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Abstract

We consider the following abstract version of the Moore–Gibson–Thompson equation with memory

∂ttt u(t) + α∂tt u(t) + βA∂tu(t) + γAu(t) −
t∫

0

g(s)Au(t − s)ds = 0

depending on the parameters α, β, γ > 0, where A is strictly positive selfadjoint linear operator and g is 
a convex (nonnegative) memory kernel. In the subcritical case αβ > γ , the related energy has been 
shown to decay exponentially in [19]. Here we discuss the critical case αβ = γ , and we prove that 
exponential stability occurs if and only if A is a bounded operator. Nonetheless, the energy decays to 
zero when A is unbounded as well.
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1. Introduction

Let (H, 〈·, ·〉, ‖ · ‖) be a separable real Hilbert space, and let

A : H → H of domain D(A) ⊂ H

be a strictly positive selfadjoint linear operator, where the (dense) embedding D(A) ⊂ H need 
not be compact. In this work we consider the integrodifferential equation

∂tttu(t) + α∂ttu(t) + βA∂tu(t) + γAu(t) −
t∫

0

g(s)Au(t − s)ds = 0. (1.1)

Here α, β, γ are strictly positive constants subject to the further constraint

� := β − γ

α
≥ 0,

while the (nonnull) function g ∈ W 1,1(R+) with g′ absolutely continuous on R+ = (0, ∞), usu-
ally called memory kernel, satisfies the following assumptions:

(g1) g(s) ≥ 0 and g′(s) ≤ 0 for every s > 0.
(g2) g′′ ≥ 0 almost everywhere.
(g3) � := ∫∞

0 g(s)ds ∈ (0, γ ).
(g4) There exists δ > 0 such that g′(s) + δg(s) ≤ 0 for every s > 0.

The equation is supplemented with the initial conditions assigned at time t = 0

⎧⎪⎨
⎪⎩

u(0) = u0,

∂tu(0) = v0,

∂t t  u(0) = w0,

being u0, v0, w0 prescribed initial data.

1.1. Physical motivations and background

The integrodifferential equation (1.1) is a natural outgrowth of the Moore–Gibson–
Thompson (MGT) equation arising in nonlinear acoustics, and accounting for the second 
sound effects and the associated thermal relaxation in viscous gases/fluids [10,24,32]. We also 
address the reader to the work of Stokes [30], where presumably the MGT equation appeared 
for the first time. Introducing additional nonlocal effects due to molecular relaxation, one 
arrives at the viscoelastic version (1.1) of the MGT equation [11,21,25].

In order to gain a better understanding of the MGT equation, we shall begin with the West-
ervelt (or more generally Kuznetsov) equation, one of the fundamental models for nonlinear 
acoustic waves (see [12,14,33] and references therein). Denoting by β the diffusivity 
coefficient and letting γ = c2 (the square of the sound speed), the Westervelt equation written 

for the state variable u = u(t), standing for acoustic pressure, is given by



∂ttu − γ	u − β	∂tu = ∂tt

( ξ

γ
u2
)
, (1.2)

where ξ is a nonlinearity parameter, with the associated Dirichlet, Neumann or Robin boundary 
conditions. Equation (1.2) is derived by using

• the Navier–Stokes equations for momentum conservation,
• the conservation of mass, and
• the conservation of energy (first law of thermodynamics) involving the heat flux, assumed to

be proportional to the gradient of the temperature, according to the classical Fourier law.

However, such a model is known to exhibit an infinite signal speed paradox, which is often criti-
cized on physical grounds. In order to remove this drawback, the Cattaneo law has been proposed: 
a first order differential perturbation of the Fourier law with a relaxation parameter τ > 0. Thus, 
instead of using the Fourier–Navier–Stokes equations, one employs the Cattaneo–Navier–Stokes 
ones. The resulting model, sometimes referred to as Extendable Irreversible 
Thermodynam-ics [21], leads to the third order in time MGT equation

τ∂tttu + ∂ttu − γ	u − β	∂tu = ∂tt

( ξ

γ
u2
)
. (1.3)

From the mathematical point of view, there is a markable difference between the dynamics 
(1.2) and (1.3). The linear part of the Westervelt equation is associated with an analytic 
semigroup, whereas the nature of the MGT dynamics is “hyperbolic-like” (see [22]). This has a 
major ef-fect on the techniques needed to attack the two problems. Indeed, while “maximal 
parabolic regularity” has been proven to be a successful tool in studying the quasilinear 
parabolic-like dy-namics (1.2) (see [12,14,23]), this is no longer an option in the case of 
(1.3), which requires a hyperbolic-like approach based on the consideration of several 
energy levels with the cor-responding estimates (to close the loop in establishing appropriate 
fixed points) along with a barrier’s method [14].

It is also relevant to note that the MGT equation can be seen within the context of 
viscoelastic-ity, for it can be obtained by differentiating in time a second order viscoelastic 
equation with an exponential kernel. However, the relation between the two models is not one-
to-one, and the dy-namics of (1.3) (compared with viscoelasticity with an exponential kernel) is 
richer, as explained in [7].

Quoting [21], “Extendable Irreversible Thermodynamics has been applied to a variety of 
materials and processes, but it is particularly well suited for describing systems with long re-
laxation times (like viscoelastic fluids) and phenomena involving high frequencies and short 
wavelengths.” Nonetheless, it has been observed in [1] that this theory, in its classical formula-
tion, does not agree with experimental data on the propagation of sound waves in dilute gases 
at high wave frequencies. This led to the introduction of a further parameter accounting for 
molecu-lar relaxation. Nonlocal effects are reflected in the constitutive equations, where both the 
heat flux and the pressure tensor are now governed by evolutions with appropriate relaxation 
parameters. The resulting model is the MGT equation with memory, whose abstract form reads

τ∂ttt u + [α − ku
]
∂ttu + βA∂tu + γAu −

t∫
g(s)Aw(t − s)ds = k[∂tu]2, (1.4)
0



where α, k > 0 are  fixed parameters,

w(t) = u(t) + λ∂t u(t), for some λ ≥ 0,

and the memory kernel g fulfills suitable assumptions. Depending on the properties of the en-
vironment surrounding sound propagation, the memory kernel can exhibit several structures by 
selecting different values of λ, yielding different possible configurations.

1.2. Earlier literature

Well-posedness and stability for equation (1.4) has been the subject of recent studies by 
sev-eral authors. Both linear and nonlinear models have been analyzed. The solvability of 
nonlinear equations depends in an essential way on the following two features of linearization:

(a) uniform stability of the linear dynamics, and
(b) local well-posedness of solutions at several topological levels [14,16].

This is not surprising, since we are dealing with a quasilinear and potentially degenerate dynam-
ics. Thus, both questions (a) and (b) have been extensively dealt with in the past. It is well known 
that the uniform stability of a linear model depends on the strength of dissipation. It has been 
shown that, for strictly positive values of

� := β − τγ

α
,

the linearized version of (1.4) (i.e. for k = 0) is exponentially stable as long as the relaxation 
kernel g is of exponential type with natural constraints. This stability can also be transferred to 
higher topological levels, allowing to carry out a nonlinear analysis [14,16]. For the linearized 
equation, it is shown in [20] that the system exhibits uniform decay rates of the energy for a 
large class of kernels, including kernels g with weak decay properties, generally described by 
an ODE of monotone type

g′ + H(g) ≤ 0, (1.5)

with H(·) convex. The decay properties of the kernel are shown to be transferred into the decay 
of the corresponding PDE solutions. Hence, in the subcritical case � > 0 uniform stability 
appears rather robust. More specifically, it is shown in [19] that under assumptions (g1)–(g4) 
the energy functional corresponding to the memory type w = u decays exponentially. Similar 
results (with some additional restrictions on the size of the kernel g) have been obtained for 
the so-called memory of type II, involving the velocity term ∂t u. Thus, in these subcritical 
cases, inserting memory term of a general type displays enough flexibility in maintaining 
uniformity of decay rates. The situation is different at the critical level � = 0, where there is 
no mechanical damp-ing in the model, and the presence of the memory becomes essential. 
Here an obvious question arises, namely, what kind of memory (generally depending on the 
pressure and its derivative) is beneficial in producing uniform decay rates. According to 
[19,20], it is possible to achieve the desired uniform stability by adding a memory term 
containing not only u but also ∂t u, under vari-ous assumptions on the relaxation kernel, 
including very weak dissipation characterized by (1.5). However, the methods developed in 

[19,20] provide no results when considering the critical case 



for a memory term containing only the pressure u. This is precisely the situation addressed in the 
present work, that is, the linear version of (1.4) when w = u for the critical value � = 0.

A word of warning. In the sequel, we will set

τ = 1.

Clearly, this is no loss of generality, up to rescaling the other quantities.

1.3. Main results

Let us begin by recalling the exponential stability results from [19], proved for subcritical and 
critical values of the parameter � . For every choice of initial data

(u0, v0,w0) ∈D(A
1
2 ) ×D(A

1
2 ) × H,

equation (1.1) has a unique (weak) solution

u ∈ C1([0,∞),D(A
1
2 )) ∩ C2([0,∞),H).

Defining the corresponding energy

F(t) = ‖A 1
2 u(t)‖2 + ‖A 1

2 ∂tu(t)‖2 + ‖∂ttu(t)‖2 −
t∫

0

g′(s)‖A 1
2 u(t) − A

1
2 u(t − s)‖2ds,

the following theorem from [19] holds.

Theorem 1.1. In the subcritical case � > 0 the energy decays exponentially, that is, there exist 
constants C ≥ 1 and ω > 0 such that

F(t) ≤ CF(0)e−2ωt . (1.6)

Actually, in [19] a similar result has also been established (see Theorem 1.6 therein), but for 
the memory term depending only on ∂t u. It is important to say that subcriticality is still 
assumed, along with some additional bounds imposed on �.

For the critical case � = 0, the exponential decay of the energy is proved in [19, Theo-
rem 1.10], but with an added velocity ∂t u to the memory term. The result, reported here below, 
does not depend on the convexity of g, and the energy functional G describing the decay rate 
depends on g itself (rather than g′) and on

w(t) = u(t) + β

γ
∂tu(t).

Theorem 1.2. Let (g1), (g3) with � ∈ (0, β) and (g4) hold. Then in the critical case � = 0 the 
energy



 
 
 
 
 
 
 
 
 

G(t) = ‖A 1
2 u(t)‖2 + ‖A 1

2 ∂tu(t)‖2 + ‖∂ttu(t)‖2 +
t∫

0

g(s)‖A 1
2 w(t) − A

1
2 w(t − s)‖2ds,

defined for all solutions to (1.1), decays exponentially.

Our aim is to address the critical case � = 0 with the memory term depending only on u. As
acknowledged in [19], the techniques developed there were inconclusive in that situation. In
the present paper we shall provide a definite answer. In fact, for the MGT equation without
memory, i.e. when g vanishes, � = 0 is  the threshold value between exponential stability
and energy conservation (see [13,22]). The addition of the memory term introduces further
dissipation. Thus, in principle, one might expect that � = 0 could become in a sense subcritical.
Here, we actually show that the situation is something in between. Namely, the memory
contribution is capable to drive the system to equilibrium, but is not strong enough to do it
exponentially fast, at least if A is unbounded. Indeed our main result can be subsumed as
follows:

Let � = 0. Then (1.6) occurs if and only if A is a bounded operator. Nonetheless, for every initial 
energy F(0), it is always true that

lim
t→∞ F(t) = 0. (1.7)

Strong convergence to zero of single trajectories provides no information on the rate of conver-
gence. However, for more regular initial data we can say more. Indeed, we show that if

(u0, v0,w0) ∈ D(A) × D(A) × D(A1/2)

then the energy F(t) decays at the rate 1/t, implying in turn (1.7) via a density argument.

Remark 1.3. (Open Questions). In view of the above results, it is clear that there are sev-
eral more open issues unresolved when it comes to uniform stability of the third order Volterra 
equation in the critical case. The complexity of the matter is due to the fact that, in third order 
equations, the memory term may typically depend on both u and ∂t u. Thus, the question which 
memory term enables to stabilize uniformly the dynamics is paramount. We know that certain 
combinations of u and ∂t u are effective. Now, we also know that u alone will not suffice to stabi-
lize uniformly the dynamics. It would be interesting to see what can be said about ∂t u, namely, if 
this term alone is able to provide a strong enough damping mechanism. Short calculations reveal 
that such a damping drives the problem into a subcritical regime with, however, an antidissipative 
memory. Thus, we deal with two competing mechanisms: frictional damping quantified by sub-
criticality, and negative damping due to memory effects. This brings up an interesting scenario 
to consider.

1.4. Outline of the paper

In the next Section 2 we introduce a generalized (infinite memory) version of (1.1) within 
the so-called Dafermos past history framework. Such an equation is shown to generate a 
contraction semigroup in a suitable Hilbert space accounting for memory terms. This is done 
in Section 3. In Section 4 we prove that exponential stability does not occur when A is an 

unbounded operator, 



while in Section 5 exponential stability is demonstrated for the case of A bounded. Section 6 is 
devoted to the semiuniform stability of the semigroup, while in the final Section 7 we prove 
the polynomial decay of the solutions for more regular initial data.

As we shall see, the semigroup framework in memory spaces is not really essential for the 
proofs of the main results of this paper on the Volterra equation. However, it does provide an 
elegant and unified method to treat energy solutions of both Volterra and infinite memory 
equations.

2. The equation in the memory space

We consider the following generalization of (1.1) in the critical case � = 0 (i.e. αβ = γ )

∂ttt u(t) + α∂ttu(t) + βA∂tu(t) + αβAu(t) −
∞∫

0

g(s)Au(t − s)ds = 0, (2.1)

where the variable u is understood to be an assigned datum for negative times t ≤ 0. Note that 
(1.1) corresponds to the particular case of null past history of u, namely, when u(s)|s<0 = 0.

2.1. Functional setting

In what follows, we will introduce several Hilbert spaces (with related inner products and 
norms) depending on a parameter r ∈ R. To simplify the notation, the subscript r will be always 
omitted whenever zero.

First, we define the family of nested Hilbert spaces

Hr =D(A
r
2 ), 〈u,v〉r = 〈Ar

2 u,A
r
2 v〉, ‖u‖r = ‖Ar

2 u‖.
In particular, we have the Poincaré inequality

λ0‖u‖2 ≤ ‖u‖2
1, ∀u ∈ H1, (2.2)

where

λ0 = min
{
λ : λ ∈ σ(A)

}
> 0,

being σ(A)  the spectrum of A. The symbol 〈·, ·〉 will also be used to denote the duality pairing 
between Hr and its dual space H−r .

In order to view (2.1) as an ODE in the so-called past history framework of Dafermos [6], 
we introduce the spaces

Mr = L2
−g′(R+;H1+r ),

that is, the spaces of square summable functions η : R+ → H1+r with respect to the measure 
−g′(s)ds, endowed with the Hilbert norms

‖η‖2
Mr

= −
∞∫

g′(s)‖η(s)‖2
1+rds.
0



Then, we define the Hilbert spaces

Hr = H1+r × H1+r × Hr ×Mr

with the usual Euclidean product norms

‖(u, v,w,η)‖2
Hr

= ‖u‖2
1+r + ‖v‖2

1+r + ‖w‖2
r + ‖η‖2

Mr
.

Note that, for every r1 > r2, the embedding Mr1 ⊂ Mr2 is continuous, but not compact (see [27] 
for a counterexample). Accordingly, so is the embedding Hr1 ⊂ Hr2 .

We will also consider the infinitesimal generator of the right-translation semigroup on M, i.e. 
the linear operator T given by

T η = −η′ with domain D(T ) = {η ∈M : η′ ∈ M, η(0) = 0
}
,

the prime standing for the distributional derivative with respect to the variable s > 0.

2.2. The equation

In the same spirit of [6], we consider the auxiliary variable η = ηt (s), containing all the 
information on the past history of u, and formally defined as

ηt (s) = u(t) − u(t − s), t ≥ 0, s > 0.

Then, equation (2.1) translates into the evolution system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ttt u(t) + α∂ttu(t) + βA∂tu(t) + (αβ − �)Au(t) +
∞∫

0

g(s)Aηt (s)ds = 0,

∂tη
t (s) = T ηt (s) + ∂tu(t).

(2.3)

Introducing the state vector

U(t) = (u(t), ∂tu(t), ∂ttu(t), ηt ),

we view (2.3) as the ODE in H

d

dt
U(t) =AU(t), (2.4)

where A is the linear operator given by

A

⎛
⎜⎜⎝

u

v

w

η

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

v

w

−αw − A
[
βv + (αβ − �)u + ∫∞

0 g(s)η(s)ds
]

T η + v

⎞
⎟⎟⎠

with domain



D(A) =

⎧⎪⎨
⎪⎩(u, v,w,η) ∈H

∣∣∣∣∣∣∣
w ∈ H1

βv + (αβ − �)u + ∫∞
0 g(s)η(s)ds ∈ H2

η ∈D(T )

⎫⎪⎬
⎪⎭ .

The equation is supplemented with the initial condition

U(0) = U0,

for an arbitrarily given U0 = (u0, v0, w0, η0) ∈ H.

3. The solution semigroup

In this section, we show that equation (2.4) generates a solution semigroup S(t) on the 
phase space H. This will be done by introducing an equivalent Hilbert norm, specifically 
tailored to the structure of the problem.

3.1. The equivalent norm

For all vectors U = (u, v, w, η) and Ũ = (ũ, ṽ, w̃, η̃) in H, we define

(U , Ũ)H =
(
β − �

α

)
〈v + αu, ṽ + αũ〉1 + 〈w + αv, w̃ + αṽ〉 + �

α
〈v, ṽ〉1 + 〈η, η̃〉M

+ α

∞∫
0

g(s)〈η(s), η̃(s)〉1ds +
∞∫

0

g(s)
[〈η(s), ṽ〉1 + 〈v, η̃(s)〉1

]
ds,

and

|U |2H =
(
β − �

α

)
‖v + αu‖2

1 + ‖w + αv‖2 + �

α
‖v‖2

1 + ‖η‖2
M

+ α

∞∫
0

g(s)‖η(s)‖2
1ds + 2

∞∫
0

g(s)〈η(s), v〉1ds.

In particular, condition (g3) implies that

β − �

α
> 0.

We claim that the above are an inner product and a norm on H, respectively, equivalent to the 
original ones. This in an immediate consequence of the following lemma.

Lemma 3.1. There exists a structural constant c > 1 such that

1

c
‖U‖H ≤ |U |H ≤ c‖U‖H, ∀U ∈ H.



Proof. We begin to prove the estimate from below. To this end, for every ε > 0, we infer from 
the Young inequality that

∣∣∣∣2
∞∫

0

g(s)〈η(s), v〉1ds

∣∣∣∣≤ �

α(1 + ε)
‖v‖2

1 + (1 + ε)α

∞∫
0

g(s)‖η(s)‖2
1ds.

Hence,

α

∞∫
0

g(s)‖η(s)‖2
1ds + 2

∞∫
0

g(s)〈η(s), v〉1ds

≥ − �

α(1 + ε)
‖v‖2

1 − εα

∞∫
0

g(s)‖η(s)‖2
1ds.

Using the assumption (g4) on the memory kernel g, we estimate the latter integral as

−εα

∞∫
0

g(s)‖η(s)‖2
1ds ≥ εα

δ

∞∫
0

g′(s)‖η(s)‖2
1ds = −εα

δ
‖η‖2

M.

In summary, we get

α

∞∫
0

g(s)‖η(s)‖2
1ds + 2

∞∫
0

g(s)〈η(s), v〉1ds ≥ − �

α(1 + ε)
‖v‖2

1 − εα

δ
‖η‖2

M.

Thus, up to fixing ε > 0 suitably small, we arrive at

|U |2H ≥
(
β − �

α

)
‖v + αu‖2

1 + ‖w + αv‖2 + ε�

(1 + ε)α
‖v‖2

1 + 1

2
‖η‖2

M

≥ ε2
[

1

α2
‖v + αu‖2

1 + ‖w + αv‖2 + ‖v‖2
1 + ‖η‖2

M

]
.

In order to conclude, it is enough noting that

1

α2
‖v + αu‖2

1 + ‖w + αv‖2 + ‖v‖2
1 ≥ ν

[
‖u‖2

1 + ‖v‖2
1 + ‖w‖2

]
,

for some ν > 0. Indeed, exploiting once more the Young inequality,

1

α2
‖v + αu‖2

1 + ‖w + αv‖2 + ‖v‖2
1

≥ ν‖u‖2
1 + ‖v‖2

1 − ν

1 − ν

[
1

α2
‖v‖2

1 + α2‖v‖2
]

+ ν‖w‖2,



for all ν ∈ (0, 1). Due to the Poincaré inequality (2.2), we finally obtain

1

α2
‖v + αu‖2

1 + ‖w + αv‖2 + ‖v‖2
1

≥ ν‖u‖2
1 +
[

1 − ν

1 − ν

( 1

α2
+ α2

λ0

)
‖v‖2

1

]
+ ν‖w‖2,

which proves the claim, up to taking ν > 0 sufficiently small.
The estimate from above is much simpler. Indeed, from the Young inequality and (g4),

α

∞∫
0

g(s)‖η(s)‖2
1ds + 2

∞∫
0

g(s)〈η(s), v〉1ds ≤ �

α
‖v‖2

1 + 2α

δ
‖η‖2

M,

and making use of (2.2) we get

|U |2H ≤
(
β − �

α

)
‖v + αu‖2

1 + ‖w + αv‖2 + 2�

α
‖v‖2

1 +
(

1 + 2α

δ

)
‖η‖2

M ≤ c2‖U‖2
H,

for some c > 1 large enough. �
3.2. Generation of the semigroup

H

We are now in a position to prove the existence of the solution semigroup S(t) generated 
by (2.4).

Theorem 3.2. The operator A is the infinitesimal generator of a linear C0-semigroup

S(t) = etA : H → H.

Moreover S(t) is a contraction with respect to the (equivalent) norm | · |  , i.e.

|S(t)U0|H ≤ |U0|H
for every U0 ∈ H and every t ≥ 0.

For every initial datum U0 = (u0, v0, w0, η0) ∈ H, by applying the Duhamel formula to the 
second equation of system (2.3), the memory component ηt of the solution S(t)U0 is easily 
seen to have the explicit form

ηt (s) =
{

u(t) − u(t − s) 0 < s ≤ t,

η0(s − t) + u(t) − u0 s > t.
(3.1)

Remark 3.3. In the critical case � = 0, the Volterra equation (1.1) is just a particular instance 
of (2.3), corresponding to an initial datum of the form U0 = (u0, v0, w0, u0) ∈ H (where the last 
component is a constant function of s). This follows immediately by plugging (3.1) into the first 
equation of (2.3).



The proof of Theorem 3.2 is based on the classical Lumer–Phillips Theorem (see [28]), 
which says that A is the infinitesimal generator of a contraction semigroup S(t) whenever:

(i) A is dissipative; and
(ii) Ran(I −A) = H.

We will address points (i)–(ii) in the next two lemmas.

Lemma 3.4. For all U ∈ D(A), we have the equality

(AU ,U)H = −α‖η‖2
M −

∞∫
0

g′′(s)‖η(s)‖2
1ds ≤ 0,

where the latter inequality follows from (g2). This tells that A is a dissipative operator.

Proof. By direct calculations we draw the identity

(AU ,U)H =
∞∫

0

[
αg(s) − g′(s)

]〈T η(s), η(s)〉1ds

+
∞∫

0

g(s)〈T η(s), v〉1ds −
∞∫

0

g′(s)〈v,η(s)〉1ds.

Integrating by parts in s (as shown in [26] the boundary terms vanish), we get

∞∫
0

[
αg(s) − g′(s)

]〈T η(s), η(s)〉1ds = −α‖η‖2
M −

∞∫
0

g′′(s)‖η(s)‖2
1ds

and

∞∫
0

g(s)〈T η(s), v〉1ds =
∞∫

0

g′(s)〈η(s), v〉1ds,

as claimed. �
Lemma 3.5. The operator I −A maps D(A) onto H.

Proof. Given Ũ = (ũ, ṽ, w̃, η̃) ∈ H, we look for a solution U = (u, v, w, η) ∈ D(A) to the equa-
tion

U −AU = Ũ

which, in components, becomes



u − v = ũ, (3.2)

v − w = ṽ, (3.3)

(1 + α)w + A
[
βv + (αβ − �)u +

∞∫
0

g(s)η(s)ds
]

= w̃, (3.4)

η − T η − v = η̃. (3.5)

Integrating (3.5) with the position η(0) = 0 we find

η(s) = (1 − e−s)v + φ(s), (3.6)

where we denoted

φ(s) =
s∫

0

e−(s−y)η̃(y)dy.

Since −g′ is nonnegative and decreasing, due to (g1)–(g2), making use of the standard 
properties of the convolution [9, §21] we get

‖φ‖2
M ≤

∞∫
0

( s∫
0

e−(s−y)
√−g′(y)‖η̃(y)‖1dy

)2

≤ ‖η̃‖2
M. (3.7)

Substituting (3.2)–(3.3) and (3.6) into (3.4), we obtain

(1 + α)v + κAv = q, (3.8)

having set

κ = β + αβ − � +
∞∫

0

g(s)
[
1 − e−s

]
ds > 0

and

q = w̃ + (1 + α)ṽ − A
[
(αβ − �)ũ +

∞∫
0

g(s)φ(s)ds
]
.

We claim that the elliptic equation (3.8) admits a (unique) solution v ∈ H1. To infer that, it is 
enough showing that q ∈ H−1. Indeed,

‖q‖−1 ≤ ‖w̃‖−1 + (1 + α)‖ṽ‖−1 + (αβ − �)‖ũ‖1 +
∞∫

g(s)‖φ(s)‖1ds,
0



and, due to (g4), (3.7) and the Hölder inequality,

∞∫
0

g(s)‖φ(s)‖1ds ≤ √
�

( ∞∫
0

g(s)‖φ(s)‖2
1ds

) 1
2 ≤
√

�

δ
‖η̃‖M.

Accordingly, we learn from (3.2)–(3.3) that u, w ∈ H1. Besides, owing to (3.6)–(3.7),

‖η‖2
M ≤ 2‖v‖2

M + 2‖φ‖2
M ≤ 2g(0)‖v‖2

1 + 2‖η̃‖2
M,

i.e. η ∈ M and so T η = η − η̃ − v ∈ M as well. It is also immediate to check that η(0) = 0 in
H1. Finally, by comparison in (3.4),

βv + (αβ − �)u +
∞∫

0

g(s)η(s)ds = A−1[w̃ − (1 + α)w
] ∈ H2.

This finishes the proof. �
3.3. Basic energy estimates

For every initial datum U0 = (u0, v0, w0, η0) ∈ H, the energy at time t of the solution

U(t) = S(t)U0 = (u(t), ∂tu(t), ∂ttu(t), ηt )

to (2.4) is given by

E0(t) = 1

2
|S(t)U0|2H

= 1

2

[(
β − �

α

)
‖∂tu(t) + αu(t)‖2

1 + ‖∂ttu(t) + α∂tu(t)‖2 + �

α
‖∂tu(t)‖2

1 + ‖ηt‖2
M

+ α

∞∫
0

g(s)‖ηt (s)‖2
1ds + 2

∞∫
0

g(s)〈ηt (s), ∂tu(t)〉1ds

]
.

Proposition 3.6. For every t > τ ≥ 0, the following dissipativity relation holds

E0(t) + α

t∫
τ

‖ηy‖2
Mdy ≤ E0(τ ).

In addition, E0 is a strict Lyapunov function for the dynamical system S(t) acting on H.

Proof. On account of Lemma 3.4, for every U0 ∈ D(A) a multiplication in H of (2.4) and 
U(t) = S(t)U0 gives



d

dt
E0(t) + α‖ηt‖2

M +
∞∫

0

g′′(s)‖ηt (s)‖2
1ds = 0. (3.9)

Therefore, using (g2),

d

dt
E0(t) + α‖ηt‖2

M ≤ 0. (3.10)

An integration then yields the desired formula for all regular initial data. By density, the integral 
inequality holds for all U0 ∈H.

As for the second part, this follows from the fact that if E0(t) is constant, then the correspond-
ing solution U(t) is zero. Indeed, when ηt ≡ 0 we readily infer from (3.1) that u(t) is constant, 
hence all its time derivatives vanish. Accordingly, the first equation of (2.3) reduce to

(αβ − �)Au(t) = 0,

giving u(t) ≡ 0. In summary, we showed that U(t) ≡ 0, proving that E0 is a strict Lyapunov 
function. �
Remark 3.7. Proposition 3.6 provides a dissipative estimate for the energy F of the Volterra 
equation (1.1) (here we are dealing with the critical case � = 0). Indeed, for the particular choice 
U0 = (u0, v0, w0, u0) ∈ H, we have the equality

F(t) = ‖S(t)U0‖2
H.

Recalling the equivalence of the norms (Lemma 3.1), and observing that (3.1) becomes

ηt (s) =
{

u(t) − u(t − s) 0 < s ≤ t,

u(t) s > t,

we easily see that there exists a constant c > 1 such that

F(t) −
t∫

τ

y∫
0

g′(s)‖u(y) − u(y − s)‖2
1dsdy ≤ cF(τ ).

Remark 3.8. In the Volterra case, i.e. for initial data U0 = (u0, v0, w0, u0), the energy E0(t) is 
actually equivalent to the expression denoted by E1(t) in [19] for the critical case, which satisfies 
for regular initial data the differential identity

d

dt
E1(t) + R1(t) = 0,

where, in the notation of [19], the nonnegative function R1 contains the memory dissipation. This 
is the Volterra analogue of the energy equality (3.9).



4. Lack of exponential decay: the unbounded operator case

We now give an answer to the question raised in [19] on the exponential decay of the energy
F associated to the Volterra equation (1.1) in the critical case � = 0. To this end, let us consider 
the exponential kernel

g(s) = �δe−δs

with δ > 0, which trivially complies with (g1)–(g4). For this choice, (1.1) reads

∂tttu(t) + α∂ttu(t) + βA∂tu(t) + αβAu(t) − �δ

t∫
0

e−δsAu(t − s)ds = 0. (4.1)

Theorem 4.1. Let � = 0, and let A be an unbounded operator. Then, for the energy

F(t) = ‖u(t)‖2
1 + ‖∂tu(t)‖2

1 + ‖∂ttu(t)‖2 + �δ2

t∫
0

e−δs‖u(t) − u(t − s)‖2
1ds

associated to (4.1), there exist no C ≥ 1 and ω > 0 for which the inequality (1.6) holds for all 
initial data (u0, v0, w0) ∈ H1 × H1 × H.

Remark 4.2. Choosing U0 = (u0, v0, w0, u0) ∈ H, the result implies that the semigroup S(t) on 
H fails to be exponentially stable as well.

The proof of Theorem 4.1 requires some steps. In order to simplify the argument, we 
assume that the spectrum σ(A)  of A contains a sequence of eigenvalues λn → ∞, e.g. as in 
the concrete case of the Dirichlet–Laplace operator A = −	 on H = L2(�), with � ⊂ RN 

smooth bounded domain.

Step I. We consider the 4th-order equation

∂ttt t u + (α + δ)∂ttt u + αδ∂ttu + βA∂ttu + β(α + δ)A∂tu + δ(αβ − �)Au = 0, (4.2)

formally obtained by taking the sum ∂t (4.1) + δ(4.1).

Proposition 4.3. Equation (4.2) admits a unique (weak) solution

u ∈ C2([0,∞),H1) ∩ C3([0,∞),H).

Proof. The proof can be done, e.g. via a standard Galerkin scheme. Since (4.2) is linear, we limit 
ourselves to provide the basic energy estimate. To this end, for a regular solution u, multiply (4.2)
by ∂tttu + (α + δ)∂ttu + αδ∂tu to get

d
� + (α + δ)δ�‖∂tu‖2

1 = 0, (4.3)

dt



where the functional � is given by

� = 1

2

[
‖∂tttu + (α + δ)∂ttu + αδ∂tu‖2 +

(
β − �

α

)
‖∂ttu + (α + δ)∂tu + αδu‖2

1

]
+ �

2α

[
‖∂ttu‖2

1 + ((α + δ)2 + αδ
)‖∂tu‖2

1 + 2(α + δ)〈∂ttu, ∂tu〉1

]
.

Since

2(α + δ)
∣∣〈∂ttu(t), ∂tu(t)〉1

∣∣≤ ε‖∂ttu(t)‖2
1 + (α + δ)2

ε
‖∂tu(t)‖2

1

for a fixed

(α + δ)2

αδ + (α + δ)2
< ε < 1,

it is easy to see that there exists a constant c > 1 such that

1

c
W ≤ � ≤ cW,

where

W = 1

2

[
‖u‖2

1 + ‖∂tu‖2
1 + ‖∂ttu‖2

1 + ‖∂tttu‖2
]

denotes the natural energy on the phase space H1 × H1 × H1 × H. An integration of (4.3) on the 
interval [0, t] provides the estimate

W(t) ≤ c2W(0),

proving the claim. �
The link between (4.2) and (4.1) is established in the next proposition.

Proposition 4.4. Let u0 ∈ H1, v0 ∈ H1 and w0 ∈ H1. Moreover, suppose that

z0 := −αw0 − βAv0 − αβAu0 ∈ H.

Then the solution u to (4.2) with initial data

u(0) = u0, ∂tu(0) = v0, ∂ttu(0) = w0, ∂tttu(0) = z0

is the (unique) solution to (4.1) with initial data

u(0) = u0, ∂tu(0) = v0, ∂ttu(0) = w0.



Proof. Since u solves (4.2), the function

ψ = ∂ttt u + α∂ttu + βA∂tu + αβAu

fulfills the identity

∂tψ + δψ − �δAu = 0.

Multiplying by eδt we obtain

d

dt

[
eδtψ(t)

]− �δeδtAu(t) = 0.

Since

ψ(0) = z0 + αw0 + βAv0 + αβAu0 = 0,

integrating the equality above we are led to

eδt
[
∂tttu(t) + α∂ttu(t) + βA∂tu(t) + αβAu(t)

]− �δ

t∫
0

eδsAu(s)ds,

and a final multiplication by e−δt yields (4.1). �
Step II. For every n, we consider the 4th-order polynomial in the complex variable ζ

Pn(ζ ) = ζ 4 + (α + δ)ζ 3 + (αδ + βλn)ζ
2 + β(α + δ)λnζ + δ(αβ − �)λn.

Lemma 4.5. For every n large enough, the equation

Pn(ζ ) = 0

has the two complex roots

ζ±
n = xn ± iyn,

where

xn = −Mn

λn

with Mn → �δ(α + δ)

2β2
,

and

yn =
√

βλn + �δ

β
+ εn with εn → 0.



Proof. Writing

ζ = x + iy, x, y ∈R,

the equation Pn(ζ ) = 0 turns into

αβδλn − �δλn + αβλnx + βδλnx + αδx2 + βλnx
2 + αx3 + δx3 + x4 (4.4)

= y2(αδ + βλn + 3αx + 3δx + 6x2) − y4,

and

y(αβλn + βδλn + 2αδx + 2βλnx + 3αx2 + 3δx2 + 4x3) = y3(α + δ + 4x). (4.5)

Assuming y �= 0, and substituting (4.5) into (4.4), we are led to

Rn(x) = 0,

where

Rn(x) = [Pn(x)]2 − (αδ + βλn + 3αx + 3δx + 6x2)Pn(x)

+ αβδλn − �δλn + αβλnx + βδλnx + αδx2 + βλnx
2 + αx3 + δx3 + x4,

having set

Pn(x) = αβλn + βδλn + 2αδx + 2βλnx + 3αx2 + 3δx2 + 4x3

α + δ + 4x
.

Choosing now

M >
�δ(α + δ)

2β2
,

by direct calculations we see that

Rn(0) = −�δλn < 0,

and

lim
n→∞

1

λn
Rn

(
− M

λn

)
= 2β2M − �δ(α + δ)

α + δ
> 0.

Hence, for every n large enough, the equation Rn(x) = 0 has a root

xn = −Mn with 0 < Mn < M.

λn



From the limit above, it is also clear that it must be

lim
n→∞Mn = �δ(α + δ)

2β2
.

Plugging xn into (4.5) we find yn, hence the desired ζ±
n . �

Step III. We are now ready to complete the proof of Theorem 4.1. For n large enough, let un

be an eigenvector corresponding to λn. Without loss of generality, we can take ‖un‖1 = 1. Then, 
consider the function

u(t) = un

[
exnt sin(ynt) + Qnexnt cos(ynt)

]
,

with xn, yn given by Lemma 4.5, and

Qn = y3
n − 3x2

nyn − 2αxnyn − βλnyn

x3
n − 3xny2

n + α(x2
n − y2

n) + βλnxn + αβλn

.

We claim that Qn is well defined for n large. Indeed, using the expressions of xn and yn, it is 
easily seen that

x3
n − 3xny

2
n + α(x2

n − y2
n) + βλnxn + αβλn → �δ2

β
> 0.

Observe that u(t) satisfies (4.2) with initial data

u(0) = Qnun,

∂tu(0) = [Qnxn + yn

]
un,

∂ttu(0) = [Qnx
2
n + 2xnyn − Qny

2
n

]
un

∂tttu(0) = [Qnx
3
n + 3x2

nyn − 3Qnxny
2
n − y3

n

]
.

Moreover, by the choice of Qn,

∂ttt u(0) = −α
[
Qnx

2
n + 2xnyn − Qny

2
n

]
un − βA

[
Qnxn + yn

]
un − αβAQnun

= −α∂t t  u(0) − βA∂t u(0) − αβAu(0).

Therefore, by Proposition 4.4, the function u(t) solves (4.1). Finally, 

choosing
t = tk = 1

yn

[π
2

+ kπ
]

we get

F(tk) ≥ ‖u(tk)‖2 = e2xntk ∀k ∈N.
1



Letting k → ∞, this tells that, if exponential decay of rate ω > 0 occurs in (1.6), there is the 
restriction

ω ≤ −xn.

But this is true for every n large, and xn → 0, hence there is no such a ω > 0. �
5. Exponential decay: the bounded operator case

As expected, the picture is completely different when A is a bounded operator. Since there 
is a strong Lyapunov function for the system and the set of equilibria is zero (see Proposition 
3.6), the Nagy–Foias theory implies at least weak stability of the entire dynamics (see [5]). If A 
is bounded, such a weak stability may be expected to upgrade to uniform stability (hence expo-
nential for the semigroup). However, this conclusion is not entirely obvious, because the overall 
dynamics is still infinite-dimensional.

Theorem 5.1. Let A be a bounded operator. Then S(t) is exponentially stable, i.e. there exist 
constants C ≥ 1 and ω > 0 such that

|S(t)U0|H ≤ C|U0|He−ωt , ∀U0 ∈ H.

As a byproduct, the energy F of the Volterra equation (1.1) satisfies the exponential decay prop-
erty (1.6) also in the critical case � = 0.

We will give two different proofs of Theorem 5.1. The first one, obtained via semigroup 
techniques through a contradiction argument, is more immediate. However, as always the case 
with proofs by contradiction, the result does not lead to explicit estimates, which are always 
informative and may allow to analyze further generalizations of the dynamics. On the contrary, 
the second one is based on direct energy estimates, and (in principle) can be exported to cover 
semilinear variants of the model. In addition, as we shall see later, the semigroup (spectral) 
proof will be a convenient tool to establish in the next Section 6 the semiuniform stability of the 
semigroup S(t), while the energy estimates will play a key role in proving the decay rates of 
Section 7. Thus, both proofs are needed and, when A is unbounded, lead to different results.

Notation. In the forthcoming proofs, we shall employ the further space

N = L2
g(R

+; H1)

of square summable functions η : R+ → H1 with respect to the measure g(s)ds, endowed with 
the Hilbert norm

‖η‖2
N =

∞∫
0

g(s)‖η(s)‖2
1ds.

On account of (g4), we have the continuous embedding

M ⊂N .



5.1. Proof of Theorem 5.1 [via semigroup techniques]

We use a classical result of Prüss [29] (see also [8] for the precise statement used here). 
Lemma 5.2. The contraction semigroup S(t) = etA : H → H is exponentially stable if and only 

if there exists σ > 0 such that1

inf
μ∈R |(iμI−A)U |H ≥ σ |U |H, ∀U ∈D(A).

By contradiction, let then S(t) be not exponentially stable. Then there exist sequences μn ∈R

and Un = (un, vn, wn, ηn) ∈ D(A) with

|Un|H = 1 (5.1)

such that

|(iμnI−A)Un|H → 0. (5.2)

Recalling the equivalence of the norms | · |H and ‖ · ‖H, the equality (5.1) implies that

un, vn are bounded in H1,

wn is bounded in H,

ηn is bounded in M,

while the convergence (5.2) componentwise reads

iμnun − vn → 0 in H1, (5.3)

iμnvn − wn → 0 in H1, (5.4)

iμnwn + αwn + A
[
βvn + (αβ − �)un +

∞∫
0

g(s)ηn(s)ds
]

→ 0 in H, (5.5)

iμnηn − T ηn − vn → 0 in M. (5.6)

We will reach a contradiction by showing that every component of Un goes to zero (up to a 
subsequence) in its own norm. Exploiting (5.1) and (5.2) we deduce the convergence

∣∣Re (AUn,Un)H
∣∣= ∣∣Re ((iμnI−A)Un,Un)H

∣∣≤ |(iμnI−A)Un|H → 0.

On the other hand, by Lemma 3.4 and (g2),

∣∣Re (AUn,Un)H
∣∣= α‖ηn‖2

M +
∞∫

0

g′′(s)‖ηn(s)‖2
1ds ≥ α‖ηn‖2

M,

1 It is understood that A and S(t) denote the complexifications of A and S(t), respectively.



and we conclude that

‖ηn‖M → 0 ⇒ ‖ηn‖N → 0. (5.7)

Multiplying (5.6) by vn in N (note that vn is bounded in M, hence in N ), we get

iμn〈ηn, vn〉N − �‖vn‖2
1 → 0. (5.8)

Indeed, by an integration by parts and using (5.7),

−〈T ηn, vn〉N = 〈ηn, vn〉M → 0.

At this point, we consider separately two cases.

Case I. Assume first that μn is bounded. In this situation, from (5.7)–(5.8) we infer that

‖vn‖1 → 0. (5.9)

Accordingly, (5.4) and the continuous embedding H1 ⊂ H yield

‖wn‖1 → 0 ⇒ ‖wn‖ → 0. (5.10)

Next, taking the inner product in H of (5.5) with un (note that un is bounded in N ), we find

iμn〈wn,un〉 + α〈wn,un〉 + β〈vn,un〉1 + (αβ − �)‖un‖2
1 + 〈ηn,un〉N → 0

which, in the light of (5.7) and (5.9)–(5.10), provides the convergence

‖un‖1 → 0. (5.11)

Collecting (5.7) and (5.9)–(5.11) we learn that Un → 0 in H, in contradiction with (5.1). So far, 
no use has been made of the boundedness of A. �
Case II. Conversely, assume that μn is not bounded. Then there exists a subsequence μnk

such 
that |μnk

| → ∞. Here, we appeal to the boundedness of A, which implies that all the spaces Hr

are the same, with equivalent norms (without loss of generality, we can always take the H-norm). 
Then (5.3) and (5.4) immediately give

‖unk
‖ → 0 and ‖vnk

‖ → 0.

Besides, by (5.7) together with the Hölder inequality, we see at once that

∞∫
0

g(s)ηnk
(s)ds → 0 in H.

Hence, the relation (5.5) reduces to

iμn wn + αwn → 0 in H,

k k k



which implies the remaining convergence

‖wnk
‖ →  0.

Again, the contradiction is attained for the subsequence Unk . �
5.2. Proof of Theorem 5.1 [via energy estimates]

By density, it is enough to prove the result for initial data U0 ∈ D(A). In that follows, c ≥ 0 
will denote a generic constant depending only on the structural parameters of the problem. We 
will also make use, without explicit mention, of the Poincaré inequality (2.2), as well as of the 
Hölder and Young inequalities. Denoting the solution to (2.4) corresponding to an arbitrary initial 
datum U0 ∈ D(A) by

U(t) = S(t)U0 = (u(t), ∂t u(t), ∂t t  u(t), ηt ),

we introduce three auxiliary energy-type functionals:

�(t) = −〈ηt , ∂tu(t)〉N ,

�(t) = −〈∂tu(t), ∂ttu(t) + α∂tu(t)〉,
ϒ(t) = 〈∂ttu(t) + α∂tu(t), ∂tu(t) + αu(t)〉.

We have the following lemmas (all the forthcoming computations are allowed since we are in the 
domain of A).

Lemma 5.3. For every ε > 0 sufficiently small, the inequality

d

dt
� + �

2
‖∂tu‖2

1 ≤ ε‖∂ttu‖2
1 + c

ε
‖η‖2

M

holds.

Proof. By direct differentiation along the trajectories of the dynamics, the functional � fulfills 
the identity

d

dt
� + �‖∂tu‖2

1 = −〈T η, ∂tu〉N − 〈η, ∂ttu〉N .

Integrating by parts,

−〈T η, ∂tu〉N = 〈η, ∂tu〉M.

Next, we estimate

〈η, ∂tu〉M ≤√g(0)‖∂tu‖1‖η‖M ≤ �‖∂tu‖2
1 + c‖η‖2

M
2



Moreover, due to the continuous embedding M ⊂N ,

−〈η, ∂ttu〉N ≤ √
�‖∂ttu‖1‖η‖N ≤ c‖∂ttu‖1‖η‖M ≤ ε‖∂ttu‖2

1 + c

ε
‖η‖2

M,

for all ε > 0. The proof is finished. �
Lemma 5.4. The inequality

d

dt
� + 1

2
‖∂ttu + α∂tu‖2 ≤ 1

16

(
β − �

α

)
‖∂tu + αu‖2

1 + c‖∂tu‖2
1 + c‖η‖2

M

holds.

Proof. By means of elementary computations which employ the state equation, the functional 
� satisfies the differential equality

d

dt
� + ‖∂ttu + α∂tu‖2 = α〈∂tu, ∂ttu + α∂tu〉 +

(
β − �

α

)
〈∂tu, ∂tu + αu〉1

+ 〈η, ∂tu〉N + �

α
‖∂tu‖2

1.

It is immediate to see that

α〈∂tu, ∂ttu + α∂tu〉 ≤ 1

2
‖∂ttu + α∂tu‖2 + c‖∂tu‖2

1

and

(
β − �

α

)
〈∂tu, ∂tu + αu〉1 ≤ 1

16

(
β − �

α

)
‖∂tu + αu‖2

1 + c‖∂tu‖2
1.

In addition, using again the continuous embedding M ⊂N ,

〈η, ∂tu〉N ≤ √
�‖∂tu‖1‖η‖N ≤ c‖∂tu‖1‖η‖M ≤ c‖∂tu‖2

1 + c‖η‖2
M,

yielding the claim. �
Lemma 5.5. The inequality

d

dt
ϒ + 1

2

(
β − �

α

)
‖∂tu + αu‖2

1 ≤ ‖∂ttu + α∂tu‖2 + c‖∂tu‖2
1 + c‖η‖2

M

holds.

Proof. It is easy to see that

d
ϒ +

(
β − � )‖∂tu + αu‖2

1 = ‖∂ttu + α∂tu‖2 − � 〈∂tu, ∂tu + αu〉1 − 〈η, ∂tu + αu〉N .

dt α α



Since

−�

α
〈∂tu, ∂tu + αu〉1 ≤ 1

4

(
β − �

α

)
‖∂tu + αu‖2

1 + c‖∂tu‖2
1

and, as M ⊂N ,

−〈η, ∂tu + αu〉N ≤ √
�‖∂tu + αu‖1‖η‖N

≤ c‖∂tu + αu‖1‖η‖M
≤ 1

4

(
β − �

α

)
‖∂tu + αu‖2

1 + c‖η‖2
M,

we are finished. �
We can now prove Theorem 5.1. For every ε > 0, we introduce the functional

�ε(t) = E0(t) + ε2�(t) + ε2√ε
[
4�(t) + ϒ(t)

]
.

It is readily seen that, for all ε > 0 small enough, �ε(t) is equivalent to E0(t), which in turn is 
equivalent to ‖U(t)‖2

H (by Lemma 3.1). Collecting the three lemmas above, together with the 
energy inequality (3.10), we easily find κ > 0 such that

d

dt
�ε + 2κε2√ε

[
‖∂tu + αu‖2

1 + ‖∂ttu + α∂tu‖2 + ‖∂tu‖2
1 + ‖η‖2

M
]

≤ ε3‖∂ttu‖2
1,

for all ε > 0 small. So far, we did not use the boundedness of the operator A. Indeed, if A is 
bounded, we have the further control

ε3‖∂ttu‖2
1 ≤ cε3‖∂ttu‖2 ≤ cε3‖∂ttu + α∂tu‖2 + cε3‖∂tu‖2

1.

Hence, up to fixing ε > 0 suitably small, the bad term ε3‖∂ttu‖2
1 can be absorbed in the left-

hand side. Accordingly, exploiting again the equivalence of the functionals, we end up with the 
inequality

d

dt
�ε + κε2√ε �ε ≤ 0,

and the Gronwall lemma gives the desired exponential decay. �
6. Semiuniform decay

Although S(t) is not exponentially stable when A is unbounded, a (weaker) decay property
still holds.

Theorem 6.1. The semigroup S(t) on H is semiuniformly stable.



 

Recall that the (bounded) semigroup S(t) = etA is said to be semiuniformly stable if A is 
invertible and [3, Definition 2.1]

lim
t→∞|S(t)A−1|L(H) = 0,

where | · |L(H) denotes the norm on the space L(H) of bounded linear operators on H. Semi-
uniform stability is a stronger notion than (strong) stability. Indeed, it ensures the convergence 
S(t)U0 → 0 for all U0 ∈D(A). Since S(t) is bounded, this yields at once the convergence (with-
out uniform rate)

|S(t)U0|H → 0, ∀U0 ∈ H.

Corollary 6.2. Let � = 0. Then, for all fixed initial data (u0, v0, w0) ∈ H1 × H1 × H, the energy 
F of the Volterra equation (1.1) satisfies the decay property

lim
t→∞ F(t) = 0.

Clearly, both the theorem and the corollary are significant only when A is an unbounded 
operator, otherwise, as shown in the previous section, exponential stability occurs.

Remark 6.3. Although Theorem 6.1 implies the decay with uniform rate for some initial data
(those in the domain of A), the same conclusion cannot be drawn for the solutions to the 
Volterra equation, corresponding to initial data U0 = (u0, v0, w0, u0). Indeed, (u0, v0, w0, u0) ∈/ 
D(A) except in the rather trivial case when u0 = 0.

The proof of Theorem 6.1 is based on the next lemma. From now on, A and S(t) will 
denote the complexifications of A and S(t), respectively.

Lemma 6.4. Assume that, for every μ ∈ R, the operator iμI − A is bounded below. Then S(t) 
is semiuniformly stable.

Lemma 6.4 is a combination of the following two well-known theorems. The first is a criterion 
due to Batty [4, pp. 40–41] (see also [2,3]); the second one is a classical operator-theoretical result 
(see e.g. [31, §5.1]).

Theorem 6.5. Assume that the imaginary axis iR belongs to the resolvent set ρ(A). Then S(t) 
is semiuniformly stable.

Theorem 6.6. If ζ belongs to the closure of ρ(A) and the (closed) operator ζ I − A is bounded 
below, then ζ ∈ ρ(A).

Indeed, being S(t) a contraction semigroup, we know that the imaginary axis belongs to the 
closure of ρ(A) Hence, for every μ ∈ R we infer from Theorem 6.6 that

iμ ∈ ρ(A) ⇔ iμI−A is bounded below.



Proof of Theorem 6.1. By Lemma 6.4, all we need is showing that the convergence

iμUn − AUn → 0 in H

does not occur, for any μ ∈ R and any sequence Un ∈ D(A) of unit H-norm. Arguing by 
contradiction, we are back to the situation of the proof of Theorem 5.1, where the argument 
needs to be applied to a single value μ ∈ R. Then, reasoning as in case I only (where the 
boundedness of A was not used), leads to the desired conclusion. �
7. Polynomial decay for regular initial data

In this final section, we derive explicit polynomial decay rates for the energy arising from
more regular initial data (again, for the case A unbounded). To this end, we shall consider the 
solutions in the spaces Hr for r = 1, 0, −1, with the associated energies

Er (t) = 1

2
|S(t)U0|2Hr

= 1

2

[(
β − �

α

)
‖∂tu(t) + αu(t)‖2

1+r + ‖∂ttu(t) + α∂tu(t)‖2
r + �

α
‖∂tu(t)‖2

1+r + ‖ηt‖2
Mr

+ α

∞∫
0

g(s)‖ηt (s)‖2
1+rds + 2

∞∫
0

g(s)〈ηt (s), ∂tu(t)〉1+rds

]
.

The above is indeed an equivalent norm on Hr , and this merely follows by Lemma 3.1, 
replacing the operator A with A1+r .

Theorem 7.1. There exists a universal constant C > 0, depending only on the structural param-
eters of the problem, such that the inequality

E0(t) ≤ C

1 + t
E1(0)

holds for all initial data U0 ∈ H1.

Remark 7.2. Observe that the theorem does not imply the semiuniform stability of S(t), since 
H1 is not contained in D(A).

Choosing initial data of the form U0 = (u0, v0, w0, u0), we deduce the Volterra version of 
Theorem 7.1.

Corollary 7.3. There exists a universal constant C > 0 such that, for every fixed initial data 
(u0, v0, w0) ∈ H2 × H2 × H1, the energy F of the Volterra equation (1.1) in the critical case 
� = 0 satisfies

F(t) ≤ C

1 + t

[‖u0‖2
2 + ‖v0‖2

2 + ‖w0‖2
1

]
.



In order to prove Theorem 7.1, we follow the approach presented in [15, Theorem 3.2.2] based 
on the following principle:

weak observability + interpolation + dissipativity ⇒ rate of convergence to equilibria.

From now on, we agree to work with (regular) solutions arising from sufficiently regular initial 
data. It is clear from the proof of Proposition 3.6 that the energy identity (3.9) holds for r = 
1, 0, −1, namely

d

dt
Er (t) + Dr (t) = 0,

having set

Dr (t) = α‖ηt‖2
Mr

+
∞∫

0

g′′(s)‖ηt (s)‖2
1+rds.

In turn, for every t > τ ≥ 0, an integration over (τ, t) yields the equality

Er (t) +
t∫

τ

Dr (y)dy = Er (τ ). (7.1)

In particular, due to (g2),

Er (t) ≤ Er (τ ).

The next step is proving a weak observability inequality.

Lemma 7.4. There exists a universal constant c > 0 such that the inequality

t∫
τ

E−1(y)dy ≤ cE−1(t) + c

t∫
τ

D0(y)dy

holds for every t > τ  ≥ 0.

Proof. In what follows, c ≥ 0 will denote a generic constant depending only on the structural 
quantities of the problem. Moreover, the Poincaré inequality (2.2), as well as the Hölder and 
the Young inequalities, will be tacitly used several times. We divide the proof into four steps.

Step 0. (Notation). Paralleling what done in Section 5, we introduce the space

N−1 = L2
g(R

+; H)

of square summable functions η : R+ → H with respect to the measure g(s)ds, endowed with 
the Hilbert norm



‖η‖2
N−1

=
∞∫

0

g(s)‖η(s)‖2ds.

On account of (g4), we have the continuous embedding2

M−1 ⊂N−1.

Step 1. We consider the functional

�−1(t) = −〈ηt , ∂t u(t)〉N−1 .

Arguing as in the proof of Lemma 5.3, and recalling (g2), we easily obtain the differential 
in-equality

d

dt
�−1 + �

2
‖∂tu‖2 ≤ ε‖∂ttu‖2−1 + c

ε
‖η‖2

M ≤ ε‖∂ttu‖2−1 + c

ε
D0,

for every ε > 0 sufficiently small. An integration on (τ, t) yields

t∫
τ

‖∂tu(y)‖2dy ≤ 2

�

[
�−1(τ ) − �−1(t)

]+ 2ε

�

t∫
τ

‖∂ttu(y)‖2−1dy + c

ε

t∫
τ

D0(y)dy.

Since |�−1| is controlled by the energy E−1, we deduce that

t∫
τ

‖∂tu(y)‖2dy ≤ c
[
E−1(τ ) + E−1(t)

]+ cε

t∫
τ

‖∂ttu(y)‖2−1dy + c

ε

t∫
τ

D0(y)dy.

Finally, making use of the energy equality (7.1) for r = −1,

E−1(τ ) = E−1(t) +
t∫

τ

D−1(y)dy ≤ E−1(t) + c

t∫
τ

D0(y)dy.

Thus, we end up with

t∫
τ

‖∂tu(y)‖2dy ≤ cE−1(t) + cε

t∫
τ

‖∂ttu(y)‖2−1dy + c

ε

t∫
τ

D0(y)dy. (7.2)

Step 2. By Lemma 5.4, up to properly rescaling the spaces, the functional

�−1(t) = −〈∂tu(t), ∂ttu(t) + α∂tu(t)〉−1

2 The space M−1 = L2 ′ (R+; H) has been introduced in Subsection 2.1.
−g



fulfills the differential inequality

d

dt
�−1 + 1

2
‖∂ttu + α∂tu‖2−1 ≤ 1

16

(
β − �

α

)
‖∂tu + αu‖2 + c‖∂tu‖2 + c‖η‖2

M−1
.

Integrating on (τ, t) and using (g2) (noting that D−1 is controlled by D0), we obtain

t∫
τ

‖∂ttu(y) + α∂tu(y)‖2−1dy ≤ 2
[
�−1(τ ) − �−1(t)

]+ 1

8

(
β − �

α

) t∫
τ

‖∂tu(y) + αu(y)‖2dy

+ c

t∫
τ

‖∂tu(y)‖2dy + c

t∫
τ

D0(y)dy.

Again, since |�−1| is controlled by E−1, from the integral inequality above and (7.1) for r = −1, 
we conclude that

t∫
τ

‖∂ttu(y) + α∂tu(y)‖2−1dy ≤ cE−1(t) + 1

8

(
β − �

α

) t∫
τ

‖∂tu(y) + αu(y)‖2dy (7.3)

+ c

t∫
τ

‖∂tu(y)‖2dy + c

t∫
τ

D0(y)dy.

Step 3. We introduce the further functional

ϒ−1(t) = 〈∂ttu(t) + α∂tu(t), ∂tu(t) + αu(t)〉−1.

The rescaled version of Lemma 5.5 gives

d

dt
ϒ−1 + 1

2

(
β − �

α

)
‖∂tu + αu‖2 ≤ ‖∂ttu + α∂tu‖2−1 + c‖∂tu‖2 + c‖η‖2

M−1
.

Analogously to the previous steps, we arrive at

(
β − �

α

) t∫
τ

‖∂tu(y) + αu(y)‖2dy ≤ cE−1(t) + 2

t∫
τ

‖∂ttu(y) + α∂tu(y)‖2−1dy (7.4)

+ c

t∫
τ

‖∂tu(y)‖2dy + c

t∫
τ

D0(y)dy.

Step 4. At this point, for ε > 0 small enough, we take the sum

(7.2) + 4
√

ε (7.3) + √
ε (7.4),

so to obtain



∫t
t∫
τ

‖∂tu(y)‖2dy + 2
√

ε

τ

‖∂ttu(y) + α∂tu(y)‖2−1dy

+
√

ε

2

(
β − �

α

) t∫
τ

‖∂tu(y) + αu(y)‖2dy

≤ cE−1(t) + cε

t∫
τ

‖∂ttu(y)‖2−1dy + c
√

ε

t∫
τ

‖∂tu(y)‖2dy + c

ε

t∫
τ

D0(y)dy.

Finally, estimating

‖∂ttu‖2−1 ≤ c‖∂ttu + α∂tu‖2−1 + c‖∂tu‖2,

and fixing a suitably small ε > 0, we draw the inequality

t∫
τ

[
‖∂tu(y)‖2 + ‖∂ttu(y) + α∂tu(y)‖2−1 + ‖∂tu(y) + αu(y)‖2

]
dy

≤ cE−1(t) + c

t∫
τ

D0(y)dy.

The claim follows by adding to both sides the term

t∫
τ

‖ηt (y)‖2
M−1

dy ≤ c

t∫
τ

D0(y)dy.

Indeed, the resulting left-hand side is equivalent to the energy E−1 integrated on (τ, t). The 

latter conclusion comes from the rescaled version of the norm equivalence stated in Lemma 
3.1. �

We are now in the position to give the

Proof of Theorem 7.1. Assume E1(0) > 0, otherwise there is nothing to prove. Let θ ≥ 2c be 
fixed (where c > 0 is  the universal constant of Lemma 7.4). Since E−1 is nonincreasing, it is 
immediate to see that

θE−1(θ) ≤
θ∫

E−1(y)dy.

0

Hence, exploiting Lemma 7.4 with τ = 0 and t = θ , and the energy equality (7.1) for r = 0, we 
get the control



∫θ
(θ − c)E−1(θ) ≤ c

0

D0(y)dy = c
[
E0(0) − E0(θ)

]
.

Since θ ≥ 2c, we arrive at

E−1(θ) ≤ E0(0) − E0(θ).

This estimate plus interpolation yield

E2
0(θ) ≤ KE−1(θ)E1(θ) ≤ K

[
E0(0) − E0(θ)

]
E1(θ)

for some K > 0 depending only on the structural parameters of the problem. Since E1(θ) ≤
E1(0), we end up with

KE1(0)E0(θ) + E2
0(θ) ≤ KE1(0)E0(0).

Calling

Q(t) = KE1(0)E0(t) and p(x) =
[

x

KE1(0)

]2

,

such an inequality can be rewritten as

Q(θ) + p
(
Q(θ)

)≤ Q(0).

The argument can be obviously repeated on every interval [nθ, (n + 1)θ ], with n ∈ N, so to 
obtain

Q((n + 1)θ) + p
(
Q((n + 1)θ)

)≤ Q(nθ), ∀n ∈N.

At this point, a direct application of Lemma 3.3 from [17] (see also [18]) provides the estimate

Q(nθ) ≤ σ(n), ∀n ∈N, (7.5)

where σ is a solution to the ODE

{
σ ′ + q(σ ) = 0,

σ (0) = Q(0),

with

q(x) = x − (I + p)−1(x).

Denoting for simplicity

� = K2E2(0),
1



by explicit calculations we have

q(x) = x + 1

2

(
� −

√
� 2 + 4�x

)
.

Since q(x) ∼ x for large x and

q(x) ∼ x2

�
as x → 0,

we conclude that

σ(t) ≤ B�

t

for some B ≥ 1. For any given t ≥ θ , let now n be such that t ∈ [nθ, (n + 1)θ ]. Since E0 is 
nonincreasing, we learn from (7.5) that

E0(t) ≤ E0(nθ) ≤ BK

n
E1(0) ≤ C

1 + t
E1(0),

having set

C = 2BK(θ + 1).

Recalling that E0 is nonincreasing and controlled by E1, it is then apparent that the inequality 
holds for all t ≥ 0 (possibly for a larger C). This proves the theorem for regular solutions. The 
general case follows by a standard density argument. �
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