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Abstract— This paper presents an overview of some hierarchical control schemes composed by
a high level Model Predictive Control (MPC) and a low level Sliding Mode Control (SMC).
The latter is realized by using the so-called Integral Sliding Mode (ISM) control approach
and is meant to reject the matched disturbances affecting the plant, thus providing a system
with reduced uncertainty for the MPC design. Both continuous and discrete-time solutions
are discussed in the paper. Moreover, assuming the presence of a network in the control loop,
a networked version of the control scheme is presented. It is a model-based event-triggered
MPC/ISM control scheme aimed at minimizing the packets transmission. The input-to-state
(practical) stability properties of the proposed approaches are also addressed in the paper.
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1. INTRODUCTION

Recent research in the Model Predictive Control (MPC)
field has paid attention to the presence of unavoidable
modeling uncertainties or external disturbances affecting
the plants, so as to motivate the introduction of ro-
bust control strategies [Maciejowski, 2002; Rawlings and
Mayne, 2009; Magni et al., 2009; Mayne, 2014]. Two main
approaches have been followed: the first one, called open-
loop nominal approach, introduces tightened constraints
in order to guarantee robust constraint satisfaction and
recursive feasibility [Limon Marruedo et al., 2002; Lazar
and Heemels, 2009; Pin et al., 2009], while the second
one is based on the solution of a closed-loop min-max
optimization problem that explicitly takes into account
model uncertainty [Scokaert and Mayne, 1998; Fontes and
Magni, 2003; Bemporad et al., 2003; Magni et al., 2003;
Limon Marruedo et al., 2006]. In the open-loop nominal
approach the real constraints are shrunk in order to guar-
antee that the original constraints are fulfilled by the real
system for any possible uncertainty realization. However,
this method results in being too conservative in view of the
open-loop off-line approximation of the worst possible ef-
fect of the disturbance necessary to compute the tightened
constraints. In the closed-loop min-max approach the cost
function is minimized for the worst possible uncertainty,
while satisfying the constraints for any possible pertur-
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bation. The drawback of this approach is the very high
computational burden since it either requires the solution
to difficult on-line min-max optimization problems, see
e.g. [Magni et al., 2003], or the off-line computation of
polytopic robust positive invariant sets, see [Mayne et al.,
2006]. In addition, both the approaches are conserva-
tive, mainly because they (implicitly or explicitly) rely
on worst-case techniques. If the uncertainties or the state
and control disturbances are characterized as stochastic
processes, the conservativeness of a deterministic worst
case approach can be significantly reduced by the devel-
opment of stochastic MPC algorithms with probabilistic
state and/or input constraints (see [Farina et al., 2015]
and the references therein reported).

A different approach to reduce the conservativeness inher-
ent in any robust MPC control algorithm, that merges
MPC and Sliding Mode Control (SMC), has been investi-
gated in recent years.

SMC is a widely appreciated control methodology partic-
ularly effective in case of systems which are affected by a
wide class of uncertain terms due to modeling uncertainties
and external disturbances. According to the sliding modes
control theory, the system states are forced to reach a pre-
specified sliding manifold in finite time so that the desired
dynamics is assigned to the controlled system [Utkin, 1992;
Edwards and Spurgen, 1998; Utkin et al., 1999]. When
the so-called sliding variable is steered to zero and the
system state belongs to the sliding manifold, then a sliding
mode is enforced. The sliding manifold is made attractive
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Figure 1. The hierarchical MPC/ISM control scheme for
nonlinear constrained uncertain systems.

via a discontinuous control law. After a transient phase,
called “reaching phase”, during which the insensitiveness
of the system with respect to the uncertain terms is not
guaranteed, the so-called “sliding phase” starts and the
controlled system proves to be robust versus a specific class
of uncertainties, the so-called “matched uncertainties”,
i.e., uncertain terms which act on the same channel of
the control variable. The main drawback of SMC is the
so-called chattering phenomenon, i.e., oscillations of the
controlled variable due to the discontinuity of the control
input [Boiko et al., 2007; Levant, 2010]. The most effective
solution to alleviate this phenomenon is the generation
of higher order sliding modes (HOSM), which are able
to reduce the chattering effect while maintaining good
stability properties [Bartolini et al., 1998, 2000; Levant,
2003; Dinuzzo and Ferrara, 2009; Ferrara et al., 2014b].

In order to improve the robustness feature of conventional
SMC, the so-called Integral Sliding Mode (ISM) has been
introduced [Utkin and Shi, 1996]. ISM, by removing the
reaching phase, ensures the generation of an ideal sliding
mode and the robustness of the controlled system since
the initial time instant. Note that, higher order ISM al-
gorithms have also been presented [Levant and Alelishvili,
2007; Goggia et al., 2014; Ferrara and Incremona, 2015].

MPC and SMC was first used in a combined scheme in
[Muske et al., 2007; Garcia-Gabin et al., 2009]. In partic-
ular, the MPC has been used to update the parameters
of the sliding manifold. A different idea to combine MPC
and SMC was proposed in [Rubagotti et al., 2011a; Ferrara
et al., 2013; Raimondo et al., 2014; Ferrara et al., 2014a],
where a hierarchical control scheme composed by a high
level MPC and a low level ISM is proposed (see Figure 1).
The ISM component has the aim to reduce the difference
between the dynamics of the nominal closed-loop system
and the actual evolution of the state. Thanks to the pres-
ence of the ISM controller at the low level, the MPC can
be designed on a system with reduced disturbances. The
main idea is first introduced for continuous-time control
systems, since the ISM is generally designed to generate
a continuous-time control action [Rubagotti et al., 2011al.
In particular, it can be proved that, if only matched uncer-
tainties affect the system, the predictive control law can
be designed on the nominal model of the plant, since ISM
completely rejects the matched uncertainties. Otherwise,
if also unmatched uncertainties are present, it has been
proved that their effect is not amplified by the ISM con-
trol, so that a robust MPC needs to be applied to cover

only the residual uncertainties. In particular in [Rubagotti
et al., 2011a] a continuous-time model with sampled data
has been used to design a robust MPC with tightened
constraints. According to [Magni and Scattolini, 2004], the
optimization is performed in discrete-time with respect
to a piecewise constant control signal. Regional Input-
to-State Stability (ISS), developed for discrete-time sys-
tems in [Magni et al., 2006], and Input-to-State practical
Stability (ISpS) are proved. The proposed scheme is only
conceptual. In fact, since a finite non-negligible sampling
time is used in any real application, the sliding manifold
is not exactly reached but the chattering occurs making
the sliding variable ultimately bounded within a boundary
layer of the sliding manifold.

In order to provide a practical solution, a multirate
discrete-time scheme is required [Raimondo et al., 2014].
In particular two different finite sampling times are used
for the ISM (shorter) and for the MPC (longer). Hence
also a discrete ISM is required, which consists in finding
the control value capable of ideally steering the state to the
sliding manifold in one sampling time. As a consequence,
the control law is not defined on a discontinuous domain
anymore, thus leading to a reduction of the chattering
effect. The main drawback is that the discrete ISM needs
the knowledge of the disturbance acting at the same time
instant of the control action. Since it is impossible to get
it, the matched disturbance is never completely rejected,
and differently from the continuous-time scheme, a robust
MPC is always necessary even if only matched uncertain-
ties are present. Another step in the direction of a more
effective application of the proposed hierarchical architec-
ture is the possibility to introduce a bound also on the
ISM control input. The equivalent disturbance visible by
the MPC is computed as a function of the maximal input
allocated to SMC, and a dynamic input allocation between
SMC and MPC is provided. The dynamic allocation allows
the adaptation of input partitioning according to the state
conditions. If the state is far from the origin, ISM is applied
with the minimum actuation range in order to ensure
the MPC feasibility. Otherwise, if the state is closer to
the origin and MPC requires less control amplitude, more
amplitude is allocated to the ISM in order to provide a
stronger disturbance rejection. ISpS has been proved also
for this formulation [Raimondo et al., 2014]. A practical
example of the MPC/ISM control strategy has been pre-
sented in [Ferrara et al., 2013], where a robust hierarchical
multi-loop control scheme aimed at solving motion control
problems for robot manipulators has been proposed.

A different practical situation that has been considered is
the presence of a network between the two layers. The goal
in this case, because of delays and packet loss induced by
the presence of the network in the control loop [Tabuada,
2007; Gupta and Chow, 2010; Garcia and Antsaklis, 2013],
is to avoid packets transmission if not necessary, both in
the direct path (from the controller to the plant) and in
the feedback path (from the sensor to the controller). To
achieve this goal a model-based event-triggered MPC/ISM
control scheme for nonlinear constrained continuous-time
uncertain systems is discussed [Ferrara et al., 2014a].
The key elements of the proposed control scheme are
a model-based controller and a smart actuator/sensor,
both containing a copy of the nominal model of the
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plant. The sensor intelligence is provided by a suitable
triggering condition, which enables to determine when
it is necessary to transmit the measured state and to
update the state of the nominal model. Furthermore, an
asynchronous packetized version of a quasi-infinite horizon
MPC with tightened constraints is designed, such that
the optimization problem is solved only when a triggering
event occurs. The ISpS of the controlled system is proved
also in this case.

2. PROBLEM FORMULATION

Let first introduce the continuous-time model

o(t) = F(a(t),u(t),d(t)), t =0 1)
where t € R>g, z € R" is the state vector, u € R is the
control variable, and d € R? is the disturbance term. Given
system (1), which is assumed to be forward complete,
assume also that f : R™ x R™ — R" denotes the nominal
model, being

F@(t),u(t)) = h(@(t)) + Bu(t) (2)
with £ € R™ being the state of the nominal model,
h : R" — R™ with h(0) = 0, and B € R™"*!. Then, the
plant system can be expressed as

x(t) = h(x(t)) + Bu(t) + w(t), t >0 (3)

where w £ F(x(t),u(t),d(t)) — f(2(t),u(t)) denotes the
additive uncertainty.

Then consider the discrete-time form of system (3)
Ti41 = hd(l't) + Bdut + Wt, t 2 0 (4)
where t € Z>o, hq and By are the corresponding of h

and B in the discrete-time form, respectively. The nominal
evolution of (4) at time ¢ + 1 is expressed as

jjt-i—l = hd(i‘t) + Bdut, t Z 0 (5)

Systems (3) and (4) are such that the state and the control
variables are restricted to fulfill the following constraints

rekX (6)

ueld (7)
where X and U are compact sets containing the origin as
an interior point. Moreover, the uncertainty w is such that

weW (8)
where W is a compact set containing the origin, with
WP = sup,, cyy{|w|} known, and |-| being the Euclidean
norm. This last property can be obtained starting from
system (1), assuming that the disturbance d € D, where
D is a compact set containing the origin, and D**P =
supgep{|d|} is known.

The control objective consists in designing robust control
schemes that guarantee ISpS and that state and control
variables comply with constraints (6) and (7), respectively,
despite of the presence of the uncertain terms.

3. THE HIERARCHICAL ARCHITECTURE

The control architecture considered in this paper is the
combination of two components: a high level controller
based on MPC, and a low level ISM controller (see Figure
1). The overall control law can be expressed as follows

U =Uppc +UISM (9)

The ISM approach is used to produce a control action
aimed to reduce the difference between the nominal pre-
dicted dynamics of the closed-loop system and the actual
one. In this way, the MPC, which has the role to stabi-
lize the system and to optimize the performance, can be
designed on a system with a reduced uncertainty.

3.1 Integral Sliding Mode Control

ISM control enables to generate an ideal sliding mode
of the controlled system on a particular sliding manifold
starting from the initial time instant to [Utkin and Shi,
1996]. This allows one to reduce to a minimum or eliminate
the so-called reaching phase, improving the robustness
issues of the controlled system. Considering uy/pc as
stabilizing controller designed relying on the plant with re-
duced uncertainties (how the uncertainties can be reduced
with respect to the original ones will be clarified in the
following), the discontinuous control action to compensate
the matched uncertainties affecting the system is based on
the definition of a suitable manifold. This sliding manifold,
named “integral sliding manifold”, is defined in a general
form as

E(t) = s(z(t)) —e(t) =0 (10)
where ¥ is the auxiliary sliding variable, s is the actual
sliding variable, chosen, for instance, as a linear combina-
tion of the states, i.e.,

s =Gz
with G € R'*", and the integral term ¢ is given by

p(0) = s(alta)) + [ Gral0)dc (12)

with the initial condition ¢(t9) = s(x(to)). By virtue of
the choice of () and (o), the controlled system is in
sliding mode on the manifold ¥(t) = 0 since the initial
time instant. Then, the ISM control action is defined as

Ursym = 7Um(m sgn(E) (].3)
where U,,q; > 0 is suitably chosen in order to dominate

the matched uncertainties and enforce the sliding mode on
the sliding manifold ¥ = 0 [Utkin and Shi, 1996].

(11)

Assume that the uncertain term w can be written as
w(t) = Bwm (x(t)) + B w,(x(t)) (14)

where B+ € R™*("=1 4, represents the “matched”
uncertainty, which in practical applications is due to un-
avoidable unmodeled dynamics, parameter uncertainties
and disturbances, while w,, is the so-called “unmatched”
uncertainty. It is possible to prove that the equivalent
control, that is the control obtained by posing the first
time derivative of the auxiliary sliding manifold equal to
zero, i.e., ¥ = 0, is such that ursns,, = —wm, so as to have
a rejection of the matched uncertainty in sliding mode
from ty. Moreover it is possible to show that the choice
of the sliding manifold such that G = BT allows one to
maintain the unmatched uncertainty without amplifying
them [Rubagotti et al., 2011b].

3.2 Model Predictive Control
As for the MPC component, since the ISM control is

able to reject or reduce to a minimum the matched
uncertainty, it can be designed relying on a system with
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reduced disturbances. A robust MPC is required in order
to cope with the residual uncertainty. Note that, if the
matched uncertainty is completely rejected and no other
disturbances affect the system, a robust control action is
not necessary, avoiding more computational burden. For
the sake of simplicity, in the following only the continuous-
time formulation of the algorithm is considered, without
lost of generality. The aim is to solve a Finite-Horizon
Optimal Control Problem (FHOCP) which consists in
minimizing, at any sampling time instant t;, a suitably
defined cost function with respect to the control sequence
Uy, ey n_1] With N > 1 being the prediction horizon. To
make the control action robust, tightened constraints that
can be described via a Pontryagin difference of sets as
Xiryr =X ~ Byrir (15)
={zeR":x4+2z€X,Vz€EBrryr}
are included. The set Byri, will be suitably specified for
each case in the following. Then, given two positive definite
matrices @) and R, the cost function to be minimized is

J(m(tk)7 u[tk,tk+N71]3 N) =

tht N
= [ BT (Qu(r) + T (1) Ru(r)dr+
tr
+a (b )t ) (16)

where II is the terminal state weight so as to ensure the
stability of the controlled system. The minimization has
to be accomplished subjected to the state dynamics, the
constraints on the state variables

ZL’(t) € thtk. (17)
and the constraint @y pc on the control variable w(t),
which can be determined considering that a quantity equal
t0 Upmas allocated for the ISM component (see (13)) must
be subtracted to the control bound in (7), i.e.,

upmpe =0 — Unaa (18)
Finally, a terminal constraint z(tx4+n) € Xy, with
Xp &2 {z|2"Te < ps}, XpCX (19)

where py is a positive constant, is considered. The terminal
penalty and the terminal constraint are chosen as in
[Rubagotti et al., 2011a], in order to guarantee stability
properties. Then, according to the “Receding Horizon”
(RH) strategy, the applied control input is given by the
following piecewise-constant signal

uppe(t) = kpmpo(z(te)), t € [th,tryr) (20)
where
kape(x(ty)) £ u(te) (21)

with u®(t;) being the first value of the optimal control
sequence obtained by solving the FHOCP at ty,.

4. ROBUST MPC/ISM IN CONTINUOUS-TIME FOR
SAMPLED-DATA NONLINEAR SYSTEMS

The first conceptual control scheme was developed for
continuous-time sampled data nonlinear systems, since the
ISM is generally designed to generate a continuous-time
control action [Rubagotti et al., 2011a]. In [Utkin and Shi,
1996] it is shown that the ISM control completely rejects
the matched uncertainties so that the system composed by
the plant and the ISM can be rewritten as

i(t) = h(z(t)) + Bu(t) + Brw, (z(t)) (22)

where only the unmatched uncertainty is present, that,
thanks to a suitable choice of the sliding manifold, is
not affected by the ISM control action [Rubagotti et al.,
2011b]. The MPC is then computed on the basis of the
model relying on system (22), according to the FHOCP
described in the previous section. In order to take into
account the presence of the residual uncertainty, the set
Bir4- in (15) is defined as

k
Brrir £ 2€R™:|z| < v <’T + T£T£T1> (23)
Lr—1

where 7 € [0,T], £, £ L(7) being a positive continuous
function defined in [0, T] such that £, = 1, and « is
the upperbound of the residual uncertain terms, after the
rejection operated by the ISM control. Assuming that the
residual uncertainty is small enough, relying on [Magni
et al., 2006], the ISpS of the closed-loop system (3) has
been proved [Rubagotti et al., 2011a].

5. ROBUST MULTIRATE MPC/ISM FOR
DISCRETE-TIME NONLINEAR SYSTEMS

The continuous-time scheme is only conceptual, in fact,
since a finite non negligible sampling time is used in any
real application, the SMC cannot guarantee the complete
rejection of the matched uncertainty term. Moreover, due
to the fact that the sampling time is not negligible, the
so-called chattering phenomenon can occur. A possible
solution is to compute at each sampling time the value
of the control variable capable of steering the state to
the sliding manifold in one sampling time (see [Bartolini
et al., 1995] for a discussion on discrete-time sliding mode).
To achieve this goal, in this work, the sliding manifold is
chosen as the difference between the predicted and the
actual evolution of the plant, i.e.,

(24)

where C' € R ", Then, the value of s in one step is given
by

simvi = C(Tenrs — Teprgipm), 1= 1,..., M

semrvivr = Clha(winr i) — ha(Zeargapens + Baursar)
+ diniti)  (25)
so that the ISM control component results in being

ursy = —(CB) ' C(ha(zenrti) — ha(Eeartijenr) + denrti)
(26)
Note that the disturbance estimation is necessary to com-
pute the control law. An easy choice is to take the value
of the disturbance at the previous time instant, defining
cit = d;_1. In view of this approximation also the matched
disturbance is not completely rejected but an upperbound
on the residual disturbance can be computed. This is the
reason why a robust MPC approach needs to be suitably
coupled with the adopted SMC strategy. These aspects are
hereafter briefly addressed.

In this hierarchical multirate control approach, the slid-
ing mode component, which is light and effective from a
computational point of view, is computed with a shorter
sampling time. The MPC component acts with an execu-
tion rate limited due to the complexity of the constrained
optimization problem solved at each time instant. The
structure of the control law is the same in (9). The high
level controller takes advantage of the disturbance reduc-
tion operated by the sliding mode component. Given the
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state constraints (6), the tightened set in this case is the
following
v—k—1
Bk, e R i< Y A)
i=0

with v > k. Note that the cost function for the FHOCP is

J(x(tr), uppsn—1,N) =

E+N—1
= Z lekal,‘k +ul (1) Ru,+
v=~k

(27)

(28)

subjected to the state dynamics, the constraints on the
state variables in (15), and the constraint @y pc on the
control variable u(t).

T
+ Ty Nl 1t N

Another step in the direction of a more effective applica-
tion of the proposed hierarchical architecture is the possi-
bility to introduce an input bound also on the ISM control.
In this case the equivalent disturbances visible by the
MPC can be computed as a function of the maximal input
allocated to SMC [Raimondo et al., 2014]. The choice of
the upperbound for the ISM control and consequently for
the MPC (see (18)) can be done dynamically. For example
in [Raimondo et al., 2014] the following strategy has been
proposed: if the state is far from the origin, since the SMC
cannot guarantee the robustness of the controlled system
[Utkin, 1992], it is generated with the minimum actuation
range in order to provide a large domain of attraction; if
the state is closer to the origin more input is allocated
to the SMC in order to provide a stronger disturbance
rejection. Also for this scheme ISpS has been proved in
[Raimondo et al., 2014].

6. MODEL-BASED EVENT-TRIGGERED MPC/ISM

Another practical situation that has been considered is the
presence of a network between the two layers. The goal
in this case, because of delays and packet loss induced
by the presence of the network in the control loop is
to reduce the packet transmission over the network. To
achieve this goal a model-based event-triggered MPC/ISM
control scheme for nonlinear constrained continuous-time
uncertain systems is discussed in [Ferrara et al., 2014a]. As
illustrated in Figure 2, the control scheme includes three
key blocks, the model-based controller, the ISM controller
and the smart actuator/sensor. The main novelty of this
approach is the fact that MPC is called asynchronously
only when necessary. Hence, it is necessary to develop

o > ISM
: [
Controller
ﬁ[?jikﬁN—l\Zy]/@ UrSM
VAR Y ~
z/ Model Based| / \, N z
S Network —>| Plant H—
Controller | _ N Smart +
N
S Actuator/
_ Sensor
SO z/@

1
i+ Network <—————
\

N N ;
-~
N

Figure 2. The model-based event-triggered MPC/ISM
control scheme.

an asynchronous MPC that provides input suggestions for
an unknown possibly infinite horizon, a smart sensor that
decides when it is necessary to provide a new measure to
the MPC and a smart actuator that is able to generate
a synchronous input suggestion for the plant on the basis
of the asynchronous MPC suggestions. The model-based
controller contains the MPC algorithm that is called when
a new instance of the plant state is transmitted over the
network. The ISM controller has the task of rejecting the
matched uncertainties at any sampling time instant on
the basis of the actual state. Note that, in Figure 2, the
notation z/< means that the actual state is sent or not
through the network. The overall control law wu(t) is chosen
as in (9).

6.1 The Smart Actuator/Sensor

The smart sensor contains a copy of the nominal model
of the plant, which provides the computed state Z to
the triggering condition block. This block, relying on the
measured state x, computes the state error e(t) = Z(t) —
x(t), and verifies the following “triggering condition”,

le] < max{e]al, e2} (29)
where 0 < €3 < g1 < 1. If |e|] > max{ei|z|,e2}, the
actual state is sent to the controller and the state of the
nominal model is updated. Note that even if in practice the
triggering condition cannot be verified in continuous-time,
a sampling time shorter than the one used in the MPC will
be adopted so that the MPC is called in an asynchronous
way.

As previously mentioned, the smart actuator provides
asynchronous signals starting from the solution of the
asynchronous optimization problem performed by the
MPC. In particular, it will use the element of the finite
optimal vector for a finite time, while later it will compute
the control action based on the auxiliary control law.
Specifically, the auxiliary control s(x(t)), t > tr, 1w, is
applied after the end of the prediction horizon till the
triggering condition is again violated and the MPC is
recalled with the updated state.

6.2 The Asynchronous Model Predictive Control

By virtue of the rejection of the matched uncertainties
produced by the ISM control (13), the MPC component
can be developed relying on the system with reduced
uncertainties (22). In order to cope with the residual un-
certainty following the idea behind the control algorithm
presented in the previous sections, the set By, is defined
as
Birir £ 2 €R": |2] < -
k
(T+T£T§;:1) k<N

1
kE—N
hoN LR -1 | Eepp 1
[+ 1, (5750 + 22))
(30)
with 7 € [0,7]. This definition of the tightened set
guarantees that, if the nominal state evolution belongs to

Xir4r in (15), then the perturbed trajectory of the system
fulfills (6).

Letting %Vj the asynchronous triggering instant and ¢, the
first sampling instant just after %vj, considering the FHCOP
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problem, the associated finite horizon piecewise-constant
control signal u ~ is such that

(£ .tk 4 n1E5)
Uit \?j)(ﬂtj) = uo(t;)

for all t € [t;,t,) and
u[tijrlytijrN‘f{j)(t‘tj) = uz(tj)

for all t € [ty;yi,tx;1+i41) and all 4 € [1,..., N — 1]. Note
that, because the FHOCP is not solved at any sampling
time as usual but at any asynchronous triggering time,
the first value of the vector is applied only

u[?jikﬁN—ll?j]
from the triggering time %VJ to tx,. Analogously to the
previous described scheme, also in this case, assuming to
have residual uncertainties small enough, the ISpS of the
closed loop system (3) can be proved.

7. ILLUSTRATIVE EXAMPLE

As illustrative example, the model-based event-triggered
MPC/ISM control strategy is performed in simulation on
a cart moving on a plane.

The plant in question is described by the following equa-
tions

ZL'l(t) = l’Q(t) —+ Wy,

io(t) = 22 (ko1 (t) — hoza(t) + u(t) + wp(t))
where the control variable w is the force applied to the
cart. Moreover, M =1kg is the mass of the cart, which is
assumed to be known, kg = 0.33Nm™! is the stiffness of
the spring, ho = 1.1Nsm™"! is the damping factor, while
the matched uncertain term is w,, = W,,sin(zs) with
W..=1N. Note that w,, is unknown for the controller.
In (31), signal w, is the unmatched uncertain distur-
bance, which is generated as a random noise, such that
|w,| <0.02ms™!. Furthermore, the nominal model of the
plant is expressed as follows

{0 =520
T2 (t) = 37 (ko1 (t) — hoda(t) + u(t))
with initial condition x(0) = #(0) = [-2.2, 1.7]7.

(31)

(32)

To perform the simulation tests, the Euler solver is used
with a numerical integration step 7; equal to 0.0005s,
while the MPC sampling time is chosen as T=0.2s. The
prediction horizon of the FHOCP is N=3, while the
quantities @ and R in (16) are chosen as @ = Iy, and
R=1, respectively. The resulting auxiliary control law and
the matrix I are equal to

wf(z(ty)) = Kz(t;), K =[0.6413, 0.7306] (33)
and
8.7647 3.6217
= [3.6217 4.6226] (34)

Moreover, the MPC has been tuned to satisfy the stability
condition. The considered control and state constraints are
set to |u| <2N, |z1], |21 <3m, |zo|, and |&2] <3ms~!.
The relative degree of the system is r=1, since the sliding
variable is selected as s = myz1 4+ zo, with m;=1.
Moreover, the transient trajectory ¢ is chosen as in (12).
The ISM control parameter in (13) has the amplitude
Upmaxz =1. The triggering condition in (29) is specified by
choosing €1=0.5 and £2=0.05.

In order to evaluate the closed-loop performance, we
have considered three different indexes: i) the number of
updates of the actual state, denoted with n,,; ii) the root
mean square (RMS) value of the plant state, xgyg; iii)
the RMS value of the auxiliary sliding variable, i.e. X gass.
These indexes are determined as

s
= 5 =
Nup qup(Ti) TRMS
i=0

where f,,(-) is a flag equal to 1 when the actual state
is transmitted over the network, equal to zero otherwise,
and ng is the number of integration steps during the
simulation; x;;, and Y; are the j-th component of the
state vector, and the auxiliary sliding variable at the
i-th integration step, respectively. Figure 3 shows the
time evolution of the state variables of the plant and of
the nominal model, which are both steered to a vicinity
of zero, depending, as before, on the amplitude of the
unmatched uncertain term. Figure 4 illustrates the control
variable u(t). In Figure 5, the relative threshold defined
in (29), and the flags values are reported. As expected,
both the states and the input respect the pre-specified
constraints. Figure 6 shows the auxiliary sliding variable
Y (black line) together with the sliding variable s (green

b [—22
- -y
— L2, max

0 1 2 3 4 5 6 7 8 9 10
time (s)

Figure 3. Time evolution of the state variables of the plant
(z1: top, x2: bottom, solid black line), and of the
model (Z1: top, &2: bottom, dashed gray line).
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Figure 4. Time evolution of the control variable u(t) (solid
black line) along with the MPC (solid blue line) and
ISM (solid green line) components.



108 Gian Paolo Incremona et al. / IFAC-PapersOnLine 48-23 (2015) 102—109

lel

—max{e|z], €2} 7

time (s)

time (s)

Figure 5. Time evolution of the state error e, and updates
of the actual state when the event triggering condition
is active.

—3
-=-=8
-0.61 — ¥ 4

Wi, wrsar (N)

!

T ml

\
i

Wm

---Ursm

0 1 2 3 4 5 6 7 8 9 10
time (s)

|
o

Figure 6. Time evolution of the auxiliary sliding variable
Y (black line), of the sliding variable s (green line)
and of the transient function ¢ (gray line), and the
ISM component uygp; with respect to the matched
uncertainty wy,.

line) and the transient function ¢ (gray line). Moreover,
the effect of the ISM component urgps is illustrated with
the corresponding rejected matched uncertainty term w,,.
All the results are summarized in Table 1. One can notice

Table 1. Performance indices.

l [ nup | 2rMs | Srums |
0.0707 | 0.0019
0.0705 0.0019

on 8
off 51

that the RMS value of the state and the RMS value of the
auxiliary sliding variable are evidently small even when the
triggering mechanism is activated. Finally, the number of
updates is evidently reduced with respect to the case in
which the state is always transmitted over the network,
thus implying advantages in terms of packet loss, delays
and jitter.

8. CONCLUSIONS

In this paper, recent results on the combined use of MPC
and SMC have been discussed. The proposed solutions

allow one to reduce the computation burden typical of
the constrained optimization problem in presence of un-
certainty terms. The introduction of an ISM component
presents the advantage to completely reject or reduce to a
minimum the matched uncertainties of the plant, so that
the MPC component can be designed on a system with re-
duced disturbances. This is beneficial in terms of feasibility
and stability properties of the MPC algorithm, which, in
presence of large disturbances, could not guarantee feasible
solutions while satisfying input and control constraints.
Three different robust control schemes, recently published
in the literature, have been presented. The first one is a
robust MPC/ISM control scheme for nonlinear continuous-
time uncertain systems. The second scheme is the cor-
responding multirate discrete-time version. Finally, the
third scheme is a model-based event-triggered MPC/ISM
control scheme for continuous-time systems.
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