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This study addresses energy dissipation mechanisms to investigate the effects of the internal and external viscous damping on structural characteristics 
in coupled shear walls. A discrete Reference Beam (RB) is firstly proposed and a Distributed Internal Viscous Damping (DIVD), composed by bending and 
shear mechanisms, is defined. Meanwhile, the linear classical damping is considered. A low-order finite element method (FEM) is adopted for
analyses. For the sake of simplicity, a Generalized Sandwich Beam (GSB) is then developed through the replacement of the set of connecting beam
RB by an equivalent elastic and dissipative core and a FEM is employed for its dynamic analysis. The passive damping modeling through the
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depending upon the parameters of coupled shear walls. The suitability of various damping models is finally compared to current damping predictors and 
full-scale measured data given for RC buildings. The results reveal that the bending and shear damping are somehow efficient where the linear classical 
damping is incapable to be always a proper mechanism.
Continuum approach
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Damping (DIVD)
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Damping factor

1. Introduction

As commonly adopted structural
provide a suitable solution for latera
buildings. The overall stiffness and d
strongly influenced not only by th
s, coupled shear walls 
resisting systems in tall 
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research topic in the framework of structural and mechanical engi-
neering as it has long been studied. Indeed, given the significant 
influence of damping on vibration characteristics of continuous 
beams, wide investigations on the effects of internal, external, and 
distributed (continuous) dissipation sources have been con-ducted 
in the literature [7–12]. Due to the complex nature of these 
phenomena, various mathematical models of damping mecha-
nisms have been developed so far (e.g. Newton models, fractional 
ce, it is 

provide a simplified tool to approximately investigate the main 
structural features in such structures. Apart from the stiffness 

important to accurately determine the relevant damping model in 
the analysis. From the structural engineering point of view, it has 
properties which are extensively studied in the literature [1–4], 
energy dissipation mechanisms in coupled shear walls are rarely 
studied using continuous systems.

In order to characterize the dynamic behavior of continuous 
systems, vibration analysis of beams represents an important
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been stated [4] that the Timoshenko Beam (TB) is a suitable 
replacement model to analyze dynamic features of single shear 
walls.

Kocatürk and �Sims�ek [13] studied the dynamic response of 
eccentrically prestressed viscoelastic TBs under a moving har-
monic load, characterized by a Kelvin–Voigt damping model. The 
results indicated that the eccentricity of the compressive load, the 
shear deformation, the excitation frequency of the moving 
harmonic load and the internal damping significantly affect the
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Nomenclature

DIVD Distributed Internal Viscous Damping
TB Timoshenko Beam
EBB Euler–Bernoulli Beam in CTB
RCB Rotational Constrained Beam in CTB
IDTF Inter-story Drift Transfer Function
L Lagrangian
R Rayleigh dissipation function
T kinetic energy
V potential energy
c classical viscous damping
cb1, cb2 internal bending dampings in left and right walls
cs1, cs2 internal shear dampings in left and right walls
c#; k# equivalent rotational damping and stiffness in CTB
Ac, Ic continuum core area and moment of inertia in GSB
qd;qc walls and core masses per unit volume in GSB
Wf work produced by external load
f(x,t) distributed transverse load
A1, A2 cross-section areas of two walls
I1, I2 moments of inertia of two walls
Ibi, Abi moment of inertia and area of connecting beams
E, G Young’s and shear elastic modulus
xj, /j complex eigenvalues and eigenvectors associated to jth

mode
cj complex eigenvalue parameter associated to jth mode
xd;1;xN;1 damped and natural frequency of first mode
fj modal damping ratio of jth mode
Real(x1), Im(x1) decay rate and oscillating part of first mode
Kb sum of flexural stiffnesses of walls
�a2
0 controlling parameter with GSB

a2
0 degree of coupling

f damping factor associated to first mode
RB Reference Beam
GSB Generalized Sandwich Beam

CTB Coupled Two-Beam
DMF dynamic magnification factor
QEP quadratic eigenvalues problem
j shear correction factor
m;u lateral displacement and rotation in connecting beams
hb; ‘b depth and length of connecting beams
h story height
cbi, csi bending and shear damping in ith element
gbi, gsi bending and shear damping multipliers in ith element
cb3, cs3 internal bending and shear damping in connecting

beams
ceq, keq equivalent distributed shear damping and shear stiff-

ness in GSB
cd, kd viscous damping and stiffness coefficient in dampers
ceq,b, ceq,s equivalent shear damping to bending and shear damp-

ing in connecting beams
q(x, t) rotation in the core of GSB
u, _u, €u transverse displacement, velocity and acceleration
h, w rotations in left and right walls
l dimensionless coordinate in FE
se(x, t) generalized displacement vector
N(x) shape functions matrix containing linear function inter-

polations
B1, B2 widths of left and right walls
Me, Ce, Ke mass, damping and stiffness matrices of eth FE
M, C, K global mass, damping and stiffness matrices
Qe generalized forces vector of eth FE
Eeq, Geq elastic moduli of equivalent core in GSB
Ks1 sum of shear stiffnesses of walls
Ks2 equivalent shear stiffness of core
IDR inter-story drift ratio
M, V bending moment and shear force
dynamic response of the beam. There is proposed a wide disserta-
tion on the damped natural frequencies of a cantilever beam with 
Kelvin–Voigt damping and a piezo-patch actuator and sensor 
bonded onto it, evaluating the effect induced by their locations 
on the damped fundamental frequencies of the system [14].

Also more recently, the effect of the location of damped seg-
ments on the vibrations of beams with partially Distributed Inter-
nal Viscous Damping (DIVD) was investigated [15]. The vibration 
equations of a TB with DIVD subjected to transverse loading were 
derived and the transfer matrix method (TMM) was used to deter-
mine the frequency equations and to study the vibration character-
istics. To demonstrate feature of DIVD effects, various damping and 
restraining conditions have been taken into account. The influence 
of the damping, length and location of damped segments on the 
vibration of beams with DIVD has been investigated and discussed. 
Some researchers [16–18] extended this latter research consider-
ing the local distribution of DIVD through the TB formulation. The 
effects of the damping amount, length, and location of the damped 
segment on the damped natural frequency of beams have been 
investigated and discussed. Moreover, the investigation of TBs with 
DIVD has been generalized referring to a shear slender-ness 
parameter [17].

Albeit, the TB including distributed damping models may be rel-
evant to analyze the damped structural characteristics in single 
shear walls, a different behavior may be resulted in coupled shear 
walls, since the walls are coupled by ordinary connecting beams 
[1,3] or passive coupling devices [19,20].

Lavan [19] proposed a shear-type damping to model viscously 
coupling elements in wall systems. His continuum-based solution
was including a single (shear) mechanism for both inherent and 
additional damping and a single (flexural) stiffness without any 
coupling effect (shear stiffness) due to the presence of ordinary 
connecting beams. A distributed classical damping was considered 
in the Coupled Two-Beam (CTB) [21] to model the inherent damp-
ing and the modal analysis was proposed to compute the dynamic 
responses of building structures.

Given the suitability of non-classical DIVD models for single 
(uncoupled) beam elements, this paper is devoted to further 
develop the concept of such damping models in coupled shear 
walls by employing multi-beam (continuous) systems and to shed 
some lights on the effects of various energy dissipation 
mechanisms on structural and vibrational characteristics in such 
coupled systems. In this study, in addition to the classical damping, 
the DIVD composed by bending and shear damping mechanisms 
are properly developed using three beam systems: Reference 
Beam (RB), Generalized Sandwich Beam (GSB), and Coupled 
Two-Beam (CTB).

The RB, which is considered as the discrete model of coupled 
shear walls, consists of vertical and horizontal TB elements, all 
including DIVD mechanisms. The GSB is then developed on the 
basis of the RB by replacing the set of horizontal beams with an 
equivalent dissipative core. Some useful GSB systems with 
equivalent stiffness and damping coefficients are illustrated in 
order to show how passive dissipating devices (e.g. viscous and 
viscoelastic dampers) can be equivalently modeled through 
continuous (smeared) effects. Dealing with tall systems, the CTB 
model with various DIVD effects is proposed comprising an Euler–
Bernoulli Beam (EBB) and a Rotational Constrained Beam



(RCB). The numerical solutions using low order FE models are
developed for the forced analysis and complex eigenanalysis of
the RB and GSB and the closed-form solutions are proposed for
the CTB system as a benchmark to the FEM-based results.

The effectiveness of proposed damping models on fundamental
eigenproperties and structural responses is evaluated using the
proposed beam models and their eligibility is analyzed with
respect to appropriate controlling parameters (degree of coupling
and damping factor), thus, a qualitative model is developed to
choose the suitable damping mechanism. Furthermore, employing
some damping predictors and measurements for buildings, the
efficiency of DIVD models is tested against the classical damping.
The numerical results showed the usefulness of the DIVD mecha-
nisms to deal with both internal and external energy dissipation
phenomena in coupled shear walls with different degrees of cou-
pling and revealed some shortcomings of the linear classical
damping.
2. Material and methods

In this section, three beam systems are proposed to conceptu-
ally introduce viscous (distributed) damping mechanisms in cou-
pled shear walls, with the aim of analyzing the main structural 
characteristics. It should be noted that the study is devoted to 
those structures in which the connecting beams are weak com-
pared to the shear walls; hence, they are incapable to transfer high 
enough shear forces to compress the walls or to bend them locally; 
thus, the global bending and local shearing are neglected. The other 
applications of continuum-based models which provide simple 
formulas for the preliminary design and immediate check of 
computer-based results are not in the scopes of the present study.
2.1. The Reference Beam (RB)

In this section, a cantilevered RB consisting of two main 
Timoshenko Beams (TB) connected by a certain number of con-
necting TBs is considered (Fig. 1). The RB may be presented in two 
fashions: undamped and damped systems. The undamped sys-tem 
contains all the stiffness properties and statically kinematical fields 
in structural elements. Then, the RB model can be equipped 
(damped RB) by introducing the multi-damping characteristics to 
the undamped system. The RB is assumed to be subjected to a
Fig. 1. Reference Beam (RB) in two fashions: Undamped system and damped
system.
homogeneously, sinusoidal in time, distributed transverse load f 
(x,t) (see Fig. 1).

The transverse equations of motion of such a system are readily 
obtained by applying Hamilton’s Principle to the Lagrangian L and 
the Rayleigh dissipation function R of the system obtained by 
assuming the kinematic model and the constitutive law of the clas-
sical Timoshenko’s theory:

d
Z t1

t0

ðL �RÞdt ¼ d
Z t1

t0

ðT � V þWf �RÞdt ¼ 0 ð1Þ

where Total Kinetic Energy T, the Potential Energy V, and the Work
Wf produced by the external transversal load are respectively
expressed as:

T ¼ 1
2
qd

Z L

0
½A1ð _uÞ2 þ I1ð _hÞ2 þ A2ð _uÞ2 þ I2ð _wÞ2�dx ð2Þ

V ¼ 1
2

Z L

0
½EI1ðh0Þ2 þ GjA1ðu0 � hÞ2 þ EI2ðw0Þ2 þ GjA2ðu0 � wÞ2�dx

þ 1
2

Xn
i¼1

Z ‘b

0
EIbi u0

i

� �2 þ GjAbi v 0
i �ui

� �2dy� �
ð3Þ

Wf ¼
Z L

0
f ðx; tÞudx ð4Þ

Note that the Kinetic Energy governed by connecting beams is
neglected.

The damping model, Distributed Internal Viscous Damping
(DIVD), herein assumed is such to introduce retarding and dissipa-
tive forces arising from damping effects during the motion. The
DIVD is originated from the Kelvin–Voigt strain velocity damping,
where bending and shear dissipative additional stresses, rd

x and sdxy,
linearly proportional to the strain velocity through internal
damping coefficients, have to be introduced leading to the follow-
ing stress–strain relations for main beams (shear walls) and also
connecting beams:

ðrxÞi ¼ re
x

� �
i þ rd

x

� �
i ¼ðEexÞi þcbið _exÞi

ðsxyÞi ¼ sexy
� �

i
þ sdxy
� �

i
¼ðGcxyÞi þcsið _cxyÞi

8<
: ; i¼Number of Structural Element

ð5Þ
where cbi and csi are independently defined in main beams and con-
necting beams (see the damping system in Fig. 1). A further contri-
bution is represented by the classical dissipative force directly 
proportional to the transverse velocity u_ ðx; tÞ of the beam, through 
the classically linear viscous damping coefficient c. Therefore, 
assigning cb1,2 and cs1,2 to the left and right main beams and cb3, 
cs3 to the set of identical connecting beams, the Rayleigh Dissipation 
Function can be obtained assuming the subsequent expression:

R¼1
2

Z L

0
cb1I1 _h02þ cs1jA1ð _u0 � _hÞ2þ cb2I2 _w02þ cs2jA2ð _u0 � _wÞ2þ c _u2
n o

dx

þ1
2

Xn
i¼1

Z ‘b

0
cb3Ibi _u0

i

� �2þ cs3jAbi _v 0
i� _ui

� �2h i
dy

� �
ð6Þ

It is worth noticing that the relationship between the internal 
viscous damping coefficients, cbi and csi, can be assumed 
analogously to that between Young’s elastic modulus and shear 
elastic modulus for an isotropic material. Thus, in view of the 
stress–strain relations of Eq. (5), the bending and shear damping 
coefficients are assumed to be proportional to Young and Shear 
elastic modules by two independent amplification factors in main 
beams and connecting beams, as Eq. (7) shows [15–18]:

cbi ¼ gbiEi; csi ¼ gsiGi; i ¼ Number of Structural Element ð7Þ



 
 

 
 
 
 

Substituting all the relevant terms (Eqs. (2)–(4), and Eq. (6)) in
Hamilton’s Principle (Eq. (1)), PDEs of motion of the RB system can
be straightforwardly obtained.

2.1.1. A six degrees of freedom FE system
In order to evaluate the dynamic response of the RB, the classi-

cal FEM approach is established to reduce the PDEs of motion into
linear second-order ordinary differential equations with time as
the independent variable. A simple low order beam FE model is
therefore introduced with linear variation in displacement u(x)
and rotations h(x), w(x) resulting in six degrees of freedom (DOFs)
(Fig. 2).

Dimensionless coordinate l and nodal displacements vector of 
the eth generic FE are:

l ¼ 2x
‘
; Ue ¼ ½u1; h1;w1;u2; h2;w2�T ð8Þ

The generalized displacement vector seðx; tÞ of the eth FE can be
expressed as:

seðx; tÞ ¼ ½u h w �T ¼ NðxÞUeðtÞ ð9Þ
To accurately take the connecting beams’ effects into consider-

ation, the length of each FE is assumed equal to the story height. 
The displacement v(y) and rotation u(y) in connecting beams can 
be defined as functions of rotations h(x) and w(x) in the main beams 
(see Appendix A) because of their connectivity in junctions. Hence, 
assuming that the rotations in the two ends of the connect-ing 
beams are identical to the rotations in the main beams, they can be 
expressed as follows:

v y ¼ � ‘b
2

� 	
¼ �B1

2
h; u y ¼ � ‘b

2

� 	
¼ h;

v y ¼ ‘b
2

� 	
¼ B2

2
w; u y ¼ ‘b

2

� 	
¼ w ð10Þ

Applying Lagrange’s equation to any DOF (i = 1, . . . , 6) of the FE,
the resulting system of equations of motion assumes the subse-
quent expression:

Me
€Ue þ Ce

_Ue þ KeUe ¼ Qe ð11Þ
Considering the expressions of the Kinematic and Potential 

Energies (Eqs. (2) and (3)), of the Work due to the external forces 
(Eq. (4)), and of the Rayleigh Function (Eq. (6)), the FE matrices 
can be readily determined (see Appendix A).

It should be remarked that the damping contributions of the 
connecting beams (see C1, C2, and C3 in Appendix A) are obtained 
using the second term of the Rayleigh Function (Eq. (6)).

By simply assembling and imposing the appropriate boundary 
conditions, the global system of equations of motion of the 
clamped RB is thus determined, assuming the classical form:

M€U þ C _U þ KU ¼ Q ð12Þ
Fig. 2. One dimensional FE model with six DOFs.
In order to allow simple assemblage of the matrices and to solve 
the dynamic system of equations of motion, a FEM-based code is 
implemented in Matlab� [22]. Newmark’s step-by-step method of 
direct integration over discrete time steps [23] is preferred to other 
algorithms (e.g. non-classical modal analysis which would have 
provided complex conjugate pairs of eigenvalues and eigen-
vectors) due to its higher flexibility in dealing with the different 
damping and loading situations of the (non-classical) problem at 
hand.

2.1.2. Damped eigenfrequency analysis
The system of equations of motion of the damped freely vibrat-

ing beam system assumes the following form:

M€U þ C _U þ KU ¼ 0 ð13Þ
Accordingly, introducing U = uext into Eq. (13) yields the QEP as 

follows:

½x2M þxC þ K�/ ¼ 0 ð14Þ
The solution of Eq. (14) provides the complex eigenvalues xi of 

the QEP and the associated eigenvectors ;, which occur in 2n com-
plex conjugate pairs for a non-classical n-DOFs system, such as the 
RB under analysis. The QEP requires to identify complex eigenval-
ues xi and associated non-zero eigenvectors ui (i = 1, . . .  , 2n), sat-
isfying the subsequent associated characteristic equation:

detjx2M þxC þ Kj ¼ 0 ð15Þ
Considering the first complex eigenvalue x1, which is associ-

ated to the first mode of vibration, by adopting a notation common 
to the one used for a viscous-damped SDOF system [24], the Real 
and Imaginary parts of x1 can be identified by the subsequent 
relation:

x1 ¼ Realðx1Þ þ i � Imðx1Þ ¼ �xN;1f1 þ ixN;1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f21

q� 	
¼ �xN;1f1 þ ixd;1 ð16Þ

Here, xN,1 and f1 can be expressed as:

xN;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Real2ðx1Þ þ Im2ðx1Þ

q
; f1 ¼ �Realðx1Þ

xN;1
ð17Þ

The complex eigenproperties associated to higher modes can be 
similarly extracted using Eq. (15).

2.2. The Generalized Sandwich Beam (GSB)

In order to analyze coupled shear walls, an equivalent rod the-
ory [25] was developed to replace the original structure by a con-
tinuum model of one-dimensional or two-dimensional rods with 
equivalent stiffness and mass distributions. For the sake of simplic-
ity in this study, the discrete set of connecting beams in the RB is 
replaced by an equivalent homogeneous core characterized by 
Eeq and Geq (see the undamped system in Fig. 3a). The achieved 
continuum model, called undamped GSB, can be developed under 
the following assumptions:

� The wall system is in plane stress condition.
� Shear walls have rigid cross sections and connecting beams are
inextensible.

As suggested [26,27], the elastic curtain equivalent to connect-
ing beams is obtained by equating the stress energy of a typical 
connecting beam to the one of its equivalent continuum. The 
equivalent elastic modulus Eeq of the core is assumed equal to zero 
in order to assure the normal stress along the x axis to vanish.
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(a) (b) 

Fig. 3. (a) Generalized Sandwich Beam (GSB) as undamped and damped systems and (b) rotation fields in walls and core.
The equivalent shear modulus Geq reads

Geq ¼ 1
ht

‘02b
12EIb

þ 1
GjAb

!�1

ð18Þ

Local deformation effects at junctions between the connecting
beams and main beams are also taken into account in evaluating
the Geq through the following approximate relation

‘0b ffi ‘b 1þ e
hb

‘b

� 	
ð19Þ

Here, coefficient e may be defined as 0 < e 6 1, e.g. e = 0.5 [28]. 
Compatibility between the rotations in the main beams and in the 
continuum core (see Fig. 3b) at the centroid of the beams can be 
expressed as the linear relationship

qðx; tÞ ¼ �B1hðx; tÞ þ B2wðx; tÞ
2‘b

ð20Þ

Although a first-order shear deformation theory is considered in
the present GSB, because of the similarity of the GSB’s structure to
composite systems, it may be useful to potentially investigate sev-
eral advanced higher-order shear deformation theories adopted for
functional graded plates [29–37]. Using these theories, there is no
need to the shear correction factor in the formulation. Since the
walls and core properties are different in the GSB, developing an
efficient (hyperbolic) shear deformation beam theory [38] on the
basis of the neutral surface position, may accurately yet simply
provide the bending and free vibration analysis. To account for the
normal stress in the core, in addition to the shear stress, a (refined
trigonometric) higher-order theory may be proposed [39] by
including the thickness stretching effect (non-zero normal strain)
Employing a new modified couple stress theory [40], in  which the
transverse displacement may consist of the bending component in
addition to the shear one, dynamic responses can be analyzed
having a variable length scale parameter to capture also the size
effect in the GSB.

Nevertheless, using the first-order shear deformation theory, the 
Potential Energy in the GSB is

Vðu; h;wÞ ¼ 1
2

Z L

0
½EI1ðh0Þ2 þ GjA1ðu0 � hÞ2 þ EI2ðw0Þ2

þ GjA2ðu0 � wÞ2 þ Geqðtj‘bÞðu0 � qÞ2�dx ð21Þ
The Kinetic Energy reads
Tð _u; _h; _wÞ ¼ 1
2

Z L

0
qd½ðA1 þ A2Þ _u2 þ I1 _h2 þ I2 _w2�dx

þ 1
2

Z L

0
qcðAc _u2 þ Ic _q2Þdx ð22Þ

where qc assumes [26]:

qc ¼
hb

h
qd ð23Þ

The present continuum model, the undamped GSB (Fig. 3a), is 
then generalized by accounting for various damping models. The 
classical damping and DIVD mechanisms are taken into considera-
tion; moreover, an equivalent distributed damping ceq is proposed 
for the continuum core (see the damped GSB system in Fig. 3a). The 
coefficient ceq can be obtained by a Rayleigh function balance 
between a typical connecting beam including cb3 and cs3 and its 
inter-story equivalent continuum. The resulting expressions asso-
ciated to the bending and shear damping are then expressed, 
respectively:

ceq;b ¼ 4cb3Ibðm1 þm2Þ2‘2b
thðB1 þ B2Þ2

; ceq;s ¼ 4cs3Abðm3 þm4Þ2‘2b
thðB1 þ B2Þ2

ð24Þ

where m1, m2, m3, and m4 are listed in Appendix A.
The complete Rayleigh function in the damped GSB system is 

then given by:

Rð _u; _h; _wÞ ¼ 1
2

Z L

0
½cs1jA1ð _u0 � _hÞ2 þ cb1I1ð _h0Þ2

þ cs2jA2ð _u0 � _wÞ2 þ cb2I2ð _w0Þ2

þ ceqðtj‘bÞð _u0 � _qÞ2�dx ð25Þ

Here, q_ is the time derivative of q expressed in Eq. (20). The same 
shape functions adopted for the RB model are chosen to be used 
in Eqs. (21), (22), and (25). It should be mentioned that FE structural 
matrices corresponding to the main beams are exactly those 
adopted for the RB, but the FE matrices associated to the continuum 
core (Mcore, Ccore, and Kcore) are differently determined (see Appendix 
B). These latter matrices must be assembled on those of the main 
beams. The free and forced vibration analysis can be afforded sim-
ilarly to the procedures explained in Section 2.1.
    In order to define a relevant controlling parameter, a simplifica-
tion is considered. It has been numerically demonstrated [41] that



 
 
 
l 
 
 
l 
the rotational fields in the walls may be almost identical (h ffi w),
provided that

1
4
6 B1

B2
6 4 ð26Þ

However, considering identical rotations in the walls with the
above assumption, deriving the governing equation through the
stationarity in the continuum model, a typical controlling parame-
ter is defined as follows

�a2
0 ¼ Ks1Ks2

KbðKs1 þ Ks2Þ ½ðB1 þ B2Þ=2‘b þ 1�2L2 ð27Þ

where

Kb ¼ EðI1 þ I2Þ; Ks1 ¼ GjðA1 þ A2Þ; Ks2 ¼ Geqtj‘b ð28Þ
As stated before, this paper is devoted to study those coupled 

shear walls in which the connecting beams are not too stiffened. 
Thus, the local deformation of the walls between the beams, which 
occurs if the geometry of the system is getting closer to a shear-
type frame, is negligible. Furthermore, it is well known that the 
effect of global bending is minified if the connecting beams are 
weaker enough than the walls. The controlling parameter can be 
further simplified for slender wall systems by neglecting the shear 
deformation in the walls (Ks1 ! 1). This is illustrated in Section 3.2 
using numerical examples.
2.2.1. Application in passive damping modeling
The continuous modeling of passive dissipating devices (e.g. 

viscous and viscoelastic (VE) dampers [20]) in coupled shear walls 
can be also pursued using the present GSB. Depending on the type 
and distribution of devices, an equivalent dissipative core may be 
achieved (Fig. 4). In general, there are two common ways to place 
passive dampers in coupled shear walls: the vertical placement 
and the diagonal-braced installation.

Concerning vertical-installed devices, a damped outrigger sys-
tem consisting of vertical viscous dampers was studied [42] in tall 
buildings using an EBB as the equivalent model and an analytical 
solution was developed. Lavan [19] presented shear walls coupled 
by diagonal-braced viscous dampers and proposed a shear damp-
ing as the equivalence of viscous dampers. He developed a contin-
uum approach allowing a semi-analytical solution using a complex 
modal spectral analysis. The present GSB and its numerical solu-
tion are properly capable of overcoming the limitations (i.e. 
absence of shear stiffness due to smeared effect of connecting 
beams and the lack of a tool for damping optimization problems) 
of the Lavan’s solution.

A schematic view of passive damper configurations and corre-
sponding GSBs are illustrated in Fig. 4. Based on the complete or 
partial distribution of dampers, the continuum core may be fully or 
partially dissipative. Note that this study just represents the fully 
dissipative core systems and the partially dissipative cores and 
their optimization characterizations will be the subjects of an 
upcoming research study by the present authors.

Regarding different damper configurations, equivalent shear 
damping ceq and stiffness keq (the stiffness is required when dealing 
with VE dampers) coefficients in the cores can be given by equating 
the energy dissipation and strain energy of the discrete model, 
respectively, to those of its continuum curtain. These coefficients 
are presented in Table 1 for the damper systems illustrated in Fig. 4. 
A first-order linear compatibility, as depicted in Fig. 3b, can be 
adopted for the rotation rates in the walls and the dissipa-tive core. 
A reference example is presented in Section 3.2 to ascer-tain how 
continuum-based models with damping can be employed to model 
a wall system retrofitted by viscous dampers.
2.3. The Coupled Two-Beam (CTB) model

In this section, the proposed GSB is further simplified provided
that shear walls are slender enough. According to the assumption
given in Eq. (26), it was demonstrated that identical rotations may
be assumed in the walls (i.e. h ¼ w). Therefore, a coupled shear wal
can be seen such as a CTB consisting of an EBB as the con-densed
effect of the walls and a RCB as the continuum core effect (see
schematically the undamped CTB in Fig. 5). The equivalent rotationa
stiffness k# in the RCB, which depends upon Geq, is  defined as

k# ¼ Ks2 1þ B1 þ B2

2‘b

� 	2

¼ Geqðtj‘bÞ 1þ B1 þ B2

2‘b

� 	2

ð29Þ

The CTB model is governed by a single-field (u), thus, the com-
putations can be more simplified.

It is beneficial to develop the damping models in the CTB (see 
damped CTB in Fig. 5). For the sake of simplicity, a unified bending 
damping coefficient (i.e. cb = cb1 = cb2) is assigned to the EBB. Also, 
an equivalent rotational (shear) damping c# can be defined in the 
RCB proportional to ceq:

c# ¼ ceqðtj‘bÞ 1þ B1 þ B2

2‘b

� 	2

ð30Þ

It should be remarked that the c# is employed to model both the
internal viscous damping in connecting beams and the additional
(external) damping. The classical viscous damping c is also intro-
duced in the formulation (Eq. (33)).

The Total Potential Energy, Kinetic Energy, and Rayleigh Dissi-
pation Function associated to the damped CTB are provided,
respectively as follows:

VðuÞ ¼ 1
2

Z L

0
Kbu002 þ k#u02� �

dx�
Z L

0
qudx ð31Þ

where Kb is expressed in Eq. (28).

Tð _uÞ ¼ 1
2

Z L

0
qdðA1 þ A2Þð _uÞ2 þ qct‘bð _uÞ2
h i

dx ð32Þ

Rð _uÞ ¼ 1
2

Z L

0
c _u2 þ cbIð _u00Þ2 þ c#ð _u0Þ2
h i

dx ð33Þ

Dealing with the steady-state dynamic response of the CTB sys-
tem resulted by a harmonic homogeneously distributed external
forcing f ðx; tÞ ¼ qeixt , a time-independent functional can be also
introduced using Hamilton’s principle. It can be easily proved that
the steady state solution corresponds to the minimum of the Total
Potential Energy. Separating the time-dependent and space-
dependent responses, after some manipulations, stationarity gives
the governing uncoupled equation of the steady-state dynamic
response as:

Kbð1þ ixgbÞu
0000 ðxÞ � ðk# þ ixc#Þu00ðxÞ � ½x2ðqdAþ qcAcÞ

þ ixc�uðxÞ ¼ qðxÞ ð34Þ
where

gb ¼ cb=E ð35Þ
In order to attain a benchmark for the numerical solutions in 

this study, the closed-form solutions of the damped CTB are 
presented in subsequent sections.

2.3.1. Free (complex) vibration analysis
With regard to the free vibration analysis in the complex form, 

substituting q ¼ 0, x ¼ xj, and uðxÞ ¼  /jðxÞ into Eq. (34), the 
corresponding expression is expressed as:



Fig. 4. Equivalent GSBs for several passive dampers: (S1) diagonal viscous dampers with connecting beams, (S2) diagonal viscous dampers without connecting beams, (S3) 
diagonal VE dampers without connecting beams, (S4) diagonal VE dampers with connecting beams and (S5) vertical VE dampers [20] without connecting beams.

Table 1
Equivalent stiffness and damping coefficients in GSB models.

Type of passive
device

Placement
direction

Equivalent
stiffness keq

Equivalent
damping ceq

Viscous Diagonal – h‘b
t h2þ‘2bð Þ cd

Vertical – ‘b
ðhtÞ cd

Viscoelastic (VE) Diagonal h‘b
t h2þ‘2bð Þ kd

h‘b
t h2þ‘2bð Þ cd

Vertical ‘b
ðhtÞ kd

‘b
ðhtÞ cd

f (x)

Undamped CTB system Damped CTB system

Fig. 5. Undamped and damped CTB models as parallel coupling of a condensed EBB
and a rotational restraint (RCB).
/
0000
j ðxÞ � a2/00

j ðxÞ � b2/jðxÞ ¼ 0 ð36Þ

where

a2 ¼ k# þ ixjc#
Kbð1þ ixjgbÞ

L2; b2 ¼ ðqdAþ qcAcÞx2
j þ ixjc

Kbð1þ ixjgbÞ
L4 ð37Þ

Considering the damping effects, an analytical solution is devel-
oped by generalizing the procedure proposed [21] for the 
undamped CTB system. Introducing the consistent boundary con-
ditions, the general solution of /jðxÞ can be given by
/jðxÞ ¼
sinðcjxÞ � ðcj=kjÞ sinhðkjxÞ þ gj½coshðkjxÞ � cosðcjxÞ�
sinðcjÞ � ðcj=kjÞ sinhðkjÞ þ gj½coshðkjÞ � cosðcjÞ�

ð38Þ

where

kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2j

q
; gj ¼

c2j sinðcjÞ þ cjkj sinhðkjÞ
c2j cosðcjÞ þ k2j coshðkjÞ

ð39Þ

Here, cj satisfies the following expression

c4j þ a2c2j � b2 ¼ 0 ð40Þ
Since the latter equation is a function of the complex eigenfre-

quencyxj, an additional equation is required to calculate cj. There-
fore, applying the boundary condition corresponding to zero shear
force at the top gives the new equation for computing cj associated
with the jth mode as a function of the parameter a2:

2þ 2þ a4

c2j k
2
j

!
cosðcjÞ coshðkjÞ ¼ � a2

cjkj
sinðcjÞ sinhðkjÞ ð41Þ

With regard to Eq. (40), a2 can be derived as the function of cj 
and be directly substituted into Eq. (41). Consequently, the eigen-
value parameter cj can be resulted by solving Eq. (41). To solve 
such a nonlinear equation, a powerful numerical solver in Mathe-
matica� [23] has been implemented. The solution gives two values 
of cj associated to two conjugate eigenmodes. The minimum posi-
tive root corresponds to the fundamental eigenproblems, and 
orderly higher roots help to determine higher modes’ characteris-
tics. Note that cj and xj are both complex numbers.

Since parameters a2 and b2 are proportional to xj through 
Eq. (37), the conjugate eigenfrequencies of each eigenmode can 
be calculated on the basis of cj:

xj1;2 ¼
�c2 � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c1c3 � c22

q
2c1

ð42Þ

where



c1 ¼ ðqdAþ qcAcÞL4; c2 ¼ c2j Kbgbc
2
j þ L2c# � cL4

� �
;

c3 ¼ c2j Kbc2j þ k#L
2

� �
ð43Þ

The corresponding damped and free oscillating modes can be 
directly attained by substituting a2 and cj into Eq. (38).

A suitable controlling parameter a0
2, called the degree of cou-

pling, is introduced based on the CTB model. This parameter is 
expressed where damping effects are neglected in the first expres-
sion of Eq. (37) as follows:

a2
0 ¼ k#

Kb
L2 ð44Þ

Such a parameter controls the degree of participation of overall
flexural and overall shear deformations in the CTB model and thus
controls the lateral deflected shape of tall coupled shear walls. A
value of a2

0 equal to zero represents a pure flexural model like an
EBB (i.e. uncoupled shear walls). Such a case may be achieved
where there are no connecting beams. An intermediate value of
a2
0 corresponds to the walls that combine shear and flexural

deformations.
It should be noted that the parameter expressed in Eq. (44) can

be straightforwardly derived through the definition of �a0
2 (Eq. (27)) 

by neglecting the walls’ shear deformation (i.e. substituting 
Ks1 ! 1  into Eq. (27)), as it is relevant in slender systems.

2.3.2. Forced vibration analysis
Dealing now with the forced vibration, a modal analysis can be 

adopted [21] to obtain uðx; tÞ in the CTB model as

uðx; tÞ ¼
Xn
j¼1

ujðx; tÞ ¼
Xn
j¼1

Cj/jðxÞDjðtÞ

¼
Xn
j¼1

Z 1

0
/jðxÞdxZ 1

0
/2

j ðxÞdx
/jðxÞDjðtÞ ð45Þ

where Dj(t) associated to each mode can be derived by solving the
following equation

€DjðtÞ þ 2fjxj
_DjðtÞ þx2

j DjðtÞ ¼
�€ugðtÞ : Ground Acceleration
f ðtÞ=mj : Harmonic Excitation

�

ð46Þ
The influence of various damping models must be taken into 

account for the evaluation of Dj(t). The modal damping factor fj 
can be obtained from Eq. (17), while those related to higher modes 
are also allowed. Depending on the type of the damping mecha-
nism, the level of fj in each mode may be different. This point is 
discussed in numerical sections.

The inter-story drift ratio, IDR(x,t), is an important measure of 
nonstructural damage and can be evaluated by the derivative of 
the displacement:

IDRðx; tÞ ¼ @uðx; tÞ
@x

¼ 1
L

Xn
j¼1

Cj/
0
jðxÞDjðtÞ

¼ 1
L

Xn
j¼1

Z 1

0
/jðxÞdxZ 1

0
/2

j ðxÞdx
/0

jðxÞDjðtÞ ð47Þ

The absolute acceleration, when the system is subjected to a
ground motion, is a measure of damage to nonstructural accelera-
tion sensitive equipment as well as contents’ movement along the
floor area
€utðx; tÞ ¼ €ugðtÞ þ
Xn
j¼1

Cj/jðxÞ€DjðtÞ

¼ €ugðtÞ þ
Xn
j¼1

R 1
0 /jðxÞdxR 1
0 /2

j ðxÞdx
/jðxÞ€DjðtÞ ð48Þ

Time-dependent bending moment Mðx; tÞ reads

Mðx; tÞ ¼
Xn
j¼1

Mjðx; tÞ ¼
Xn
j¼1

Cj Kb

Z 1

x
/00

j ðxÞdx� k#

Z 1

x
/ðxÞdx

� �
DjðtÞ

ð49Þ
and shear force Vðx; tÞ is given by

Vðx; tÞ ¼
Xn
j¼1

Vjðx; tÞ ¼
Xn
j¼1

Cj Kb

Z 1

x
/000

j ðxÞdx� k#

Z 1

x
/0

jðxÞdx
� �

DjðtÞ

ð50Þ
The base overturning moment and the base shear time-histories 

are expressed in Appendix C. It should be remarked that the effect 
of different damping mechanisms is included in Dj(t) expressed in 
Eq. (46).
3. Results and discussions

3.1. Verification of undamped RB model

A set of verifications has been accomplished to verify the FEM 
developed for the RB. For this purpose, an asymmetrical coupled 
shear walls system [25] is considered (see Fig. 6). The effectiveness 
of the present FEM is demonstrated with regard to static and free 
vibration problems by comparison with the results of a FEM soft-
ware SAP2000, whereas all the structural members are modeled by 
shell elements. The first four natural frequencies are calculated 
using the proposed FE model and compared (see Table 2), respec-
tively, to those found in the literature Takabatake [25] and those 
computed by SAP2000; the results are found to be in agreement 
with the maximum error less than 5%. It should be noted that a 
length magnification factor, e ¼ 1=12, is adopted to take into 
account the deformation in junctions. The static tip displacement is 
also compared (Table 2) with those resulting from other meth-ods, 
therein showing a lower response with respect to the solution 
obtained from SAP2000 model and a higher one compared to the 
solution of Takabatake [25].

3.2. Verification of damped RB, GSB, and CTB

In this section, the verification of the three damped beam sys-
tems (i.e. RB, GSB, and CTB) is addressed. It is assumed that the ref-
erence example is subjected to the given harmonic load f(t) = 
16,500 sin(0.9x1t) which is uniformly distributed. Two damping 
mechanisms are considered to provide totally 5% damping ratio in 
the fundamental mode. The damping mechanisms, which are 
adopted in the RB model, are: (1) gb1 ¼ gb2 ¼ 0:01 in the main beams 
and (2) gb3 ¼ 0:002 in the set of connecting beams. Note that only 
the internal bending damping is taken into account because of its 
dominant efficiency in contrast to the shear damping.

Using Eq. (27), the controlling parameter �a0
2 ¼ 7:25 on the basis

of the GSB is attained. Meanwhile, a0
2 ¼ 7:9 with the CTB model is 

calculated through Eq. (44), showing that the difference between
�a0
2 and a0

2 in tall structures is not significant. For the GSB system, the 
equivalent damping in the continuum core, ceq ¼ 9:59�
105 N s/m2, is found through the first expression of Eq. (24). The 
corresponding rotational (shear) damping in the CTB model,



 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 

Fig. 6. An asymmetrical coupled shear walls system [25].

Table 2
Tip displacement and natural frequencies with the benchmark and RB model.

Reference model Tip displacement (m) Natural frequency (Hz)

Mode 1 Mode 2 Mode 3 Mode 4

RB 0.0161 13.06 54.17 128.17 227.13
SAP2000 0.0165 13.01 53.55 126.24 223.60
Takabatake [25] 0.0158 13.09 55.55 129.00 224.90
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Fig. 7. Tip displacement oscillation resulted by damped RB, GSB, and CTB.
c# ¼ 5:67 � 106 N s, can be obtained with Eq. (30). The dynamic tip
displacements resulted by the three models are shown in Fig. 7. It
can be seen from Fig. 7 that the three models give almost identical
responses with good agreements in the general features of time
histories. Note that the contribution of first three modes is consid-
ered to obtain the solution of CTB using Eq. (45).

Other dynamic responses such as first three damped eigenfre-
quencies, first damping factor f1, peak displacement umax, maxi-
mum inter-story drift ratio IDRmax, peck base moment Mb,max, and
maximum base shear Vb,max are also evaluated by the three beam
systems and presented in Table 3. According to this table, all the
responses are in acceptable agreements.

In addition to the present benchmark (Fig. 6), a 13-story RC shear
wall structure [19] is also analyzed. It is required to retrofit the
building, since the walls are not able to resist the resulting moment
at the base. Viscous dampers are thus installed diagonally between
the walls. The building is excited by the LA07 ground motion. The
details about this structure can be found in the litera-ture [19]. The
GSB2, which corresponds to the present example and is illustrated
in Fig. 4, is selected. The damping coefficient provided by viscous
dampers is cd = 3425 kN s/m, thus, the equivalent core shear
damping ceq = 19,000 kN s/m2 is obtained through the expression
proposed for diagonal viscous dampers (see Table 1). Moreover, on
the basis of the GSB2, a CTB model is correspondingly defined and
the rotational (shear) damping c# = 128,000 kN s is obtained from
Eq. (30). The controlling parameters are based on
the both GSB and CTB are equal �a0

2 ¼ a0
2 ¼ 0. Table 4 presents

important structural responses found in the literature [19] and
those computed by the continuum-based models and the discrete
model using the software SAP2000. The viscous dampers are mod-
eled with linear damper-type link elements in the SAP2000. It
should be remarked that the shear damping is considered in this
investigation, hence, the bending and classical damping effects
are neglected. Comparing the results of continuum-based models
and those obtained from the discrete system reveals that the
present models are reliable.
3.3. Eigenfrequency properties influenced by DIVD in connecting beams

The properties of fundamental complex eigenfrequency x1 of 
the reference system (Fig. 6) are shown (Fig. 8a–d) with regard to 
bending gb and shear gs damping multipliers in connecting beams. 
The RB model is used to analyze the problem. It can be observed 
from Fig. 8a that the oscillation part of x1 is identical by both 
damping mechanisms with no sensible variation up to a certain 
damping multiplier (gb = gs = 0.05). Fig. 8b indicates the magnified 
view of the diagrams shown in Fig. 8a along very small damping 
multipliers. The oscillating part influenced by the bend-ing 
damping dramatically grows up at gb = 0.16, meaning that a sharp 
change is occurred from the flexural mode in connecting beams to 
the shear mode. The diagram finally tends to a stable branch with 
the oscillating part equal to 63.5 Hz. At this level, the internal 
bending damping has damped out the flexural vibra-tion in the set 
of connecting beams. Comparing the influence of bending and shear 
damping models in the present coupling beams, it can be 
understood that the bending damping mechanism is more efficient 
than the shear one.

The damping part of x1 is also shown in Fig. 8c. It can be seen 
that the damping part influenced by the bending damping is a dia-
gram with a single peck. This diagram gives the optimum damping 
multiplier gb = 0.2 resulting in the decay rate of of 40 Hz. The dia-
gram resulted by the shear damping (dashed line in Fig. 8c) has an 
almost linear trend with considerably lower values. It strongly con-
firms that the bending damping is dominant in the reference con-
necting beams in comparison with the shear one. The first modal 
damping ratio f1 produced by both damping mechanisms is esti-
mated (Fig. 8d) through Eq. (17) for small damping multipliers. It 
can be seen from Fig. 8d that both diagrams vary almost linearly, 
but the ratio provided by the bending damping is dominantly sig-
nificant in contrast to the one resulted by the shear damping.

3.4. Eigenfrequency properties influenced by DIVD in main beams
(walls)

In order to realize the performance of each damping mechanism 
(i.e. bending and shear damping) in the walls against the classical 
viscous damping in the reference structure, the oscillating and 
damping parts of x1 are evaluated by the RB model versus corre-
sponding damping factors (see Fig. 9a and b, respectively). It should 
be noted that the bending and shear damping coefficients are 
assumed identical in the both (walls) main beams (i.e. cb1 = cb2 and 
cs1 = cs2). Concerning the oscillating part, which is normalized with 
respect to the undamped natural frequency, all the three damping 
mechanisms cause almost the same amount up to about 15% of 
critical damping, meaning that there is no behavioral



Table 3
First three damped eigenfrequencies and dynamical responses by the RB models.

Model x1 x2 x3 f1 umax (m) IDRmax Mb,max (ton m) Vb,max (ton)

RB �0.67 + 13.35i �14.37 + 55.19i �96.37 + 104.4i 0.05 0.093 0.0021 70,725 3810
GSB �0.69 + 13.29i �14.27 + 54.56i �94.13 + 103.6i 0.052 0.0895 0.002 68,631 3758
CTB �0.73 + 13.35i �14.93 + 55.1i �99.33 + 103.3i 0.0546 0.085 0.00195 72,850 3897

Table 4
Structural responses by different models, obtained for both 5% inherent damping and additional (viscous) damping.

Damping sort 5% inherent damping Passive damping (viscous damper)

Discrete approach Continuous approach

Response Lavan [19] GSB CTB Lavan [19] SAP2000 Lavan [19] GSB CTB

Natural period (s) 3.69 3.69 3.69 – – 3.74 3.6 3.59
Damping ratio of first mode 0.05 0.05 0.05 – – 0.266 0.263 0.267
Roof displacement (m) 0.386 0.387 0.4 0.165 0.162 0.163 0.172 0.176
Max. inter-story drift ratio (%) 1.37 1.36 1.35 0.62 0.6 0.58 0.46 0.52
Max. absolute acceleration (m/s2) 8.21 7.26 7.12 4.38 4.86 5.55 4.72 4.53
Total base shear (kN) 9453 9598 9635 5620 5360 5014 6139 6228
Total base moment (kN m) 230,600 229,000 238,000 126,000 121,000 113,600 112,000 114,400

Fig. 8. Fundamental eigenfrequency characteristics of the reference structure including (a) trend of oscillating part, (b) zoomed in view of oscillating part associated to small
multipliers, (c) trend of damping part and (d) trend of modal damping ratio f1 versus damping multipliers.
difference by employing each damping mechanism. According to 
Fig. 9a, the curve related to the internal shear damping slightly 
alters the oscillating part up to 13.35 Hz, confirming that the shear 
oscillation is completely destroyed and walls vibrate only flexu-
rally. However, the shear damping in the walls of such a case study 
structure is not so efficient. Fig. 9a clearly shows that both internal 
bending and classical viscous damping are able to damp out
properly the oscillating part of x1. Note that when the oscillating 
part is vanished, then the critical damping is achieved.

With regard to the damping part (Fig. 9b), the curve associated 
to the classical damping linearly varies up to the critical value. 
According to Fig. 9b, there is an overlap between the diagrams 
by the classical and bending damping for damping factors less than 
0.2. For damping factors greater than 0.2, the bending damping



enforces higher damping parts in comparison with the classical 
damping and finally reaches the critical level at 17.89 Hz. The crit-
ical value produced by the classical damping is 13.06 Hz. It can be 
also mentioned that the damping part influenced by the shear 
damping is negligible in contrast to the other damping models (see 
Fig. 9b).
3.5. Effects of damping mechanisms and degree of coupling on 
structural characteristics

Various damping systems (bending, classical, and shear damp-
ing) can be used to model the dissipation mechanism in coupled 
shear walls. In order to better realize which damping mechanism is 
more efficient in slender systems, some numerical investigations 
are carried out. It should be noted that the degree of coupling (Eq.
(44)) is utilized instead of the controlling parameter expressed in 
Eq. (27), whereas the walls are assumed slender enough. Moreover, 
the bending damping coefficients in the walls are assumed identi-
cal (i.e. cb1 = cb2 = cb). Critical damping values versus the degree of
coupling a0

2 are plotted corresponding to the bending and classical 
damping and are shown in Fig. 10a and b, respectively. The both 
damping models are assumed uniformly distributed along the sys-
tem. It can be observed from the graphs of Fig. 10 that larger 
degrees of coupling result in higher critical damping values. Note 
that the first study is devoted to the bending and classical damping 
and the results on the shear damping are later explained. For the 
sake of simplicity, a damping factor f = c/ccr = gb/gb,cr = c#/c#;cr asso-
ciated to the first mode is defined in order to be able to equally 
compare the dynamic characteristics by the damping models.

Having assumed different values of the degree of coupling, e.g.
a2
0 ¼ 0; a2

0 ¼ 6; a2
0 ¼ 25; a2

0 ¼ 100, the trend of Imðx1Þ of the funda-
mental eigenfrequency x1 influenced by the classical and bending
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Fig. 10. Critical values of (a) internal bending damping multiplier
damping is shown in Fig. 11a–d, respectively. As it can be seen from 
the graphs of Fig. 11, the oscillating parts influenced by the
damping models incrementally diverge where a0

2 increases. For the 
both damping cases, the oscillating part becomes zero at the critical 
level (i.e. f = 1). According to Fig. 11a, the influence of the damping 
models is almost identical for a02 = 0 (uncoupled shear walls). 
According to Fig. 11a–c, the same performance can be seen with 
low damping factors for the bending and classical damping models.

Furthermore, the tendency of absolute damping part jReðx1Þj 
with different degrees of coupling is plotted in Fig. 12a–d. Concern-
ing a02 = 0, the damping part affected by the both damping systems 
varies almost linearly (Fig. 12a). Increasing a02, the diagrams asso-
ciated to the bending damping gradually become nonlinear, espe-
cially for damping factors less than about 0.3. According to the plots 
shown in Fig. 12, the bending damping exhibits significantly higher 
damping part for larger a02 in comparison with the classical 
damping.

For a better understanding, the ratio of Re(x1) resulted by the 
bending and classical damping is plotted (Fig. 13a) versus a02 for f < 
0.2. For very small a02, Fig. 13a shows that the ratio approaches 1 by 
increasing the f. This ratio is signified, when f decreases and a02 

increases.
A suitable performance index, the Inter-story Drift Transfer 

Function (IDTF) [43], is also selected to compare the efficiency of 
the damping mechanisms. For this purpose, the ratio of sum of IDTF 
in the system resulted by the two damping models is plotted (Fig. 
13b) against the a02; the index ratio is generally reduced by 
magnifying a02. This reduction is more significant for smaller f, indi-
cating that the bending damping is more effective than the classi-
cal damping for mitigating the sum of IDTF. Note that both 
damping models perform similarly when the degree of coupling 
tends to zero (see Fig. 13b).
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Fig. 12. Decay rate of the free oscillating CTB system increasing bending and classical damping coefficients for several degrees of coupling (a) a02 = 0, (b) a02 = 6, (c) a02 = 25 and
(d) a02 = 100.
In addition to the damped free vibration, the forced responses
are moreover studied to ascertain the inherent characteristics of
the damping models. Hence, the ratio of tip displacement Dynamic
Magnification Factor (DMF) and the maximum inter-story drift
ratio (IDRmax) are plotted in Fig. 14a and b, respectively; various
degrees of coupling limited by 0 6 a0

2 6 100 are considered. Note 
that a uniformly distributed harmonic force with excitation fre-
quency equal to the fundamental frequency (i.e. x = x1) is adopted
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for analysis. It can be seen from the both plots of Fig. 14 that the
response ratios are smaller especially for 0:03 6 f 6 0:6 and larger 
degrees of coupling (e.g. a0

2 ¼ 60; 100). In the same range of damp-
ing factors, the ratio of DMF approaches about 1 by decreasing the
a0
2 (see Fig. 14a). For f > 0.6 and every a0

2, the response ratio is 
almost stable. The graph presented for the IDRmax (Fig. 14b) indi-
cates almost similar trends to the one shown in Fig. 14a.

The rotational (shear) damping mechanism c#, which is applied 
to model both inherent and additional damping through the CTB 
model, is also evaluated; the oscillating part, damping part, and 
damping factor f are represented 9 Fig. 15a–d for various values
of a0

2. Fig. 15a and b shows that the systems with smaller a0
2 are 

more sensitive to the variation in c#. This sensitivity is more dom-
inant for the uncoupled shear walls (a0

2 ¼ 0). According to Fig. 15b, 
the damping parts in systems with greater a0

2 vary almost linearly 
and exhibit lower values in contrast to those with smaller a0

2.
Fig. 18. (a) General shape of current damping predictor models. (b) Baseline damping ra
possible damping predictor model for safety design under wind loads [54].
Fig. 15c clearly indicates that the damping factors provided by c#
are dominant in the systems with smaller a0

2. In order to better 
understand the variation of overall damping with respect to a0

2, 
Fig. 15d is represented for several shear damping values c#; less
damping factors are always obtained by increasing a0

2. To achieve 
higher damping values with a certain c#, small or moderate degrees 
of coupling are desirable; such a case may be attained by designing 
flexible enough connecting beams in coupled shear walls.

Concerning the reference example (Fig. 6), the influence of the 
classical, internal bending, and shear damping models are indepen-
dently analyzed on the tip displacement transfer function (DMF)
(see Fig. 16). Three damping ratios (0.05, 0.1, and 0.2) associated to 
the fundamental mode are taken into consideration. It can be 
observed form Fig. 16 that the classical and shear damping cause 
almost the same response with the same damping factor, while the 
bending damping exhibits a lower level of transfer function, 
especially around x/x1 = 1. Note that the behavior of the damping 
models may be different in higher modes.

Based upon the comprehensive investigations on various struc-
tural characteristics, a general framework is finally proposed for 
selecting suitable damping mechanisms in coupled shear walls (see 
Fig. 17). This framework is dependent upon two key parame-ters: 
the degree of coupling a02 and the damping factor f. According to the 
present framework, the shear-type damping c# is appropri-ate to 
model passive damping effects (e.g. viscous and viscoelastic
devices) in systems with lower degrees of coupling (e.g. a0

2 < 25). 
In general, larger a02 causes lower damping amounts by the shear 
damping c#. Fig. 17 illustrates that the bending damping cb in
tios, assigned to the low-amplitude plateau, suggested in different literatures as the 



Table 5
Baseline damping proposals intended for the wind-resistant design.

Reference Baseline damping ratio fb

0:01f ffi 0:46=L
b1f þ b2=f

Jeary [46] 
Lagomarsino [50] 
Tamura et al. [51,52] c1f þ c2 ffi c3=Lþ c2

f: natural frequency; L: building height; b1, b2, c1, c2, c3: parameters dependent
upon primary construction material.
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Fig. 19. Comparison of baseline (fundamental) damping with three damping 
mechanisms and proposed predictors presented in Table 5.
coupled walls is the most suitable model and is applicable for
every range of a02 and f. Such a damping mechanism is generally 
suggested as the inherent damping. In addition, an external bend-
ing damping might be developed, where damped outrigger sys-
tems are installed in tall buildings supported by shear walls [44].
Concerning large a02, the bending damping cb is still more suitable
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than the classical damping c. This priority is more significant espe-
cially when lower damping factors (f < 0:5) are required (see the
portion surrounded by f ¼ 0:5 and a0

2 ¼ 25 in Fig. 17). For higher 
damping factors (e.g. f > 0:5), both bending cb and classical c 
damping models may be adopted with almost identical behavior.
According to Fig. 17, provided that a0

2 > 4 and f < 0:5, the bending 
damping cb is yet preferred in comparison with the classical damp-
ing c.

3.6. Suitability of damping mechanisms for wind-based damping 
models

It has been demonstrated [45–47] that a significant portion of 
overall damping in RC buildings in small displacement amplitudes 
is material damping. This point prompted the present authors to 
investigate also the suitability of the classical damping and pro-
posed DIVD models (i.e. internal bending and shear damping) for 
inherent damping modeling via continuous beam systems. Given 
the importance of damping in the wind-resistant design of build-
ings, compatibility of proposed damping mechanisms with the cur-
rent structural damping models (Fig. 18a) reported in the literature 
(Jeary [46,48,49], Lagomarsino [50], Tamura [51], and Spence and 
Kareem [53]) is studied. For the first constant part of the current 
models (see Fig. 18a), called baseline damping ratio fb, some propos-
als are listed in Table 5. The fb versus the building height based on 
these proposals is also shown in Fig. 18b. Note that the amplitude-
dependent part of the damping predictor models is not the subject 
of this study.

A comparative investigation is carried out (Fig. 19) between the 
models presented in Table 5 and the fundamental (baseline) damp-
ing ratio resulted by the three damping mechanisms (bending cb, 
classical c, and shear damping c#) and using degrees of coupling 
a02 = 0, 6, 25, 100. As it can be seen from Fig. 19, the trend of damp-
ing ratio provided by all the damping mechanisms and degrees of
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coupling is considerably in agreement with Tamura’s model (i.e. 
fb = 0.014/T1). There are slight differences for higher periods (e.g. 
T1 > 3 s) corresponding to very tall systems. According to Fig. 19, 
the Jeary’s proposal (i.e. fb = 0.01/T1) is less in agreement with 
the damping ratios resulted by the present damping models. Also, 
the damping ratios obtained from the Lagomarsiono’s model is dif-
ferent from the other results (see Fig. 19).

Damping ratios in higher modes fj (j = 2,3) are also evaluated 
(see Fig. 20) using the proposed damping mechanisms. Depending 
upon every a02, certain quantities of coefficients c, cb, and c# are 
selected in such a way to obtain the same damping f1 = fb = 0.02 in 
the fundamental mode estimated through the Tamura’s model with 
the height of 56 m (refer to Fig. 18b). Then, it can be realized how 
much damping will be provided in the second and third modes 
using the achieved damping coefficients (see Fig. 20). It can be 
clearly observed from Fig. 20 that the bending damping cb supplies 
significant damping in higher modes; the damping ratios in higher 
modes resulted by the classical damping c are very low in 
comparison with those obtained with the other damping models. 
Fig. 20a shows that the shear (rotational) damping c# provides 
almost identical modal damping ratios, where a02 = 0 and gives lar-
ger ratios in higher modes by magnifying a02 (see Fig. 20c and d).

Given the eligibility of bending and shear damping in higher 
modes, the compatibility of the damping models against the full-
scale data measured [45] in the first three modes of Japanese RC 
buildings is also addressed (see Fig. 21). Selecting aforementioned 
degrees of coupling a02 and fundamental natural periods T1, the 
damping ratio in the first mode is identically fixed with all the three 
damping mechanisms (i.e. c, cb, and c#) using the Tamura’s proposal 
(i.e. f1 = 0.014/T1). It can be seen from Fig. 21 that as the period T 
becomes smaller (i.e. the modal number becomes higher), the 
measured damping ratios are increasing. Damping ratios caused by 
the stiffness-proportional type damping (filled black line in Fig. 21) 
and the bending damping (filled lines with markers in Fig. 21) are 
also increasing, but the rates of increment are higher than the 
measured data with the both cases. Fig. 21 shows that the classical 
damping (dashed lines in Fig. 21) is inca-pable of modeling the full-
scale data, since damping ratios are reducing as the period T 
decreases. According to Fig. 21, the varia-tion of damping ratio by 
the shear damping (dotted lines in Fig. 21) is almost in agreement 
with the full-scale measurements. How-ever, it can be concluded 
that DIVD models classified into bending and shear mechanisms 
give much closer results to the real data, while the classical 
damping is suitable only in the fundamental mode. Note that a 
hybrid damping consisting of bending cb and shear c# damping may 
approximate more accurately the real
measurements; moreover, the amplitude-dependent range of the 
structural damping (see Fig. 18a) may be analyzed using such a 
damping model. The latter goal can be afforded since the bending 
and shear damping, which are basically viscoelastic models (Eq.
(5)), are prone to be altered depending on the level of strain; while 
the linear classical damping is incapable in this case.
4. Conclusions

This study is devoted to develop relevant viscous damping
models through multi-beam systems in coupled shear walls con-
sisting of weak connecting beams compared to the walls. For this
purpose, in addition to the linear classical viscous damping, the
Distributed Internal Viscous Damping (DIVD) composed by the
bending and shear mechanisms is introduced through three beam
systems: Reference Beam (RB), Generalized Sandwich Beam (GSB),
and Coupled Two-Beam (CTB). A low-order FE model used to facil-
itate the dynamic analysis is developed for the first two systems
and the third system is solved analytically. Useful (shear-type)
continuum-based coefficients are presented to equivalently ana-
lyze the performances of passive dampers; hence, the seismic anal-
ysis of a retrofitted structure numerically revealed the suitability of
such a technique in modeling of diagonal-braced viscous dampers
via the GSB and CTB systems.

The numerical analysis of the reference example using the RB
showed that the bending damping in both the walls and coupling
elements is dominant against the shear damping. Employing the
GSB and two controlling parameters called the degree of coupling
and the damping factor associated to the fundamental mode, some
structural characteristics are comparatively investigated with the
classical damping and DIVD models, indicating that the bending
damping is the most efficient mechanism with every degree of
coupling. The investigations showed that the classical damping
behaves almost identical to the bending and shear damping for
degrees of coupling less than 4 and is not suitable with larger
degrees of coupling than this value and small damping factors.
The shear-type damping, which is proposed as the continuous
(smeared) equivalence of internal damping in ordinary connecting
beams and of the additional (passive) coupling devices, is identi-
fied to be more efficient with degrees of coupling less than about
25. Numerical investigations also revealed that the bending damp-
ing in the walls and shear damping in the core (smeared coupling
elements) are suitable not only in fundamental mode but also in
higher modes, since they render closer damping ratios to the mea-
sured data given for RC buildings against the classical damping.



Appendix A

The FE mass matrix Me determined for the RB system reads:
Me ¼ q‘
6

2ðA1 þ A2Þ 0 0 ðA1 þ A2Þ 0 0
0 2I1 0 0 I1 0
0 0 2I2 0 0 I2
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0 I1 0 0 2I1 0
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The FE stiffness matrix Ke of the RB is expressed as
Ke ¼ 1
2‘
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Ks1 � ‘ Ks1

‘2

2 þ2Kb1þ2K1 � ‘ K3 � ‘ �Ks1 � ‘ Ks1
‘2

2 �2Kb1 0

Ks2 � ‘ K3 � ‘ Ks2
‘2

2 þ2Kb2þ2K2 � ‘ �Ks2 � ‘ 0 Ks2
‘2

2 �2Kb2

�2ðKs1þKs2Þ �Ks1 � ‘ �Ks2 � ‘ 2ðKs1þKs2Þ �Ks1 � ‘ �Ks2 � ‘
Ks1 � ‘ Ks1

‘2

2 �2Kb1 0 �Ks1 � ‘ Ks1
‘2

2 þ2Kb1þ2K1 � ‘ K3 � ‘
Ks2 � ‘ 0 Ks2

‘2

2 �2Kb2 �Ks2 � ‘ K3 � ‘ Ks2
‘2

2 þ2Kb2þ2K2 � ‘

2
66666666664

3
77777777775

ðA:2Þ
where
K1 ¼ EIb
k‘b

12�a2
‘2b

� 12�a
‘b

þ 3þ k

� 	
; Ks1 ¼ GjA1; Ks2 ¼ GjA2

K2 ¼ EIb
k‘b

12�b2

‘2b
� 12�b

‘b
þ 3þ k

� 	
; Kb1 ¼ EI1; Kb2 ¼ EI2

K3 ¼ EIb
k‘b

24�a�b
‘2b

� 12�aþ12�b
‘b

þ 6� 2k
� 	

k ¼ 1þ 12r; r ¼ EIb
GjAb‘2b

; �a ¼ � B1
2 ; �b ¼ B2

2

8>>>>>>>>>><
>>>>>>>>>>:

ðA:3Þ
The FE damping matrix Ce, which includes the classical, shear,

and bending damping, is given by
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The generalized forces vector Qe is expressed as follows

Qe ¼
f ðtÞ‘
2

½1 0 0 1 0 0 �T ðA:6Þ
The functions of displacement and rotation in the connecting
beams of coupled shear walls are, respectively
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Appendix B

Concerning the continuum-based model (GSB), the contribution
of the continuum core to the FE mass matrix is

Mcore ¼ ‘

2

2cu
3 0 0 cu

3 0 0

0 B21cq
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where: cu ¼ qd � ðt‘bÞ; cq ¼ qd �
t‘3b
12

� �
.

Also, the FE stiffness matrix associated to the continuum core of
the GSB reads

Kcore ¼ Geqðtj‘bÞ
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The FE damping matrix contributed to the continuum core in
the GSB is expressed as

Ccore ¼ ceqðtj‘bÞ ‘2
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Appendix C

The base moment time-history MbðtÞ reads:

MbðtÞ ¼
Xn
j¼1

ðKbk
2
j � k#Þ
kj

gj sinhðkjÞ �
cj
kj

coshðkjÞ
� �(

þ k# þ Kbc2j
cj

½cosðcjÞ þ gj sinðcjÞ� � k#
k2j þ c2j
cjk

2
j

)
CjDjðtÞ ðC:1Þ

and the base shear time-history VbðtÞ can be expressed by

VbðtÞ ¼
Xn
j¼1

k# þ Kbc2j
� �

½gj cosðcjÞ � sinðcjÞ� þ k# � Kbk
2
j

� �n

� cj
kj

sinhðkjÞ � gj coshðkjÞ
� �

� Kb c2j þ k2j

� �
gj

�
CjDjðtÞ ðC:2Þ
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