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Abstract. The production of novel types of complex shapes is nowadays enabled by new manufacturing 

paradigms such as additive manufacturing. The continuous increase of shape complexity imposes new 

challenges in terms of inspection, product qualification and process monitoring methodologies. Previously 

proposed methods for 2.5D free-form surfaces are no longer applicable in the presence of this kind of new full 

3D geometries. This paper aims to tackle this challenge by presenting a statistical quality monitoring approach 

for structures that cannot be described in terms of parametric models. The goal consists of identifying out-of-

control geometrical distortions by analysing either local variations within the part or changes from part to part. 

The proposed approach involves an innovative solution for modelling the deviation between the nominal 

geometry (the originating 3D model) and the real geometry (measured via x-ray computed tomography) by 

slicing the shapes and estimating the deviation slice by slice. 3D deviation maps are then transformed into 1D 

deviation profiles enabling the use of a profile monitoring scheme for local defect detection. The feasibility 

and potential of this method are demonstrated by focusing on a category of complex shapes where an elemental 

geometry regularly repeats in space. These shapes are known as lattice structures, or metamaterials, and their 

trabecular shape is thought to provide innovative mechanical and functional performance. The performance of 

the proposed method is shown in real and simulated case studies.  

Keywords: complex shape; lattice structure; statistical quality monitoring; profile monitoring; additive 

manufacturing; 3D printing. 

 

1. Introduction 

Thanks to the advent of new manufacturing and inspection technologies, a novel class of complex 

shapes is going to spread. Since the first seminal developments in statistical quality monitoring 



 

 

applications, the analysis of dimensional and geometrical features has evolved from univariate to 

multivariate quality characteristics, and then from profile data to surface measurements and high 

dimensional point clouds. Fig. 1 depicts this evolution, driven by continuous technological 

developments in industry. Nowadays, the shape complexity of products is no longer limited to simple 

2.5D free-form surfaces, as completely new levels of design freedom have been made available. The 

increased capability of producing these brand new 3D geometries is imposing the need to rethink and 

innovate the statistical quality monitoring methodologies adopted in discrete manufacturing 

processes. 

 

 

Fig. 1 – Example of the evolution of shape complexity in industrial statistical quality monitoring problems (the picture 

of the complex shape on the right is from Galjaard et al., 2014) 

 

 

The proposed approach belongs to the family of statistical quality monitoring approaches for complex 

shapes that involves the analysis of a map showing the deviation of the manufactured shape from the 

nominal shape, i.e., the originating Computer Aided Design (CAD) file. Analysis of deviations also 

represents the basic approach as far as quality inspection is concerned, i.e., to decide whether the 

deviation map observed is compatible with the specifications. However, compared to existing 

literature (see also the review in Section 2), the proposed approach presents a first novel contribution 

in the way in which the deviation map is modelled and monitored. In fact, most of the existing 



 

 

approaches for quality monitoring of complex shapes and surfaces entail an extension of the profile 

monitoring methodology (Colosimo et al., 2014; Del Castillo et al., 2015; Wang et al., 2014; Zang 

and Qiu, 2018a, 2018b). At a first stage, a model is created to represent the deviation observed at each 

location, e.g., in case of Cartesian coordinates, 𝑑(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 𝑧) + 𝑒(𝑥, 𝑦, 𝑧), where the term 

𝑓(∙) represents a large-scale parametric model and the term 𝑒(∙) represents the noise term, which can 

be 𝑖𝑖𝑑 or have a spatial autocorrelation structure to be modelled as well. Then, the model is fitted to 

each surface and the coefficients are included in one vector that is monitored by means of multivariate 

control charting schemes, whereas a second control chart can be used to monitor the residual noise 

variance. Starting from this seminal idea, various other solutions have been proposed, including 

nonparametric methods or Gaussian processes for modelling the deviation map: the control chart is 

built on the vector of deviations between the fitted model and the measured data at a given set of 

checkpoints defined as a reference (Colosimo et al., 2014; Del Castillo et al. 2015, Wang et al., 2014, 

Zang and Qiu, 2018a and 2018b).  

Passing from free-form surfaces to full 3D shapes, methods based on surface modelling and/or point-

to-point discrepancy analysis become computationally expensive or even intractable. We propose a 

method with a first novelty aspect that regards the shift from point-to-point deviations to deviations 

modelled at “sub-unit” or “sub-feature” level. The underlying idea consists of dividing the complex 

shape into sub-features and estimating their local deviation maps. In the proposed approach, each 

deviation map is modelled by slicing the shape and looking at the deviation from the nominal 

geometry in each slice, as it is usually done for image and video-image data. Thanks to this slicing 

operation, it is possible to transform a complex 3D deviation map into a set of 1D deviation profiles, 

one for each sub-feature, which associates one estimated deviation value to each slice. This approach 

allows one to easily apply profile monitoring methods to very complex 3D point clouds, by capturing 

spatial patterns of local deviations as well, along one predefined direction, i.e., the direction along 

which the slicing was applied.  

The proposed approach also provides a novel perspective compared to other studies that proposed 



 

 

summarizing the quality information enclosed in 3D point clouds. In previous literature, the deviation 

map was summarized as a whole, using a quantile-quantile (Q-Q) plot (Megahed et al., 2010; Wells 

et al., 2013) or by considering a set of average deviations in different regions of interest (Huang et 

al., 2018; Stankus and Castillo-Villar, 2018). Representing the deviation in the form of a Q-Q plot 

yields the loss of any information about the spatial dependence of the deviations and, being a global 

approach, it prevents comparing deviation patterns in different locations of the part. On the other 

hand, computing an average deviation in different regions of the shape enhances the detection of local 

anomalies, but the use of average deviations may filter out potential “signatures” of interest in the 

deviation pattern.  

As an important by-product, the proposed solution has a direct connection with additively 

manufactured (or 3D printed) parts, as they are produced according to a layer-wise (i.e., slice by slice) 

paradigm. In this framework, by combining the slicing operation with the profile monitoring scheme, 

it is possible to be consistent with the natural way in which the part is built.  

A second main contribution of this study regards the quality problem addressed, which entails 

complex 3D geometries that go beyond 2D and 2.5D surface data usually investigated in mainstream 

literature. In particular, this study addressed a novel class of quality problems, where an elemental 

geometry regularly repeats within the structure, i.e., any cellular structure with non-stochastic 

geometry of the cell. In this framework, the paper specifically focuses on a category of complex 

shapes that has been gaining increasing interest in industry, known as lattice structures (Wu et al., 

2019). In lattice structures, the elemental geometry that regularly repeats in space is usually 

characterized by a trabecular cell (Fig. 2a). These structures also belong to the category of 

metamaterials, as they gain their functional properties from their structure rather than inheriting them 

directly from the material they are composed of (Wu et al., 2019).  

The industrial interest in lattice structures is due to the many interesting properties that make them an 

effective solution in a wide range of applications (Fig. 2b, c, d). They combine a lightweight design 

with high specific stiffness and strength, resulting in high stiffness-to-weight ratios required in the 



 

 

aerospace and racing sector (Fig. 2c, d). Their regular structure also yields isotropic performance that 

make them preferable to more consolidated lightweight designs. They enable many more additional 

benefits, e.g., enhanced osteo-integration and compatibility with the human tissues for bio-medical 

applications (Fig. 2b), advanced heat exchanging properties, and high energy absorption capabilities.  

 

 

Fig. 2 – Examples of lattice structure geometries (a) (Hanks et al, 2020) and examples of their industrial applications: b) 

hip implant (Wang et al. 2018), c) support bracket for space application (Komarek et al., 2017), d) titanium insert for 

aerospace applications1 

 

 

Since lattice structures involve unit cell geometries that regularly repeat in space, it is particularly 

critical to define and develop new methods that allow one to determine the variability of the 

geometrical properties within the part and from part to part.  

Starting from a geometrical reconstruction of the lattice structure via x-ray computed tomography 

(CT), the spatial map of deviations from the nominal geometry is sliced and modelled in the form of 

 
1 https://commons.wikimedia.org/wiki/File:Atos_titanium_insert_Courtesy_of_Materialise.jpg 



 

 

deviation profiles associated with each individual unit cell. The pattern of the deviation profile is 

representative of the natural signature of the process that, in the absence of special causes, should 

repeat from cell to cell.  

The performance of the proposed approach is demonstrated by means of both simulated and real data 

involving metal lattice structures manufactured via laser powder bed fusion. The method is compared 

against a benchmark approach representative of a simple industrial practice, which relies on 

monitoring a synthetic quality index commonly used in literature devoted to lattice structure 

characterization (Van Bael et al., 2011). 

The study focuses on industrial metal AM applications involving qualification procedures requiring 

homogeneous design and process conditions throughout production. Nevertheless, the proposed 

approach is open to possible use in one-of-a-kind applications too. Indeed, by characterizing the 

deviation profile of each unit cell within the part it could be possible to detect outlying cells 

characterized by an anomalous pattern compared to other cells. This potentially allows one to identify 

local weaknesses in the structure even if the overall shape of the component changes from build to 

build. Therefore, the proposed approach is suitable for monitoring the stability of the production 

process over time, but also for detecting local geometrical distortions in one single part, making it 

possible to develop conformity criteria.  

Moreover, although the proposed method is presented for application to lattice structures, it can be 

easily applied to any other complex shape, as the slicing operation is applicable to any geometry. This 

allows practitioners to rely on the extensive literature on profile monitoring to complete the quality-

monitoring task. 

The paper is organized as follows. Starting from a state-of-the-art overview of statistical quality 

monitoring methods for complex shapes in Section 2, a motivating case study is presented in Section 

3 and the proposed approach is then described in Section 4. Section 5 presents a simulation analysis 

aimed at assessing the performance of the proposed approach and highlighting its enhanced 

performance compared to a benchmark competitor. Section 6 presents further results based on a real 



 

 

case study to demonstrate the practical use of the method. Section 7 concludes the paper.    

 

 

2. Statistical quality monitoring of complex shapes 

The continuously enhanced capability to produce complex shapes in discrete part manufacturing has 

motivated increasing research in the field of statistical analysis and statistical quality monitoring of 

complex geometries and spatially dense metrology data.  

Mainstream literature focuses on the analysis of free-form surfaces based on 2.5D or 3D point-cloud 

data for different kinds of applications, from inspection to process monitoring and reverse 

engineering. The capability to model 2.5D surfaces enabled the extension of statistical quality 

monitoring methods from profile data to surface measurements and high-dimensional point-clouds. 

Relying on this, one major stream of research involves the use of model-based approaches, where a 

spatial model was fitted to the measured deviation from a nominal surface and combined with a 

multivariate statistical quality monitoring technique (Colosimo et al., 2014; Wang et al., 2014; Zang 

and Qiu, 2018a, 2018b).  

Colosimo et al. (2014) presented an extension of statistical process monitoring methods from profile 

to surface data, where a Gaussian Process (GP) was used as a tool for surface monitoring as it 

simplifies the modelling step by avoiding the need to select appropriate regressors. Based on the GP-

fitted surface, a control charting scheme was proposed for monitoring the deviations from the in-

control pattern estimated in phase I in correspondence to predefined checkpoints.  

Relying on a Gaussian-Kriging model, Wang et al., (2014) presented a surface monitoring approach 

applied to the vector of surface model parameters representing quality characteristics of interest. Del 

Castillo et al. (2015) showed that a geodesic GP, which considers correlations between two points on 

the surface as a function of their geodesic distance on the surface, enables a better free-form surface 

reconstruction than that obtained by relying on Euclidean distances. A nonparametric kernel 

smoothing method for surface data was proposed by Zang and Qiu (2018a and 2018b). In phase I, 



 

 

Zang and Qiu (2018a) proposed monitoring the maximum deviation from an in-control surface model, 

whereas, in phase II Zang and Qiu (2018b) proposed a CUSUM monitoring scheme for the absolute 

deviations. 

Other authors proposed methods for the analysis of deviation maps using summary statistics or 

models in lower dimensional spaces. In this stream of research, some authors (Megahed et al., 2010; 

Wells et al., 2013) proposed synthetising the information enclosed by the 3D deviation map in terms 

of the quantile-quantile (Q-Q) plot of the distribution of point deviations from the nominal shape. A 

profile monitoring approach was then applied to monitor the Q-Q curve. This method allows one to 

represent the whole deviation in the form of a 1D curve, with the possible loss of local information. 

Other authors proposed dividing the deviation map into regions of interest (ROIs) and estimate 

synthetic descriptors in each ROI. Stankus and Castillo-Villar (2018) combined this method with a 

multivariate generalized likelihood ratio (GLR) control chart to monitor the mean deviation in each 

ROI. Similarly, Hiang et al. (2018) proposed a statistical monitoring method where small sub-regions 

of a complex shape were characterized by two synthetic indexes, namely the non-random distribution 

of abnormal points and the plane direction deviation of a sub-region. He et al. (2017) proposed a 2D 

version of this approach, by first projecting the original 3D deviation map onto a 2D space in one 

predefined direction. ROI-based methods allow one to detect and analyse local anomalies but 

estimating the synthetic descriptors may filter out some relevant process “signatures”. 

A different research stream deals with some recent studies on statistical quality monitoring methods 

for manifold data. In this field, rather than fitting a spatial model to the surface, Zhao and Del Castillo 

(2019) and Del Castillo and Zhao (2019) proposed a statistical quality monitoring approach based on 

monitoring “intrinsic” quantities of the surface that are invariant to rigid transformations and do not 

depend on distances across the 3D Euclidean space in which the part exists. Shi et al. (2019) focused 

on identifying the nature of part-to-part variations in the presence of manifold data without any prior 

knowledge of the variation patterns. 

In addition, it is worth mentioning that other methods, despite being proposed for image data, may 



 

 

potentially be suitable for or adapted to complex shapes. As an example, Menafoglio et al. (2018) 

presented a study where a destructive inspection of random cellular structures led to image-based 

quality monitoring. The probability density function (PDF) of a synthetic descriptor computed in each 

image was used to detect out-of-control changes of cell morphology. Similarly, Bui and Apley (2018) 

proposed a method for detecting changes in the nature of stochastic textures by monitoring the joint 

distribution of pixel intensities, assuming that 2D image data was characterized by random patterns, 

without any golden standard. 

As mentioned in the introduction, the proposed approach belongs to the family of methods that entail 

estimating a deviation map between the manufactured shape and a nominal prototype. Compared to 

the aforementioned literature, the proposed method entails a different perspective on the way in which 

the deviation map can be modelled and monitored, opening up to statistical quality monitoring of 3D 

shapes and structures the complexity of which goes beyond that of 2D and 2.5D surfaces.  

 

3. The lattice structure case study 

Lattice structures with regularly repeating unit cells represent the complex shapes that motivate the 

present study. These structures are well suited to being produced using additive manufacturing but 

there is still a lack of statistical quality monitoring tools in industry (Colosimo, 2018). Detecting local 

defects in these complicated geometries is highly relevant, as outlined by various authors (Liu et al., 

2017; Melancon et al., 2017; Dallago et al., 2019). Indeed, local geometrical and dimensional 

inaccuracies of the unit cells may have a detrimental effect on the elastic modulus and compressive 

strength of the structure. As an example, Liu et al. (2017) showed that the magnitude of strut 

oversizing/undersizing influences the type of failure mechanism, whereas Melancon et al. (2017) 

pointed out that a geometrical mismatch between the produced specimen and the originating CAD 

model may affect osteo-integration performance in biomedical applications. 

In the following sections of this paper, the term “as-built geometry” is used to indicate the geometry 

of the produced lattice structure reconstructed by means of non-destructive inspections, and the term 



 

 

“as-designed geometry” to indicate the original CAD model used to produce the structure. 

The case study considered in this paper consists of a lattice structure with a designed porosity of 90%, 

which provides a very high stiffness-to-weight ratio and, at the same time, advanced energy 

absorption performance. The lattice structure consists of 𝑁 = 64 dodecahedron unit cells of size 𝑙 =

10 𝑚𝑚 within a specimen of dimension 40 ×  40 ×  40 mm. Each unit cell consists of 32 prismatic 

elements with a strut diameter of 0.67 mm. Fig. 3a shows top, side and 3D views of the dodecahedron 

unit cell.  

The lattice structure was produced by Laser Powder Bed Fusion (LPBF) of A357 Al-Si-Mg 

aluminium alloy with a particle size in the range 20 − 63 μm. Two copies of a cubic lattice specimen, 

hereafter denoted as specimen A and specimen B, were produced using a Renishaw AM250 system 

with the process parameters shown in Table 1. The specimens were produced with two 40 ×  40 mm 

thin walls of 0.6 mm wide, on opposite sides of the structure to enable additional measurements and 

tests not considered in this study. The geometrical accuracy analysis was limited to the lattice 

structure that separates the thin walls. 

The specimens’ location within the build area and a sample image of specimen A is shown in Fig. 3b. 

 

Fig. 3 – a) Top view (left), side view (right) and 3D view of the dodecahedron unit cell; b) 

Specimen location within the build area (left) and example of as-built specimen (right) 



 

 

 

Table 1 – LPBF process parameters 

Scan strategy Scan mode Laser power Exposure time 
Point 

distance 

Hatch 

distance 

Layer 

thickness 

Meandering Pulsed 200 𝑊 140 𝜇𝑠 80 𝜇𝑚 130 𝜇𝑚 25 𝜇𝑚 

 

The as-built specimens were inspected using a North Star Imaging X25 X-ray CT scan system with 

a resolution or 33 𝜇𝑚. Fig. 4 shows some examples of slice images generated by the x-ray CT scan 

of the as-built lattice specimen A. Each slice includes 4 ×  4 unit cells.  

 

 

Fig. 4 – Example of images obtained by slicing the as-built 3D mesh of the lattice structure (vertical and horizontal grey 

lines are superimposed onto the as-built slices to show the partition into 4 ×  4 unit cells)  

 

In order to introduce on purpose a variation between the geometrical and dimensional properties of 

the two specimens, an anomaly of the inert gas flow was used as defect driver. In particular, a non 

uniform gas flow was generated in the location of the build area where specimen B was placed (see 

Fig. 3b). The effect of this anomaly was investigated in a previous study by using the same gas flow 



 

 

settings on the same machine, the same process parameters and the same A357 aluminium powder 

(He et al., 2019). It is known that a non-uniform gas flow may produce a lower dimensional accuracy 

of the final part. Since this is an undesired source of variability with an assignable cause, it is worth 

signalling the resulting effect on the monitored parts. 

The dataset can be made available by the authors upon request. 

 

4. Proposed methodology 

The overall method relies on three major assumptions: i) The possibility of representing the monitored 

structure as the union of unit cells of fixed geometry that regularly repeats in space. ii) The application 

in a production framework, where all process parameters are kept fixed. iii) The use of post-process 

(ex-situ) x-ray CT for shape reconstruction. X-ray CT is a standard for many mission-critical and 

high-value-added components in industry, and it represents the only way to reconstruct both external 

and internal features.  

Assumption i) applies to a wide range of industrial products where enhanced functional performance 

is achieved thanks to lattice structures. Extensions of the proposed approach or alternative solutions 

could be considered when dealing with structures in which the unit cell’s morphology varies within 

the part, such as in products in which the lattice shape adapts to the manifold it belongs to. 

The rationale behind assumption ii) is that industrial qualification procedures in metal AM currently 

require that both design parameters and process parameters are kept fixed, in agreement with the 

ISO/ASTM standards in AM. In particular, the ISO/ASTM 52904 standard (ISO/ASTM, 2019) 

specifies that, once the machine has been calibrated, all the machine parameters (including scanning 

strategies) shall be fixed to establish the so-called “machine baseline parameters” to be used for all 

following builds. The machine shall be used in its calibrated state, keeping constant all settings, to 

guarantee performance repeatability. A certificate indicating the machine conforms to baseline 

parameters shall remain effective until the machine requires a new qualification. For some 

applications even more stringent standards are available. As an example, for space applications, 



 

 

standards impose that each machine shall be used in its calibrated state not only avoiding any change 

of process parameters and scanning strategies, but also with all environmental and operational 

conditions kept fixed and using only virgin powders in any build (NASA, 2017a, 2017b). Therefore, 

assumption ii) applies to the most relevant industrial uses of metal AM technologies for the 

production of series of complex and innovative products. In this framework, there is currently a lack 

of adequate quality modelling and monitoring tools. Extensions of the proposed approach could be 

considered to deal with heterogeneous conditions as well. To this aim, transfer learning 

methodologies could be possibly used (Tsung et al., 2018).  

A lattice structure can be represented by an array composed of 𝐼 × 𝐽 × 𝐾 unit cells placed side by 

side in the 𝑋 and 𝑌 directions, and stacked on top of one another in the 𝑍 direction, in a regular grid. 

Without loss of generality, we consider unit cells with a cubic envelope the side length of which is 𝑙. 

We also assume that all the unit cells in the structure have the same as-designed geometry and no 

incomplete or partial cells are included. Under these assumptions, a lattice structure can be depicted 

as shown in Fig. 5. Referring to additively manufactured structures, hereafter the 𝑍 direction indicates 

the build direction, i.e., the direction along which material is added on a layer-by-layer basis to 

produce the part.  

 

Fig. 5 – Schematic view of a lattice structure composed of 𝐼 × 𝐽 × 𝐾 unit cells 

 

In the framework of additive manufacturing processes, the standard format for representing both the 

as-designed and as-built geometries is the STL format (Standard Triangulation Language) and this 



 

 

format is used in this study, too. 

The underlying idea of the proposed methodology consists of modelling the deviation between the 

as-built and the as-designed geometry for each unit cell of a lattice structure and using a statistical 

monitoring scheme to determine whether one or more unit cells exhibit an out-of-control geometrical 

distortion compared to the natural variability of the deviations from the as-designed shape in the entire 

structure.  

The method can be applied to model and analyse the cell-to-cell variability in one single part, or to 

monitor the stability over time of within-part and part-to-part variability in a production series. For 

sake of clarity, the former application is presented first. The extension to a series production 

framework is discussed in Sub-section 4.6. 

The method can be schematized as shown in Fig. 6, where, starting from the as-built and as-designed 

geometries of the same part, six sequential steps are envisaged. These steps are described and 

discussed in Sub-sections 4.1 – 4.5. 

 

 

Fig. 6 – Overall scheme of the proposed methodology 

 

 

 



 

 

4.1 3D shape registration 

In order to estimate the deviation between the as-built and as-designed geometry, a registration 

operation is needed. Various methods have been proposed so far for registration purposes of 3D 

shapes that are applicable to meshes in STL format, including semi-automatic and fully automatic 

methods (Senin et al., 2013; Rusinkiewicz and Levoy, 2001; Holz et al., 2015). In this study, a semi-

automatic alignment approach was applied, which envisages a two-stage procedure after placing the 

as-built and the as-designed geometry within a common coordinate system. The first stage consists 

of first rough registration based on landmarks defined by the operator. The second stage consists of 

fine registration based on the iterative closest point (ICP) algorithm (Rusinkiewicz and Levoy, 2001) 

that minimizes the alignment error between the two meshes applying  a combination of rigid rotation 

and translation operations iteratively. The ICP algorithm has become the de-facto standard for fine 

registration of point clouds in various applications, but several variants have been proposed so far 

(Rusinkiewicz and Levoy, 2001; Senin et al., 2013). In this study we refer to the algorithm presented 

in Pulli (1999) and implemented in the open source Meshlab software (Callieri et al., 2003), which 

exploits a point-to-plane error metric (additional details can be found in Rusinkiewicz and Levoy, 

2001). This algorithm has been widely used in additive manufacturing applications (e.g., for range 

map alignment of 3D scanned surfaces and dimensional compliance controls), and it has been found 

to be robust in the presence of complex shapes containing many kinds of surface features 

(Rusinkiewicz and Levoy, 2001). 

It is worth noticing that the final spatial pattern of deviations between the as-built and as-designed 

geometries will consist of two contributions, i.e., the actual deviation caused by the inaccuracy and 

intrinsic signature of the manufacturing process, and the residual alignment error. Section 6.1 presents 

an assessment of the registration algorithm applied to our real case study. Future studies will possibly 

consider monitoring the registration coefficients together with the shape model parameters, thereby 

extending the approach proposed by Grasso et al. (2016) for statistical quality monitoring of 

functional data.  



 

 

 

4.2 Pre-processing and slicing of the 3D geometry 

Rather than computing the deviation between the as-built and as-designed geometries in three-

dimensional space, the proposed approach envisages a slicing operation of both geometries analogous 

to the same operation needed to generate the build file for 3D printing of the part.  

The as-built and as-designed geometries are sliced into a series of parallel cross-sections that are 

spaced apart at a fixed distance ℎ. This allows one to compute the value of a given deviation index in 

each slice, i.e., at different levels along the build direction, leading to a representation of the deviation 

between the two geometries in a functional form, i.e., a deviation profile as a function of the 𝑍 

coordinate. This yields a synthesis of the 3D deviation mapping in a 1D representation, which can be 

modelled by means of 1D functional data analysis methods (Ramsay, 2004). In this study, we set the 

spacing ℎ equal to the layer thickness used to 3D print the part. 

The as-designed geometry, represented in STL format, can be sliced into a vector graphics 

representation, which is then converted into bitmap images the maximum spatial resolution of which 

is limited by the slicing software. The x-ray CT reconstruction is first pre-processed by setting a 

threshold for voxel intensities to maximize the distinction between the solid part and the surrounding 

atmosphere. The resulting voxel representation is then sliced into bitmap images the maximum spatial 

resolution of which is limited by the original voxel size. In order to enable a pixel-wise comparison 

between each pair of images, a rescaling operation is applied to set an equal number of pixels per unit 

length in both the images. The final image resolution and the uncertainty sources related to the pre-

processing phase are expected to contribute to the natural variability of the deviation index as 

nuisance factors.  

A sliced representation of each unit cell is easily obtained by dividing each slice into 𝐼 × 𝐽 images. 

Let 𝑠 be the spatial resolution of both as-built and as-designed geometry reconstructions: each unit 

cell is sliced into 𝑛 2D images of size 𝑝 × 𝑝 pixels, where 𝑛 = 𝑙/ℎ and 𝑝 = 𝑙/𝑠, with 𝑙 𝑏𝑒𝑖𝑛𝑔 the 

side of the cubic envelope that encloses the cell.  



 

 

The 𝑧𝑡ℎ slice, with 𝑧 = 1,2, … , 𝑛, is a binary image, in which the intensity of the (𝑢, 𝑣)𝑡ℎ pixel, for 

𝑢 = 1, … , 𝑝 and 𝑣 = 1, … , 𝑝, is such that 𝑖𝑢,𝑣,𝑧 = 0 (black) if it is a foreground pixel (where there is 

material) and 𝑖𝑢,𝑣,𝑧 = 1 (white) if it is a background pixel (where there is no material). This applies 

not only to the as-designed geometry but also to the as-built one gathered via x-ray CT as well. Indeed, 

the grey levels that correspond to x-ray attenuation are lost when an STL representation of the CT 

scanned geometry is extracted.  

 

4.3. Estimation of the deviation index 

Thanks to the registration operation, it is possible to compare the 2D image of the as-built geometry 

of each unit cell with the as-designed one, slice by slice. Given a pair of images that correspond to 

the 𝑧𝑡ℎ slice of the as-designed cell and the 𝑧𝑡ℎ slice of the as-built cell, let 𝑖𝑢,𝑣,𝑧(𝑎𝑠. 𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑) and 

𝑖𝑢,𝑣,𝑧(𝑎𝑠. 𝑏𝑢𝑖𝑙𝑡) be the intensities of (𝑢, 𝑣)𝑡ℎ pixel in the as-designed slice and in the as-built slice, 

respectively. A superimposition of these two images leads to four possible regions of interest: 

• Region 1: consists of all pixels in which both 𝑖𝑢,𝑣,𝑧(𝑎𝑠. 𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑) = 0 and 𝑖𝑢,𝑣,𝑧(𝑎𝑠. 𝑏𝑢𝑖𝑙𝑡) = 0, 

i.e., pixels where material is present in both the images. 

• Region 2: consists of all pixels in which both 𝑖𝑢,𝑣,𝑧(𝑎𝑠. 𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑) = 1 and 𝑖𝑢,𝑣,𝑧(𝑎𝑠. 𝑏𝑢𝑖𝑙𝑡) = 1, 

i.e., pixels that correspond to the background in both the images. 

• Region 3: consists of all pixels in which 𝑖𝑢,𝑣,𝑧(𝑎𝑠. 𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑) = 0 and 𝑖𝑢,𝑣,𝑧(𝑎𝑠. 𝑏𝑢𝑖𝑙𝑡) = 1, i.e., 

pixels where material is present in the as-designed slice but not in the as-built slice (i.e., less 

material has been produced than indicated in the CAD model). 

• Region 4: consists of all pixels in which 𝑖𝑢,𝑣,𝑧(𝑎𝑠. 𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑) = 1 and 𝑖𝑢,𝑣,𝑧(𝑎𝑠. 𝑏𝑢𝑖𝑙𝑡) = 0, i.e., 

pixels where material is present in the as-built slice but not in the as-designed slice (i.e., more 

material has been produced than indicated in to the CAD model). 



 

 

The union of region 3 and region 4 represents the deviation between the as-built and as-designed 

geometry. Fig. 7 shows an example of corresponding as-built and as-designed slices and their 

deviation (the images refer to the real case study described in Section 3). 

 

 

Fig. 7 – Example of as-built (top row) and as-designed (central row) slice images at different 𝑧 heights with the 

corresponding deviation (bottom row) 

 

 

The overall number of pixels that belong to the union of region 3 or region 4 is the number of pixels 

for which 𝑖𝑢,𝑣,𝑧(𝑎𝑠. 𝑏𝑢𝑖𝑙𝑡) − 𝑖𝑢,𝑣,𝑧(𝑎𝑠. 𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑) ≠ 0. Therefore, the deviation index for the 

(𝑖, 𝑗, 𝑘)𝑡ℎ unit cell as a function of the level along the 𝑍 coordinate can be defined in pixel-wise terms 

as follows: 

𝛿𝑖,𝑗,𝑘(𝑧) = ∑ ∑ ℐ(

𝑝

𝑣=1

𝑝

𝑢=1

𝑖𝑢,𝑣,𝑧(𝑎𝑠. 𝑏𝑢𝑖𝑙𝑡) − 𝑖𝑢,𝑣,𝑧(𝑎𝑠. 𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑) ≠ 0)𝑖,𝑗,𝑘 , 

 𝑖 = 1, … , 𝐼, 𝑗 = 1, … , 𝐽, 𝑘 = 1, … , 𝐾, 𝑧 = 1, … , 𝑛 

(1) 

 

where ℐ(∙) is the indicator function, that is 1 if the condition in brackets is true and 0 otherwise. 

In this study, we present the proposed methodology by using the deviation index 𝛿𝑖,𝑗,𝑘(𝑧) defined in 

Eq. 1. Nonetheless, the same approach can be applied to different definitions of the deviation between 

the as-built and as-designed geometry.  



 

 

It is worth mentioning that the deviation between the as-built and as-designed geometry can include 

not only a different shape of the sliced geometry, but also the possible lack of material, i.e., pores 

within the struts, which may have detrimental effects on the mechanical performance of the structure. 

Since the deviation index is computed as a pixel-wise difference, it is naturally suitable for taking 

into account the presence of pores in the struts as well.  

 

4.4 Profile modelling 

The deviation index 𝛿𝑖,𝑗,𝑘(𝑧) can be represented as a discrete 1D profile, where the 𝑧𝑡ℎ value measures 

the deviation between the as-built and as-designed geometry in the 𝑧𝑡ℎ slice along the build direction 

of the (𝑖, 𝑗, 𝑘)𝑡ℎ unit cell (Fig. 8).  

 

 

Fig. 8 – From slice-by-slice deviation to the 1D deviation index profile 

 

In order to analyse the natural variability of the deviation index profiles and to identify anomalous 

patterns, discrete profiles can be converted into a functional form. This allows one to design a control-

charting scheme grounded on the functional data analysis (FDA) framework. To this aim, we propose 

a representation of the functional profiles on a cubic B-spline basis (Ramsay, 2004) as follows: 



 

 

 

𝛿𝑖,𝑗,𝑘(𝑧) = ∑ 𝑐𝑖,𝑗,𝑘,𝑞Φ𝑞(𝑧, 𝝉
𝑄+𝐿−1

𝑞=1
), 𝑖 = 1, … , 𝐼, 𝑗 = 1, … , 𝐽, 𝑘 = 1, … , 𝐾, 𝑧 = 1, … , 𝑛 (2) 

 

where 𝑄 = 4 is the order of the B-spline functions (cubic splines), 𝐿 is the number of subintervals 

separated by 𝐿 − 1 interior knots, 𝝉 is the knot sequence 𝝉 = {𝜏𝑙, 𝑙 = 1,2, … , 𝐿}, 𝑐𝑖,𝑗,𝑘,𝑞 are the B-

spline coefficients for the (𝑖, 𝑗, 𝑘)𝑡ℎ unit cell, and Φ𝑞 are the B-spline basis functions. The B-spline 

basis is particularly suitable for fitting the deviation index profiles as they may present a discontinuity 

of first and second derivates at levels along the Z axis at which the trabecular shape exhibits abrupt 

changes (e.g., where struts connect to junctions). Indeed, by placing multiple coincident knots in 

which a discontinuous derivative occurs, this discontinuity can be properly captured by the B-spline 

model. 

The knot sequence 𝝉 can be defined in different ways, e.g., by manually selecting the knots’ locations 

or by setting an appropriate number of equispaced knots leading to a reasonable balance between the 

CPU time and goodness-of-fit. More advanced knot selection strategies have been proposed in 

literature so far (e.g., Goldenthal and Bercovier, 2004, Zhou and Shen, 2001; Molinari et al., 2004, 

Sangalli et al., 2009). In this study, the knot sequence was determined starting from an initial sequence 

of knots placed at the discontinuities of the as-designed geometry, and iteratively adding intermediate 

knots until a knee in the mean squared error (MSE) of the B-spline model residuals was found. The 

same knot sequence can be applied to deviation index profiles for unit cells of the same type and 

dimension.  

 

4.5 Profile monitoring 

Profile monitoring represents a category of statistical process monitoring methods suitable for dealing 

with profile data (Woodall, 2007). Various authors have proposed monitoring schemes for profiles 

fitted by means of a spline basis. First seminal works (Gardner et al., 1997, Williams et al, 2007) 



 

 

proposed the computation of metrics, e.g., the quadratic error, the absolute error, the maximum error, 

etc., to be monitored via univariate or multivariate control charts. Chuang et al. (2013) proposed a 

monitoring method that combined a B-spline model with a location control chart, i.e., a chart where 

the control region is represented by a confidence band around the in-control profiles. A different 

approach (Gomaa and Birch, 2019; Grasso et al., 2016; Hadidoust et al., 2015) consists of using a 

multivariate control chart to monitor the multivariate distribution of the B-spline model parameters. 

One additional control chart can be used to detect shifts in the model residuals too. In this study, this 

latter approach is followed.   

The methodology works as follows: 

• Once a lattice structure has been produced and measured via x-ray CT, the previously described 

steps are performed to estimate the deviation index for each unit cell and fit the B-spline model 

to the 𝑁 = 𝐼 × 𝐽 × 𝐾 deviation index profiles.  

• Let 𝑁 = 𝐼 × 𝐽 × 𝐾 be the number of unit cells in the structure and let 𝑖′ = 1,2, … , 𝑁 be the unit 

cell identifier that univocally associates each cell with a number in the range [1, 𝑁] according to 

a pre-defined order. The B-spline coefficients of all the deviation index profiles can be re-arranged 

into a 𝑁 × (𝑄 + 𝐿 − 1) matrix 𝐂 so that the (𝑖′, 𝑞)𝑡ℎ element of the matrix is 𝐂𝑖′,𝑞 = 𝑐𝑖,𝑗,𝑘,𝑞 =

𝑐𝑖′,𝑞. This matrix will be augmented by one column to include the sample mean of the 𝑖′-th 

deviation index profile 𝛿�̅�,𝑗,𝑘 = 𝛿�̅�′. This allows monitoring not only the shape of the profiles, but 

also their average value. The resulting data matrix used to design the control charts is the 

following 𝑁 × (𝑄 + 𝐿) matrix: 

 

𝐗 = [

𝑐1,1 …
𝑐2,1 …

𝑐1,𝑄+𝐿−1 𝛿1̅

𝑐2,𝑄+𝐿−1 𝛿2̅
… …

𝑐𝑁,1 …
… …

𝑐𝑁,𝑄+𝐿−1 𝛿�̅�

] = [

𝒙1
𝑇

𝒙2
𝑇

…
𝒙𝑁

𝑇

] (3) 

 

• For each deviation index profile, the mean squared error (MSE) of the B-spline model residuals 



 

 

is estimated too. The values are stored in the 𝑁 × 1 vector 𝑴𝑺𝑬, where: 

 

𝑀𝑆𝐸𝑖′ =
1

𝑁 − (𝑄 + 𝐿 − 1)
(𝛿𝑖′ − 𝛿𝑖′)𝑇(𝛿𝑖′ − 𝛿𝑖′), 𝑖′ = 1,2, … (4) 

 

• Two control charts can be designed. First, an Hotelling’s 𝑇2 control chart based on the data matrix 

𝐗 can be used to detect outlying patterns in the deviation index profiles, so that: 

 

𝑇𝑖′
2 = (𝒙𝑖′ − �̅�)𝑇𝐒−1(𝒙𝑖′ − �̅�), 𝑖′ = 1,2, …, (5) 

 

where 𝐒 is the variance-covariance matrix of the 𝐗 data matrix, and �̅� is the sample mean of 

vectors 𝒙𝟏, … , 𝒙𝑵. The upper control limit (UCL) for the 𝑇2 control chart, to be used in Phase I, 

is defined as follows: 

𝑈𝐶𝐿𝑇2 =
(𝑁 − 1)2

𝑁
𝛽

𝛼,
𝑄+𝐿

2
,
𝑁−𝑄−𝐿−1

2
 (6) 

 

where: 𝛼 = 𝛼′/2 is the Type I error computed by using the Bonferroni’s correction (Montgomery, 

2008), in which 𝛼′ is the family-wise Type I error; 𝛽
𝛼,

𝑄+𝐿

2
,
𝑁−𝑄−𝐿−1

2

 is the 100(1 − 𝛼)% percentile 

of a beta distribution with 
𝑄+𝐿

2
 and 

𝑁−𝑄−𝐿−1

2
 degrees of freedom. 

The second is a standard Shewhart’s control chart for the MSE statistic. 

 

In the presence of one single lattice structure, the use of the proposed control charts is analogous to 

the Phase I retrospective use of control charts in traditional statistical process control. The objective 

consists of signalling an alarm when one or more unit cells exhibit an outlying pattern in terms of 

deviation from the as-designed geometry. The use of a 𝑇2 control chart rather than a MEWMA or 

MCUSUM control chart is mainly due to the need to also detect a nonpersistent shift. As a matter of 

fact, shifts can also happen occasionally at a given location without having to remain persistent along 



 

 

the z direction.  

It is worth noting that, differently from traditional control charts, the X-axis of the chart is not a 

temporal axis, but represents a location. This kind of control chart has been referred to as a “spatial 

chart” in literature (Megahed, et al., 2011). Examples of spatial control chart methods were presented 

by Lin and Chiu (2006), Lin (2007a, 2007b), and Lin et al. (2008). In our study, the value on the X-

axis of the control charts is the identifier of the unit cell within the lattice structure, i.e., 𝑖’ = 1, … , 𝑁. 

This implies that, “by-construction”, there is univocal correspondence between each 1D deviation 

profile, i.e., each plotted point in the control charts, and each unit cell in the lattice structure. Thus, 

whenever an out-of-control situation is signalled, the corresponding unit cell location in the structure 

can be automatically identified. The 𝑇2 and 𝑀𝑆𝐸 control charts are independent from the data sorting, 

and hence they yield the same result for any possible ordering of the unit cells and corresponding 

deviation index profiles. Therefore, they are suitable for use as “spatial” control charts for the 

detection of outlying cell geometries in the lattice structure. 

 

4.6 Moving from one-of-a-kind to series production   

The method described in previous sub-sections refers to its possible use to detect anomalies affecting 

one or multiple unit cells of one single lattice structure. This approach applies to parts where the unit 

cell geometry regularly repeats within the entire structure. Grounding on the assumption that all unit 

cells are produced with the same process parameters and with the same geometry, a stable (in-control) 

process is expected to produce 1-D deviation profiles whose natural variability is random from cell 

to cell. On the contrary, any systematic or outlying variation affecting one or multiple unit cells is 

expected to be a possible indication of an out-of-control structure. Thus, by applying the proposed 

profile monitoring approach to the 𝑁 deviation profiles associated to 𝑁 unit cells of the same part, it 

is possible to signal an alarm whenever a geometrical or dimensional anomaly is present in one or 

more unit cells. This approach is suitable for quality modelling of one part at a time, and it is therefore 

directly applicable to one-of-a-kind structures. 



 

 

This procedure can be extended to the analysis of cell-to-cell variability even in the presence of 

multiple copies of the same structure with the same as-designed geometry. Indeed, a set of 𝑀 parts 

produced under in-control process conditions can be collected, each one consisting of 𝑁 unit cells. 

The proposed profile monitoring approach can be applied by considering all 𝑁 × 𝑀 deviation profiles 

collected during the design phase as replicates of the same profile pattern realization. In this case, the 

𝑁 × 𝑀 deviation profiles can be used to estimate the control limits for the 𝑇2 and 𝑀𝑆𝐸 control charts. 

A retrospective Phase I use of the control charts can be used to check whether the 𝑀 parts used to 

design the control charts were actually in-control or not. In Phase II, for every newly manufactured 

lattice structure of the same type and geometry, the 𝑇2 and 𝑀𝑆𝐸 statistics are computed for each unit 

cell with a sample size 𝑛 = 1, since unit cells are treated as individual observations. An example of 

this approach is discussed in Section 6.3. 

Despite being suitable to detect local anomalies affecting even one single unit cell of a part, this 

approach is not suitable to distinguish within-part and between-part variations. To this aim, the 

proposed approach can be further extended as follows. A set of 𝑀 parts produced under in-control 

process conditions, each one consisting of 𝑁 unit cells, can be collected and used to design a 

multivariate control charting scheme with sample size 𝑛 = 𝑁.  This implies that each lattice structure 

consists of a rational subgroup, allowing the design of a 𝑇2 control chart with 𝑛 = 𝑁 combined with 

a control char for multivariate variability, e.g., the Wishart control chart (Montgomery, 2008). In this 

extended version of the proposed approach, the Hotelling’s 𝑇2 control chart is used to detect shifts in 

the mean deviation from the nominal geometry from one part to another, whereas the Wishart control 

chart allows monitoring the stability of the within-part variability over time. For the definitions of 𝑇2 

and Wishart control charts we refer the reader to Montgomery (2008). This extended approach is less 

sensitive to local anomalies, being based on aggregated statistics, but it is suitable to detect global 

shifts of the mean together with unnatural changes in the within-part variability. An example of this 

approach is discussed in Section 6.4. 



 

 

 

5. Simulation study 

A simulation study was performed to assess the effectiveness of the proposed approach in detecting 

local geometrical distortions and to compare its performance against a benchmark competitor 

representative of industrial practices. Starting from the real x-ray CT reconstruction of specimen A, 

local geometrical distortions were simulated by injecting an artificial modification of the images that 

represent the as-built geometry after the 3D mesh slicing operation. Both the as-designed and as-built 

geometries were sliced at ℎ = 0.025 mm centres, equal to the layer thickness applied in the LPBF 

process. This yielded a number of slices for each unit cell equal to 𝑛 = 400.  

In order to make the injection of local anomalies realistic, we referred to previous studies on the effect 

of local geometrical distortions on the mechanical performance of lattice structures. In particular, Liu 

et al. (2017) pointed out that both oversizing and under-sizing single struts and junctions might 

influence the type of failure mechanism. Based on this, a scale factor, hereafter denoted by 𝑠𝑓, was 

applied either to one single strut or to one single junction to simulate a local oversizing effect as 

shown in Fig. 9. The severity of the simulated distortion was controlled by varying the scale factor in 

the range 𝑠𝑓 ∈ [1, 2], where 𝑠𝑓 = 1 corresponds to the original image, without distortion. 

 

 

Fig. 9 – Example of simulated oversizing effect in one single strut (top panel) and in one junction (bottom panel) for 

different scale factor levels  



 

 

 

 

The simulation analysis was performed by injecting the artificial oversizing effect in randomly 

selected struts and junctions and evaluating the Type II error as a function of the scale factor. 

The control charts were designed by removing the profile data corresponding to the 52-nd unit cell 

of specimen A with the actual distortion defect.  

In the absence of benchmark methods for statistical quality monitoring of lattice structures in 

literature, as a competitor approach we considered a method that is representative of a “simple” 

industrial practice. It relies on monitoring a commonly used quality index for lattice structures. 

Various authors investigated the geometrical accuracy of lattice components by measuring synthetic 

descriptors (Liu et al., 2017; Dallago et al., 2019; Han et al., 2018; Melancon et al., 2017; Van Bael 

et al., 2011). Among them, two examples of quality metrics commonly used are the average distance 

between each pair of struts, called average pore size, and the ratio between the empty volume and the 

overall envelope volume of the unit cell, also called as-built porosity (Van Bael et al., 2011). In this 

study, the latter index was considered.  A competitor statistical quality monitoring method was 

developed by designing a univariate Shewhart’s control chart to the as-built porosity of the cell. This 

approach is deemed representative of a solution that is easily implementable by practitioners in the 

presence of such complex structures. 

The average operating characteristic curves for our proposed approach and the competitor method in 

the two simulated scenarios, i.e., the one with simulated oversizing of the strut and the one with 

simulated oversizing of the junction, are shown in Fig. 10.    

Fig. 10 shows that the proposed method is effective in detecting even small deviations (with 𝑠𝑓 < 1.3) 

that are hardly visible to the naked eye when the 3D mesh is inspected. The fact that the proposed 

method outperforms the competitor is mainly due to the “local” nature of our profile monitoring 

technique, which takes into account the evolution of the deviation index along the build direction, 

rather than considering one single synthetic porosity value. 



 

 

 

 

Fig. 10 – Operating characteristic curves for the proposed approach (blue lines) and the competitor method based on the 

as-built porosity index (orange lines) for simulated junction oversizing (left panel) and simulated strut oversizing (right 

panel) 

 

 

Oversizing in the junction is easier to detect than oversizing in one single strut, as it yields a larger 

absolute deviation from the as-designed geometry. When the artificial defect is injected into one 

single strut, the gap between the performance of our proposed method and that of the competitors 

increases for the same reason, i.e., a more local distortion yields a smaller effect on the synthetic 

porosity index, making our proposed approach more effective. 

This analysis shows that the proposed method may be a suitable tool for keeping the quality of 

complex lattice structures under control, and for signalling local out-of-control deviations from the 

CAD model, which may translate into detrimental effects in terms of final performance.  

 

6. Real case study analysis 

6.1 Assessment of the alignment algorithm 

In order to estimate the validity of the registration operation and to evaluate the settings of the 

registration algorithm, two analyses were performed. The first analysis consisted of creating two 

identical copies of the nominal (as-designed) shape and aligning one with the other with different 

choices of the landmarks used for the first rough registration step. This first analysis allowed us to 

evaluate the minimum number of ICP iterations needed to guarantee the convergence of the algorithm 



 

 

for different initial misalignment errors and to evaluate the impact of different landmark choices on 

ICP convergence.  

Three different choices of the number of landmarks were considered. For each choice, two sets of 

landmarks were selected on two opposite sides of the lattice structure. On each side, the number of 

landmarks was equal to 𝑛𝑙𝑎𝑛𝑑 = 4, 8 and 16 respectively. Fig. 11a shows the location of the 

landmarks for each choice of 𝑛𝑙𝑎𝑛𝑑.  

 

Fig. 11 – a) Example of landmark locations on one side of the lattice structure for different choices of 𝑛𝑙𝑎𝑛𝑑; b) Number 

of ICP iterations to achieve an average MSE = 0 when registering two copies of the as-designed shape (left panel) and 

average MSE after 60 ICP iterations when registering the as-built shape compared to the as-designed one (right panel) 

 

The landmarks were placed at junctions along the external contour of the structure. For each landmark 

configuration, four trials were performed. In each trail, the location of landmarks on one copy of the 

shape was exactly the same as the other copy, but random initial misalignment conditions were 



 

 

selected. For each trial, the residual misalignment error was estimated as the mean squared error 

(MSE) for each pair of corresponding landmarks. The Euclidean distance was used for estimating the 

MSE.  

Fig. 11b (left panel) shows the 95% confidence intervals of the number of ICP iterations required to 

achieve an average MSE = 0 for each choice of 𝑛𝑙𝑎𝑛𝑑. Fig. 11b (left panel) confirms that increasing 

the number of landmarks caused a decrease in the number of iterations required. In the worst 

configuration, i.e., the one with 𝑛𝑙𝑎𝑛𝑑 = 4, fewer than 60 iterations were needed to achieve a perfect 

registration of the two copies of the same shape.  

By setting the number of ICP iterations at 60, the second analysis consisted of testing the same choice 

of landmarks in the registration between the as-built and as-designed shapes. The average MSE was 

computed by varying the initial misalignment error (also in this case four trials for each landmark 

condition were performed). Fig. 11b (right panel) shows that with 𝑛𝑙𝑎𝑛𝑑 = 4, the dispersion of the 

average MSE was larger than with 𝑛𝑙𝑎𝑛𝑑 = 8 or 𝑛𝑙𝑎𝑛𝑑 = 16. Moreover, there was no statistically 

significant difference in the use of either eight or sixteen landmarks on the final MSE. A similar 

analysis was repeated with larger numbers of ICP iterations, but no statistical improvement of the 

average MSE was observed. 

Generally speaking, a quantitative determination of the actual registration error can be obtained only 

for simulated data, where the ideal position of the points of the mesh is explicitly designed in the 

simulation (Senin et al., 2013).  Indeed, the MSE is affected both by the residual misalignment and 

by the local differences between the as-built and as-designed shapes. However, the preliminary 

analysis presented here allowed us to assess the effect of different choices of landmarks. In particular, 

the configuration with 𝑛𝑙𝑎𝑛𝑑 = 8 landmarks and 60 iterations of the ICP algorithm were selected and 

used in the following analysis. Keeping the settings for the registration algorithm of each analysed 

part fixed, the residual misalignment error will represent a nuisance term affecting the natural pattern 

and variability of the monitored deviation index profile. 



 

 

 

6.2 Cell-to-cell variability analysis for one single lattice structure 

The proposed method for within-part variability analysis and identification of local geometrical 

distortions was first applied to specimen A.  

As mentioned in Section 4, a data-driven selection of the knot sequence was applied. Starting from 

knots placed at z levels where major modifications of the as-designed geometry take place, additional 

knots were iteratively added and the MSE for all B-spline model residuals was recorded. Fig. 12a 

shows the boxplots of the MSE values for the 𝑁 = 64 unit cells of the lattice specimen corresponding 

to different knot sequences with an increasing number of knots, starting from a minimal know 

sequence with 𝐿 = 24 knots. The sequence with 𝐿 = 49 knots was eventually selected since the 

addition of further knots did not yield any significant reduction in the MSE of model residuals. The 

knot sequence is shown in Fig. 12b, where the correspondence between knot positions and salient 

features of the cell is highlighted (for sake of clarity one single deviation index profile is shown in 

Fig.12b, left panel). 

 

Fig. 12 – a) Boxplots of MSE values of B-spline model residuals for different knot sequences with an increasing 

number of knots; b) Example of knot placement in correspondence to salient features of the as-designed unit cell 

geometry (one deviation index profile is shown in the left panel) 



 

 

 

 

Fig. 13 shows all the deviation index profiles for the 𝑁 = 64 unit cells of lattice specimen A (top 

panel), the corresponding B-spline model fits (central panel) and the model residuals (bottom panel). 

The general pattern of the deviation index profiles can be regarded as a signature of the LPBF process 

with given process parameters for the selected dodecahedron lattice structure, with main 

discontinuities corresponding to the salient geometrical features of the unit cell.  

 

 

Fig. 13 – Deviation index profiles (top panel), B-spline model fits (central panel) and B-spline model residuals (bottom 

panel) for specimen A 

 



 

 

The cell-to-cell variability is caused by small local variations as a result of the LPBF process itself. 

In particular the cell-to-cell variability was lower at the centre of junctions and it inflated where 

diagonal struts were produced. Indeed, since the main source of deviation between the as-built and 

as-designed geometries is a general oversizing of the former compared to the latter, the deviation is 

larger at 𝑧 heights were more material was printed. 

The control charts for within-part variability analysis are shown in Fig. 14, designed with family-wise 

Type I error 𝛼 = 0.0027.  

 

 

Fig. 14 – Control charts for within-variability analysis of specimen A 

 

The 𝑇2 control chart signals an out-of-control situation at the 52-nd unit cell. The visual inspection 

of the deviations between the two geometries on a slice-by-slice basis revealed that the as-built 

geometry exhibits a global over-sizing of structs and junctions in the 52-nd cell compared to the 

original CAD model (Fig. 15a). One possible cause for such deviation is non-uniform powder 

recoating in the very last layers due to a worn recoating unit that modified the local energy density 



 

 

leading to a swelling of the structure. A few irregularities in the powder bed were observed at the end 

of the build. 

 

 

Fig. 15 – a) Examples of as-built, as designed and deviation images at the local distortion of the 52-nd unit cell 

belonging to specimen A signalled as out-of-control by the proposed control chart; b) Deviation index profile of the 

52nd-unit cell of specimen A signalled as out-of-control (red curve) superimposed on all other profiles that belong to 

specimen A 

 

The deviation index profile that corresponds to the unit cell signalled as out-of-control by the 𝑇2 

control chart is highlighted in Fig. 15b. In terms of 1D deviation index profile, this unit cell exhibits 

a different signature in the upper region, between slice 𝑛 = 325 and slice 𝑛 = 375, that is properly 

signalled by the control chart. It is worth noticing that this distortion may be hardly visible to the 

naked eye. Moreover, the as-built porosity of unit cells in specimen A range between 94.66% and 

94.81%, and the as-built porosity of the 52-nd unit cell is 94.67%, which makes the geometrical 

distortion not detectable by looking at the synthetic porosity index of the cell. Therefore, the proposed 

method may provide practitioners with a novel tool for characterizing the natural variability of lattice 

structures in more depth, and for identifying the presence of local out-of-control distortions that may 

be critical for the functional performance of the component.  

 

6.3 Cell-to-cell variability analysis for copies of the same structure 

A simplified example is presented to highlight the possible use of the proposed approach for the 

analysis of part-to-part variability and statistical process monitoring when copies of the same product 



 

 

are manufactured. As this is a simplified example, one single lattice specimen was used to design the 

control charts, i.e., specimen A, and the same control charts were then applied to the data from the 

second specimen, i.e., specimen B. The control limits estimated for specimen A were re-estimated by 

removing the deviation index profile that corresponds to the out-of-control cell with the local 

distortion defect. Fig. 16 compares the deviation index profiles for the unit cells of specimen A (left 

panel) and those for the unit cells of specimen B (right panel), whereas Fig. 17 shows the control 

charts designed based on 𝑀 = 63 in-control unit cells of specimen A and applied to all the cells of 

specimen B (only Phase II control charts are shown). 

 

Fig. 16 – Deviation index profiles of unit cells that belong to specimen A (left panel) and specimen B (right panel) 

 

 

 

Fig. 17 – Phase II control charts applied to unit cells that belong to specimen B 



 

 

 

Fig. 16 shows that, although the general patterns of the deviation index profiles repeat in the two 

copies of the same lattice structure, profiles that belong to specimen B have a larger mean value than 

those for specimen A, which corresponds to a more severe global oversizing effect in specimen B. 

Moreover, the cell-to-cell variability in specimen B is larger than that in specimen A. Such effects 

were induced by the lack of laminarity of the inert gas flow in the build area where the specimen B 

was produced, which was used to introduce on purpose a variation of geometrical and dimensional 

properties of the two specimens. The differences between the two copies of the same lattice structure 

are clearly identified by the proposed control charting method (Fig. 17), with about one third of unit 

cells signalled as out-of-control by the 𝑇2 control chart and a sustained mean shift in the MSE control 

chart.  

 

6.4 Extension to within-part and part-to-part variability monitoring 

As mentioned in Section 4.6., the proposed approach can be used to monitor the within-part and part-

to-part variability in a series production. Instead of using the unit cell as individual observation, each 

lattice structure can be treated as a rational subgroup with sample size, 𝑛, equal to the number of unit 

cells in the part, 𝑁. In order to show how this approach can be implemented in practise, real data from 

specimen A and B were used to artificially generate a large number of occurrences representing copies 

of the same structure. More specifically, 𝑀 = 30 random replicates of a B-spline coefficient vector of 

size 𝑝 = 𝑄 + 𝐿 − 1 were drawn from a multi-normal distribution with mean 𝝁𝐴 equal to the sample 

mean of specimen A’s B-spline coefficients, and variance-covariance matrix 𝜮𝐴 equal to the sample 

variance-covariance of the same coefficients. These 𝑀 samples were used for the design of 𝑇2 and 

Wishart control charts. Additional 50 samples were drawn from the same multi-normal distribution 

(25 samples) and from the multi-normal distribution with mean 𝝁𝐵 and variance-covariance matrix 

𝜮𝐵 equal to the sample mean and variance-covariance of specimen B’s B-spline coefficients (25 



 

 

samples), respectively. The resulting control charts are shown in Fig. 18 (control limits were 

estimated as empirical percentiles of Phase I monitoring statistics).  

Fig. 18 shows that lattice structures simulated from sample statistics of specimen B exhibit an evident 

shift of both the mean and the variability with respect to structures simulated using the sample 

statistics of specimen A. This effect is much more evident in Fig. 18 than in Fig. 17 because the 𝑇2 

and Wishart control charts are designed with a large sample size (𝑛 = 64) that leads to a very high 

power in the detection of a global shift like the one characterizing specimen B. Nevertheless, the 𝑇2 

and Wishart statistics computed in this way are expected to be less sensitive to very local anomalies 

affecting only one unit cell or a few of them. In that case, a control charting scheme like the ones 

discussed in previous sections could be more effective. 

Fig. 18 represents an example of how the proposed approach can be combined with multivariate 

control charts with rational subgroups to move from one-of-a-kind part monitoring to process 

monitoring of series productions. 

 

Fig. 18 – 𝑇2 and Wishart control charts for series production monitoring of within-part and part-to-part variability (the 

vertical dotted line separates Phase I from Phase II) 

 

 



 

 

7. Conclusions 

Novel types of complex shapes are becoming more and more widespread in industry thanks to new 

manufacturing technologies and production paradigms. This causes industrial statistics practitioners 

to face new challenges for quality inspection and monitoring of discrete manufacturing processes. 

Lattice structures are novel shapes with a great potential for innovative applications in various 

industrial sectors, e.g., aerospace, biomedical, automotive, etc.  However, one major issue regards the 

lack of statistical quality monitoring methodologies that are suitable for assessing the conformity of 

individual parts, and for keeping the production process under control statistically. From an industrial 

perspective, it is particularly critical to determine the variability of the geometrical properties from 

cell to cell, as such variability may have detrimental effects on the functional performances of the 

structure. This study presented a first approach aimed at tackling these challenges. Relying on a 

geometrical reconstruction of the part produced using X-ray CT, the proposed methodology allows 

one to design a control-charting tool to detect out-of-control deviations from the originating CAD 

model, translating the 3D shape-modelling problem into a 1D profile-monitoring framework. The real 

case study and the simulation analysis highlighted the fact that the proposed approach is effective in 

detecting even small local distortions that, though being hard to identify with the naked eye, may 

affect the mechanical performance of the structure. This approach is suitable in the presence of one-

of-a-kind parts, as it allows identifying unit cells whose deviation from the nominal shape exhibits 

outlying patterns. Nevertheless, the methodology can be adapted to deal with series production 

applications, where copies of the same structure are manufactured. The presented analysis showed 

the potential of detecting local and global anomalies that may originate under out-of-control process 

conditions. 

 

7.1 Future research and possible extensions of the proposed approach 

In this study, we presented a quality monitoring method that could be applied to detect local anomalies 

in a structure consisting of unit cells of equal chape repeating in space and we showed the possible 



 

 

extension of the method in the presence of a series production of copies of the same structure. The 

proposed approach relied on the assumption that the manufacturing process is stable with a cell-to-

cell variability that is the same within all inspected parts. If different conditions apply, and they are 

compatible with the industrial needs, extensions of the proposed approach could be considered. One 

possible extension of the method can be considered in case the existence of a systematic location-

dependent variation of cell properties within each structure is deemed acceptable as representative of 

the natural process signature. As an example, a possible variation of the monitored quantities may 

exist along one direction, e.g., the build direction, 𝑧. In this case, the monitoring statistics could be 

enriched by considering a hyper-modelling approach, where one monitoring statistic is associated to 

the parameters of the fitted 1-D deviation profile and another monitoring statistic is associated to the 

parameters of the 𝑓(𝑧) model describing the natural variation of deviation profile patterns in space. 

Another extension of the proposed approach regards applications in which process optimization or 

process calibration is of interest. In that case, the modelling framework we are proposing, i.e., 

representing the cell evolution along Z as a deviation profile, could be used in the analysis of the 

effect of process parameters and process calibration procedures on the sources of variability. Indeed, 

different process parameters or different process settings may affect the cell evolution along the build 

direction: a methodology suitable to characterize such variation may aid the tuning of controllable 

factors to make the process more stable and repeatable. 

Eventually, one great potential for the future industrial deployment of the proposed method consists 

in the possibility of using in-situ metrology, where the layer-wise geometry is identified by using in-

situ machine vision tools (Grasso and Colosimo, 2017; Everton et al., 2016; Colosimo and Grasso, 

2018), rather than ex-situ and post-process measurements. Indeed, additive manufacturing systems 

are more and more equipped with in-situ sensing systems that potentially enable the in-situ and in-

line reconstruction of the printed shape on a layer-by-layer basis. The proposed method is based on a 

slice-by-slice comparison between the as-built and the as-designed geometry along the build 

direction. Thus, it could be possible to feed this method with layer-wise images gathered during the 



 

 

production of the part in order to estimate the deviation directly in-line and in-situ. This is expected 

to yield a considerable reduction in post-process inspection costs and time together with an enhanced 

capability to anticipate the detection of geometrical distortions during the process itself.  
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