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Abstract: Spiral bevel gears are known for their smooth operation and high load carrying capability;
therefore, they are an important part of many transmission systems that are designed for high
speed and high load applications. Due to high contact ratio and complex vibration signal, their
fault detection is really challenging even in the case of serious defects. Therefore, spiral bevel gears
have rarely been used as benchmarking for gears’ fault diagnosis. In this research study, Artificial
Intelligence (AI) techniques have been used for fault detection and fault severity level identification
of spiral bevel gears under different operating conditions. Although AI techniques have gained much
success in this field, it is mostly assumed that the operating conditions under which the trained AI
model is deployed for fault diagnosis are same compared to those under which the AI model was
trained. If they differ, the performance of AI model may degrade significantly. In order to overcome
this limitation, in this research study, an effort has been made to find few robust features that
show minimal change due to changing operating conditions; however, they are fault discriminating.
Artificial neural network (ANN) and K-nearest neighbors (KNN) are used as classifiers and both
models are trained and tested by using the selected robust features for fault detection and severity
assessment of spiral bevel gears under different operating conditions. A performance comparison
between both classifiers is also carried out.

Keywords: fault detection; fault severity level identification; artificial intelligence (AI); artificial
neural network (ANN); K-nearest neighbors (KNN); features extraction

1. Introduction

In the present industrial era, early fault detections and correct fault severity level
identifications of machines and their components are very important for their uninter-
rupted availability and to avoid any catastrophic failure. Timely prediction of the defects
in machines facilitates in performing timely maintenance of degraded or damaged compo-
nent. Therefore, performing effective condition monitoring of mechanical systems reduces
both the time and the cost of maintenance [1]. Gears are a vital component of most of
the mechanical systems. A defective gear may cause serious problem in the machine’s
operation and catastrophic failure in the case of damage. Therefore, early gearbox fault
detections and the correct severity level identifications or diagnoses are very much impor-
tant for the availability and smooth operation of machinery. Different techniques have
been introduced by the researchers for accurate fault detection and diagnosis of gears, how-
ever, the technique of fault diagnosis by monitoring the vibrational signal is most widely
used [2,3]. Vibration signal analyses in time domain, frequency domain and time-frequency
domain have been extensively used by the researchers for gearbox faults diagnosis [4].
Effective condition monitoring or fault diagnosis is an experts-oriented task and human
intervention is mostly not very effective nor efficient in terms of timely response to a huge
volume of data. Therefore, intelligent condition monitoring techniques are required to be
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implemented in order to minimize human dependency. During the last two decades, many
new approaches related to Artificial Intelligence (AI) techniques have been proposed by
the researchers, such as condition monitoring of gearboxes using ANN [5]; integration
of wavelet transform and principal component analysis for intelligent fault diagnosis of
rotating machinery [6]; gearbox fault diagnosis using multimodal deep support vector
classification (MDSVC) approach [7]; gearbox fault diagnosis by multi-layer NN scheme [8];
gearbox defect identification by convolutional neural network (CNN) [9]; gearbox defect
diagnosis by a deep random forest fusion technique [10]; intelligent fault diagnostics of
roller element bearings and gears using KNN in combination with Genetic Algorithm
(GA) [11].

Spiral bevel gears are a very important type of the gear family and are known for
their smooth operation and strong capacity. They have helical teeth oriented at a 90 degree
angle, and the teeth are slightly curved in order to provide improved traction, flexibility
and no-slip characteristics. Therefore, spiral bevel gears are ideal for high speed and high
torque applications such as the aviation industry, cement mills, cone crushers and sand
mixtures, railways and mining industry.

The vibration signal of spiral bevel gears is extremely complex because of varying
meshing point, changing number of meshing gear pairs, collision between the teeth during
meshing and non-linear and non-stationery behavior. Particularly, in the case of defect
in the spiral bevel gears, strong noise interferes with the vibration signal and identify-
ing the fault characteristic information becomes difficult because it is submerged in the
noise [12–14]. Spiral bevel gears have a high contact ratio, which makes the diagnosis of
even serious defects very difficult. Therefore, spiral-bevel gears have rarely been used as
benchmarking for defect diagnosis techniques. Compared with the planetary gear system
and parallel shaft gear system, only a few research studies exist on the fault diagnosis of
spiral-bevel gear systems [15,16]. Ricci and Pennacchi introduced a methodology for spiral
bevel gears defect diagnosis based on empirical mode decomposition (EMD) and automatic
selection of intrinsic mode functions [17]. Jiang et al. performed the fault diagnosis of
spiral bevel gears based on complete ensemble empirical mode decomposition with adap-
tive noise (CEEMDAN) permutation entropy [12,18]. Furthermore, few researchers have
focused on defect diagnosis using the features extracted based on wavelet decomposition
and adaptive multiwavelet-based method [19–21]. Fu et al. carried out a study on the fault
detection of spiral bevel gears using a combination of ANN and wavelet transform [22].

The use of AI techniques in fault detection and diagnosis has several advantages
when compared to traditional methods, such as reducing the human intervention and
thus relieving the experts from tedious jobs. However, there are many things that must be
learned and improved for these methods in order to render them effective and practical
in dealing with more complicated fault detection and diagnosis problems in real-world
applications [23]. These methods mostly use an assumption that training and testing data
are from the same operating conditions. Nevertheless, when the operating conditions under
which the trained model is applied differs from the operating conditions under which
the model was trained, then the performance of these approaches may drop significantly.
Outside the laboratory, mostly different operating conditions are encountered in real-world
applications, and it may be exorbitant to obtain data for all potential operating conditions.
Therefore, it is not possible to train the deep learning or machine learning models using
data from all possible operating conditions.

In this instance, there is a need to devise such a method by which the performance of
AI classifiers in terms of cross-domain fault detection can be improved. Furthermore, in this
field, the most popular method remains to be the artificial neural network (ANN) which
consists of more than 50 percent of research due to its ability to perform classification and
prediction while working with uncertainties, weak data and complicated problems [24–26].
Therefore, there is a need of performance comparison between different AI techniques.

The aim of this research study is to overcome the limitation of difficulty in fault
detection and fault severity level assessment of spiral bevel gears and to improve the
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performance of two AI classifiers (ANN and KNN) for defect diagnosis of spiral bevel
gears when applied under different operating conditions than compared to those in which
the models were trained. An effort has been made to find a few fault discriminating
features extracted from time domain vibration data, which are less sensitive to working
conditions but are fault discriminative. Vibration data in 23 different operating conditions
(speed and load) were collected from a spiral-bevel gears test rig. Statistical features are
extracted from the time-domain vibration signal. Features’ analysis is performed to find
their sensitivity and robustness towards the operating conditions. Features with least
sensitivity to operating conditions are selected as robust features. Selected features from
one operating condition are used to train ANN and KNN as diagnostic classifiers. After
training, predictions are made using trained diagnostic classifiers on testing data from
a combination of different operating conditions (speed and load). Furthermore, these
research performances of ANN are compared with KNN in terms of their ability to detect
faults and their ability to access their severity levels correctly in spiral bevel gears operating
under different operating conditions.

2. Methodology

For accurate fault diagnosis of mechanical systems using vibration signals and AI tech-
niques, the correct features’ extraction from vibration signals is of paramount importance.
The features extracted from vibration data contain information regarding the machinery’s
health state. Different AI models such as ANN and KNN use these features for training,
and the same features are used for predictions. Vibration features change with the health
condition of the machine; however, they are also sensitive to the operating conditions
and may change with the altering operating conditions. Thus, misleading the AI models
regarding the health state of equipment if the operating conditions for training and testing
of the model are different from each other. Consequently, it has been observed that the
performance of AI models for defect diagnosis is affected significantly when the models
are deployed for fault detection and diagnosis under the operating conditions, which are
different from those under which they were trained. Therefore, in this study, efforts have
been made to identify some features that are less sensitive to operating conditions but can
categorize the health state of spiral bevel gears in order to improve the fault detection and
the diagnosis capability of ANN and KNN models under different operating conditions.

Vibration data for healthy and damaged spiral bevel gearboxes, with one tooth broken
and two teeth broken, were acquired from the test rig by an accelerometer placed on the
gearbox. Raw vibration signals for all three health conditions at 600 rpm and 3 Nm load
torque are shown in Figure 1.

Low pass filter at 10 kHz was applied to the signal, and 12 statistical features, which
are mostly used in literature, were subsequently extracted from time domain vibration
data. Extracted features were analyzed for their sensitivity towards operating conditions
(speed and load). After finding the most robust features, ANN and KNN models were
trained and tested under different operating conditions for fault detection and severity
identification of spiral bevel gears. The flow chart of the adopted methodology is shown in
Figure 2.



Machines 2021, 9, 173 4 of 19Machines 2021, 9, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 1. Vibration signals in time domain. 

Finding operating conditions invariant 
but fault discriminative features

Training the models under one 
operating condition 

Experimentation and vibration data collection
 under different operating conditions

Vibration Signal
Preprocessing and Features Extraction

Generating Classification Models 
KNN and ANN

Diagnosis  Results

Comparison of fault detection and 
severity level identification accuracy

Deploying trained model for fault 
detection and severity level 

identification under different 
operating conditions

 
Figure 2. Methodology flow chart. 

  

Figure 1. Vibration signals in time domain.

Machines 2021, 9, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 1. Vibration signals in time domain. 

Finding operating conditions invariant 
but fault discriminative features

Training the models under one 
operating condition 

Experimentation and vibration data collection
 under different operating conditions

Vibration Signal
Preprocessing and Features Extraction

Generating Classification Models 
KNN and ANN

Diagnosis  Results

Comparison of fault detection and 
severity level identification accuracy

Deploying trained model for fault 
detection and severity level 

identification under different 
operating conditions

 
Figure 2. Methodology flow chart. 

  

Figure 2. Methodology flow chart.

3. Experimental Setup

The layouts of spiral bevel gears test rig used for experimentation and data collection
are shown in Figure 3. The power is supplied to the system by a 3.5 kW AC motor, which
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is controlled by a control inverter. The motion is transmitted to the user unit by means of a
spiral bevel gearbox with a speed ratio of 1:2 and a contact ratio between two and three.
Another AC motor with 2.75 kW power provides the opposing toque/load torque to the
drive motor as a user unit. The motor’s rotating speed and load torque are controlled by a
control system. A fault is introduced in the spiral bevel gearbox by artificially removing
one tooth of the driven gear. As these types of gears are known for their smooth operation
because of high contact ratio, the defect can be concealed, and it is difficult to detect the
fault by observing the vibration signal in the traditional way. Even one broken tooth does
not affect the vibration signal too much, therefore, it is a challenging task to detect the fault
in such gearboxes [17]. Moreover, for fault severity level identification, two teeth were
artificially removed in order to make a comparison between normal healthy gear boxes
and gearboxes with one and two teeth broken. A defected gear with one tooth completely
removed is shown in Figure 4a, and a defected gear with two teeth completely removed is
shown in Figure 4b. Table 1 shows the health classes of spiral bevel gear considered for
this study. Vibration data were acquired under 23 different operating conditions between
600 and 3000 rpm and 0 and 9 Nm load torque. The rpm and load torque range for
experimentation were selected by keeping in view the limitations of test rig. The test rig
has the limitations of 3000 rpm and 9 Nm load torque. Both fixed and transient operating
conditions have been considered. Each data sample was acquired for 20.08 s at a 25,600 Hz
sampling frequency. Opposing torque/load torque is represented as loading condition in
this study.

Machines 2021, 9, x FOR PEER REVIEW 5 of 20 
 

 

3. Experimental Setup 
The layouts of spiral bevel gears test rig used for experimentation and data collection 

are shown in Figure 3. The power is supplied to the system by a 3.5 kW AC motor, which 
is controlled by a control inverter. The motion is transmitted to the user unit by means of 
a spiral bevel gearbox with a speed ratio of 1:2 and a contact ratio between two and three. 
Another AC motor with 2.75 kW power provides the opposing toque/load torque to the 
drive motor as a user unit. The motor’s rotating speed and load torque are controlled by 
a control system. A fault is introduced in the spiral bevel gearbox by artificially removing 
one tooth of the driven gear. As these types of gears are known for their smooth operation 
because of high contact ratio, the defect can be concealed, and it is difficult to detect the 
fault by observing the vibration signal in the traditional way. Even one broken tooth does 
not affect the vibration signal too much, therefore, it is a challenging task to detect the 
fault in such gearboxes [17]. Moreover, for fault severity level identification, two teeth 
were artificially removed in order to make a comparison between normal healthy gear 
boxes and gearboxes with one and two teeth broken. A defected gear with one tooth com-
pletely removed is shown in Figure 4a, and a defected gear with two teeth completely 
removed is shown in Figure 4b. Table 1 shows the health classes of spiral bevel gear con-
sidered for this study. Vibration data were acquired under 23 different operating condi-
tions between 600 and 3000 rpm and 0 and 9 Nm load torque. The rpm and load torque 
range for experimentation were selected by keeping in view the limitations of test rig. The 
test rig has the limitations of 3000 rpm and 9 Nm load torque. Both fixed and transient 
operating conditions have been considered. Each data sample was acquired for 20.08 s at 
a 25,600 Hz sampling frequency. Opposing torque/load torque is represented as loading 
condition in this study. 

 
Figure 3. Test rig layout. 

  
(a) (b) 

Figure 4. Defected spiral bevel gears (a) one tooth broken (b) two teeth broken. 

Figure 3. Test rig layout.

Machines 2021, 9, x FOR PEER REVIEW 5 of 20 
 

 

3. Experimental Setup 
The layouts of spiral bevel gears test rig used for experimentation and data collection 

are shown in Figure 3. The power is supplied to the system by a 3.5 kW AC motor, which 
is controlled by a control inverter. The motion is transmitted to the user unit by means of 
a spiral bevel gearbox with a speed ratio of 1:2 and a contact ratio between two and three. 
Another AC motor with 2.75 kW power provides the opposing toque/load torque to the 
drive motor as a user unit. The motor’s rotating speed and load torque are controlled by 
a control system. A fault is introduced in the spiral bevel gearbox by artificially removing 
one tooth of the driven gear. As these types of gears are known for their smooth operation 
because of high contact ratio, the defect can be concealed, and it is difficult to detect the 
fault by observing the vibration signal in the traditional way. Even one broken tooth does 
not affect the vibration signal too much, therefore, it is a challenging task to detect the 
fault in such gearboxes [17]. Moreover, for fault severity level identification, two teeth 
were artificially removed in order to make a comparison between normal healthy gear 
boxes and gearboxes with one and two teeth broken. A defected gear with one tooth com-
pletely removed is shown in Figure 4a, and a defected gear with two teeth completely 
removed is shown in Figure 4b. Table 1 shows the health classes of spiral bevel gear con-
sidered for this study. Vibration data were acquired under 23 different operating condi-
tions between 600 and 3000 rpm and 0 and 9 Nm load torque. The rpm and load torque 
range for experimentation were selected by keeping in view the limitations of test rig. The 
test rig has the limitations of 3000 rpm and 9 Nm load torque. Both fixed and transient 
operating conditions have been considered. Each data sample was acquired for 20.08 s at 
a 25,600 Hz sampling frequency. Opposing torque/load torque is represented as loading 
condition in this study. 

 
Figure 3. Test rig layout. 

  
(a) (b) 

Figure 4. Defected spiral bevel gears (a) one tooth broken (b) two teeth broken. Figure 4. Defected spiral bevel gears (a) one tooth broken (b) two teeth broken.



Machines 2021, 9, 173 6 of 19

Table 1. Spiral bevel gears’ health conditions.

Classes 1 2 3

Type of Faults No fault (Normal) One broken tooth Two broken teeth

Fault Severity Level Code N D1 D2

4. Robust Features Selection

The acquired vibration signal after filtering at 10 kHz was divided into 100 segments
of equal length. It was ensured for all operating conditions that each segment of the signal
represents at least two revolutions of pinion and one revolution of driven gear to guarantee
that the extracted features contained enough information regarding the health condition of
gearbox. Subsequently, the following 12 features were extracted.

rms =

√[
1
N ∑N

i=1 xi
2
]

(1)

Peak to Peak (Range) = max(|X|)−min(|X|) (2)

kurtosis =
1
N ∑N

i=1

(
xi − µ

σ

)4
(3)

crest f actor
max(|X|)√[

1
N ∑N

i=1 xi
2
] (4)

Impulse Factor =
max(|X|)
1
N ∑N

i=1|xi|
(5)

Energy− I =
[

1
N ∑N

i=1

√
|xi|
]2

(6)

Skewness =
1
N ∑N

i=1

(
xi − µ

σ

)3
(7)

standard deviation =

√
1
N ∑N

i=1(xi − µ)2 (8)

Variance =
1
N ∑N

i=1(xi − µ)2 (9)

Shape f actor =

√[
1
N ∑N

i=1 xi
2
]

1
N ∑N

i=1|xi|
(10)

Margin f actor =
max(|X|)

1
N ∑N

i=1|xi|2
(11)

Energy− II = ∑N
i=1 x2

i (12)

These extracted features are used to train the AI model for fault diagnosis. The features
change with changing health conditions; however, they undergo alteration because of
the change in operating conditions as well. Consequently, if an AI model is trained at
some specific operating conditions using these extracted features and the same trained
model is deployed for fault detection and severity assessment under different operating
conditions, then the performance may degrade significantly because of the influence of
operating conditions on the features. Hence, in this section, the effects of changes in load
and speed are analyzed in order to find the robust features that are least affected by a
change in operating conditions under study but that are adequately sensitive to health
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conditions. The response of the extracted features to the operating conditions is studied by
plotting them for all 100 segments under different operating conditions and for different
health states.

4.1. Features’ Response to Change in Load

The features extracted from vibration signals of the normal and defected gearbox
with one tooth broken at 600 rpm and two loading conditions (No load; 9 Nm Load) are
plotted in Figure 5 in order to analyze their sensitivity for change in load. Under the same
operating conditions, the features for all three health conditions under study are plotted in
Figure 6. Although Figure 6 contains all the information of Figure 5, the difference between
the maximum and minimum values of plotted features is much greater in Figure 6 where
the features of all three gear boxes are plotted together than compared to Figure 5, where
features of only two gearboxes (healthy and defected with one tooth broken) are plotted,
rendering it difficult to observe minor changes in the features. Therefore, in order to easily
monitor minute variations in features, only the healthy and the defected gearboxes with
one tooth broken are plotted in Figure 5; in order to have an overall comparison, features
from all three health states under consideration are plotted in Figure 6. The same pattern is
followed in forthcoming sections.
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9 Nm).

It is observed that rms, peak to peak, kurtosis, energy-I, standard deviation, variance,
margin factor and energy-II are not affected much by changing the load from 0 to 9 Nm.
Therefore, these features are suitable for fault detection applications where only load is
varying but speed remains constant. However, the remaining features depicted much more
sensitivity for load change; therefore, crest factor, impulse, skewness and shape factor
are not found to be suitable for fault detection and severity assessment under changing
load conditions.
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4.2. Features’ Response to Change in Speed

Features extracted from vibration signals of normal and defected gearboxes with one
tooth broken, at No Load and two speed conditions (600 rpm and 3000 rpm) are plotted in
Figure 7 in order to analyze their sensitivity for speed change. Under the same operating
conditions, features for all three health conditions under study are plotted in Figure 8. It
is observed that rms and energy-II are least affected by changing the speed from 600 to
3000 rpm. Energy-I demonstrated more sensitivity than compared to rms and Energy-II,
however, it is less sensitive than compared to the remaining features. Therefore, rms
and energy-II are the most suitable features for fault detection and fault severity level
identification applications with varying speeds. However, Energy-I may also be considered
as an appropriate feature for such applications.

4.3. Features’ Response to Change in Speed and Load (Combined)

The features extracted from vibration signals of normal and defected gearboxes with
one tooth broken at extreme operating conditions considered in this study (600 rpm + No
Load and 3000 rpm + 9 Nm Load) are plotted in Figure 9 in order to analyze their sensitivity
for the applications where both speed and load are changing. Under the same operating
conditions, the features for all three health conditions under study are plotted in Figure 10.
It is observed that rms and energy-II are not affected much by changing the speed and
loading conditions from minimum to maximum. Therefore, these two features (rms and
energy-II) are suitable for fault detection and severity assessment applications where speed
and load are both varying. Energy-I demonstrated more sensitivity than compared to rms
and Energy-II but depicted less sensitivity when compared to the other remaining features;
nevertheless, it may also be considered as a suitable feature for such applications.
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Consequently, it is found that RMS, Energy-I and Energy-II are suitable robust features
that are less sensitive to the operating conditions (load and speed). Furthermore, they
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are sensitive to faults and depicted an increasing trend as the health condition of spiral
bevel gear box deteriorated. The same can be observed in Figure 11, where the mean of the
values of RMS, Energy-I and Energy-II for 100 segments of signals are plotted for all three
health conditions at 3000 rpm and 9 Nm load. Therefore, RMS, Energy-I and Energy-II
are selected as the best robust features that are working conditions invariant but fault
discriminative.
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In order to confirm these findings, rms and Energy-II are plotted as a pair on a scatter
plot in Figure 12a, and two other randomly selected features (kurtosis and shape factor)
are plotted in Figure 12b. It is evident that rms and Energy-II separate the data based
upon the health condition, i.e., normal (healthy) gear box and defected gear box (one tooth
broken). Data from both operating conditions of normal gearbox, i.e., 600 rpm at 0 Nm
load and 3000 rpm at 9 Nm load, are depicted as one class or group. However, in the case
of other features, both operating conditions of normal gear box are represented by different
groups. Therefore, the separation of classes is not only based upon the health condition
but is also based upon the operating conditions. Consequently, these features may mislead
the classifiers when the operating conditions under which the models are deployed differ
from those under which they were trained.
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In this study, being the robust features, RMS, Energy-I and Energy-II are used for
training ANN and KNN models for fault detection and severity level identification in the
spiral bevel gearboxes under different operating conditions.

5. Application of Classification Models

Industrial globalization over the past few decades thrived, and the need for autom-
atized fault diagnosis procedures for tedious jobs without having any kind of human
intervention has increased. These robust and intelligent methods have made it possible
to perform the desired task without even having in depth knowledge of the field. In this
instance, two Machine Learning (ML) classifiers, Artificial Neural Network (ANN) and K-
Nearest Neighbors (KNN), are used for fault detection and fault severity level identification
of spiral bevel gears under different operating conditions.

Artificial Neural Networks are intelligent systems that are composed of simple ele-
ments operating in a parallel manner and are inspired from biological neural system [27].
ANN is the most used algorithm because of its ability to replicate the workings of human
brain, i.e., generalizing and refereeing through similar conditions by analyzing and process-
ing information [28]. It has been employed in machine fault diagnoses and classification
problems because of its ability to measure nonlinear relationships in complex processes.
Perceptron is known as basic neural network and is used as linear classifier. In order to
solve nonlinear problems, an intermediate layer of neurons, which is called hidden layer,
is added between input and output of single layered perceptron to form a network. This
network is called multi-layered perceptron (MLP), which consists of an input layer, one
or more hidden layers and an output layer. The number of nodes in input and output
layers depend upon the number of input and output variables, respectively. Hidden layer
consists of computational nodes called neurons. Number of hidden layers and number of
neurons in each hidden layer affects the generalization ability and computational power
of the neural network. Therefore, the use of a reasonable number of nodes in the hidden
layer produces a model that is computationally fast. The basic type of these networks is
the feed-forward neural network in which information moves in one direction, i.e., from
the input to the hidden layer and then to the output layer [29]. In the present research, a
pattern recognition neural network is applied; it is a feedforward network with sigmoid
hidden and softmax output neurons. It can be trained to classify inputs according to target
classes. The ANN model was computed in MATLAB. Features matrix as input vectors and
the corresponding target vectors were applied to train the network by using scaled conju-
gate gradient backpropagation. A number of five neurons in the hidden layer (N) were
selected. The performance function used in ANN for the presented work is cross-entropy,
which is most suitable for classification problems. The performance of the classifier is
measured based on fault detection and severity identification accuracy. The architecture of
the Artificial Neural Network used in this research study is provided in Figure 13a.

K-nearest neighbors (KNN) is a non-parametric and simple but robust method for
classification and regression. In this method, the training dataset is used as an input and the
output depends on whether the algorithm was used for classification or regression. In this
work, KNN is used as a classifier in which the output is a class membership. The distance
amongst the patterns in the feature space is quantified by the Euclidean or Mahalanobis
distance, etc. [30,31]. In this study, Euclidean distance was used as a distance metric as
it is simple to implement and can yield competitive results even when compared to the
most sophisticated machine learning methods [32]. The classification in KNN works based
on similarity measures, i.e., minimum distance. The classification was performed based
on the distance, k value and some decision rules. In this study, the value of K is kept at 5.
Illustration of a KNN search problem for K = 5 is given in Figure 13b.

Initially, ANN and KNN models were trained using all the extracted features from vi-
bration data of one set of operating conditions. The trained models were tested on all other
operating conditions to ascertain their fault detection and severity identification capability
when employed for predictions under different operating conditions than compared to



Machines 2021, 9, 173 13 of 19

those in which they were trained. Afterwards, the same process of training and testing was
repeated by using the selected robust features during the features’ selection process.
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6. Results and Discussion

Both AI models, ANN and KNN were initially trained by using all extracted features
at minimum speed and loading condition considered in this research study, i.e., 600 rpm
and 0 Nm Load. The trained models were deployed under 22 different operating conditions
including transient operating conditions for fault detection and severity identification. The
performance of both classifiers when trained at minimum operating conditions is given in
Table 2, in terms of fault detection and severity identification accuracy. It was observed that
both models performed predictions with 100% accuracy for all loading conditions of 600
and 1200 rpm. When the speed increased to 1800, 2400 and 3000 rpm, the performance of
both classifiers was gradually reduced to 33.3% and 64.3% for ANN and KNN, respectively.
When deployed for testing under transient/varying operating conditions between 600–
1200 rpm and 9 Nm load, both models depicted very good performance of 100% and 99.7%,
respectively. However, when the speed increased and the models were deployed for testing
under transient conditions between 1800 and 2400 rpm at 9 Nm load and 2400–3000 rpm at
0 Nm load, the performances of both classifiers were drastically reduced up to 33.3% for
ANN and 65% for KNN.

Table 2. Performance of AI models trained at minimum speed and load (600 rpm and 0 Nm load).

Operating Conditions for
Model Testing

ANN KNN

All Features Robust
Features All Features Robust

Features

rpm Load
(Nm) Fault Detection Accuracy (%)

600 0 100 100 100 100

600 3 100 100 100 100

600 6 100 100 100 100

600 9 100 100 100 100

1200 0 100 100 100 100

1200 3 100 100 100 100

1200 6 100 100 100 100

1200 9 100 100 100 100

1800 0 68.3 100 69 100
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Table 2. Cont.

Operating Conditions for
Model Testing

ANN KNN

All Features Robust
Features All Features Robust

Features

1800 3 74.7 100 74 100

1800 6 83 100 84.3 100

1800 9 83 100 84.3 100

2400 0 66.7 100 66.7 100

2400 3 66.7 100 66.7 100

2400 6 66.7 100 66.7 100

2400 9 66.7 100 67 100

3000 0 33.3 100 65 100

3000 3 33.3 100 64.3 100

3000 6 33.3 100 65.3 100

3000 9 33.3 100 65.7 100

Transient b/w
600–1200 9 100 100 99.7 100

Transient b/w
1800–2400 9 68.7 100 68.7 100

Transient b/w
2400–3000 0 33.3 100 65 100

The row of table corresponding to the operating conditions under which the model was trained is made bold.

Afterwards, the ANN and KNN models were trained at about medium speed and
loading conditions, i.e., 1800 rpm and 3 Nm Load. The trained models were deployed
under different operating conditions for fault detection and severity level identification.
The performance of both classifiers when trained at medium operating conditions is given
in Table 3. At 600 rpm and 0 Nm load, ANN performed fault diagnosis with 80.7% accuracy
(see Figure 14a) and KNN depicted 99.6% accuracy. The performance of both classifiers
increased to 100% at 1800 rpm for all loading conditions and again reduced to 66.7% by
further increasing the speed to 3000 rpm. At 1200 rpm and 2400 rpm, the performance
of both classifiers remained above 91% for all loading conditions. However, at 1200 rpm,
the performance of KNN remained a bit better than compared to ANN and ANN showed
better performance at 2400 rpm than compared to KNN for all loading conditions. When
the trained models were deployed for testing under varying operating conditions, both
models performed very well with 99.6% accuracy for first two transient conditions, i.e.,
when the speed was between 600 and 1200 rpm at 9 Nm load and when the speed was
between 1800 and 2400 rpm at 9 Nm Load. For third transient condition, i.e., when the
speed was between 2400 and 3000 rpm at 0 Nm load, ANN performed predictions with
70.7% accuracy, and the performance of KNN remained at 68% (see Figure 15a).

Table 3. Performance of AI models trained at intermediate speed and load (1800 rpm and 3 Nm load).

Operating Conditions for
Model Testing

ANN KNN

All Features Robust
Features All Features Robust

Features

rpm Load
(Nm) Fault Detection Accuracy (%)

600 0 80.7 100 99.3 100

600 3 84 100 99.6 100
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Table 3. Cont.

Operating Conditions for
Model Testing

ANN KNN

All Features Robust
Features All Features Robust

Features

600 6 82 100 99.3 100

600 9 82.3 100 99.3 100

1200 0 99.7 100 99.7 100

1200 3 99 100 99.3 100

1200 6 97 100 99.7 100

1200 9 97.7 100 99.7 100

1800 0 100 100 100 100

1800 3 100 100 100 100

1800 6 100 100 100 100

1800 9 100 100 100 100

2400 0 99.3 100 91 100

2400 3 100 100 98 100

2400 6 100 100 95.7 100

2400 9 100 100 99 100

3000 0 66.7 100 66.7 100

3000 3 66.7 100 66.7 100

3000 6 66.7 100 66 100

3000 9 66.7 100 66.7 100

Transient b/w
600–1200 9 99.7 100 99.7 100

Transient b/w
1800–2400 9 99.7 100 99.7 100

Transient b/w
2400–3000 0 70.7 100 68 100

The row of table corresponding to the operating conditions under which the model was trained is made bold.
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Finally, the ANN and KNN models were trained at maximum speed and loading
conditions, i.e., 3000 rpm at 9 Nm Load, by using all the extracted features. The trained
models were deployed to make predictions under different operating conditions. The
performances of both classifiers when trained at maximum operating conditions consid-
ered in this research study are given in Table 4 in terms of fault detection and severity
identification accuracy. At 600 and 1200 rpm, the performance of ANN and KNN was 66.7%
for all loading conditions. When the speed was increased to 1800 rpm, the performances of
both classifiers were improved significantly with a minimum accuracy of 90.3% for ANN
and 99.3% for KNN. At 2400 rpm and 3000 rpm, the performance of both classifiers was
further improved, and they performed predictions with 100% accuracy. For first transient
operating condition, i.e., between 600 and 1200 rpm at 9 Nm load, the performances of
both classifiers remained at about 67%. For transient operating conditions between 1800
and 2400 rpm at 9 Nm, the load performances of both classifiers were increased to 99.7%.
For testing under transient operating condition between 2400 and 3000 rpm at 0 Nm load,
both classifiers performed predictions with 100% accuracy.

From the above information, it is evident that the performances of both AI classi-
fiers were adversely affected as the operating conditions under which both AI models
were deployed for diagnosis; the performances moved farther away from the operating
conditions under which they were trained. The performance is degraded because the
features extracted from the vibration signal, which are used for predictions by the trained
AI models, are affected due to changes in the operating conditions. Therefore, these highly
sensitive features misled the classifiers. Furthermore, it is observed that the performance
of both classifiers was more adversely affected by the variation in speed than compared to
load. Therefore, it can be derived that time-domain statical features, which are used in this
study, are more sensitive to speed change than compared to change in loading condition.

Subsequently, the training and testing process was repeated for KNN and ANN
models by using only three features (rms, Energy-I and Energy-II), which were identified
as fault discriminating but operating conditions invariant features (Robust features) during
features’ analysis and selection process. Since these features were identified to be less
sensitive to operating conditions (speed and load), therefore, the performance of both
classifiers did not drop by changing the operating conditions in which they were deployed
for fault detection and severity identification. Both classifiers performed fault diagnosis
with 100% accuracy over almost the entire range of operating conditions for all three
training scenarios (see Tables 2–4). The performance of ANN, only for the third scenario
where the models were trained at 3000 rpm and 9 Nm load, was not at 100% for 600 rpm at
0 and 3 Nm load; rather, it predicted with 98% and 99% accuracy, respectively (see Table 4).
It is evident that the performances of KNN and ANN classifiers have improved in terms of
fault detection and severity level identification accuracy of the spiral bevel gears under
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different operating conditions by using the features that are less sensitive to operating
conditions but are fault discriminative. Using the selected robust features only, confusion
charts for two operating conditions are shown in Figures 14b and 15b for ANN and KNN
classifiers, respectively. Furthermore, it is observed that when both classifiers were trained
at intermediate operating conditions, i.e., 1800 rpm and 3 Nm load, they demonstrated
better performance over entire range of operating conditions than compared to the other
two training scenarios of maximum and minimum operating conditions considered in this
study. An overall performance comparison of both classifiers depicts that their performance
is almost comparable to one another. Therefore, both classifiers are capable enough to
correctly detect the faults and identify the fault severity level of spiral bevel gears under
different operating conditions while using selected robust features.

Table 4. Performance of AI models trained at maximum speed and load (3000 rpm and 9 Nm load).

Operating Conditions for
Model Testing

ANN KNN

All Features Robust
Features All Features Robust

Features

rpm Load
(Nm) Fault Detection Accuracy (%)

600 0 66.7 98 66.66 100

600 3 66.7 99 66.66 100

600 6 66.7 100 66.66 100

600 9 66.7 100 66.66 100

1200 0 66.7 100 67.33 100

1200 3 66.7 100 67 100

1200 6 66.7 100 66.67 100

1200 9 66.7 100 66.67 100

1800 0 99.7 100 100 100

1800 3 99.7 100 100 100

1800 6 95.7 100 99.33 100

1800 9 90.3 100 99.66 100

2400 0 100 100 99.3 100

2400 3 100 100 100 100

2400 6 100 100 100 100

2400 9 100 100 100 100

3000 0 100 100 100 100

3000 3 100 100 100 100

3000 6 100 100 100 100

3000 9 100 100 100 100

Transient b/w
600–1200 9 66.7 100 67 100

Transient b/w
1800–2400 9 99.7 100 99.66 100

Transient b/w
2400–3000 0 100 100 100 100

The row of table corresponding to the operating conditions under which the model was trained is made bold.
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7. Conclusions

In this study, fault detection and severity level identification of spiral bevel gears are
carried out under different operating conditions by using two AI models, ANN and KNN,
as classifiers. Time domain statistical features were extracted from the vibration data of
spiral bevel gears, one with normal health condition and two with faulty conditions at
different severity levels, in order to train the classifiers. The performance of both classifiers
in terms of fault detection and severity level identification accuracy gradually degraded as
the operating conditions under which the models were deployed for predictions deviated
farther away from the operating conditions under which the models were trained. The
performance degradation was due to the higher sensitivity of most of the features under-
consideration towards the operating conditions. Variation in most of the features due to
operating conditions was much more prominent than compared to their change because
of the fault or fault severity level. Therefore, most of the features were misleading the
classifiers. The features were found more sensitive to change in speed than compared to
change in load. Three features (rms, Energy-I and Energy-II) were identified as robust fea-
tures which showed least sensitivity to operating conditions but were fault discriminative
and demonstrated an increasing trend with respect to fault severity level. ANN and KNN
performed predictions with 100% accuracy under all operating conditions while using
only robust features. Thus, the performance of ANN and KNN classifiers was significantly
improved for fault detection and severity level identification of spiral bevel gears under
different operating conditions by eliminating misleading features, which were sensitive to
operating conditions, and selecting the robust features that are less sensitive to operating
conditions but were also fault discriminative. The overall performance of ANN and KNN
classifiers was found almost comparable to one another.
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