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CLASSIFICATION OF EXPANDING AND STEADY RICCI SOLITONS

WITH INTEGRAL CURVATURE DECAY

G. Catino1, P. Mastrolia2 and D. D. Monticelli3

Abstract. In this paper we prove new classification results for nonnegatively curved gradient expand-

ing and steady Ricci solitons in dimension three and above, under suitable integral assumptions on the

scalar curvature of the underlying Riemannian manifold. In particular we show that the only complete

expanding solitons with nonnegative sectional curvature and integrable scalar curvature are quotients

of the Gaussian soliton, while in the steady case we prove rigidity results under sharp integral scalar

curvature decay. As a corollary, we obtain that the only three dimensional steady solitons with less

than quadratic volume growth are quotients of R× Σ2, where Σ2 is Hamilton’s cigar.

1. Introduction and main results

A gradient Ricci soliton is a smooth n–dimensional, connected, Riemannian manifold Mn with metric

g satisfying

(1.1) Ric+∇2f = λg

for some smooth potential function f : Mn → R and a real constant λ. The soliton is called expanding,

steady or shrinking if, respectively, λ < 0, λ = 0 or λ > 0. When f is constant, a gradient Ricci soliton

is an Einstein manifold. Ricci solitons generate self-similar solutions to the Ricci flow and often arise as

singularity models of the flow; therefore, it is crucial to study and classify them in order to understand

the geometry of singularities.

The two dimensional case is well understood and all complete Ricci solitons have been classified, see

for instance the very recent [2] and references therein. In particular, it is well known that the only

gradient steady Ricci soliton with positive curvature is Hamilton’s cigar Σ2, see [22].

In dimension three, due to the efforts of Ivey [24], Perelman [30], Ni and Wallach [29] and Cao, Chen

and Zhu [7], shrinking solitons have been completely classified: they are quotients of either the round

sphere S3, the round cylinder R× S2 or the shrinking Gaussian soliton R3.

In the steady three dimensional case the known examples are given by quotients of R3, R×Σ2 and the

rotationally symmetric one constructed by Bryant [5]. In the seminal paper by Brendle [4], it was shown

that Bryant soliton is the only nonflat, k-noncollapsed, steady soliton, proving a famous conjecture by

Perelman [30]. It is still an open problem to classify three dimensional steady solitons which do not

satisfy the k-noncollapsing condition; see Cao [8] for an interesting result in this direction.

The case of expanding solitons is far less rigid; however, some properties and classification theorems

have been proved in the recent years by various authors, see for instance [31], [26], [?], [16], [33], [17],

[20] and references therein.

The aim of this paper is to prove new classification results of gradient expanding and steady solitons

in dimension three and above under integral assumptions on the scalar curvature. Note that similar
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2 STEADY AND EXPANDING RICCI SOLITONS

conditions have been considered by Deruelle [19] in the steady case (although the author exploits a

completely different approach).

In particular we prove the following

Theorem 1.1. Let (Mn, g) be a complete gradient expanding Ricci soliton of dimension n ≥ 3 with

nonnegative sectional curvature. If R ∈ L1(Mn), then Mn is isometric to a quotient of the Gaussian

soliton Rn.

Theorem 1.2. Let (Mn, g) be a complete gradient steady Ricci soliton of dimension n ≥ 3 with non-

negative sectional curvature. Suppose that

lim inf
r→+∞

1

r

∫

Br(o)

R = 0.

Then, Mn is isometric to a quotient of Rn or Rn−2 × Σ2, where Σ2 is the cigar soliton.

In the three dimensional case we can prove the analogous results under weaker assumptions.

Theorem 1.3. Let
(
M3, g

)
be a three dimensional complete gradient expanding Ricci soliton with non-

negative Ricci curvature. If R ∈ L1(M3), then M3 is isometric to a quotient of the Gaussian soliton

R3.

Theorem 1.4. Let
(
M3, g

)
be a three dimensional complete gradient steady Ricci soliton. Suppose that

lim inf
r→+∞

1

r

∫

Br(o)

R = 0.

Then M3 is isometric to a quotient of R3 or R× Σ2, where Σ2 is the cigar soliton.

Remark 1.5. As it will be clear from the proofs of Theorems 1.1 and 1.3, instead of R ∈ L1(Mn) we

can assume that

lim inf
r→+∞

∫

B2r(o)\Br(o)

R = 0.

Remark 1.6. The quantity

(1.2) lim inf
r→+∞

1

r

∫

Br(o)

R

that appears in Theorems 1.2 and 1.4 is independent of the choice of the center o ∈Mn. Moreover, note

that our assumptions in the steady case do not imply a priori that the scalar curvature goes to zero at

infinity, in contrast with the results in [19]. In fact, in [19] it is assumed that R ∈ L1(Mn). This, using

the hypothesis that the steady Ricci soliton has nonnegative sectional curvature, implies that the scalar

curvature is nonnegative, bounded, and globally Lipschitz, and thus that R → 0 at infinity.

As a consequence of the integral decay estimate in [19] (see Lemma 4.4), it follows that the assumption

in Theorems 1.2 and 1.4 holds if g has less than quadratic volume growth, i.e. Vol (Br(o)) = o(r2) as

r → +∞. This immediately implies the following

Corollary 1.7. The only complete gradient steady Ricci solitons of dimension n ≥ 3 with nonnegative

sectional curvature and less than quadratic volume growth are quotients of Rn−2 × Σ2.

In particular, in dimension three the nonnegativity assumption on the curvature is automatically

satisfied (see [15]), implying

Corollary 1.8. The only three dimensional complete gradient steady Ricci solitons with less than qua-

dratic volume growth are quotients of R× Σ2.

We note that the condition in Theorem 1.3 is sharp: in fact there exists a rotationally symmetric

example constructed by Bryant in [5] (see also the appendix in [17]) which has positive sectional curvature,

quadratic curvature decay at infinity and Euclidean volume growth. Moreover, the steady Bryant soliton
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has positive sectional curvature, linear curvature decay and quadratic volume growth; this shows that

the assumptions in Theorem 1.4 and Corollary 1.8 are sharp as well.

We explicitly remark that Theorems 1.2 and 1.4 improve a result in [19], while the results in the

expanding case, to the best of our knowledge, are completely new and should be compared with [?,

Theorem 4] and [31, Theorem 4.5], where the required integral conditions involve the measure e−fdµ,

and the weight e−f , under mild assumptions on the curvature, has exponential growth (see e.g. [6,

Lemma 5.5]). We also note that, in dimension three, the condition

(1.3) lim inf
r→+∞

1

r

∫

Br(o)

R ≥ k > 0

implies the k-noncollapsing of balls with sufficiently large radii, a priori nonuniformly with respect to

the center. It would be extremely interesting either to show that the only three dimensional gradient

steady Ricci soliton satisfying (1.3) is, up to scaling, the Bryant soliton, or to construct a (k-collapsed)

counterexample. The first case, together with Theorem 1.4, would complete the classification of steady

solitons in dimension three.

One of the main tool in our analysis is a geometric (0, 2)-tensor that we call the weighted Einstein

tensor Ê, and which is defined as

(1.4) Ê =
(
Ric− 1

2Rg
)
e−f ,

where f is the soliton potential. The weighted Einstein tensor appeared for the first time in [11], where

the authors observed that Ê is a Codazzi tensor on every gradient three dimensional Ricci soliton. Here

we prove, in Section 2, that on every gradient Ricci soliton Ê satisfies the Weitzenböck formula

(1.5)
1

2
∆|Ê|2 = |∇Ê|2 − 1

2
〈∇|Ê|2,∇f〉 − (n− 2)λ|Ê|2 +Q,

where Q is a cubic curvature term. Quite surprisingly, we are able to show that this quantity satisfies nice

algebraic properties (see Section 2 and the Appendix) under suitable curvature assumptions; namely, we

prove that Q ≥ 0 if the sectional curvature (or the Ricci curvature, in dimension three) is nonnegative,

and we completely characterize the equality case. We highlight the fact that equation (1.5) is only

effective when λ ≤ 0; this feature allows us to exploit, in the expanding and steady case, a technique

reminiscent of those used to prove earlier results concerning gradient shrinking Ricci solitons (see e.g.

[29], [32], [9], [28], [34]).

Exploiting the above formula and using a careful integration by parts argument, in Section 3 we prove

Theorems 1.1 and 1.3 in the expanding case, while in Section 4 we prove Theorems 1.2 and 1.4 in the

steady case.

2. A Weitzenböck formula for the weighted Einstein tensor

Let (Mn, g) be a complete gradient Ricci soliton of dimension n ≥ 3, that is a Riemannian manifold

satisfying the equation

(2.1) Ric+∇2f = λ g

for some smooth function f : M → R and some constant λ ∈ R. For the weighted Einstein tensor Ê

defined in (1.4) we prove the following

Proposition 2.1. Let (Mn, g) be a complete gradient Ricci soliton of dimension n ≥ 3. Then

(2.2)
1

2
∆|Ê|2 = |∇Ê|2− 1

2
〈∇|Ê|2,∇f〉−(n− 2)λ|Ê|2−2Rm(Ê, Ê)−n− 2

2
R

[
|Ê|2 − 1

n− 2

(
tr
(
Ê
))2

]
,

where Rm is the Riemann curvature tensor, Rm
(
Ê, Ê

)
= RijklÊikÊjl and tr is the trace.
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Proof. From (1.4) we have, on a local orthonormal frame,

ef Êij = Rij −
1

2
Rδij ,

which implies, taking the covariant derivative,

(2.3) ef
(
fkÊij + Êij,k

)
= Rij,k − 1

2
Rkδij .

Taking the divergence of the previous equation we get

(2.4) ef
(
|∇f |2Êij + 2fkÊij,k +∆fÊij + Êij,kk

)
= Rij,kk − 1

2
∆Rδij .

Now we recall that, for a gradient Ricci soliton, we have the validity of the following equations (see e.g.

[21] or [27]):

Rij,kk = fkRij,k + 2λRij − 2RktRikjt ,

∆R = 〈∇f,∇R〉+ 2λR− 2|Ric|2,
R+∆f = nλ.

Inserting the previous relations in equation (2.4), using the definition of Ê (which implies that Rij =

ef Êij +
1
2Rδij and |Ric|2 = e2f |Ê|2 − (n−4)

4 R2) and simplifying we deduce

(2.5) ef
(
Êij,kk + fkÊij,k + (n− 2)λÊij

)
= −2ef ÊktRikjt −

(n− 2)

4
R2δij + e2f |Ê|2δij .

Now we contract (2.5) with Êij , observing that tr(Ê) = Êtt = − (n−2)
2 Re−f , and we obtain

(2.6) ÊijÊij,kk = −1

2
〈∇|Ê|2,∇f〉 − (n− 2)λ|Ê|2 − 2Rm(Ê, Ê)− (n− 2)

2
R

[
|Ê|2 − 1

n− 2

(
tr(Ê)

)2
]
,

which easily implies (2.2) since 1
2∆|Ê|2 = |∇Ê|2 + ÊijÊij,kk. �

Corollary 2.2. Let (Mn, g) be a complete gradient Ricci soliton of dimension n ≥ 3. Then

(2.7)
1

2
∆|Ê|2 = |∇Ê|2 − 1

2
〈∇|Ê|2,∇f〉 − (n− 2)λ|Ê|2 +Q

where

Q := e−2f

[
(n− 2)3

4n2
R3 − 2RikjtTijTkt −

(n− 2)(n− 4)

2n
R|T |2

]
,

where T is the traceless Ricci tensor.

Proof. We recall that, in a local orthonormal frame, the components Tij of T are

Tij = Rij −
R

n
δij .

Using the definition of Ê we deduce that

−2RikjtÊijÊkte
2f = −2RikjtTijTkt +

2(n− 2)

n
R|T |2 − (n− 2)2

2n2
R3.

Now the claim follows inserting the previous equation into (2.2). �

In the particular case of dimension three we have

Corollary 2.3. Let (M3, g) be a three dimensional complete gradient Ricci soliton. Then

(2.8)
1

2
∆|Ê|2 = |∇Ê|2 − 1

2
〈∇|Ê|2,∇f〉 − λ|Ê|2 +Q,

with

Q = e−2f

[
4RijRjkRki −

7

2
R|Ric|2 + 3

4
R3

]
.
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Proof. The proof of the corollary is a simple computation using the fact that, in dimension three, one

has

|T |2 = |Ric|2 − 1

3
R2,

RijktTijTkt = RijktRijRkt −
2

3
R|Ric|2 + 1

9
R3

and

Rijkt = Rikδjt −Ritδjk +Rjtδik −Rjkδit −
R

2
(δikδjt − δitδjk).

�

In the next proposition we prove the main integral estimate that will be used in the proof of our

results.

Proposition 2.4. Let (Mn, g) be a complete gradient Ricci soliton of dimension n ≥ 3. Then, either

(Mn, g) is Ricci flat or, for every nonnegative cutoff function ϕ with compact support in Mn, we have

(2.9)

∫

M

[
Q− (n− 2)λ|Ê|2

]
ϕ3ef

|Ê|
≤ −3

∫

M

〈∇|Ê|,∇ϕ〉ϕ2ef

Proof. For every ε ≥ 0 define

Ωε := {x ∈Mn | |Ê(x)| ≥ ε}
and let

hε(x) :=




|Ê(x)| if x ∈ Ωε,

ε if x ∈M \ Ωε.

Let ϕ be a smooth nonnegative cutoff function with compact support in M . We multiply equation (2.7)

by h−1
ε ϕ3 ef and integrate on Mn, deducing

1

2

∫

M

∆|Ê|2ϕ3ef

hε
=

∫

M

〈∇|Ê|,∇hε〉|Ê|ϕ3ef

h2ε
− 3

∫

M

〈∇|Ê|,∇ϕ〉|Ê|ϕ2ef

hε
−
∫

M

〈∇|Ê|,∇f〉ϕ3ef

hε
.

Since hε = |Ê| on Ωε and ∇hε = 0 on M \ Ωε, we obtain

1

2

∫

M

∆|Ê|2ϕ3ef

hε
=

∫

M

|∇hε|2ϕ3ef

hε
− 3

∫

M

〈∇|Ê|,∇ϕ〉|Ê|ϕ2ef

hε
−
∫

M

〈∇|Ê|,∇f〉ϕ3ef

hε
.

Equation (2.7) and Kato’s inequality yield

0 =

∫

M

|∇Ê|2ϕ3ef

hε
−
∫

M

|∇hε|2ϕ3ef

hε
+ 3

∫

M

〈∇|Ê|,∇ϕ〉|Ê|ϕ2ef

hε
+

∫

M

[
Q− (n− 2)λ|Ê|2

]
ϕ3ef

hε

≥
∫

M

|∇|Ê||2ϕ3ef

hε
−
∫

M

|∇hε|2ϕ3ef

hε
+ 3

∫

M

〈∇|Ê|,∇ϕ〉|Ê|ϕ2ef

hε
+

∫

M

[
Q− (n− 2)λ|Ê|2

]
ϕ3ef

hε

=

∫

M\Ωε

|∇Ê|2ϕ3ef

hε
+ 3

∫

M

〈∇|Ê|,∇ϕ〉|Ê|ϕ2ef

hε
+

∫

M

[
Q− (n− 2)λ|Ê|2

]
ϕ3ef

hε

≥ 3

∫

M

〈∇|Ê|,∇ϕ〉|Ê|ϕ2ef

hε
+

∫

M

[
Q− (n− 2)λ|Ê|2

]
ϕ3ef

hε
.

Now, since every complete Ricci soliton is real analytic in suitable coordinates (see [1] and [13, Theorem

2.4]), by the unique continuation property one has that either |Ê| ≡ 0 or the zero set of |Ê| has zero

measure. In the first case, Bianchi identity implies that g is Ricci flat while in the second case, taking

the limit as ε→ 0, since |Ê|h−1
ε → 1 almost everywhere on Mn, inequality (2.9) follows. �
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3. Expanding case: proof of Theorems 1.1 and 1.3

3.1. The n-dimensional case. Let (Mn, g) be a complete gradient expanding Ricci soliton of dimension

n ≥ 3 with nonnegative sectional curvature and assume that R ∈ L1(Mn). From Proposition 2.4, we

have that either the soliton is Ricci flat (hence flat, since g has nonnegative sectional curvature) or

(3.1)

∫

M

[
Q− (m− 2)λ|Ê|2

]
ϕ3ef

|Ê|
≤ −3

∫

M

〈∇|Ê|,∇ϕ〉ϕ2ef

for every nonnegative smooth cutoff function ϕ with compact support in Mn. Since (Mn, g) has non-

negative sectional curvature, |Rm | ≤ αR, for some positive constant α (see e.g. [3]) Moreover, for

expanding solitons with nonnegative Ricci curvature we have that the scalar curvature R is bounded,

see for instance [20, Proposition 2.4]. Thus g has bounded curvature. We recall that for every gradient

Ricci soliton we have Hamilton’s identity

R+ |∇f |2 − 2λf = c

for some real constant c ([23]). Since R ≥ 0, we deduce that |∇f |2 ≤ 2λf + c. By [6, Lemma 5.5] there

exist positive constants c1, c2, c3 such that

(3.2) − λ

2
(r(x) − c1)

2 − c2 ≤ −f(x) ≤ −λ
2
(r(x) + c3)

2,

where r(x) = dist(x, o) for some fixed origin o ∈Mn; in particular f is proper. We define, for t≫ 1,

Ωt = {x ∈Mn : −f(x) ≤ t}.

We choose ϕ(x) = ψ(f(x)), where ψ : [0,+∞) → [0,+∞) is a smooth nonincreasing function with

support in [0, 2t], such that ψ ≡ 1 in [0, t] and

|ψ′(s)| ≤ c

s
ψ3/4(s) and |ψ′′(s)| ≤ c

s2
ψ1/2(s)

for some c > 0. Since in Ωt we have |∇f | ≤ c
√
f ≤ c

√
t, we deduce

(3.3) |∇ϕ| ≤ |ψ′||∇f | ≤ c√
t

in Ωt;

moreover, since ∆f = nλ−R ≤ nλ on M ,

(3.4) |∆ϕ| ≤
∣∣∣ψ′∆f + ψ′′|∇f |2

∣∣∣ ≤ c

t
in Ωt.

Then, integrating by parts we have
∣∣∣∣
∫

M

〈∇|Ê|,∇ϕ〉ϕ2ef
∣∣∣∣ =

∫

Ω2t\Ωt

(
|∆ϕ|ϕ2 + 2ϕ|∇ϕ|2 + |∇f ||∇ϕ|ϕ2

)
|Ê|ef .

By the definition of Ê and the nonnegative curvature assumption one has
∣∣∣Ê

∣∣∣ef ≤ cR, and from the

previous estimates (3.3) and (3.4) we get
∣∣∣∣
∫

M

〈∇|Ê|,∇ϕ〉ϕ2ef
∣∣∣∣ ≤ c

∫

Ω2t\Ωt

R.

By (3.2) and since R ∈ L1(Mn), the left-hand side tends to zero as t→ +∞, and from (3.1) we obtain,

applying Fatou’s lemma,
∫

M

[
Q− (m− 2)λ|Ê|2

]
ϕ3ef

|Ê|
≤ 0.

Now, we use the fact that under our assumptions Q is nonnegative (see Proposition 5.2 in the Appendix),

and since λ is strictly negative we get Ê ≡ 0. By Bianchi identity we get R ≡ 0, and so g is flat by the

nonnegative curvature assumption. This concludes the proof of Theorem 1.1.
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3.2. The 3-dimensional case. The proof of Theorem 1.3 in dimension three is formally the same

as the higher dimensional case, with some minor corrections. In fact, under the weak assumption of

nonnegativity of the Ricci curvature we still have that the full curvature tensor is controlled by the

scalar curvature, i.e. |Rm | ≤ αR for some constant α. Hence, following the proof in the previous

subsection, we obtain that either (M3, g) is flat, or

∫

M

[
Q− λ|Ê|2

]
ϕ3ef

|Ê|
≤ 0.

Now, we use the fact that under our assumptions Q is nonnegative (see Proposition 5.4 in the Appendix),

and since λ is strictly negative we get Ê ≡ 0. By Bianchi identity we get R ≡ 0, and so g is flat by the

nonnegative curvature assumption. This concludes the proof of Theorem 1.3.

Remark 3.1. Theorems 1.1 and 1.3 can be proved also using a L1-Liouville property for the operator

∆−f . In fact, since Q ≥ 0 it follows from equation (2.7) that ∆−f |Ê| ≥ 0 in a distributional sense.

Moreover, the nonnegativity of the Ricci curvature implies that Ric−f = Ric−∇2f = 2Ric−λg ≥ 0.

Therefore, since R ∈ L1(Mn) implies |Ê| ∈ L1
(
efdµ,Mn

)
, we can apply [14, Proposition 4.1], which

asserts that on a complete Riemannian manifold (Mn, g) with Ric−f ≥ 0 every positive solution u of

∆−fu ≥ 0 with u ∈ L1
(
efdµ,Mn

)
must be constant. Thus |Ê| is constant, and therefore zero from

equation (2.7).

4. Steady case: proof of Theorems 1.2 and 1.4

4.1. The n-dimensional case. Let (Mn, g) be a complete gradient steady Ricci soliton of dimension

n ≥ 3 with nonnegative sectional curvature and assume that

lim inf
r→+∞

1

r

∫

Br

R = 0.

In particular, there exists a sequence {ri}, i ∈ N, of positive radii converging to +∞ such that

(4.1) lim
i→+∞

1

ri

∫

Bri

R = 0.

From Proposition 2.4, we have that either the soliton is Ricci flat (hence flat, since g has nonnegative

sectional curvature) or

(4.2)

∫

M

Qϕ3ef

|Ê|
≤ −3

∫

M

〈∇|Ê|,∇ϕ〉ϕ2ef ≤ 3

∫

M

|∇|Ê|||∇ϕ|ϕ2ef

for every nonnegative smooth cutoff function ϕ with compact support in Mn. Since (Mn, g) has non-

negative sectional curvature, |Rm | ≤ αR, for some positive constant α. Hamilton’s identity

R+ |∇f |2 = c

implies that both the scalar curvature R and |∇f |2 are bounded. Moreover, it follows e.g. from [12]

that either R > 0 or the soliton is Ricci flat, thus flat. So from now on we will assume that the scalar

curvature is strictly positive. Using Kato’s inequality and the fact that |∇Ric | ≥ |∇R|/√n, we get

|∇|Ê|| ≤ |∇E| ≤
(
|∇Ric |+n

2
|∇R|+|∇f ||Ric−1

2
Rg|

)
e−f ≤ c

(
|∇Ric |+|∇f |R

)
e−f ≤ c

(
|∇Ric |+R

)
e−f

for some positive constant c. Hence, the left-hand side of (4.2) can be estimate as
∫

M

|∇|Ê|||∇ϕ|ϕ2ef ≤
∫

M

|∇Ric ||∇ϕ|ϕ2 +

∫

M

R|∇ϕ|ϕ2 .

Now we fix an index i and choose ϕ with support in B2ri = B2ri(o) for some origin o ∈ Mn and such

that ϕ ≡ 1 in Bri , |∇ϕ| ≤ 2
ri

on Mn. Then, by (4.1), the second term of the left-hand side tends to zero
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as i→ +∞. By Hölder inequality and the fact that R > 0, the remaining term can be estimate as

(4.3)

∫

M

|∇Ric ||∇ϕ|ϕ2 ≤
(∫

M

|∇Ric |2ϕ2

R

)1/2 (∫

M

R|∇ϕ|2ϕ2

)1/2

To conclude the estimate we need the following lemma.

Lemma 4.1. Let (Mn, g) be a complete, nonflat, gradient steady Ricci soliton of dimension n ≥ 3 with

nonnegative sectional curvature. Then, for every nonnegative cutoff function ϕ with compact support in

Mn, there exists a positive constant c such that
∫

M

|∇Ric |2ϕ2

R
≤ c

∫

M

(
R +R|∇ϕ|2

)
ϕ2.

Proof. First of all, in some local frame, we have

|∇Ric |2 =
1

2
|∇kRij −∇jRik|2 +∇kRij∇jRik .

From the soliton equation and the commutation rule of covariant derivatives, one has

∇kRij −∇jRik = Rkijl∇lf .

Since |Rm | ≤ αR and |∇f |2 ≤ c for some α, c > 0, we obtain

(4.4) |∇Ric |2 ≤ cR2 +∇kRij∇jRik.

Hence, to finish the proof we have to estimate the right-hand side. Integrating by parts, commuting

indices and using Young’s inequality we get
∫

M

∇kRij∇jRikϕ
2

R
= −

∫

M

Rij∇k∇jRikϕ
2

R
− 2

∫

M

Rij∇jRik∇kϕϕ

R
+

∫

M

Rij∇jRik∇kRϕ
2

R2

≤ −
∫

M

Rij∇j∇kRikϕ
2

R
−
∫

M

(RkjilRijRkl +RijRikRjl)ϕ
2

R

+ ε

∫

M

|∇Ric |2ϕ2

R
+ c(ε)

∫

M

(
R|∇ϕ|2 + |∇R|2

)
ϕ2,

for every ε > 0 and some constant c(ε). Using Bianchi identity, the fact that |Rm | ≤ αR and the well

known soliton identity ∇R = 2Ric(∇f) (see e.g. [21] or [27]), we obtain
∫

M

∇kRij∇jRikϕ
2

R
≤ −1

2

∫

M

Rij∇i∇jRϕ
2

R
+ ε

∫

M

|∇Ric |2ϕ2

R
+ c(ε)

∫

M

(
R+R|∇ϕ|2

)
ϕ2

=
1

4

∫

M

|∇R|2ϕ2

R
+ ε

∫

M

|∇Ric |2ϕ2

R
+ c1(ε)

∫

M

(
R+R|∇ϕ|2

)
ϕ2

≤ ε

∫

M

|∇Ric |2ϕ2

R
+ c2(ε)

∫

M

(
R+R|∇ϕ|2

)
ϕ2,

for every ε > 0 and some constant c2(ε). Choosing ε≪ 1, this estimate and (4.4) conclude the proof of

the lemma. �

Now we can return to the proof of Theorem 1.2. Using the previous lemma and (4.3), we obtain

∫

M

|∇Ric ||∇ϕ|ϕ2 ≤ c

(∫

M

(
R+R|∇ϕ|2

)
ϕ2

)1/2 (∫

M

R|∇ϕ|2ϕ2

)1/2

≤ c

ri

∫

B2ri

R

which, by (4.1), tends to zero as i→ +∞. Applying Fatou’s lemma, from (4.2), we get
∫

M

Qϕ3ef

|Ê|
≤ 0.

Hence, Proposition 5.2 implies that Q ≡ 0 on M . The equality case implies that the Ricci tensor at

every point has at most two distinct eigenvalues Λ = 0 with multiplicity (n − 2) and Υ = 1
2R with

multiplicity two. In order to conclude the proof we need the following general result (see Lemma 3.2
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in [32]) for constant rank, symmetric, nonnegative tensors. We recall the definition of the X-Laplacian

∆X = ∆− g(X, ·), for some smooth vector field X (see e.g. [12]).

Lemma 4.2. Let T be a constant rank, symmetric, nonnegative tensor on some tensor bundle. If

(∆XT )(V, V ) ≤ 0 for V ∈ KerT and X is a vector field, then the kernel of T is a parallel subbundle.

Now let e1, . . . , en be a local orthonormal frame such that Ric (e1, e1) = Ric (e2, e2) = 1
2R and

Ric (ek, ·) = 0 for every k = 3, . . . , n. In particular, the only nonzero sectional curvature is σ12, where

σij is the sectional curvature defined by the two-plane spanned by ei and ej. Then, by the well known

soliton identity (see e.g. [21] or [27])

∆∇fRij = 2λRij − 2RiljtRlt = −2RiljtRlt,

we see that, for every fixed k = 3, . . . , n, ek ∈ KerRic and

(∆∇f Ric)(ek, ek) = −2
∑

i

Rm(ek, ei, ek, ei)Ric (ei, ei) = −R(σ1k + σ2k) = 0.

Moreover, since g has nonnegative sectional curvature, 1
2Rg − Ric is nonnegative, and a simple compu-

tation shows that
(
∆∇f

(
1

2
Rg − Ric

))
(e1, e1) =

(
∆∇f

(
1

2
Rg − Ric

))
(e2, e2) = 0.

Now Lemma 4.2 applies, and by de Rham Decomposition Theorem (see for instance [25], Chapter 1,

Section 6) the metric splits and Theorem 1.2 follows since, as we said in the Introduction, the cigar

soliton Σ2 is the only complete two-dimensional steady soliton with positive curvature.

Remark 4.3. Note that, under our assumptions, f in general is not proper, thus one cannot exploit the

argument used in the expanding case involving a cutoff function depending on the potential f .

4.2. The 3-dimensional case. The proof of Theorem 1.4 in dimension three follows the lines of the

higher dimensional case. First of all, by Chen [15] we have that g must have nonnegative sectional

curvature, and since R + |∇f |2 = c, g has also bounded curvature. From Hamilton’s strong maximum

principle (see e.g. [18]) we deduce that
(
M3, g

)
is either flat, or it splits as a product R × Σ2 (where

Σ2 is again the cigar steady soliton) or it has strictly positive sectional curvature. In the latter case,

following the proof of Theorem 1.2 we obtain
∫

M

Qϕ3ef

|Ê|
≤ 0.

Now, we use the fact that under our assumptions Q is nonnegative (see Proposition 5.4 in the Appendix),

and we get Q ≡ 0. The equality case in Proposition 5.4 implies that the Ricci curvature has a zero

eigenvalue, a contradiction. This concludes the proof of Theorem 1.3.

4.3. Proof of Corollary 1.7. Corollary 1.7 is a direct consequence of the following

Lemma 4.4 (Lemma 4.3 in [19]). Let (Mn, g) be a complete gradient steady Ricci soliton with nonneg-

ative Ricci curvature. Then, for every o ∈Mn and every r > 0,
∫

Br(o)

R ≤ n
√
c
Vol (Br(o))

r
,

where c is the constant in Hamilton’s identity R+ |∇f |2 = c.

Proof. Integrating the equation R+∆f = 0 one has
∫

Br(o)

R = −
∫

Br(o)

∆f ≤
∫

∂Br(o)

|∇f | ≤ CA(∂Br(o)),

where A(∂Br(o)) is the (n − 1)-dimensional volume of the geodesic sphere ∂Br(o). Now, since (Mn, g)

has nonnegative Ricci curvature, by Bishop-Gromov theorem (see for instance [18]) for every o ∈M and
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every r > 0 one has
rA(∂Br(o))

Vol (Br(o))
≤ n,

which implies the thesis.

�

5. Appendix

We provide here the proof of some new algebraic curvature estimates needed for the proof of the main

theorems. First we recall the following lemma (see [10, Proposition 3.1])

Lemma 5.1. Let (Mn, g) be a Riemannian manifold of dimension n ≥ 3 with nonnegative sectional

curvature. Then, the following estimate holds

RikjlTijTkl ≤
n− 2

2n
R|T |2,

with equality if and only if the Ricci tensor has at most two distinct eigenvalues, Λ of multiplicity (n− 2)

and Υ of multiplicity two.

Proof. Let {ei}, i = 1, . . . , n, be the eigenvectors of T and let λi be the corresponding eigenvalues.

Moreover, let σij be the sectional curvature defined by the two-plane spanned by ei and ej . We want to

prove that the quantity

RikjlTijTkl −
n− 2

2n
R|T |2 =

n∑

i,j=1

λiλjσij −
n− 2

2n
R

n∑

k=1

λ2k

is nonpositive if σij ≥ 0 for all i, j = 1, . . . , n. The scalar curvature can be written as

R = Rijij =

n∑

i,j=1

σij = 2
∑

i<j

σij .

Hence, one has the following

n∑

i,j=1

λiλjσij −
n− 2

2n
R

n∑

k=1

λ2k = 2
∑

i<j

λiλjσij −
n− 2

n

∑

i<j

σij

n∑

k=1

λ2k

=
∑

i<j

(
2λiλj −

n− 2

n

n∑

k=1

λ2k

)
σij .

On the other hand, one has
n∑

k=1

λ2k = λ2i + λ2j +
∑

k 6=i,j

λ2k .

Moreover, using the Cauchy-Schwarz inequality and the fact that
∑n

k=1 λk = 0, we obtain

∑

k 6=i,j

λ2k ≥ 1

n− 2

( ∑

k 6=i,j

λk

)2

=
1

n− 2

(
λi + λj

)2
,

with equality if and only if λk = λk′ for every k, k′ 6= i, j. Hence, the following estimate holds

n∑

k=1

λ2k ≥ n− 1

n− 2

(
λ2i + λ2j

)
+

2

n− 2
λiλj .

Using this, since σij ≥ 0, it follows that

n∑

i,j=1

λiλjσij −
n− 2

2n
R

n∑

k=1

λ2k ≤ n− 1

n

∑

i<j

(
2λiλj −

(
λ2i + λ2j

))
σij

= −n− 1

n

∑

i<j

(λi − λj)
2σij ≤ 0 .

This concludes the proof of the estimate.
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In the equality case we have that λk = λk′ for every k, k′ 6= i, j and for i < j

(λi − λj)
2σij = 0 .

Hence, either, for every i < j, σij = 0 (and Rm = 0) or there exists i < j such that σij > 0. In

this second case, without loss of generality we can assume that σ12 > 0 and we have that λ1 = λ2,

λ3 = . . . = λn. Since Ric = T + 1
nRg, the conclusion on the Ricci tensor follows and this concludes the

proof of the lemma. �

Proposition 5.2. Let (Mn, g) be a Riemannian manifold of dimension n ≥ 3 with nonnegative sectional

curvature. Then

P :=
(n− 2)3

4n2
R3 − 2RikjtTijTkt −

(n− 2)(n− 4)

2n
R|T |2 ≥ 0,

with equality if and only if the Ricci tensor has at most two distinct eigenvalues, Λ = 0 with multiplicity

(n− 2) and Υ = 1
2R with multiplicity two.

Proof. From Lemma 5.1 we deduce that

−2RikjlTijTkl ≥ −n− 2

n
R|T |2;

using the previous estimate in the definition of P we get

(5.1) P ≥ (n− 2)3

4n2
R3 − (n− 2)2

2n
R|T |2 =

(n− 2)2

2n
R

[
(n− 2)

2n
R2 − |T |2

]
.

By the nonnegativity assumption on the sectional curvature we know that

|Ric|2 ≤ 1

2
R2,

which implies

|T |2 ≤ n− 2

2n
R2.

Inserting the previous relation in (5.1) we get P ≥ 0.

If P = 0 at a point, we have |Ric |2 = 1
2R

2 and the equality case in Lemma 5.1. Hence, the Ricci

tensor has at most two distinct eigenvalues, Λ of multiplicity (n − 2) and Υ of multiplicity two. In

particular R = (n− 2)Λ + 2Υ. Combining this with the identity

|Ric |2 = (n− 2)Λ2 + 2Υ2 =
1

2
R2

we obtain

Λ2 =
2

n
RΛ.

Now either Λ = 0 and Υ = 1
2R or Λ = 2

nR and Υ = −n−2
2n R. But, since g has nonnegative sectional

curvature, this second case implies R = 0 and so g is flat. In both cases we have the splitting result and

this concludes the proof of the proposition. �

For the three dimensional case we need the following algebraic lemma.

Lemma 5.3. For x, y, z ≥ 0 let

P (x, y, z) = 5(x3 + y3 + z3)− 5(x2y + xy2 + x2z + xz2 + y2z + yz2) + 18xyz.

Then P (x, y, z) ≥ 3xyz ≥ 0 and P (x, y, z) = 0 if and only if x = 0 and y = z, or y = 0 and x = z, or

z = 0 and x = y.

Proof. It is easy to see that

(5.2) P (x, y, z) = 5x(x− z)(x− y) + 5y(y − z)(y − x) + 5z(z − x)(z − y) + 3xyz.
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Since P (x, y, z) is symmetric in (x, y, z), i.e. it is invariant under any permutation of the variables x, y, z,

we can assume without loss of generality that 0 ≤ x ≤ y ≤ z. Hence

(5.3)
P̄ (x, y, z) := 5x(x− z)(x− y) + 5y(y − z)(y − x) + 5z(z − x)(z − y)

= 5x(x− z)(x− y) + 5(z − y)2(z + y − x) ≥ 0.

From (5.2) and (5.3) we conclude that for every x, y, z ≥ 0

(5.4) P (x, y, z) = P̄ (x, y, z) + 3xyz ≥ 3xyz ≥ 0.

If P (x, y, z) = 0, by (5.4) we have that xyz = 0. If x = 0 then

0 = P (0, y, z) = 5(y3 + z3 − y2z − yz2) = 5(y − z)2(y + z),

thus we have y = z. The cases when y = 0 or z = 0 can be obtained by permutation of the variables

x, y, z. �

Proposition 5.4. Let
(
M3, g

)
be a three dimensional Riemannian manifold with nonnegative Ricci

curvature. Then

P := 4RijRjkRki −
7

2
R|Ric|2 + 3

4
R3 ≥ 0,

with equality if and only if the Ricci tensor has at most two distinct eigenvalues, Λ = 0 and Υ = 1
2R

with multiplicity two.

Proof. Let e1, e2, e3 be a local orthonormal frame such that Ric(ei, ·) = µiei for i = 1, 2, 3. Then

4P =
(
µ3
1 + µ3

2 + µ3
3

)
− 14(µ1 + µ2 + µ3)

(
µ2
1 + µ2

2 + µ2
3

)
+ 3(µ1 + µ2 + µ3)

3

= 5(µ3
1 + µ3

2 + µ3
3)− 5(µ2

1µ2 + µ1µ
2
2 + µ2

1µ3 + µ1µ
2
3 + µ2

2µ3 + µ2µ
2
3) + 18µ1µ2µ3.

Now the proposition follows from Lemma 5.3. �
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