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José Flich∗, Giovanni Agosta†, Philipp Ampletzer‡, David Atienza Alonso§, Carlo Brandolese†, Etienne Cappe‡‡, Alessandro Cilardo¶,
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Abstract—The Horizon 2020 MANGO project aims at exploring deeply
heterogeneous accelerators for use in High-Performance Computing
systems running multiple applications with different Quality of Service
(QoS) levels. The main goal of the project is to exploit customization to
adapt computing resources to reach the desired QoS. For this purpose,
it explores different but interrelated mechanisms across the architecture
and system software. In particular, in this paper we focus on the runtime
resource management, the thermal management, and support provided
for parallel programming, as well as introducing three applications on
which the project foreground will be validated.

Keywords-High Performance Computing, Customization, Energy Effi-
ciency.

I. INTRODUCTION

The push towards Exascale is going to radically change High-

Performance Computing (HPC). First, the sheer amount of computa-

tional resources available are pushing the energy envelope available

through the power grid to the point where the size of an HPC centre

may be constrained by the availability of power supply. Second, the

increase in scale of HPC resources across the world is enabling new

use case scenarios, where players previously unable to access HPC

resources may now do so through innovation in delivery modes,

e.g. through cloud HPC [1]. Thus, the evolution of HPC hardware

and software architectures needs to embrace technologies that allow

high performance at low power consumption. The current trend

is to leverage application-based customization to this end. Deeply

heterogeneous architectures can provide such performance/watt im-

provements, but are clearly much more difficult to program and

manage. Furthermore, new application classes are entering the HPC

domain that are QoS sensitive. In particular, time-predictability is

a key need for applications such as video transcoding or medical

imaging. Since time-predictability and QoS are often not taken into

account in HPC, there is the need to explore these challenges,

extending the traditional optimization space from power/performance

to power, performance, and predictability – the PPP space. In fact,

predictability, power, and performance appear to be three inherently

diverging perspectives on HPC.

The key goal of MANGO [2] is to address the PPP space

by achieving extreme resource efficiency in future QoS-sensitive

HPC. The research investigates the architectural implications of such

emerging requirements of HPC applications, to define a new gen-

eration of high-performance, power-efficient, deeply heterogeneous

architectures with native mechanisms for isolation and QoS.

Fig. 1. MANGO Hardware Architecture

A. The MANGO Approach

The performance/power efficiency wall poses the major challenge

faced nowadays by HPC. Looking straight at the heart of the problem,

the hurdle to the full exploitation of today computing technologies

ultimately lies in the gap between the applications’ demand and the

underlying computing architecture: the closer the computing system

matches the structure of the application, the most efficiently the avail-

able computing power is exploited. Consequently, enabling a deeper

customization of architectures to applications is the main pathway

towards computation power efficiency. Theoretically, customization

can enable improvements in power efficiency as high as two orders

of magnitude, since it enables the computing platform to approximate

the ideal intrinsic computational efficiency (ICE), defined as the

energy consumption per operation achieved by purely computation

circuits, e.g. FP adders.

The current uncertainty regarding on-chip HPC solutions and the

essentially open nature of current architecture-level research will be

regarded by MANGO as an opportunity, rather than a limitation. The

fundamental intuition behind the project is that effective techniques

for both performance/power efficiency and predictability ultimately

share a common underlying mechanism, i.e., some form of fine-

grained adaptation, or customization, used to tailor and/or reserve

computing resources only driven by the application requirements.

Along this path, the project will involve many different, and deeply

interrelated, mechanisms at various architectural levels, from the

heterogeneous computing cores, up to the memory architecture, the
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Fig. 2. Mapping Applications on the MANGO Platform

interconnect, the runtime resource management, power monitoring

and cooling, also evaluating the implications on programming models

and compilation techniques. In particular, to explore a new posi-

tioning across the PPP space, MANGO will investigate system-

wide, holistic proactive thermal and power management aimed at

extreme-scale energy efficiency by creating a hitherto inexistent link

between hardware and software effects, which will involve all layers

of an HPC system, from server to rack, to datacenter. The combined

interplay of the multi-level innovative solutions brought by MANGO

will result in a new positioning in the PPP space, ensuring sustainable

performance as high as 100 PFLOPS for the realistic levels of power

consumption (< 15MWatt) delivered to QoS-sensitive applications

in large-scale capacity computing scenarios. MANGO will provide

essential building blocks at the architectural level enabling the full

realization of the long-term objectives foreseen by the ETP4HPC

strategic research agenda [3].

B. Organization of the paper

The rest of the paper is organized as follows. In Section II, we

introduce the three application scenarios that drive the project. In

Section III we describe the targeted MANGO architecture. Then,

in Section IV we describe the programming models and runtime

management resources to be used in MANGO, and in Section V

the thermal and cooling innovations proposed in the project. Section

VI shows the prototyping roadmap. Finally, we draw our conclusions

in Section VII.

II. MANGO APPLICATION SPACE

The MANGO project aims at showcasing the need for a dynamic

nature of the hardware/software architecture and its capabilities to

dynamically use heterogeneous processing elements in a QoS sensi-

tive computing scenario. Therefore, the project draws its requirements

and performs its validation on a set of three applications that involve

significant QoS aspects.

A. MANGO architecture online video transcoding application plat-
form

Multimedia playback on different presentation devices has experi-

enced significant growth. Some market forecasts [4] show that annual

global IP traffic will pass the zettabyte (1000 exabytes) threshold by

the end of 2016, and will reach 2 zettabytes per year by 2019. In the

same time, globally, IP video traffic will be in the range of 80 to 90

percent of all IP traffic (both business and consumer) by 2019.

Fig. 3. Ray casting through a volume [8]

Because of the great variety of devices which are accessing the

multimedia content under adverse network conditions, current video

streaming systems in most cases do not provide optimal video quality

and thus waste valuable resources or unnecessarily lower the Quality

of Experience (QoE).

Efficient processing of video transcoding, which is extremely

compute-intensive and has stringent timing requirements, provides

an ideal case-study for the QoS-aware HPC solutions explored

by MANGO. The heterogeneous core MANGO HPC transcoding

application platform can therefore truly demonstrate how the novel

MANGO HPC architecture may become dominant architecture for

applications that generate more than 80% of global internet traffic.

The application of same algorithms to medical domains where

interoperability requirements are defined (see [5]) is also under

consideration.

The real time video transcoding will use novel video coding

algorithms such High Efficiency Video Coding HEVC/H.265. To

enable efficient transcoding, significant work will be required in

modeling, mapping and optimizing parts of the algorithms to dif-

ferent underlying MANGO architecture elements (tiles), as shown

in Figure 2. Research will not only be focused to high optimization

of SW implementation but also design of application specific tiles,

implemented in HW (such as [6]), that will allow more efficient

processing from performance, power and QoS points of view.

B. Volume rendering for medical imaging

Philips will deploy the Volume rendering technique on the

MANGO prototype. Philips ships a variety of imaging equipment,

which includes MRI (Magnetic Resonance Imaging), CT (Computed

Tomography) and PET (Positron Emission Tomography). In such

equipment, medical images are stored as sets of parallel planar

images. Such a set can be stacked together, which forms a 3D

rectangular space around the stacked images. We refer to such a set

as a volume. Volume rendering is a visualization technique that uses

the ray casting technique to visualize a volume on a 2D plane. Ray

casting visualizes this volume by calculating the attenuation of rays

of light [7].

In Ray Casting, the color of each resulting image pixel is deter-

mined by following a single ray of light through the volume, see

Figure 3. Density values in the images of the volume are sampled

along the ray. Transfer functions for the color and transparency,

determine the color and transparency of these sample points along

the ray. The attenuation of these colors and transparencies along a

single ray will determine the color of a resulting pixel. This process

is repeated for every pixel in the single visualization result image.

The calculations are highly memory intensive (data sizes range from

250MB to 1GB). Fast rendering and a low latency transfer from

central processing to the users workstation are crucial. This is to



Fig. 4. LDPC convergence (mean iterations) in relation to SNR (energy per
bit to noise power spectral density ratio, Eb/N0)

ensure a better hospital workflow and better diagnosis outcome. The

solution must scale among many healthcare users, all operating on

different patient data. Users interact with the system in real time,

requesting new renderings with frequencies of up to 25 times per

second. In more severe cases, imaging equipment is increasingly used

during minimal invasive intervention. As the surgeon cannot see what

he/she is doing, an image stream with low latency and low jitter has to

be presented. The MANGO solution will allow Philips to improve the

offering for diagnosis equipment to the hospitals. The final product

will much better serve the interventional market.

C. Error correcting codes in communications

Thales will explore the offloading and parallelization capabilities of

Low Density Parity Check (LDPC) using the MANGO architecture.

LDPC is a linear error correcting code, a method of transmitting a

message over a noisy transmission channel [9]. It is among the most

efficient error-correction techniques and although it has been invented

in the 1950s, it was practically used from the 1990s [10] due to

the fact it requires high-end floating point computations. Nowadays,

LDPC is used in a growing number of standards in wireless and

satellite communications such as WiFi, Wimax, DVB-S2 [11]. In

communications, data integrity can be severely impacted from the

transmission channel’s interference, noise and fading. Error correction

algorithms are used in order to maintain transmission capacity by

tolerating a loss in transmission rates and latency. The compromise in

transmission rates is due to the additional information relating to data

redundancy tables and information reconstruction which increases the

payload size and reduces the useful bandwidth. Similarly, end-to-end

latency is added because of the processing time needed to encode the

useful payload at the sender and for decoding at the receiving end.

Since communication capacities and storage capacities are growing,

it in necessary to provide architectures where the scalability of LDPC

can be maintained.

Figure 4 shows the calculations needed to reconstruct the informa-

tion depending on the Signal-to-Noise Ratio (SNR), in the form of

number of iterations (limit fixed to 50). As the noise in the channel

decreases (increasing SNR), less iterations are needed to converge. In

Figure 5 we can observe the quality of reconstruction of an image in

respect to the different levels of SNR in a simulated noisy channel.

Through the advancements in the MANGO project, Thales will

benefit from the performance increase, providing QoS guarantees

Fig. 5. LDPC convergence in relation to SNR

to time sensitive transmission (ex. voice, video) and from energy

efficiency. In more detail, parallelism will allow to obtain a significant

performance gain in terms of the number of transmission flows

that can be active simultaneously. In addition, dynamic resource

allocation and heterogeneity will enhance time predictability and

energy efficiency. This will be achieved by adapting the aggressive-

ness of parallelism and the nature of the processing nodes to the

channel’s SNR in order for all communications to maintain their

latency bounds. Finally optimally placing tasks will improve resource

usage and provide energy efficiency.

III. HARDWARE ARCHITECTURE CONCEPT

At the architecture level, the MANGO project foresees a scenario

where General-purpose compute Nodes (GNs), hosting commercial-

off-the-shelf solutions (e.g. Intel Xeon Phi processors or high-

end NVIDIA GPU accelerators), coexist with Heterogeneous Nodes
(HNs), forming a common HPC infrastructure. HNs, as depicted

in Figure 1, will essentially be on-node clusters of next-generation

manycore chips coupled with deeply customized heterogeneous com-

puting resources. The manycore architecture will be open, it will

not rely on COTS solutions available today, but rather it will enable

broad-spectrum, ground-breaking research in the area of on-/off-chip

architecture. Building on recent trends in HPC research, in fact, HNs

will allow borrowing solutions from the embedded/System-on-Chip

domain, which is now recognized as a promising pathway to extreme-

scale low-power HPC. HNs will contain a multi-chip mesh of power-

efficient RISC cores augmented with custom vector resources (SIMD

and lightweight GPU-like cores) as well as a dedicated memory archi-

tecture and a custom Network-on-Chip providing advanced support

for partitionability and time-predictability. The cores in the multi-chip

manycore architecture will be connected through a Network-on-Node
(NoN), forming a continuum at the off-chip (on-node) level from the

on-chip interconnect.

Since the first stages of the project, the architecture exploration

will be extensively supported by a purposely developed emulation

platform. HNs will not be prototyped in a final ASIC form, but

a mixed approach will be taken. In fact, RISC processors will

be instantiated as ASIC cores tightly coupled with a large-scale



reconfigurable hardware fabric used to emulate in near real-time

the customized acceleration units, the advanced memory manage-

ment architecture and the NoN, as well as the NoN bridge to the

external interconnect. The platform will support fast design space

exploration and validation of the solutions at both the software-

and thermal/power-level. These techniques will inherently involve

multiple aspects within the system, from programming down to the

architecture definition, deeply intertwined with chip- and system-

wide control mechanisms of physical parameters, primarily power

consumption and temperature. To gain a holistic understanding of

their impact on performance/power/predictability (PPP) and quantita-

tive information about their effectiveness, MANGO will also develop

a comprehensive toolset for PPP and thermal models, which will

operate in close relation with the PPP run-time information collected

from the platform.

The MANGO experimental platform will include 16 GN nodes

with standard high-end processors, i.e. Intel Xeon E5, as well as

NVIDIA Kepler GPUs, along with 64 HN nodes. GNs and HNs

will be connected through InfiniBand. HNs will contain ASIC ARM

cores and a high-capacity cluster of FPGAs used to emulate the rest

of the HN system. The final HN infrastructure will contain dozens

of manycore chips, and thus thousands of cores. The prototypical

board will enable components to be easily plugged and removed and

will allow different resource mixes, e.g. nodes highly populated with

ARM cores and few high-end FPGAs (e.g. 192 + 64) or vice versa

(e.g. 64 + 192), plus memory modules.

IV. PROGRAMMING MODEL AND RUNTIME MANAGEMENT

To reach exascale parallelism, the programming model needs to

be hierarchical, much like the runtime management system. Tradi-

tionally, the programming model for homogeneous HPC systems is

based on a combination of MPI and OpenMP. When heterogeneity

comes into the game, the programming model needs to be extended

to allow the exploitation of hardware resources. OpenCL is an open

standard for the development of parallel applications on a variety

of heterogeneous multi-core architectures [12]. It provides explicit

management of heterogeneity, but at a significant cost in terms of

tuning performance, which must be performed by the programmer,

and building boilerplate code [13], [14]. In MANGO, we aim at

integrating the expression of new architectural features as well as

QoS concerns and parameters within the existing stack of languages

and libraries for extreme-scale HPC systems, by augmenting the

runtime library APIs with new functions, as well as by introducing

new pragmas or keywords to the language.

a) Resource Management: The main challenge for heteroge-

neous resource management is to optimize resource allocation while

taking into account that: 1) each application may be composed by

multiple tasks, each of them possibly having data and timing depen-

dencies with the other ones; 2) executing a task on different com-

puting units of an heterogeneous architecture would lead to different

throughput, QoS, and power/energy consumption; 3) especially in

case of data dependencies, the performance of an application depends

not only on where its tasks are executed, but also on where the data

of its task is located in the system; 4) requirements coming from

each application (usually throughput and QoS) must be complied

with, while also addressing the system-wide (power/thermal/energy)

requirements. To address this problem, we decouple the description

of a task graph, which encodes the work to be done and its QoS

requirements, from the decisions that must be taken to optimally

allocate tasks and data. The former is addressed by the application

developer through an appropriate programming model, while the
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Fig. 6. The MANGO Runtime Resource Management Approach

latter is handled by a resource manager which has a system-wide

view of the available resources and workload, as shown in Figure 6.

b) Memory Management: The MANGO architecture is based on

a shared memory among all the heterogeneous units in a node. To effi-

ciently manage the available memory resources, we design a memory

manager that serves memory requests in a resource allocation-aware

fashion, employing knowledge about the evolution of the workload

to maximize the utilization of resources while optimizing the ability

of the node to serve high priority applications. We focus on the

need to balance the needs of the application currently requesting

resources with those of future requests, in sight of the presence of

high priority applications. To this end, we build predictive models

of the requests, and adapt the memory allocation in order to leave

enough memory resources for the execution of new tasks on units

that are currently free. Since a typical use of MANGO hardware is to

allow the consolidation of applications from a small set of application

domains, currently deployed on local servers to a remote HPC cluster,

this prediction approach can prove quite effective.

In Figure 7, we show the outcome of an initial experiment, run

in simulation, where we perform the allocation of 60,000 kernels

including a mix of periodic and aperiodic requests. Experiment 1

and 2 differ in memory size – in experiment 1, memory is twice

as much as in experiment 2. Green bars represent the percentage

of successful requests on high-priority requests, whereas blue bars

consider the overall set of requests. Three algorithms are considered:

a baseline allocator with no prediction (solid bar), and two predictors

employing a moving average method (thin stripes) and an exponential

weighted average method (thick stripes).

In can be seen that the moving average method provides a good

advantage, especially in experiment 1, where the workload is lighter

with respect to the available resources.

c) Programming Model Support: MANGO aims at support-

ing parallel programming models across a wide range of different

accelerators. We adopt an intermediate runtime layer that exposes

basic features which easily map on the hardware features common

to all the accelerators (i.e., those provided by the communication

architecture). The intermediate runtime support exposes basic tools

for communication, synchronization and task spawning, as shown

in Figure 8. For brevity, only the Context, Event, Kernel and

Buffer classes are shown. Context provides facilities to access

the resource manager, registering instances of the other three classes.

Event, Kernel and Buffer are the objects which need to be

allocated resources (either memory or execution units). The final main



Fig. 7. Initial experiments on predictive algorithm for global memory
management.

class, the TaskGraph, represents a subset of the objects registered

with the Context, which is used in a specific run.

Higher level models then build over the intermediate model. The

programming model exposes the managed device in a transparent

way, allowing the application programmer to define one or more

version of each kernel, and delegating to the runtime manager the

selection of the actual execution unit employed to run it.

The following listing exemplifies the use of the MANGO API to

run a simple kernel on an accelerator.

us ing namespace mango ;

c l a s s Kerne lRunner {
p r i v a t e :

BBQContext ∗mango r t ;
Kerne lArguments ∗argsKSCALE ;
Kerne lArguments ∗argsKSMOOTH ;
TaskGraph ∗ t g ;
enum { HOST=0 , KSCALE=1 , KSMOOTH } ;
enum { B1=1 , B2 , B3 } ;

p u b l i c :
Kerne lRunner ( i n t SX , i n t SY){

/ / I n i t i a l i z a t i o n
mango r t = new BBQContext ( ) ;
auto k f s c a l e = new K e r n e l F u n c t i o n ( ) ;
k f s c a l e−>l o a d ( ” . / s c a l e k e r n e l ” ,

Uni tType : : GN,
F i l e T y p e : : BINARY ) ;

auto kf smooth = new K e r n e l F u n c t i o n ( ) ;
kf smooth−>l o a d ( ” . / s m o o t h k e r n e l ” ,

Uni tType : : GN,
F i l e T y p e : : BINARY ) ;

/ / R e g i s t r a t i o n o f t a s k graph
auto k s c a l e = mango rt−>r e g i s t e r k e r n e l (

KSCALE, ∗ k f s c a l e , {B1} , {B2 } ) ;
auto ksmooth = mango rt−>r e g i s t e r k e r n e l (

KSMOOTH,∗ kf smooth , {B2} , {B3 } ) ;

auto b1 = mango rt−>r e g i s t e r b u f f e r <Buf fe r >(
B1 , SX∗SY∗3∗ s i z e o f ( Byte ) , {HOST} , {KSCALE} ) ;

auto b3 = mango rt−>r e g i s t e r b u f f e r <Buf fe r >(
B3 , SX∗2∗SY∗2∗3∗ s i z e o f ( Byte ) , {KSCALE} , {HOST} ) ;

t g = new TaskGraph ({ k s c a l e , ksmooth } ,
{ b1 , b2 , b3 } ) ;

mango::Kernel

+ id
+ thread_count
+ unit
+ event

+ Kernel()
+ Kernel()
+ operator==()
+ mmap_buffer()
+ mmap_event()
+ reads()
+ writes()

std::map< uint32_t,
uint64_t >

+ keys
+ elements

+tlb_events
+tlb

mango::KernelFunction

+ load()
+ KernelFunction()

+kernel

std::map< UnitType,
size_t >

+ keys
+ elements

+size

std::map< UnitType,
kernelfp >

+ keys
+ elements

+version

std::vector< std::shared
_ptr< mango::Event > >

+ elements

+task_events
std::vector< uint32_t >

+ elements

+in
+out

mango::Event

+ id
+ phy_addr
+ gn_addr
+ id_gen

+ wait_state()
+ wait()
+ write()
+ read()
+ lock()
+ operator==()
+ Event()
+ set_callback()

mango::Buffer

+ id
+ phy_addr
+ gn_addr
+ size
+ event

+ Buffer()
+ write()
+ read()
+ isReadByHost()
+ isReadBy()
+ operator==()

std::vector< uint32_t >

+ elements

+in
+out

std::vector< uint32_t >

+ elements

+in
+out

mango::Context

+ Context()
+ ~Context()
+ print()
+ resource_allocation()
+ resource_deallocation()
+ start_kernel()
+ start_kernel()
+ gn_start_kernel()
+ operator+=()
+ operator+=()
and 7 more...

mango::MM

+ MM()
+ ~MM()
+ allocate_events()
+ set_vaddr_events()
+ allocate_buffers()
+ set_vaddr_buffers()
+ deallocate_buffers()

+mm

std::map< uint32_t,
std::shared_ptr< mango

::Buffer > >

+ keys
+ elements

+buffers

std::map< uint32_t,
std::shared_ptr< mango

::Event > >

+ keys
+ elements

+events

std::map< uint32_t,
std::shared_ptr< mango

::Kernel > >

+ keys
+ elements

+kernels

Fig. 8. Collaboration diagram for the main classes of the MANGO API.

/ / Resource A l l o c a t i o n
mango rt−>r e s o u r c e a l l o c a t i o n (∗ t g ) ;

/ / E x e c u t i o n s e t u p
auto argB1 = Buf fe rArg ( b1 ) ;
auto argB2 = Buf fe rArg ( b2 ) ;
auto argB3 = Buf fe rArg ( b3 ) ;
auto argSX = Sca la rArg<i n t >( SX ) ;
auto argSY = Sca la rArg<i n t >( SY ) ;
auto argSX2 = Sca la rArg<i n t >( SX∗2 ) ;
auto argSY2 = Sca la rArg<i n t >( SY∗2 ) ;
auto argE = EventArg ( b3−>e v e n t ) ;

argsKSCALE = new Kerne lArguments (
{ &argB2 , &argB1 , &argSX , &argSY } ,
k s c a l e ) ;

argsKSMOOTH = new Kerne lArguments (
{ &argB3 , &argB2 , &argSX2 , &argSY2 ,

&argE } ,
ksmooth ) ;

}

˜ Kerne lRunner ( ) {
/ / D e a l l o c a t i o n and teardown
mango rt−>r e s o u r c e d e a l l o c a t i o n (∗ t g ) ;
}

void r u n k e r n e l ( Byte ∗out , Byte ∗ i n ) {



auto b1 = mango rt−>b u f f e r s [ B1 ] ;
auto b3 = mango rt−>b u f f e r s [ B3 ] ;
auto k s c a l e = mango rt−>k e r n e l s [KSCALE ] ;
auto ksmooth = mango rt−>k e r n e l s [KSMOOTH] ;

/ / Data t r a n s f e r and k e r n e l e x e c u t i o n
b1−>w r i t e ( i n ) ;
auto e1=mango rt−>s t a r t k e r n e l ( k s c a l e ,
∗argsKSCALE ) ;

e1−>w a i t ( ) ;
auto e3=mango rt−>s t a r t k e r n e l ( ksmooth ,
∗argsKSMOOTH ) ;

e3−>w a i t ( ) ;
b3−>even t−>w a i t ( ) ;
b3−>r e a d ( o u t ) ;
}

} ;

d) Low Level Runtime Access Support: The set of accelerators

in MANGO will be interconnected through a QoS-aware interconnect

and spread over an infrastructure of FPGAs physically (pin-to-pin)

interconnected. The system will be connected to high-end servers

through PCIe and Gigabit connections. All the communication variety

must be uniformly accessed by the resource manager. Indeed, the

different communication interfaces must be transparent. A low level

runtime library has been developed providing transparent access to

the heterogeneous components. The runtime library provides efficient

means for key functional processes required by the resource manager,

such as: 1) booting the system and the accelerators; 2) quering

about current utilization of resources and other structural information

required such as power consumption or temperature; 3) enabling

configuration of the system, mostly for the proper configuration of

QoS parameters of the interconnect; 4) reading and writing memory

distributed over the heterogeneous system; 5) spawning tasks into the

accelerators; 6) providing means of synchronization between tasks

and main applications running on the high-end servers.

V. THERMAL AND COOLING INNOVATIONS IN MANGO

MANGO will extend the experience acquired in the latest research

on advanced compact modelling for liquid-cooling monitoring [15]

to explore the time constants of thermal and energy control knobs

to develop next-generation cooling technologies for HPC systems. In

particular, we will explore the use of a novel passive thermosyphon

(gravity-driven) cooling technology that will attempt to include

multiple parallel heat sources at multiple elevations to eliminate

energy consumption[16]. Thus, in MANGO we will carry out for the

first time in an heterogeneous HPC system a preliminary evaluation

of the benefits and drawbacks of a gravity-driven two-phase liquid

cooling prototype, developed and measured in the facilities of EPFL.

The objective will be to proof the possibility of achieving radically

low Power Usage Effectiveness (PUE) values for heterogeneous HPC

systems, contributing at improving the efficiency of next-generation

HPC workloads by working on the PPP axis of MANGO: power,

performance and predictability.

Moreover, apart from those three metrics, thermal management is a

major challenge that needs to be tackled jointly with cooling control

to ensure reliability and maximize energy efficiency. Therefore, as a

complimentary measure to the design of efficient cooling systems,

one of the goals of the project is the development of thermal-

, power- and performance-aware allocation strategies, both at the

global and the local level, able to exploit the new architectures and

the heterogeneity of the MANGO platform for the particular target

applications. In this sense, the MANGO project will characterisa-

tion the applications, to understand their constraints, and propose

novel thermal-, power-, and performance-aware run-time resource

management strategies. As a first case-study, within MANGO the

research undertaken has focused first on the HEVC video transcoding
application.

1) Development of a framework for thermal, power and perfor-
mance characterisation: We envision two options for the thermal,

power and performance characterisation that needs to be undertaken

within the MANGO project. Even though the final demonstrator

infrastructure will allow automated and real-time monitoring, as will

be explained in the following subsections, there is a need for off-

line profiling and characterisation of the applications within the

heterogeneous MANGO resources. In this sense, we have followed

two approaches:

1) The direct measurement of applications running on the
hardware. This implies running the applications on the target

platform while collecting performance counters, power, and

temperature values. For x86 architectures, such as the ones

of GNs, we can use Intel Running Average Power Limit

(RAPL) [17] to estimate the power consumption of the CPU

(cores and package). Temperature sensors are usually available

as an average for the whole CPU. Thus, to be able to obtain a

finer granularity (i.e., to obtain the temperature gradients of the

chip), we leverage the usage of the 3D-ICE simulator [18].

2) Using a full simulation framework. In this sense, we propose

running the MANGO applications first on the Gem5 architec-

tural simulator [19], to obtain performance metrics. Those met-

rics can then be plugged into McPAT [20] to obtain power traces,

and finally into 3D-ICE to compute temperature floorplans.

It must be taken into account that, to profile separately the various

kernels of the applications, a small effort on code instrumentation

needs to be performed. This effort is needed to separate the kernels.

However, this does not add an overhead to the application program-

mer, as the separation and characterisation is performed per-kernel.

The proposed setup is currently being used for the profiling and

characterisation of the MANGO applications. In particular, character-

isation of the x86 GNs is being performed via direct measurements

(performance counters, RAPL and 3D-ICE), whereas currently the

ARM cores are being profiled via simulation (Gem5, McPAT and

3D-ICE). We envision also the incorporation of Gem5 models of

other accelerators of the MANGO platform.
2) Challenges and constraints of the video transcoding applica-

tion: The undeniable complexity of the HEVC encoders, together

with the increase of video streaming users, poses an important

challenge for power- and thermal-aware resource allocation and man-

agement of these applications when running on MPSoCs. Because

of the lack of a HEVC encoder that is able to transcode on real-

time (i.e., to achieve an encoding frame rate of 30fps), current

solutions in the area are mostly focused on the optimization of one or

several blocks of the HEVC encoding algorithm to reduce processing

time per frame [21], [22]. However, to address the challenge of

power and thermal management in HEVC transcoding applications,

application-level configuration and system-level knobs need to be

jointly integrated on top of algorithmic optimizations. Few works

jointly consider temperature constraints as well as encoding efficiency

of next generation video encoders [23]. Nonetheless, none of these

works consider power consumption as a different parameter from

temperature. Moreover, power and thermal management of HEVC

has not been addressed when multiple streams are running at the

same time on a multicore platform.

Each block in HEVC encoder contains several parameters to

configure the encoder (i.e., configuration knobs). A few of these
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configuration knobs have large impacts on the encoding efficiency,

power consumption, temperature and processing time, including

search area, prediction mode, size of Group of Picture (GOP),

Quantization Parameter (QP), and Coding Unit (CU) size. All these

knobs can be dynamically tuned frame-by-frame, except for the GOP

size that can only be changed every several frames.

Finally, apart from inherent and exclusive features of each video

type, such as frame rate, frame resolution, bit depth, etc., the contents

of a video also play a major role in the obtained performance

(encoding time per frame), quality (peak signal-to-noise ratio, PSNR,

measured in dB), compression (bitrate, measured in bits per second,

bps), power consumption, and peak temperature, resulting from a

specific encoding configuration.

The frame-by-frame power and thermal management is well moti-

vated by such variations. As a consequence, the encoding config-

uration and the CPU frequency must be dynamically adjusted to

provide the best possible outcomes. The great number of different

combinations of configuration knobs, in addition to sudden content

variations within a video and substantial differences between different

videos require a more generic solution than that proposed by previous

works.

Despite the sophistication of managing power and temperature

in MPSoCs for HEVC, ML-based methods, and among them, rein-

forcement learning algorithms, are promising solutions, as they cope

with environment-dependant problems using dynamic optimization

programming.

3) Leveraging the MANGO HNs for the transcoding application:
The first step towards exploiting the HNs to increase the efficiency

of the MANGO applications is understanding which kernels would

benefit the most from a hardware implementation of from accelera-

tion. For this purpose, we have performed a profiling of the video

transcoding application, obtaining its task call graph to understand

which function and kernels require higher computational effort. This

exercise has been performed for both the x86 and the ARM cores of

MANGO, obtaining similar relative results.

Figure 9 summarises the percentage of time spent in each func-

tions for a particular encoding configuration and video input of

the transcoding application. As can be observed, the interpolation

and DCT phases are the ones that would benefit the most from a

hardware implementations and thus, represent good candidates for

parallelization on the MANGO HNs.

4) Extending the approach to other MANGO applications: As

opposed to transcoding, medical imaging has strict deadlines for the

processing of each frame. When a deadline cannot be met, it is better

to drop the frame. Because of the nature of this problem, we envision

tackling the thermal and power-aware resource allocation problem by

using Staged Multi-Armed Bandits (MABs) [24]. MABs are generally

used in solving decentralized sequential decision making problems

involving multiple learners. We believe that the problem of scheduling

multiple streams for the MANGO bio-medical application can be seen

as a staged decision problem in which the performance obtained for

various resource allocations is unknown a priori but learned over time.

Unlike other online learning methods such as standard multi-armed

bandits and reinforcement learning, in our tentative formulation the

outcome of each scheduling action depends on a sequence of previous

scheduling decisions and feedbacks that are taken at a certain stage

of time.

VI. THE MANGO PLATFORM ROADMAP

The MANGO strategy for building an effective largescale emula-

tion platform will be articulated in three phases.

a) Phase 1 – Stand-alone single-board emulator: The research

activities involving architecture exploration initially relies on current

available hardware made of a standalone emulation platform based

on FPGA devices and a general purpose node. The standalone

emulator is based on a modular and scalable approach, with several

FPGAs being assembled on dedicated daughter modules plugged on a

common motherboard. The motherboard gives complete access to all

available I/Os of the FPGA, leaving maximum freedom regarding the

FPGA interconnection structure, which will allow to define the HN

interconnect. The proFPGA quad V7 system, provided by ProDesign

as a standalone emulation platform, is used. The board is equipped

with three Xilinx Virtex 7 XCV2000T FPGA modules and one Zynq

module, containing a dual core ARM processor as well as reconfig-

urable hardware fabric to prototype external subsystems, handling up

to 48 M ASIC gates alone in one board. Several proFPGA systems are

interconnected enabling the full HN infrastructure to be implemented.

Due to the fact that multiple proFPGA quad or duo systems can be

stacked or connected together, scalability is ensured. The highspeed

boards together with the specific high speed connectors allow a

maximum point to point speed of up to 1.8 Gbps over the standard

FPGA I/O and up to 12.5 Gbps over the MGT of the FPGA.

b) Phase 2 – From FPGA stand-alone board to a dedicated
chassis: A new board for HPC will be implemented complying with

the physical constraints of HPC and datacenter racks, considering as

well requirements for cooling and power supply researched within

the project. The board will be extended to deliver further number of

daughter boards and will provide proper connectivity through optical

links to other boards. Pin-to-pin connectivity between FPGAs (either

at the same board or at different boards) will allow expandability

and scalability. This enables MANGO to explore future chip con-

figurations in a predictable and accurate manner. Daughter boards

will be extensible and open to new developments, particularly to

new 64-bit ARM cores or even more advanced solutions like the

hybrid Xeon E5+FPGA chip recently announced by Intel. In this

phase, the HN interconnect will be applied to the set of HN nodes

(the board) developed. It will embrace connectivity at the board level,

between ARM and FPGA modules, inside the FPGA modules (within

the accelerators and RISC processors implemented), and between the

boards. This means a single and unified interconnect will be designed

for the overall HN infrastructure (made of 64 nodes).

c) Phase 3 – Rack assembly: As a final phase, the complete rack

will be implemented and populated of GNs and HNs. The system



will enable a large-scale platform used to reproduce in near real-

time the behavior of the MANGO manycore architecture. The full

platform will consist of a rack collecting up to 16 blades equipped

with high-end CPUs, e.g. Intel Xeon chips, and GPUs, mounted on

the motherboard, as well as 64 HN nodes. A custom backplane will

provide connectivity across the blades, both through standard bridges

and using pin-to-pin connections across the FPGA chips, effectively

providing a single large-scale reconfigurable hardware fabric used to

emulate the fine-grained accelerator tiles envisioned in the MANGO

architecture. The inter-FPGA pin-to-pin backplane interconnection

will be reconfigurable on-field, providing a large degree of flexibility

for the emulation of the on-chip network interconnect.

VII. CONCLUSIONS

The MANGO project, started in October 2015, will last for

three years, with the goal of addressing power, performance and

predictability in HPC systems. It leverages customization and deep

heterogeneity to adapt the available computing resource to reach

these goals. In this paper, we have presented the main approach

and architectural solution, the application scenarios considered, and a

more in-depth view of the software stack, including initial results on

memory management and a characterisation of the HEVC transcoding

application from the point of view of thermal management, as well

as the roadmap towards a large scale emulation platform.
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