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Abstract

This paper addresses the provision of ancillary services in smart energy systems. A large number of prosumers

are aggregated by an Energy Service Provider (ESP) in order to provide a manual Frequency Restoration

Reserve (mFRR) service, which consists in offering some degree of flexibility and be willing to provide a

power variation over a given time interval upon reception of an explicit manual request by the Transmission

System Operator (TSO). The main focus of this paper is to define how the ESP can optimally distribute the

requested flexibility effort to the prosumers in the pool, promptly providing the agreed mFRR service upon

request of the TSO. In particular, a scalable strategy is proposed, able to account for integer decision variables

like on/off commands, while reducing the combinatorial complexity of the problem and preserving privacy

of local information via distributed computations. Lead and rebound effects are avoided by maintaining the

originally scheduled energy exchange profile before and after the time interval where the TSO request must

be satisfied. The simulation results show the effectiveness of the proposed approach in terms of scalability

and quality of the obtained feasible solution.

Keywords: Balancing services, prosumers aggregation, distributed MILP optimization.

1. Introduction

The wider and wider penetration of Renewable Energy Sources (RES) in the electricity world is moti-

vated by many advantages they can guarantee in economic terms, for pollutants reduction, and for efficient

management of the electricity grid. For these reasons, RES, together with the proper management of pro-

grammable loads, are today the keystone for the creation of an electricity network no longer based on a

few large plants, but made by many distributed energy generators, energy storage systems, and controllable

loads. This new paradigm provides high flexibility at the price of new coordination problems, due to the

presence of non-programmable elements like non dispatchable energy sources and loads, and to the need to

guarantee reliable ancillary services, like power production and frequency/voltage regulation.

To cope with these new challenges, distributed energy resources can be used as external balancing ser-

Preprint submitted to Elsevier March 31, 2021



vices, [1]. Indeed, an active participation of the so-called prosumers, like microgrids and smart buildings, is

nowadays recognized as one of the best solutions to provide additional flexibility to electricity markets, [2].

However, due to their (often) small-scale size, in order to reach an adequate power capability level, multiple

prosumers must be coordinated by an aggregator, named here Energy Service Provider (ESP) [3, 4]. Ag-

gregators have been widely studied in recent years, see [5, 6], and methods for assessing and optimizing the

flexibility that can be obtained through aggregation of multiple energy systems for the day-ahead market

operations are presented in [7–10].

The ESP can also contribute to the manual Frequency Restoration Reserve (mFRR) service (traditionally

named Tertiary Reserve) and provide active power services for restoring frequency deviations, [6, 11]. To

participate to this service, the ESP must communicate its power availability in advance, submitting upward

and downward reserve bids to proper reserve markets. Reserve markets have still not reached the harmo-

nization and standardization level of other energy markets in Europe (e.g. the day-ahead market) and there

are still differences among European countries [12]. According to MIBEL market, which covers Spain and

Portugal control areas, mFRR bids are submitted by providers the day prior to real-time operation, until

21:00 [13]. In some other countries, mFRR bids can be submitted also during the daily operation, e.g. in

Norway up to 45 minutes before the effective delivery [14], while in The Netherlands up to 15 minutes [11].

In Italy, the reserve market is split in two: an ex-ante reserve market, where mFRR bids can be submitted

until 17:30 of the day prior to real-time operation, and an online reserve market, where providers can update

their offers every 4 hours during the daily operation [15].

In general, after the gate closure time for bids submission, the Transmission System Operator (TSO)

defines which offers to accept based on a precise merit order list [16]. The providers are typically remunerated

for the offered mFRR services, but different market frameworks apply also for this aspect. For instance, in

some countries the delivered upward and downward mFRR services are remunerated with the pay-as-bid

rule (e.g in Germany, Finland and Italy) while in others they are remunerated with common marginal prices

(e.g. in Norway, Netherlands, Spain and Portugal) [11, 13–15]. For more many additional details on mFRR

market frameworks, the interested reader is referred to [6, 11, 14, 17].

Independently on the local market regulations, the TSO can then request the ESP to effectively deliver

the offered mFFR services during the online operation, asking to vary the active power profile of its prosumers

pool with respect to the pre-agreed power baseline for a specific time period [18]. The TSO requests can be

also a fraction of the offered mFRR bids, based on the actual needs of the electrical system [19]. As dictated

by the European regulations [16], the ESP must deliver the requested mFRR service within 15 minutes,

optimally rescheduling the operations of the prosumers pool independently on its size.

In view of the above considerations, there is therefore the need to devise efficient strategies for the ESP
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to promptly respond to TSO power variation requests, while also maintaining the pre-agreed power baseline

before and after the satisfaction of the request, thus avoiding the so-called lead and rebound effects, see [2, 20].

The design of proper optimization algorithms is however made difficult by the fact that prosumers, i.e.

dispatchable generators, storage systems, and variable loads, can have a discontinuous behavior, for instance

generators can be switched on/off, and controllable loads can be shifted, interrupted or curtailed. When

adopting optimization approaches, this leads to the introduction of Mixed-Integer (MI) decision variables, so

that the resulting optimization problem turns out to be a non convex MI program.

The solution of aggregators’ optimization problems can be addressed with centralized algorithms, as

described in [4, 21, 22], where the problem of jointly coordinating a group of smart houses, buildings or

microgrids is considered. Centralized methods can in principle provide optimality guarantees, but can easily

lead to scalability, computational, and confidentiality issues. To overcome computational limitations, cen-

tralized evolutionary algorithms for MI problems are proposed in [23, 24], sacrificing optimality and without

guaranteeing privacy of local information. For these reasons, recent research efforts have been devoted

to the design of distributed optimization methods, enabling prosumers to locally optimize the operation of

their own units, while cooperating to determine the optimal global solution. Standard distributed optimiza-

tion methods may lead to feasibility and optimality issues when applied to MI (non-convex) problems, and

therefore novel techniques have been recently proposed (see [25] for an in-depth analysis of the literature). In

particular, a distributed approach is presented in [26], where individual users solve local MI problems through

heuristic greedy algorithms leading to approximate solutions. Distributed Lagrangian-based algorithms have

been developed and applied to the field, such as in [27, 28], where however feasibility is not guaranteed

and it is achieved by resorting to heuristic approaches. Distributed algorithms relying on the Dantzig-Wolfe

(DW) decomposition method have been used for coordinating aggregators in [29, 30], and applied to specific

classes of systems and not to MI problems. In [25], a more general algorithm for MI linear problems has

been developed, still relying on the DW method, without however considering the ancillary services provision

problem. In this context, an original solution has recently been proposed in [31] based on convex relaxation

and a distributed stochastic dual gradient algorithm. However, the mentioned approaches do not address

the problem of the real-time mobilization of upward or downward power reserve satisfying the TSO requests,

which is the focus of this paper. Concerning this aspect, a two-stage optimization framework applied to

communities of households is presented in [32], however considering just continuous variables. An approach

based on a hierarchical control architecture for MI problems is described in [33], where at the high level, an

optimizer defines the flexibility reserves, while at the low level, a simple controller tracks the power references

mobilizing the required power reserve. The approaches for real-time reserve provision described in [32, 33]

are however based on centralized approaches, i.e. possibly leading to scalability and privacy issues.
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Trying to fill in the existing lack of an appropriate methodology to address optimization problems arising in

prosumers’ aggregation for mFRR provision, this work proposes a novel and effective distributed optimization

algorithm for the solution of MI Liner Programming (MILP) problems which enables the prompt mobilization

of power reserve in real-time by the ESP. The main contributions of our paper are:

• the MILP formulation of the ESP task to satisfy TSO power requests by properly coordinating pro-

sumers, while avoiding lead and rebound effects;

• a privacy-preserving distributed coordination procedure that is scalable in the number of prosumers

and mitigates the combinatorial complexity arising in mixed integer optimization.

It is assumed that the available flexibility reserve have been already traded by the ESP with the TSO in

previous market stages, e.g. during the day-ahead as reported in [10, 22, 33]. The proposed algorithm is

inspired by the distributed optimization method described in [34] for constraint-coupled Mixed-Integer Linear

Programs (MILPs), which is based on the dual-decomposition approach and characterized by guaranteed

finite-time convergence and feasibility properties, achieved through a tightening procedure of the coupling

constraints. However, in some cases, the algorithm in [34] can be overly conservative, shrinking the feasibility

region up to a point where no solution can be found. Therefore, to alleviate this issue, we propose here a

variation of the algorithm in [34], which involves a more cautious tightening of the feasibility region based on

the amount of violation of the coupling constraints. The proposed approach shows to be significantly efficient

for the resolution of large-scale MILPs encountered in realistic applications. The extensive numerical tests

show the effectiveness of the approach in determining a feasible solution close to the optimal one, allowing the

ESP to promptly coordinate multiple prosumers to satisfy the TSO power request. Moreover, the experiments

witness the enhanced scalability properties of the algorithm, as the computational time remains considerably

smaller with respect to the 15 minutes time constraint imposed by the mFRR regulations, despite the possibly

large size of the prosumers’ aggregation.

The rest of the paper is structured as follows. In Section 2 the addressed problem is described and

formulated as a MILP by suitably modeling the prosumers in the pool. The proposed distributed optimization

strategy is described in Section 3. Numerical results are reported in Section 4 and some final conclusions are

discussed in Section 5.

2. Problem description and MILP formulation

Consider an ESP that coordinates N prosumers providing balancing services to the grid. Each prosumer

is equipped with different types of controllable devices: a programmable load Pl that can be modulated
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Table 1: Main optimization variables and parameters

Symbol Description Unit

Γ Power variation requested by the TSO to the prosumers pool kW

P Output power of the prosumers pool kW

Pi Output power of i-th prosumer kW

PGi Output power of the controllable generator of the i-th prosumer kW

δGi On/Off status of the controllable generator of the i-th prosumer Boolean

PBi Output power of the battery of the i-th prosumer kW

PB,ci Charging power of the battery of the i-th prosumer kW

PB,di Discharging power of the battery of the i-th prosumer kW

δBi Charging/Discharging status of the battery of the i-th prosumer Boolean

SBi Energy stored in the battery of the i-th prosumer kWh

PPLi Power required by the programmable load of the i-th prosumer kW

δPLi Power consumption level of the programmable load of the i-th prosumer Integer

PSLi Power required by the non-interruptible load of the i-th prosumer kW

δSLi Activation of the non-interruptible load of the i-th prosumer Boolean

and shifted in time to a certain extent, a non-interruptible load Sl that can be only shifted, a controllable

generator G (e.g., a microturbine), and a battery storage device B, which enhances its flexibility in terms of

power exchange with the grid. In order to keep the notation light when formulating the coordination problem,

in the following it is supposed that each prosumer has one device of each type. Indeed, the absence of a certain

kind of device in a prosumer can be easily handled by omitting it, while the presence of multiple devices

of the same type can be handled by indexing devices of the same type with a subscript. The optimization

variables used in the following problem formulation are reported in Table 1.

It is assumed that the ESP has agreed with the TSO some reference daily power exchange profile and

its availability to provide balancing services: if at some point during the day the grid is experiencing an

imbalance between production and consumption, the TSO can ask the ESP to modify the reference power

profile of the prosumers pool by a certain amount with some tolerance bounds, over a given time frame. Once

the ESP has received such a request, the usage of the controllable devices of possibly all prosumers needs to

be rescheduled so as to meet the request while, at the same time, minimizing the involved operating costs.

It is assumed that the reference power profiles of the prosumers in the pool and the amount of flexibility

offered to the TSO by the ESP are given (e.g., they are computed by suitable methods like that in [10]), as

the designed strategy defines how the ESP can optimally respond to the TSO request through the solution of

a Mixed-Integer Linear Program (MILP). The problem is formulated in centralized form to clearly describe

the overall objective, decision variables, local and global constraints. By exploiting the partially decoupled

structure of the global optimization problem, we propose in Section 3 a distributed computation solution
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where prosumers locally optimize their own units while the ESP coordinates their operations through an

iterative negotiation mechanism (see Figure 1). Conversely to centralized methods, this framework allows

prosumers not to disclose their internal information to the ESP, and to promptly solve a large-scale MILP

since prosumers perform their local operations in parallel.

Consider a one-day time frame discretized into M time slots of duration τs each. Reference is made in the

following to the (average) power per time slot. Let t denote the index of the time slot from tτs to (t+ 1)τs,

t = 0, . . . ,M − 1. The power P (t) produced (P (t) > 0) or absorbed (P (t) < 0) within time slot t by the pool

of prosumers coordinated by the ESP is given by

P (t) =

N∑
i=1

Pi(t), (1)

where Pi(t) is the power generated/absorbed by prosumer i during time slot t with the same sign convention.

For each prosumer i and each time slot t,

Pi(t) = PGi (t) + PBi (t)− PPli (t)− PSli (t), (2)

where PGi (t) ≥ 0 is the power produced by its controllable generator, PBi (t) is the power exchanged when

discharging (PBi (t) > 0) or charging (PBi (t) < 0) the battery, and PPli (t) ≥ 0 and PSli (t) ≥ 0 are the power

requested by the programmable and the non-interruptible load, respectively. In case of multiple devices, the

quantities on the right hand side of (1) shall be replaced by the summation over the respective device index.

The pre-agreed reference power profile of prosumers i is denoted as P̃i(t) and can be decomposed in the

contributions of the controllable devices G, B, Pl, and Sl: P̃i(t) = P̃Gi (t) + P̃Bi (t) − P̃Pli (t) − P̃Sli (t). The

reference power profile of the prosumers pool is then given by P̃ (t) =
∑N
i=1 P̃i(t).

As detailed next, the decision variables involved in the power profile modulation at each single prosumer

level per time slot are both discrete and continuous.

As for the controllable generator G, it can be either on or off. When it is on, the average power produced

within any given time slot must be within a minimum
¯
PGi and a maximum P̄Gi value.

The binary variable δGi (t) ∈ {0, 1}, denoting the status of G (1 being the on status and 0 the off status),

is therefore linked to the power output PGi (t) as follows


PGi (t) ∈ [

¯
PGi , P̄

G
i ] δGi (t) = 1

PGi (t) = 0 δGi (t) = 0,

(3)
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which can be conveniently rewritten as the following constraints

δGi (t)
¯
PGi ≤ PGi (t) ≤ δGi (t)P̄Gi , (4)

which is linear in PGi (t) and δGi (t).

Typically, when the generator is switched on, it must be kept running for at least TG,ui consecutive time

slots and, similarly, it must stay off for at least TG,di time slots when switched off. These minimum up/down

times requirements on G are captured by the following implications

δGi (t) = 0 ∧ δGi (t+ 1) = 1 =⇒ δGi (t+ 1) = · · · = δGi (t+ τG,ui ) = 1 (5a)

δGi (t) = 1 ∧ δGi (t+ 1) = 0 =⇒ δGi (t+ 1) = · · · = δGi (t+ τG,di ) = 0, (5b)

for t = 0, . . . ,M − 2, with τG,ui = min{TG,ui ,M − 1 − t} and τG,di = min{TG,di ,M − 1 − t} being equal

to the desired time intervals TG,ui and TG,di , respectively, or the length of the residual time horizon. Logic

conditions in (5) can be easily imposed through the following inequalities

τG,ui (δGi (t+ 1)− δGi (t)) ≤
τG,u
i∑
τ=1

δGi (t+ τ) (6a)

τG,di (δGi (t)− δGi (t+ 1)) ≤
τG,d
i∑
τ=1

(1− δGi (t+ τ)), (6b)

which are both linear in δGi (t).

The battery storage device is modeled as an integrator, whose state Si(t) > 0 denotes the battery energy

content at the beginning of time slot t (Si(M) being the battery energy content at the end of the day) and

satisfies the following recursive equation

Si(t+ 1) = Si(t)− τs
1

ζdi
PB,di (t)− τs ζci P

B,c
i (t), (7)

where PB,di is the discharging power, PB,ci is the charging power, and ζdi , ζ
c
i ∈ (0, 1) are respectively the

discharging and charging efficiencies taking into account the corresponding losses. According to the adopted

convention, the discharging power is defined as non-negative, i.e. PB,di (t) ≥ 0, while the charging power as

non-positive, i.e. PB,ci (t) ≤ 0. Therefore, by introducing a binary variable δBi (t) ∈ {0, 1} representing the

operation mode of the battery (1 for discharging and 0 for charging), the following linear power exchange
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limits are enforced

(1− δBi (t))PBi ≤P
B,c
i (t) ≤ 0 (8a)

0 ≤PB,di (t) ≤ δBi (t) P̄Bi , (8b)

where P̄Bi and PBi are the upper and the lower bound of the battery output power PBi (t), respectively. The

overall battery power output is then given by

PBi (t) = PB,di (t) + PB,ci (t) , (9)

where it is highlighted that PB,di (t) and PB,ci (t) cannot be simultaneously different from zero given (8).

Iterating (7), the value of Si(t + 1) can be expressed as a function of PB,di (s) and PB,ci (s), s = 0, . . . , t

as follows

Si(t+ 1) = Si(0)− τs
t∑

s=0

(
1

ζdi
PB,di (s) + ζci P

B,c
i (s)

)
, (10)

where Si(0) is the battery initial state. Clearly, the battery energy content Si(t + 1) must be kept between

a minimum
¯
Si > 0 and a maximum S̄i >

¯
Si energy level, which can be imposed by the following linear

constraints on PB,di (s) and PB,ci (s), s = 0, . . . , t:

¯
Si ≤ Si(0)− τs

t∑
s=0

(
1

ζdi
PB,di (s) + ζci P

B,c
i (s)

)
≤ S̄i. (11)

As for the load, the programmable one Pl is firstly modeled, whose power consumption PPli can be modulated

and/or deferred in time. Considering the realistic application, it is imposed that PPli cannot be continuously

modulated but can operate only at specific levels, which correspond to certain fractions of its maximum

power consumption P̄Pli per time slot. Let δPli (t) ∈ {0, 1, . . . , nPli } be a discrete variable denoting the level

of consumption of Pl during time slot t. Then, the power consumption of Pl in time slot t can be expressed

as

PPli (t) =
δPli (t)

nPli
P̄Pli , (12a)

δPli (t) ∈ {0, 1, . . . , nPli }. (12b)

The case where Pl cannot be modulated, is easily accounted for setting nPli = 1. Typically, the flexibility

offered by programmable loads is limited to a given time window. Moreover, it is important to ensure that

Pl receives the overall amount of energy EPli required for its correct operation. These two conditions can be
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formulated in terms of the following constraints

PPli (t) = P̃Pli (t) t < tPl,0i ∨ t > tPl,fi , (13a)

M−1∑
t=0

τs P
Pl
i (t) = EPli , (13b)

where tPl,0i and tPl,fi ≥ tPl,0i denote the first and the last time slots in which Pl can be modulated or shifted.

Finally, a non-interruptible/deferrable load Sl is considered, whose power profile cannot be modulated

but only shifted in time. Real examples of this kind of loads are most industrial batch processes, which must

absorb a precise power profile and they must be executed within a prescribed time window. Let τSli denote

the nominal time slot in which Sl is active and consider the binary variable δSli (t) ∈ {0, 1} which is equal to

1 if and only if the activation of Sl is shifted at time slot t. Moreover, let tSl,0i and tSl,fi be the first and final

time slots in which Sl is allowed to be activated. Clearly, Sl has to be activated only once and within the

time frame [tSl,0i , tSl,fi ], and this condition can be modeled as

δSli (t) = 0 t < tSl,0i ∨ t > tSl,fi , (14a)

tSl,f
i∑

t=tSl,0
i

δSli (t) = 1. (14b)

Note that tSl,fi must be chosen accounting for the number of time slots needed by the load to complete its

task. Once Sl has been activated at time slot t, it needs to follow its (shifted) scheduled power profile P̃Sli (t),

i.e.,

δSli (τ) = 1 ⇐⇒ PSli (t) =


P̃Sli (t− (τ − τSli )) t− (τ − τSli ) ∈ [0,M − 1]

0 otherwise

(15)

for all t = 0, . . . ,M − 1, which is equivalent to the linear constraint

PSli (t) =

τSl,max
i∑

τ=τSl,min
i

P̃Sli (t− (τ − τSli ))δSli (τ), (16)

where τSl,min
i = max{t+ τSli − (M − 1), 0} and τSl,max

i = min{t+ τSli ,M − 1}.

Suppose now that the ESP receives a request to modify the reference power exchange profile P̃ (t) of the

prosumers pool within the time frame from the time slot t0 to the time slot tf by an amount Γ(t) ± εΓ(t),

t ∈ [t0, tf ], where ε ∈ (0, 1) is a given relative tolerance parameter. It is assumed that the request is received
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at the beginning of time slot tr satisfying (t0 − tr)τs ≥ 15 minutes, and that the power variation window is

synchronous with the adopted time discretization. Since the request has been received at tr, the units’ power

profiles must not be modified for t = 0, . . . , tr and therefore it is imposed that

PGi (t) = P̃Gi (t),

PBi (t) = P̃Bi (t),

PPli (t) = P̃Pli (t),

PSli (t) = P̃Sli (t),

t = 0, . . . , tr.

(17)

Then, the ESP has to reschedule each prosumer operations by suitably choosing the values of PGi (t),

PBi (t), PPli (t), and PSli (t), t = tr+1, . . . ,M −1, for all i ∈ N = {1, . . . , N}, compatibly with all the previous

constraints, so as to meet the TSO power variation request

(1− ε)Γ(t) ≤ P (t)− P̃ (t) ≤ (1 + ε)Γ(t), t = t0, . . . , tf , (18)

while satisfying the additional constraints

Pi(t) = P̃i(t), t = tr + 1, . . . , t0 − 1, tf + 1, . . . ,M − 1, (19)

for all i ∈ N . Constraints (19) force each prosumer i to maintain its original power exchange profile before

and after the satisfaction of the TSO request, so as to avoid the so-called lead effect and rebound effect outside

the TSO power variation window.

Among the different solutions to satisfy the TSO request, the ESP chooses the optimal one by minimizing

the following objective function

J(·) =

M−1∑
t=tr+1

N∑
i=1

(
CGi P

G
i (t) + CBi

∣∣PBi (t)− PBi (t− 1)
∣∣+ CPli

∣∣∣PPli (t)− P̃Pli (t)
∣∣∣+ CSli

∣∣∣∣∣
M−1∑
τ=0

τδSli (τ)− τSli

∣∣∣∣∣
)

−
M−1∑
t=tr+1

pR(t)

N∑
i=1

(
Pi(t)− P̃i(t)

)
, (20)

where CGi > 0 is the cost of producing one unit of power with the controllable generator, CBi > 0 is a

cost associated to the aging of the battery, CPli > 0 is the per-unit cost paid by the ESP to prosumer i for

changes in its programmable load consumption profile with respect to its original schedule, and CSli > 0 is

the per-unit cost paid by the ESP associated to how much the non-interruptible load is shifted. In case of
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multiple devices, the quantities in (20) shall be replaced by the summation over the respective device index.

The last term of (20) represents the revenue/cost of the ESP for the mobilized power reserve satisfying

the TSO request during the required period (see (18)), properly weighted by the reserve price pR > 0.

In particular, the ESP is remunerated when it mobilizes upward power reserve i.e. when

(P (t)− P̃ (t)) =
∑N
i=1(Pi(t)− P̃i(t)) > 0, while it affords a cost when it decreases the output power with re-

spect to the baseline to mobilize downward power reserve, i.e. when (P (t)− P̃ (t)) =
∑N
i=1(Pi(t)− P̃i(t)) < 0,

[13, 32]. Notice that the sign of the mobilized reserve in real-time is imposed by the TSO request Γ(t)

through (18), while (19) imposes that (P (t)− P̃ (t)) =
∑N
i=1(Pi(t)− P̃i(t)) = 0 when no mFRR services are

requested. As common in most reserve markets, the mobilized upward and downward reserves are differently

priced [13, 35]. To include this aspect, pF (t) is automatically fixed either to the upward or downward reserve

price, based on the sign of the TSO request Γ(t), which is known before solving the presented optimization

problem. Formally, it follows that

pF (t) =


p↑R(t), if Γ(t) ≥ 0,

p↓R(t), if Γ(t) < 0,

(21)

for all t ∈ T , where p↑R > 0 and p↓R > 0 are the upward and the downward power reserve price, respectively.

The optimal response of the ESP to the TSO demand of flexibility over the time slots from t0 to tf can

therefore be obtained as the solution of the following optimization program

min
PG

i (t),PB
i (t),PB,d

i (t),PB,c
i (t),

PPl
i (t),PSl

i (t), Pi(t)

δGi (t),δBi (t),δPl
i (t),δSl

i (t),
t∈T , i∈N

J(·) (22)

subject to: (18)

(6), t ∈ {0, . . . ,M − 2},

(2), (4), (8), (11), (12),

(13a), (14a), (16)

 t ∈ T

(13b), (14b), (17), (19)


i ∈ N

where J(·) is expressed in (20) and T = {0, . . . ,M − 1}. Problem (22) involves both continuous

(PGi (t), PBi (t), PB,di (t), PB,ci (t),PPli (t), PSli (t), Pi(t) ) and discrete ( δGi (t), δBi (t), δPli (t), δSli (t) ) decision

variables for each prosumer. Indeed, the cost function and the constraints in the optimization problem (22)
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are functions of the decision variables either directly or indirectly through (1).

Note that the cost function (20) is additive over the prosumers, so that if the constraint (18) is removed,

then problem (22) becomes separable, hence, easier to solve. Constraint (18) is therefore named coupling

constraint since it couples the prosumers’ decisions, whereas the other constraints are referred to as local.

Note also that, even though problem (22) is not linear since the cost function in (20) contains absolute

values, it can be rewritten as a linear program by adopting an epigraphic reformulation. To this end, let us

introduce the auxiliary variables hBi (t), hPli (t), and hSli (t) and the following additional local constraints

PBi (t)− PBi (t− 1) ≤ hBi (t) ,

PBi (t− 1)− PBi (t) ≤ hBi (t) ,

PPli (t)− P̃Pli (t) ≤ hPli (t) ,

P̃Pli (t)− PPli (t) ≤ hPli (t) ,

M−1∑
τ=0

τδSli (τ)− τSli ≤ hSli (t) ,

τSli −
M−1∑
τ=0

τδSli (τ) ≤ hSli (t) ,

(23)

for all t ∈ T .

If the cost function is reformulated as

Je(·) =

N∑
i=1

M−1∑
t=tr+1

CGi P
G
i (t) + CBi h

B
i (t) + CPli hPli (t) + CSli h

Sl
i (t)− pF (t)(Pi(t)− P̃i(t)) , (24)

then

min
PG

i (t),PB
i (t),PB,d

i (t),PB,c
i (t),

PPl
i (t),PSl

i (t), Pi(t)

δGi (t),δBi (t),δPl
i (t),

δSl
i (t),hB

i (t),hPl
i (t),

hSl
i (t), t∈T , i∈N

Je(·) (25)

subject to: (18)

(6), t ∈ {0, . . . ,M − 2},

(2), (4), (8), (11), (12),

(13a), (14a), (16), (23),

 t ∈ T

(13b), (14b), (17), (19)


i ∈ N
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is linear and equivalent to (22).

If the decision variables PGi (t), δGi (t), PBi (t), PB,di (t), PB,ci (t),PPli (t), PSli (t), δBi (t), hBi (t), δPli (t), hPli (t),

δSli (t), hSli (t) and Pi(t), t ∈ T , related to prosumer i are collected into a vector xi, noticing that (24) is also

separable across i, then problem (25) can be compactly rewritten as

min
x1,...,xN

N∑
i=1

c>i xi (26)

subject to:

N∑
i=1

Aixi ≤ b

xi ∈ Xi, i ∈ N ,

whereXi is the mixed-integer polyhedral set defined by constraints (2), (4), (6), (8), (11), (12), (13), (14), (16),

(17), (19), and (23) together with relation (1), while
∑N
i=1Aixi ≤ b represents the coupling constraint (18).

The compact form (26) for the ESP problem (25) is introduced to facilitate the description of the proposed

distributed optimization algorithm. MILP problems of the form (26) are common in many engineering fields,

see for instance [36, 37], and the development of efficient centralized or distributed algorithms for their

solution represents a challenging problem.

3. Proposed distributed strategy

The optimization problem in (26) fits the framework proposed in [34], which provides a scalable distributed

strategy for its approximate resolution. The iterative algorithm proposed in [34] exploits dual decomposition

to obtain a scalable and privacy preserving solution: agents have to solve in parallel a lower dimensional MILP

involving their local decision variables, cost, and constraints, while a central entity is in charge of enforcing the

coupling constraint by updating the dual variable based on the tentative solutions of the agents. Constraint

tightening is integrated within dual decomposition in order to ensure that a feasible solution to (26) is found

after a finite number of iterations.

Duality theory, see e.g., [38], plays a central role in the distributed resolution of multi-agent optimization

problems in the form of (26) as it allows to decompose the problem across the agents (the prosumers in this

case) by softening the coupling constraint and incorporating it as an additive term in the cost function. More

precisely, let λ ≥ 0 be a vector of Lagrange multipliers (the dual variable) and let introduce

L(x1, . . . , xN , λ) =

N∑
i=1

c>i xi + λ>

(
N∑
i=1

Aixi − b

)
, (27)

that is the Lagrangian function obtained augmenting the cost function of (26) with a term that penalizes the

13



amount of violation of the coupling constraint weighted by λ. The dual problem of (26) is then given by

max
λ≥0

−λ>b+

N∑
i=1

min
xi∈Xi

(c>i + λ>Ai)xi︸ ︷︷ ︸
ϕi(λ)

. (28)

Let us notice that despite (26) is a non-convex program, given the presence of discrete variables, problem (28)

is convex as each ϕi(λ) is a concave function since it is the minimum of affine functions of λ, see also [38,

Proposition 5.1.2].

A distributed approach to solve (28) is the well-known dual subgradient algorithm, see [38, Section 6.3],

which iterates between the following two steps:

xi(k + 1) ∈ argmin
xi∈Xi

(c>i + λ(k)>Ai)xi, (29a)

λ(k + 1) =

[
λ(k) + α(k)

(
N∑
i=1

Aixi(k + 1)− b

)]
+

, (29b)

where α(k) is a step-size parameter satisfying
∑∞
k=0 α(k) = ∞ and

∑∞
k=0 α(k)2 < ∞, and [ · ]+ denotes the

projection of its argument onto the non-negative orthant. Update (29a) can be performed in parallel by the

agents, while step (29b) has to be performed by a central entity. In the considered setting, the agents are the

prosumers and the central entity is the ESP. It is worth noticing that each prosumer i needs to communicate

to the ESP only its contribution Aixi(k+ 1) to the coupling constraint (i.e., its power profile Pi(t), see (18))

and is not required to disclose any private information regarding operating costs (coded in ci) nor device

characteristics and limitations (coded in Xi).

Typical choices for α(k) satisfying
∑∞
k=0 α(k) =∞ and

∑∞
k=0 α(k)2 <∞ are given by

α(k) =
α1

(k + 1)α2
, (30)

with α1 > 0 and α2 ∈ (0.5, 1].

Unfortunately, applying (29) does not provide a way to recover the optimal solution x?1, . . . , x
?
N of (26).

In absence of integer decision variables, the method in [39, eq. (4.118)] provides a recovery procedure which

involves computing a convex combination of the tentative solutions xi(k + 1) explored across all iterations.

However, this strategy does not work in presence of integer variables, as averaging will not necessarily return

an integer quantity, thus making the recovered solution not necessarily feasible for (26). The approach in [34]

overcomes this issue using a different approach. Instead of averaging, it replaces the b vector in (29b) with

b − ρ(k), where ρ(k) > 0 is a tightening vector having the same dimension of b. The role of ρ(k) is to
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progressively reduce some components of b to enforce feasibility of the coupling constraint. The update of

ρ(k) is based on how much the tentative solutions xi(k) explored by (29) across iterations affect the coupling

constraint (18).

The approach in [34] is guaranteed to return a feasible solution after a finite number of iterations provided

that ρ does not grow too much as the algorithm progresses, see [34] for a detailed discussion. This is actually

an issue in our set-up, as constraint (18) in (25) poses a limit on the amount ρ can grow, as better explained

hereafter.

The tightened version of the coupling constraint, for a generic ρ vector, is given by

(1− ε)Γ(t) + ρlbt (t) ≤ P (t)− P̃ (t) ≤ (1 + ε)Γ(t)− ρubt (t), (31)

where ρubt (t) and ρlbt (t) are the components of ρ associated with the right and left constraints in (18) re-

spectively, for a given t ∈ [t0, tf ]. From (31) it is clear that an excessive tightening would quickly lead to

infeasibility since

ρubt (t) + ρlbt (t) ≤ 2εΓ(t), (32)

t = t0, . . . , tf , must hold.

In [34], the tightening vector ρ is updated every time there is a change in xi(k), i = 1, . . . , N . However,

during the first iterations of (29), λ(k) will be far from being optimal and the impact of the tentative solutions

xi(k) explored by the prosumers on (18) may be far from optimality, thus leading to an aggressive update

strategy for ρ that is likely to violate (32). Ideally, one would instead like to wait for the λ(k) to settle to

properly assess the impact of xi(k) on (18) and then update ρ accordingly. Moreover, every time ρ changes,

also the limit point of λ(k) changes, which suggests to devise a strategy in which one waits for λ(k) to settle

after each update of ρ before updating ρ again. This intuition lead us to the development of Algorithm 1

which, although inspired by [34], updates the tightening vector ρ more cautiously based on a nested loop

strategy. An inner loop is responsible for waiting until the sequence λ(k) settles given a fixed ρ, while

the outer loop updates ρ after practical convergence of the inner loop, and then the cycle is repeated. In

Algorithm 1, the values of ρ generated by the outer loop of Algorithm 1 are indexed by the outer iteration

index ko. At each outer iteration ko, the inner loop (Steps 6-13) runs, until practical convergence, a modified

version of (29), where the b vector in (29b) is replaced by b − ρ(ko) (see Step 11 in particular), ρ(ko) being

the value of the tightening parameter at the current outer iteration. The sequence generated by the inner

loop of Algorithm 1 are indexed by the inner iteration index ki. They are used to update the tightening

coefficient ρ at the end of the outer iteration, initialize the λ sequence for the next run of the inner loop, and
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Algorithm 1 Distributed MILP

1: λ(0) = 0

2: ρ(0) = 0

3: ko = 0

4: repeat

5: ki = 0

6: repeat

7: for j = 1 to N do

8: xj(ki + 1) ∈ argmin
xj∈Xj

(c>j + λ(ki)
>Aj)xj

9: end for

10: v(ki + 1) =
∑N
j=1Ajxj(ki + 1)− b

11: λ(ki + 1) =
[
λ(ki) + α(ki)(v(ki) + ρ(ko))

]
+

12: ki ← ki + 1

13: until λ(ki) converges or x0(ki), . . . , xN (ki) is feasible

14: k̄i = argmin
k>ki−w

‖[v(k)]+‖∞

15: ρ(ko + 1) = ρ(ko) + [v(k̄i)]+

16: λ(0) = λ(ki)

17: ko ← ko + 1

18: until x0(ki), . . . , xN (ki) is feasible

then discarded. Note that the same privacy-related considerations for (29) apply also to Algorithm 1.

The rationale behind this nested loop strategy is to ignore the tentative primal solutions xi(k) explored

during the transient phase of λ(k), which may improperly assess the impact of each prosumer onto the

coupling constraint, and focus only on those tentative primal solutions that are computed when λ(k) reaches

a steady state for the given ρ(ko). This tentative solution will give a better assessment of the impact of each

prosumer to the coupling constraint, which is then used to update ρ between two consecutive outer iterations.

This, together with the modified update strategy for ρ described next, ultimately results in a much more

cautious update of ρ, as testified in the simulation section. Within the inner loop, the ESP keeps monitoring

the violation of the coupling constraints by computing (see Step 10)

v(ki) =

N∑
j=1

Ajxj(ki)− b, (33)

whose r-th component is positive if the r-th joint constraint is violated and is negative or zero otherwise.

If, for some ki, all components of v(ki) are non-positive, then the algorithm terminates and returns solution

x0(ki), . . . , xN (ki), which is feasible. Otherwise the inner loop keeps running until λ(ki) converges. When

the inner loop has converged, the ESP looks at the latest w values of v(k), and computes, for each k = ki −

w+1, . . . , ki, the amount of maximum violation ‖[v(k)]+‖∞ (i.e., the highest among the positive components
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Figure 1: Pictorial view of the distributed implementation of Algorithm 1 by an ESP coordinating a pool of N prosumers for
the satisfaction of a TSO request.

of v(k)), and then selects the inner iteration index corresponding to the lowest ‖[v(k)]+‖∞ in Step 14. This

translates into selecting the tentative primal solution among the latest w with the least maximum violation

of the coupling constraints.

Finally, the update of the tightening coefficient ρ is performed by taking the integral of the violation

[v(k̄i)]+ associated with the least violating tentative primal solution (see Step 15). The rationale behind this

consists in trying to increase the tightening vector ρ by a small amount at each outer iteration to avoid being

overly conservative.

In the unfortunate event that ρ(ko) is such that (32) is not satisfied for some t = t0, . . . , tf , then a feasible

solution could not be found. One can then stop the algorithm and restart it with a larger value for the

tolerance ε in (18) thus softening the TSO request and possibly providing an approximate yet guaranteed

solution to its original request.

Figure 1 provides a pictorial view of the interaction mechanism involved in Algorithm 1, which is activated

by a TSO request to the ESP.

4. Simulation results and discussions

The proposed strategy is tested on a numerical example with N = 50 prosumers. The 24 hours time-

horizon is discretized into M = 96 time slots of duration τs = 15 minutes each.

In principle, the baseline power profiles of each prosumer i should be obtained using optimization-based

strategies explicitly accounting for the provided balancing service, see [10]. In fact, the power baseline is

generally defined to maximize the ESP profit considering the energy prices, the internal production costs and
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the trading of flexibility reserves, e.g. during the day-ahead market stages. Here, to show the effectiveness

of the proposed approach independently on the profile generation mechanism, the baseline power profiles

(together with devices physical limits and operating costs) are generated at random according to the procedure

described in the Appendix. The upward and downward mFRR prices for the activated reserves have been

downloaded from the ENTSO-E Transparency Platform [40], considering the profiles that occurred in the

French market on March 2, 2021 [41].

A scenario in which the ESP receives two requests from the TSO is considered: at time 6:45 the TSO asks

to increase by 800 kW the amount of power produced by the prosumers pool between 7:00 and 9:00; while

at time 14:45 the TSO asks to reduce by 700 kW the amount of power produced between 15:00 and 17:00.

Algorithm 1 is therefore executed twice, using in both cases α(k) given by (30), with α1 = 0.0035/N and

α2 = 0.51, and w = 8. In the first TSO request, it follows that t0 = 28 and tf = 35 since they correspond

to the time intervals 7:00–7:15 and 8:45–9:00, respectively, and Γ(t) = 800 kW, t = t0, . . . , tf . In the second

TSO request, t0 = 60, tf = 67, and Γ(t) = −700 kW, t = t0, . . . , tf . In both cases the relative tolerance level

for the satisfaction of the TSO request is ε = 0.05 and tr = t0 − 1. For the sake of clarity, the parameters of

the TSO requests are also reported in Table 2.

The following color/style code is adopted in the figures. The line color is associated with the time

when the power profile has been generated, while line style differentiates between actuated profiles (solid)

and scheduled ones (dotted). Red lines refer to reference power profiles, that have been computed before

receiving any of the two TSO requests. The red lines are solid until the TSO issues the first request and then

become dotted to illustrate the power profiles the prosumers/ESP would have followed if the TSO had not

issued any request. Blue lines then refer to power profiles returned by Algorithm 1 in response to the first

TSO request. The blue lines are solid until the TSO issues the second request, and become dotted after the

second request to report the profiles the prosumers/ESP would have followed if the TSO had not issued a

second request. Finally, the green lines refer to power profiles returned by Algorithm 1 in response to the

second TSO request. The green lines are all solid because the green profiles are followed until the end of the

day, as no other request is issued by the TSO.

Figure 2 shows how the power profile P (t), t = 0, . . . ,M −1, changes throughout the day as the two TSO

requests are received and processed by the ESP.

The yellow band around the solid lines between 7:00 and 9:00 and 15:00 and 17:00 represent the allowed

deviation from the TSO request based on the relative tolerance ε = 0.05, see (18). As can be seen from

Figure 2, for both events, the algorithm is able to reschedule the usage of the prosumers devices so as to

meet the TSO request while avoiding the rebound effect, since the declared baseline (red line) is maintained

after the satisfaction of the requests.
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TSO request Γ(t) tr t0 tf ε

1-st 800 kW 6:45 7:00 9:00 0.05
2-nd -700 kW 14:45 15:00 17:00 0.05

Table 2: mFRR requests by the TSO to the ESP coordinating the prosumer pool.

Figure 2: ESP power profile. Original reference profile (red), profile based on the first request (blue), profile based on the second
request (green): scheduled (dotted lines) and actual (solid lines) profiles, and tolerance bounds (yellow band).

(a) (b)

Figure 3: Close-up view of the power profile of the prosumer pool (blue solid line) in the time frames 7:00-9:00 (a) and 15:00-17:00
(b), together with the tolerance bounds (yellow band) and tightened tolerance bounds (black dashed lines).

Close-up views of the power profile of the prosumer pool in the time frames 7:00-9:00 and 15:00-17:00

related to the two requests are shown in Figures 3(a) and 3(b), respectively. Besides the yellow band

representing the request satisfaction tolerance bound coded by constraint (18), the tightened tolerance upper

and lower bounds (black dashed lines) are also reported, representing constraint (31) for the last value of ρ

before the algorithm returned a feasible solution.

The power profiles of one of the prosumers are reported in Figure 4: its overall power profile Pi(t) in

Figure 4(a), the profile of the generator in Figure 4(b), the charging/discharging profile of the battery in

Figure 4(c), and the modulation of the load in Figure 4(d). From Figures 4(b)-(d) it is evident how the
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Figure 4: Power profiles of prosumer 10: total (a), generator (b), battery (c), programmable load (d). Original reference profile
(red), profile based on the first TSO request (blue), profile based on the second TSO request (green): scheduled (dotted lines)
and actual (solid lines) profiles, capability limits (dashed lines).

prosumer has changed the schedule of its internal devices to accommodate part of the TSO request while

avoiding any rebound effect (the green solid line in Figure 4(a) matches the reference profile represented

by the red dotted line). Specifically, to satisfy the power request between 7:00 and 9:00, the generator and

the battery output power are increased, while the controllable load is switched off. During the second TSO

request, the generator is switched off, the battery is operated in charging mode, while the load increases its

power demand, anticipating the rise with respect to the pre-scheduled profile.

In order to quantify the quality of the feasible solution x̂1, . . . , x̂N returned by Algorithm 1, the value

Ĵ of the cost function J(·) in (20), obtained for x̂1, . . . , x̂N , should be compared with the optimal value J?

of (22), computing the relative optimality gap as follows

∆J% =
Ĵ − J?

J?
· 100 . (34)

For a large number N of prosumers, problem (22) could not be solved with standard computational
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TSO Outer Inner Execution Estimated bound
request iterations iterations time [sec] ∆J%

1-st 8 166 29.9 0.15%
2-nd 2 35 2.3 0.25%

Table 3: Assessment of the performance of Algorithm 1 when applied to satisfy the two TSO requests with N = 50.

resources. In the case-study, for example, out-of-memory issues occurred for large-scale prosumers pool (see

Table 4) and it was often not possible to compute J? using a server with processor Intel(R) Xeon(R) CPU

E5-2630 2.30GHz and with 64GB RAM. In fact, the overall problem (22) involves N Boolean variables δGi (t),

N Boolean variables δBi (t), N integer variables δPli (t), taking nPli +1 discrete values, and N Boolean variables

δSli (t), for t ∈ {tr + 1, . . . ,M −1}, thus amounting to a total of 23(M−tr−1)N ·
∏N
i=1(nPli + 1)(M−tr−1) possible

combinations to be explored in a centralized solution. On the other hand, the proposed distributed approach

allows to decompose the overall problem and solve (in parallel!) N sub-problems with only 23(M−tr−1) ·(nPli +

1)(M−tr−1) possible combinations each. This translates into 403400 possible combinations for the centralized

problem, and 4068 for each prosumer, for the first request; and 401800 and 4036, respectively, for the second

request.

While J? cannot be computed for large-scale problems, it can be estimated leveraging (28). In fact,

by weak duality, it is known that the optimal value J?D of (28) constitutes a lower bound for J? (see [38,

Proposition 5.1.3]). Therefore, since x̂1, . . . , x̂N is feasible for (22), it follows that

J?D ≤ J? ≤ Ĵ, (35)

and the relative optimality gap can therefore be estimated as follows

∆J% =
Ĵ − J?

J?
· 100 ≤ Ĵ − J?D

J?D
· 100 = ∆J%, (36)

where the value of J?D can be easily computed iterating (29) until convergence.

In Table 3, the estimated relative optimality gap ∆J% for the two TSO requests is reported, along with

the number of outer iterations performed, which also corresponds to the number of times the value of ρ has

been updated, the total number of inner iterations, which corresponds to the number of times each agent

has performed Step 8, and the time elapsed before Algorithm 1 returned a feasible solution divided by the

number N of prosumers. The latter being a good indicator of how long the algorithm will take in practice

as the time elapsed performing Steps 10-15 is negligible with respect to the time needed by each prosumer

to perform (in parallel) Step 8.
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Remarkably, for the two cases reported in Table 3, the bound on the relative optimality gap is lower

than 1%, showing the effectiveness of the approach in returning a feasible solution with close-to-optimality

performance. Note also how the first request exhibits a much higher execution time with respect to the

second one. This is due not only to the larger number of iterations, but also to the longer time horizon the

prosumer have to consider for the rescheduling phase after the first TSO request, with respect to the second

one. Note also that execution times are of the order of seconds, which is significantly less then the 15 minutes

time interval available to the ESP for implementing the TSO request. Finally, it is worth noticing that, in

both cases, the number of outer iterations is greater than zero (i.e. the final ρ is different from zero). This

witnesses that the standard dual subgradient method, executed in the first outer iteration of Algorithm 1

(i.e. Steps 6-13 with ρ(0) = 0), is not able to find a feasible solution.

For comparison purposes, the original algorithm in [34] was also tested, but it resulted in condition (32)

becoming violated after the first few iterations.

The proposed distributed strategy has also been tested for a growing number N of prosumers in the

pool, to assess its scalability properties. Moreover, the test-cases have been also solved through a centralized

algorithm, directly solving (25), in order to highlight the advantages of the proposed approach.

A TSO request of Γ(t) = 18N kW between 15:00 (t0 = 60) and 17:00 (tf = 67) has been assumed for

each test case, with all the other parameters set as previously discussed.

The performance of Algorithm 1 is evaluated based on the same indicators of Table 3 for different values

of N and the results are reported in Table 4. The different test-cases have been also addressed through a

centralized algorithm, solving directly (25). As it appears from the table, for each N , the proposed distributed

approach is able to find a feasible solution with close-to-optimal performance (∆J% < 1%) in a handful of

iterations and in less than 30 seconds. On the other hand, the centralized algorithm always involves larger

computational times and it is not able to find the optimal solution for most of the test-cases, as the available

RAM memory (64 GB) was saturated by the solver for N ≥ 50. Note that for this test-cases problem (25)

involves 504N variables: 360N continuous, 108N boolean, and 36N integer assuming 5 possible values.

The total number of possible combinations is thus 4036N , which eventually lead to an intractable problem as

N grow, when addressed centrally.

5. Conclusion

In this paper, the provision of balancing services to the TSO is addressed, and, in particular, the manual

Frequency Restoration Reserve (mFRR) service, through an aggregation of prosumers instead of a single

large industrial one. A main issue in such a context is to devise a suitable strategy for the ESP to coordinate
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Algorithm 1 (Distributed) Centralized Algorithm Relative optimality gap

N
Outer Inner Execution Execution Real Estimated bound

iterations iterations time [sec] time [sec] ∆J% ∆J%

30 5 110 7.9 102.5 0.26% 0.29%
40 2 106 10.6 156.7 0.23% 0.28%
50 3 87 14.0 2 ·104 (∗) 0.24% (∗) 0.26%
60 7 172 26.7 3.6 ·103 (∗) 0.22% (∗) 0.22%
70 3 127 8.1 2.1 ·104 (∗) 0.06% (∗) 0.07%
80 12 231 15.9 1.5 ·104 (∗) 0.06% (∗) 0.10%

1000 10 167 10.0 1.5 ·104 (∗) 0.02% (∗) 0.02%

Table 4: Performance comparison between the distributed Algorithm 1 and the centralized solution of (25) as a function of the
number N of prosumers in the pool. (*) The solver stopped as the available RAM memory (64 GB) was saturated, i.e. the
obtained solution is not optimal.

a possibly large number of prosumers and distribute the effort so as to satisfy the TSO requests of power

flexibility.

A framework is proposed that relies on a MILP formulation of the problem and on its solution via

distributed computations. The resulting approach is scalable since it decomposes the overall problem into

sub-problems of the size of the decision variables of the prosumers, provides a privacy-preserving solution

since the prosumers do not need to share with the ESP their actuation capabilities and operational costs,

and can handle integer decision variables.

The approach should be extended to the case when non-controllable loads or generators are present,

possibly adopting a stochastic framework and a different concept of balancing service, where the required

power variation is met with a given (high) probability. Theoretical analysis of the convergence and the

feasibility properties of the proposed algorithm requires additional research effort and is left for future work.

Appendix: Generation of the simulation set-up

Consider the generic prosumer i. As for the programmable load, P̄Pli is extracted at random according

to the uniform distribution over the interval [10, 100] kW and the reference profile P̃Pli (t) is set equal to a

piecewise constant function with intervals of 2-hour duration each and amount of power per interval computed

according to (12a) with δPli (t) extracted uniformly at random in {1, . . . , nPli } with nPli = 4. The overall

amount of energy required by the load and appearing in (13b) is then given by EPli =
∑M−1
t=0 τsP̃

Pl
i (t). The

load flexibility limits are set to the entire optimization horizon, i.e., tPl,0i = t0 and tPl,fi = M − 1. All loads

are assumed to be interruptible.

The generators are set such that P̄Gi = P̄Pli ,
¯
PGi = 0.2 P̄Gi , and the reference profile as a piecewise linear

function with hinging points every 4 hours with values given by the average power consumption of the load
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scaled by a factor chosen uniformly at random from the set {0.5, 0.75, 1, 1.25, 1.5}. Minimum up and down

times for the generators were assumed to be equal and set to TG,ui = TG,di = 8.

As for the battery capacity limits, it has been set that S̄i = 1
4E

Pl
i so that the battery is able to provide

25% of the energy needed by the load,
¯
Si = 0.1 S̄i, whereas its initial content Si(0) is extracted at random

from [
¯
Si, S̄i] according to a uniform distribution. The battery power bounds, i.e., P̄Bi and PBi , are defined

as P̄Bi = −PBi = S̄i/(
τsM
4 ) so that the battery can be fully charged/discharged in a quarter of a day, i.e.

6 hours. Battery discharging/charging coefficients are set to ζdi = 1/0.95 and ζci = 0.95 respectively. The

battery reference power profile P̃Bi (t) is defined so as to match P̃Gi − P̃Pli compatibly with its rate and

capacity constraints.

Finally, the unitary costs CPli , CGi , and CBi appearing in the cost function (20) are extracted at random

according to a uniform distribution over the interval [0, 35] euro/kW for CPli , and over the interval [0, 1]

euro/kW for both CGi and CBi .
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