumption 1, by making the following assumption:

Assumption 2. The components of the leakage vector L = (Li)
l
i=1 are of the form

Li =

v∑
j=1

ci,jVj +Ni ∀i = 1, . . . , l , (8)

where ci,j’s are real coefficients, and N1, . . . , Nl are Gaussian noises independent of each other and of any other

variable.

Given that ci,j can assume arbitrary values for each bit, assumption 2 is extremely general. For example, it covers

i) a one to one mapping between each value of the visible variables and each value of the leakages (e.g. the identity

function) — this is the most desirable case for an attacker — and ii) the Hamming weight of some binary string

when ci,j is 1 iff the j-th visible bit leaks through the i-th leakage (and 0 otherwise).

As we will see in Theorem 2, the assumption above allows connecting the n-th order leakage vulnerability to

the n-vulnerability of the visible vector, in the sense specified by the following definition:

Definition 3. We say that V is vulnerable if it is not independent of S and n-vulnerable if the minimal vulnerable

subset of visible bits in V is of size n.

We point out that the property of n-vulnerability for a visible vector can be checked, as we will see later on,

without resorting to statistical experiments.

Remark 1. We are considering V and S as composed of v and s variables of 1 bit respectively. In our practical

application (see Section IV), however, we deal with variables which can be b bits wide (e.g. 8 bits in the AES

SBOX). It is straightforward to extend the above definition of n-vulnerability accordingly.

Remark 2. The n-vulnerability indicates the order of the corresponding attack only. Once an n-vulnerability has

been detected, it is possible to derive the leakages involved by inspecting ci,j’s. As we will see in Section III-B, this

allows building the combining function; in particular, the attack will be either univariate or multivariate according

to the number of leakages involved.

The following theorem explains how n-vulnerability is connected with our overarching goal of detecting leakage

vulnerability.

Theorem 2. If the vector of visible variables is n-vulnerable, then any leakage of type (8) (see Assumption 2) is

secure against attacks of order lower than n.

Proof. Let S ∈ Fs2, V ∈ Fv2 and L ∈ Rl be the vector of sensitive variables, an n-vulnerable visible vector and a

leakage of type (8) respectively. We need to prove that E[C(L) | S] is constant for any polynomial C(L) of degree

7

d < n in the variables Li’s. By (8), each Li can be considered as a real polynomial of degree 1 in the variables

Vj’s (j = 1, . . . , v) and Ni. Therefore, C(L) can be considered as a polynomial of degree d in the set of variables

V = {Vj}vj=1 ∪ {Ni}li=1 ,

i.e. as a sum of a certain number r of monomials C1(V), . . . , Cr(V) of degree ≤ d. We then have

E[C(L) | S] =

r∑
i=1

E[Ci(V) | S] .

Each Ci(V) is of degree < n, hence it depends on less than n visible bits Vj’s. Since V is n-vulnerable by

hypothesis, Ci(V) is independent of S, hence all the conditional expectations in the sum above are constant. This

proves that E[C(L) | S] is constant, as required.

On the grounds of Theorem 2, it is thus possible to cast the problem of detecting an n-th order leakage vulnerability

to the n-vulnerability of the corresponding visible variables.

A. Detecting n-vulnerability

It is now natural to ask ourselves if it is possible to easily detect n-vulnerability. It turns out that, if we restrict

ourselves to the case of Boolean-additive masking where visible variables are F2-sums of sensitive variables and

masks, it is possible to devise a symbolic method to detect such a vulnerability. More formally, we assume that

visible variables are related to masks and sensitive variables by the following matrix expression in F2:

V =
[
B A

]
·

M
S

 = BM ⊕AS , (9)

where A = (ai,j) and B = (bi,j) are matrices with entries in F2, of size v × s and v ×m respectively. We will

call C =
[
B A

]
the visible variables’ matrix. Thus, Vi turns out to be the F2-sum of all Mh’s such that bi,h = 1

and all Sj’s such that ai,j = 1:

Vi =

m⊕
h=1

bi,hMh ⊕
s⊕
j=1

ai,jSj ∀i = 1, . . . , v .

In this setting, we define the following condition associated with the matrix structure of C:

Definition 4 (XOR-condition). We say that a visible vector V ∈ Fv2 satisfies the XOR-condition if there exists a

constant row vector ε = (εi)
v
i=1 ∈ Fv2 such that the product

εV =

v⊕
i=1

εiVi

cancels out any mask contribution (i.e. εB = 0) and is a non-constant random variable.

Roughly speaking, the XOR-condition holds when there is a combination of visible bits that: i) does not depend

on masks and ii) does depend on some sensitive value. Its importance is highlighted by the following theorem,

which permits establishing if V is vulnerable:

Theorem 3. Let S ∈ Fs2, M ∈ Fm2 and V = BM ⊕ AS ∈ Fv2 be the sensitive, mask and visible vectors

respectively, being A and B deterministic F2-matrices.

8

1) The XOR-condition implies the vulnerability of V .

2) Assuming that S and M are independent and M is uniformly distributed in Fm2 , the vulnerability of V

implies the XOR-condition.

Proof. See Appendix.

Remark 3. While the statistical independence of sensitive and mask vectors is a completely natural assumption, we

require that i) the mask vector be uniformly distributed3 in Fm2 and ii) mask bits undergo only F2-linear transfor-

mations. While these might seem tight restrictions, we recall that they hold for notable classes of implementations

[1] [17], as well as those parts of threshold-based implementations where masks are transformed linearly [5] [18].

We now deduce a straightforward consequence of Theorem 3, and combine it with what we know from Theorem 2:

Corollary 1. Assume that S and M are independent and M is uniformly distributed in Fm2 . Then, a visible vector

V is n-vulnerable if and only if n is the minimum integer such that the XOR-condition holds w.r.t. a vector ε with

Hamming weight H(ε) = n. In this case, any leakage of type (8) is secure against attacks of order lower than n.

The Hamming weight of ε corresponds here to the number of visible variables that ε actually combines.

Example 4. Consider the following visible variables:

V = (V1, V2, V3, V4)

= (S1 ⊕M1, S2 ⊕M2, S1 ⊕ S2 ⊕M1 ⊕M2,M1 ⊕M2)

In this case, we have only three values of ε ∈ F4
2 that cancel out the mask contribution:

(0, 0, 1, 1) · V = V3 ⊕ V4 = S1 ⊕ S2 ,

(1, 1, 1, 0) · V = V1 ⊕ V2 ⊕ V3 = 0 ,

(1, 1, 0, 1) · V = V1 ⊕ V2 ⊕ V4 = S1 ⊕ S2 .

For any other ε, we have that εV does show mask contributions. Notice however that the XOR-condition does not

hold for ε = (1, 1, 1, 0), because (1, 1, 1, 0) · V is constant. Looking at the other two combinations, we see that

the XOR-condition holds for (0, 0, 1, 1) and (1, 1, 0, 1) iff S1 ⊕ S2 is non-constant (this is true, for example, when

S1 and S2 are independent). In this case, we deduce from Theorem 3 that V is vulnerable. More specifically, by

Corollary 1, V is 2-vulnerable. A circuit with leakages of type (8) involving these visible variables might then be

vulnerable to 2nd order attacks.

Assuming now that all sensitive bits are independent, any F2-sum of them is non-constant, unless some of them

cancel out. In such a case, we can restate Corollary 1 as an easy-to-verify property of the visible variables’ matrix:

3All the bits used to mask the implementation must take value 0 or 1 with the same probability and independently of each other.

9

Corollary 2. Assume that all the variables S1, . . . , Ss, M1, . . . ,Mm are independent of each other and M is

uniformly distributed in Fm2 . Then, V is n-vulnerable iff

n = min{H(ε) : ε ∈ Fv2, εB = 0, εA 6= 0} . (10)

In other words, one needs to find the row vectors ε that satisfy the (typically under-determined) F2-linear system

εB = 0 but do not satisfy εA = 0: these correspond to all and only the vulnerable combinations.

The formalization expressed in (10) is compliant with the problem space of a Satisfiability Modulo Theory solver

[19]. In practice, even though this is an exponentially complex problem, we have found that it is even tractable by

brute force.

B. Finding a combination function to exploit the vulnerability

Once an n-vulnerable combination ε has been found, by looking at the coefficients ci,j’s (see Assumption 2) we

can build a combining function in the following way:

C(L) =

v∏
j=1

φj(εj), φj(ε) =

1 ε = 0

(Li − E[Li]) ε = 1 ∧ ∃ci,j = 1
(11)

Note that, for each visible variable Vj in the vulnerable combination, there might be more than one i such that

ci,j = 1, hence the combining function may not be unique.

C. Determining whether the XOR-condition holds

Under the same hypotheses of Corollary 2, which we will always assume throughout this subsection, we now

wish to relate the vulnerability of a set of visible variables to a simple algebraic property of the visible variables’

matrix.

We first summarize how the visible variables’ matrix C =
[
B A

]
is constructed, knowing the relations among

visible, sensitive and masking variables in a circuit T :

• each row i corresponds to a visible variable Vi of T .

• each column j corresponds to either a mask or a sensitive variable of T . Assuming that the circuit T has m

masks and s sensitive variables, C will have m+s columns. The first m columns form matrix B and represent

masks; the last s columns form matrix A and represent sensitive variables.

• the entry (i, j) is 1 iff the visible variable Vi happens to depend on the mask or sensitive variable associated

with column j.

In light of Corollary 2, we can restate the XOR-condition in the form we are now mainly concerned, referring to

a property of the visible variables’ matrix: a visible vector is vulnerable iff there exists ε such that εC = r is of

the form

r = [0d 1 ∗ · · · ∗] , d ≥ m, (12)

where the stars may take any binary value. In words, this means that some F2-linear combination of the rows of

C has all mask columns equal to 0 and at least one sensitive column equal to 1.

10

Interestingly, as Theorem 4 states, we can determine whether a visible variables’ matrix exposes some vulnerability

by inspecting its reduced row echelon form. Recall first:

Definition 5. The reduced row echelon form CR of a binary matrix C is the unique binary matrix such that:

1) the row spaces4 of CR and C coincide;

2) all nonzero rows of CR are above any rows of all zeros;

3) in each nonzero row of CR, the first 1 from the left (also called pivot) is strictly to the right of the pivot of

the row above;

4) each pivot is the only 1 of its own column.

Theorem 4. A visible vector is vulnerable if and only if the reduced row echelon form CR (computed in F2) of

the associated visible variables’ matrix C has a sensitive pivot column.

Proof. Assume that CR has a sensitive pivot column, i.e. it has a row r whose pivot column is sensitive. Such

a row is thus of type (12). On the other hand, r is an F2-linear combination of rows of C, by property 1) of

Definition 5. This shows that the associated visible vector is vulnerable.

Conversely, assume that CR has no sensitive pivot columns. Consider any row r that is the F2-combination of

n nonzero rows of CR with pivot columns j1, . . . , jn. By property 4), r has 1’s in all columns j1, . . . , jn. Since

all pivot columns are mask columns by hypothesis, r is not of type (12). This proves that the row space of CR,

which coincides with the row space of C again by property 1), does not contain any row of type (12). It follows

that the associated visible vector is not vulnerable.

We point out that Theorem 4 itself allows identifying a vulnerability, but not the minimum combination of visible

variables that gives rise to such a vulnerability. Nevertheless, it enables to do so with an interesting computational

efficiency. In fact, Albrecht et al. [20] proposed an algorithm (M4RI) that allows computing reduced echelon forms

in F2 with a complexity of Θ(nm min(m,n)/log(m)) for an n×m matrix.

On the other hand, Theorem 4 also provides an alternative method, besides Corollary 2, for detecting the

vulnerability order. Indeed, it is easy to convince oneself that the linear span of all rows of type (12) that appear

in CR turns out to be the set of all rows r of type (12) that can be written as εC for some ε. Therefore:

Corollary 3. A visible vector is n-vulnerable iff

n = min{H(ε) : ε ∈ Fv2, εC = r for some r ∈ R} ,

where R is the linear span of all rows of type (12) that appear in CR.

Obviously, the less elements R has, the more efficient the latter method is.

4The row space of a matrix is the vector space of all linear combinations of its rows; in our setting, the underlying field is F2.

11

Example 5. The visible variables’ matrix associated with Example 4 is

C =


1 0 1 0

0 1 0 1

1 1 1 1

1 1 0 0

 , (13)

where the vertical line divides the submatrix B, corresponding to the masks M1,M2, from the submatrix A,

corresponding to the sensitive variables S1, S2. The reduced row echelon form of C is

CR =


1 0 0 1

0 1 0 1

0 0 1 1

0 0 0 0

 . (14)

We can see that the column of S1 is a pivot column: by Theorem 4, there is some vulnerability. The only row of

type (12) in CR is r =
[

0 0 1 1
]
, so R = {r}. The solutions to εC = r are (0, 0, 1, 1) and (1, 1, 0, 1), so

V is 2-vulnerable by Corollary 3.

IV. A PRACTICAL APPLICATION

To show a practical application of our method, we investigate the potential vulnerabilities of the SUBBYTES

step of the first round of a hypothetical AES implementation similar to the one proposed in [1]. In that work,

F2-linear transformations impact both sensitive variables and masks, while non-linear ones are applied only to

sensitive variables using pre-computed lookup tables. We recall, on the grounds of remark 3, that this is exactly

one of the cases that can be addressed with our method.

Our implementation (see Figure 1) aims at the protection against first and second order attacks through Boolean

masking and consists of four masked SBOX blocks which process 4 bytes per cycle; the entire SUBBYTES takes

thus four cycles to complete. As can be seen, 8 independent random bytes (masks) protect the SUBBYTES stage

and we take care of combining the masks into 16 unique pairs to protect each sensitive variable5.

We also consider the following visible variables (in addition to the ones shown in Figure 1), which are due to

the initialization of the SBOX with the corresponding mask values:

Vi+16 = Mi, i = 1, . . . , 8 . (15)

A. Detecting the vulnerabilities

To detect the minimum n-vulnerability, we solve the minimization problem in equation (10) (see Corollary 2).

Practically, we find that V is not 1-vulnerable nor 2-vulnerable. However, V is 3-vulnerable, because there are 16

vulnerable combinations of three visible variables, all of the form (Sx⊕My⊕Mz,My,Mz). Vulnerable combinations

5For example, the mask pair (M1,M2) is only used to mask V1, despite the fact that M1 and M2 are reused for other sensitive variables.

This is the result of a trade-off between implementation complexity and vulnerability. In fact, one could i) reuse the same four mask pairs in

each cycle, exposing a second-order vulnerability, or ii) use 32 masks as recommended in [1], guaranteeing second-order protection at expense

of circuit complexity and amount of random values.

12

of four visible variables can also be found, e.g. (V2, V5, V6, V9). In the following subsection, we will explore this

finding in more detail through a synthetic attack that exploits the information about such combinations.

cy
cle

1
cy
cle

2
cy
cle

3
cy
cle

4

SBOX SBOX SBOX SBOX

SBOX SBOX SBOX SBOX

SBOX SBOX SBOX SBOX

SBOX SBOX SBOX SBOX

V1 = S1 ⊕ M1 ⊕ M2 V2 = S2 ⊕ M3 ⊕ M4 V3 = S3 ⊕ M5 ⊕ M6 V4 = S4 ⊕ M7 ⊕ M8

V5 = S5 ⊕ M1 ⊕ M4 V6 = S6 ⊕ M3 ⊕ M6 V7 = S7 ⊕ M5 ⊕ M8 V8 = S8 ⊕ M7 ⊕ M2

V9 = S9 ⊕ M1 ⊕ M6 V10 = S10 ⊕ M3 ⊕ M8 V11 = S11 ⊕ M5 ⊕ M2 V12 = S12 ⊕ M7 ⊕ M4

V13 = S13 ⊕ M1 ⊕ M8 V14 = S14 ⊕ M3 ⊕ M2 V15 = S15 ⊕ M5 ⊕ M4 V16 = S16 ⊕ M7 ⊕ M6

Figure 1. Cycle by cycle behavior of the considered architecture. In each of the four cycles, we compute four SBOX from four input variables.

The output of each SBOX is a sensible variable which is masked with a pair of masks, taking care that each pair is not repeated twice.

B. Mounting the attack

In this section, we mount a 3rd order attack towards (S2⊕M3⊕M4,M3,M4) — one of the configurations found

previously — to find the corresponding key K2. Given Remark 1, we work with variables of 8 bits and attack the

SBOX output byte as a whole, by using a commonly adopted procedure [3].

In fact, we assume that each cycle i has a measurable leakage Li that depends on the Hamming weight of the

involved variables (plus normal noise): for i = 1, 2, 3, 4,

Li =

4i∑
j=4i−3

H(Vj) +Ni .

Moreover, we consider the following initialization leakages:

Li1 =

3∑
i=0

H(V17+2i) +Ni1, Li2 =

3∑
i=0

H(V18+2i) +Ni2 .

A unique feature of our approach is that, given the potentially vulnerable combinations we can directly derive the

leakages they originate from and combine them to extract the key (see equation (11)). In our case, the vulnerable

combinations originate from L1, Li1 and Li2 so we build the attack by considering the following product combining

function:

C(L) = (L1 − E[L1])(Li1 − E[Li1])(Li2 − E[Li2]) . (16)

We sample n leakages from L = (L1, Li1, Li2) by running the synthetic model of the AES primitive with n

random plain-texts. We then compute the correlation ρk2 between the attacker prediction function H(S2(k2, X2))

13

and C(L) for every possible key guess k2, and we choose the k2 that maximizes it6.

For each attack, we consider the noise as a normal random variable with mean 0 and standard deviation σ. Both

n and σ are thus discrete factors of our design of experiments, while each factors’ combination corresponds to one

experimental unit. In our analysis, factors n and σ assume discrete values (aka levels) in the ranges [20·103, 100·103]

and [0, 2] respectively. For each combination, we measure the corresponding success rate over 50 attacks. Finally,

the experiment is repeated 30 times, keeping the plain texts fixed and varying the noise. Figure 2 shows the average

success rate for each factor combination and the associated 75% confidence interval. As expected, the ideal case

σ = 0 corresponds to no variation of the success rate.

Figure 2. Rate of success in recovering the key, by varying standard deviation of the noise and number of plain texts. Around each black dot,

which marks the average success rate, a 75% confidence intervals is plotted as a gray band.

Experiments confirm that keys can be indeed extracted by using our methodology. The success rate clearly

increases with the number of experiments; however, even in the ideal case of absence of noise, masking can be

effectively defeated only above 60K experiments (success rate ≥ 75%). Such a large amount of experiments,

however, guarantees a modest (∼ 25%) key extraction success rate when the noise standard deviation is around 2.

As a further example, if we wanted to protect the implementation at the 3rd order, we could have added an

additional mask M9 to all the visible variables. This would eliminate all the vulnerable triplets of the form (Sx ⊕
My ⊕Mz,My,Mz). Note that the countermeasure would still be susceptible to a 4th order attack, e.g. through the

quadruple (V2, V5, V6, V9) and the combining function7

C(L) = (L1 − E[L1])(L2 − E[L2])2(L3 − E[L3]).

Naturally, to complete such an attack, a suitable function of S2, S5, S6, S9 should be used as attacker prediction.

V. CONCLUSIONS

In this paper, we have proposed a method to detect early in the design cycle if a countermeasure holds up to

the required protection order. To do this, we have promoted the search for vulnerabilities to a symbolic analysis by

6Following Corollary 11 in [16], and considering our product-based combining function, we have chosen the Hamming weight of the sensitive

variable as the attacker prediction function.
7Since both V5 and V6 are mapped to L2, the latter is taken two times.

14

using a theoretically sound approach. To corroborate our findings, we have tested, on a synthetic AES model, to

which extent the vulnerabilities found were effectively exploitable.

We conjecture that any system that exposes a suitable leakage function (such as in Assumption 2) and data-

flow (such as in eq. (9)) can still be addressed with the presented method. Concretely referring to software

implementations, if one can measure the CPU power consumption associated with visible variables being stored in

registers or memory then the same analysis could be applied.

Further developments of this work might involve both theoretical aspects — e.g. extending our method to non-

linear transformations of masks — and practical aspects — e.g. integrating such an approach in a practical CAD

design flow.

VI. ACKNOWLEDGMENTS

We thank E. Cagli, G. Bertoni and A. Avalos Pacheco for their assistance and feedback. This project has been

partially funded by EU’s H2020 (grant n. 644052 - HECTOR).

REFERENCES

[1] Kai Schramm and Christof Paar. Higher Order Masking of the AES. In Topics in Cryptology - CT-RSA 2006, pages 208–225. Springer,

February 2006.

[2] Matthieu Rivain and Emmanuel Prouff. Provably Secure Higher-Order Masking of AES. In Cryptographic Hardware and Embedded

Systems - CHES 2010, pages 413–427. Springer, August 2010.

[3] Jean-Sébastien Coron, Emmanuel Prouff, and Matthieu Rivain. Side Channel Cryptanalysis of a Higher Order Masking Scheme. In

Cryptographic Hardware and Embedded Systems - CHES 2007, pages 28–44. Springer, September 2007.

[4] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche. Higher-Order Side Channel Security and Mask Refreshing.

In Smart Card Research and Advanced Applications, pages 410–424. Springer, Berlin, Heidelberg, July 2014.

[5] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen. Trade-Offs for Threshold Implementations

Illustrated on AES. IEEE Trans. on CAD of Integrated Circuits and Systems, 34(7):1188–1200, 2015.

[6] Gilles Barthe, Sonia Belaı̈d, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire, and Pierre-Yves Strub. Verified Proofs of

Higher-Order Masking. In Smart Card Research and Advanced Applications, pages 457–485. Springer, Berlin, Heidelberg, April 2015.

[7] Ali Galip Bayrak, Francesco Regazzoni, David Novo, and Paolo Ienne. Sleuth: automated verification of software power analysis

countermeasures. In Cryptographic Hardware and Embedded Systems - CHES 2013, pages 293–310, Berlin, Heidelberg, August 2013.

Swiss Federal Institute of Technology, Lausanne, Springer.

[8] Andrew Moss, Elisabeth Oswald, Dan Page, and Michael Tunstall. Compiler Assisted Masking. In Cryptographic Hardware and Embedded

Systems - CHES 2012, pages 58–75. Springer, Berlin, Heidelberg, September 2012.

[9] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and Pierre-Yves Strub. EasyCrypt: A Tutorial,

pages 146–166. Springer, Cham, 2014.

[10] Oscar Reparaz. Detecting flawed masking schemes with leakage detection tests. In Fast Software Encryption - FSE 2016, pages 204–222,

2016.

[11] Suvadeep Hajra and Debdeep Mukhopadhyay. Reaching the limit of nonprofiling DPA. IEEE Trans. on CAD of Integrated Circuits and

Systems, 34(6):915–927, 2015.

[12] François-Xavier Standaert, Tal Malkin, and Moti Yung. A unified framework for the analysis of side-channel key recovery attacks. In

Advances in Cryptology - EUROCRYPT 2009, volume 5479 of Lecture Notes in Computer Science, pages 443–461. Springer, 2009.

[13] Victor Lomné, Emmanuel Prouff, Matthieu Rivain, Thomas Roche, and Adrian Thillard. How to estimate the success rate of higher-order

side-channel attacks. In Cryptographic Hardware and Embedded Systems - CHES 2014, pages 35–54. Springer, 2014.

[14] Lejla Batina, Benedikt Gierlichs, Emmanuel Prouff, Matthieu Rivain, François-Xavier Standaert, and Nicolas Veyrat-Charvillon. Mutual

information analysis: a comprehensive study. Journal of Cryptology, 24(2):269–291, 2010.

15

[15] Eric Brier, Christophe Clavier, and Francis Olivier. chapter Correlation Power Analysis with a Leakage Model, pages 16–29. Springer,

Berlin, Heidelberg, 2004.

[16] Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical analysis of second order differential power analysis. IEEE Trans.

Computers, 58(6):799–811, 2009.

[17] Jean-Sébastien Coron. Higher order masking of look-up tables. In Advances in Cryptology - EUROCRYPT 2014, pages 441–458, 2014.

[18] Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, Ventzislav Nikov, and Svetla Nikova. Higher-Order Threshold Implementation of the

AES S-Box. In Smart Card Research and Advanced Applications, pages 259–272. Springer, Cham, March 2016.

[19] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: introduction and applications. Communications of the ACM,

54(9), September 2011.

[20] Martin R Albrecht, Gregory V Bard, and Clément Pernet. Efficient Dense Gaussian Elimination over the Finite Field with Two Elements.

arXiv.org, November 2011.

[21] Patrick Billingsley. Probability and Measure. John Wiley & sons, 2008.

APPENDIX

Proof of theorem 1

We first need to recall some classical definitions and results from probability theory [21, §21, §30].

Definition 6 (Moment generating function). The moment generating function of a multivariate random vector

X = (X1, . . . , Xl) taking values in Rl is the function

MX : Rl → R , MX(t) = E[et·X] = E[et1X1+···+tlXl]

for all t = (t1, . . . , tl) ∈ Rl.

Since the exponential is a positive function, the expectation is well-defined (although it might be infinite for

some t). Note that the MX is certainly finite at the origin, since MX(0) = 1.

Theorem 5. If MX is finite in a neighborhood of the origin, then the distribution of X is uniquely determined by

its (mixed) moments. Namely, if Y is another Rl-valued random variable with the same moments as X , then X

and Y are identically distributed.

Proof. See [21].

Proof of theorem 1. Let S and L be the vectors of sensitive variables and leakages respectively.

We first prove the trivial implication: if a leakage is not vulnerable then it is not vulnerable to n-th order attacks

for any n. If we assume that L and S are independent, then C(L) and S are independent for any combination

function C : Rl → R. This holds in particular when C(L) is any n-th degree polynomial; it follows that if L and

S are independent (i.e., L is not vulnerable) then L is not vulnerable to n-th order attacks, for any n.

Conversely, assume that L is not vulnerable to n-th order attacks for any n, i.e.

E[C(L) |S = s1] = E[C(L) |S = s2] ∀s1, s2 , (17)

16

for any polynomial C in l variables. The moment generating function of L given S = s can be written as:

ML|S=s(t) = E[et·L | S = s]

= E[et1(ψ1(V)+N1)+···+tl(ψl(V)+Nl) | S = s]

= E[et·ψ(V) | S = s] · E[et1N1] · · ·E[etlNl] ,

where the latter equality follows from the independence hypotheses of Assumption 1. Note that the vector ψ

is bounded in Rp, since its components ψi’s, being pseudo-Boolean functions, can only take a finite number of

values; it follows that E[et·ψ(V) | S = s] is finite for all t, being the expectation of a bounded random variable.

The expectations E[etiNi] are also finite for all t, being moment generating functions of Gaussian random variables

(see [21, Example 21.2]).

It follows that ML|S=s(t) is finite for all t, so that by theorem 5 the distribution of L given S = s is determined

by its moments. On the other hand, by eq. (17), we know that the moments of L given S = s1 equal the moments

of L given S = s2. The two distributions are therefore equal, thus proving that L is not vulnerable.

Proof of Theorem 3

Proof. 1) If the XOR-condition holds, there exists ε ∈ Fv2 such that εV = εAS cancels out any mask contribution

and is non-constant. The random variables εV and εAS are therefore equal and non-constant, so they are not

independent. We conclude that V and S are not independent either, i.e. V is vulnerable.

2) Assume that S and M are independent, M is uniformly distributed in Fm2 and the XOR-condition does not

hold. We need to prove that V is not vulnerable, i.e.

P(V = v | S = s1) = P(V = v | S = s2)

for all v ∈ Fv2 and s1, s2 ∈ Fs2. The latter equality can be equivalently written as

P(BM = v ⊕As1) = P(BM = v ⊕As2) , (18)

since S and M are independent. We can see BM = v ⊕ As1 and BM = v ⊕ As2 as two F2-linear systems

of v equations with m unknowns M1, . . . ,Mm, coefficient matrix B and constant vectors v ⊕ As1 and v ⊕ As2
respectively; we will call them s1-system and s2-system respectively. Since M is uniformly distributed in Fm2 , it

suffices to prove that the two systems have the same number of solutions c, so that the common value of (18) will

be 2−mc.

Assume first that the s1-system has no solutions; then by Rouché-Capelli theorem the rank of B is strictly less

than the rank of the augmented matrix8 (B | v⊕As1). Therefore, there exists a nonzero F2-linear combination of

rows of (B | v ⊕ As1) that vanishes if restricted to B; in other terms, there exists a row vector ε ∈ Fv2 such that

εB = (0, . . . , 0) but ε(v ⊕As1) = 1. We then have

εV = ε(AS ⊕BM) = εAS .

8Recall that the augmented matrix of a linear system is the matrix obtained by appending the columns of the coefficient matrix and the

constant vector.

17

Since we are supposing that the XOR-condition does not hold, we have that εV is constant, so εAs1 = εAs2.

Therefore, ε(v⊕As2) = ε(v⊕As1) = 1. This fact, along with εB = 0, implies that the rank of B is strictly less

than the rank of the augmented matrix (B | v ⊕ As2); again by Rouché-Capelli theorem, the s2-system has no

solutions. To sum up, if one system is not solvable, then the other one is not solvable either, and (18) holds with

both sides vanishing.

Assume now that both systems are solvable: let m(s1) and m(s2) be solutions of the s1- and the s2-system

respectively. Then, by standard linear algebra, the solution sets of the two systems are m(s1) ⊕ ker(B) and

m(s2)⊕ ker(B) respectively. It follows that both systems have c solutions, where c is the cardinality of ker(B).

Note that, by the rank-nullity theorem, dim(ker(B)) = m− r, where r is the rank of B, hence ker(B) has 2m−r

elements. In conclusion, if one system is solvable, then the other one is, and (18) holds with both sides equal to

2−m2m−r = 2−r.

