
Towards Better Adaptive Systems by Combining
MAPE, Control Theory, and Machine Learning

Danny Weyns
KU Leuven, Belgium

Linnaeus University, Sweden
danny.weyns@kuleuven.be

Bradley Schmerl
Carnegie Mellon University

Pittsburgh, USA
schmerl@cs.cmu.edu

Masako Kishida
National Institute of Informatics

Tokyo, Japan
kishida@nii.ac.jp

Alberto Leva
Politecnico di Milano

Milan, Italy
alberto.leva@polimi.it

Marin Litoiu
York University
York, Canada

mlitoiu@yorku.ca

Necmiye Ozay
University of Michigan
Ann Arbor, MI, USA
necmiye@umich.edu

Colin Paterson
University of York

York, United Kingdom
colin.paterson@york.ac.uk

Kenji Tei
Waseda University

Tokyo, Japan
ktei@aoni.waseda.jp

Abstract—Two established approaches to engineer adaptive
systems are architecture-based adaptation that uses a Monitor-
Analysis-Planning-Executing (MAPE) loop that reasons over
architectural models (aka Knowledge) to make adaptation de-
cisions, and control-based adaptation that relies on principles
of control theory (CT) to realize adaptation. Recently, we also
observe a rapidly growing interest in applying machine learning
(ML) to support different adaptation mechanisms. While MAPE
and CT have particular characteristics and strengths to be
applied independently, in this paper, we are concerned with the
question of how these approaches are related with one another
and whether combining them and supporting them with ML
can produce better adaptive systems. We motivate the combined
use of different adaptation approaches using a scenario of a
cloud-based enterprise system and illustrate the analysis when
combining the different approaches. To conclude, we offer a set
of open questions for further research in this interesting area.

Index Terms—Self-adaptive systems, MAPE, control theory,
machine learning, Cloud enterprise system.

I. INTRODUCTION

Designing self-adaptive systems with some level of auton-
omy has been studied for over two decades [1]–[6]. A number
of different approaches have been used to engineer such
systems. Two established approaches are (i) architecture-based
adaptation that relies on Monitor-Analysis-Planning-Executing
(MAPE) components that reason over architectural models
(aka Knowledge) to make adaptation decisions [7]–[11], and
(ii) control-based adaptation that relies on principles of control
theory (CT) to realize adaptation of a target system [12]–
[14]. Recently, we also observe a rapid growing interest in
applying machine learning (ML) to support different adapta-
tion mechanisms [15], for instance to use classifiers to reduce
large adaptation spaces [16], learn a model of the system with
MAPE [17], or learn adaptation rules with CT [18].

This paper is concerned with the following question:
How can MAPE and CT be combined with and supported by
ML techniques to produce better adaptive systems?

In answer to this question, this paper contributes insights into:
(1) the characteristics and strengths of both CT and MAPE,

and how ML can support adaptation techniques, (2) how CT
and MAPE can be combined with and supported by ML, and
(3) a number of open topics for further research in this area.
This paper is an outcome of a working group of the 3rd Shonan
Meeting on Controlled Adaptation of Self-adaptive Systems.1

The remainder of this paper is structured as follows. In Sec-
tion II we summarise a selection of related work. Section III
introduces the main concepts and outlines the scope of this
work. Section IV highlights strengths of CT and MAPE and
looks into support of ML to adaptation techniques. Section V
zooms in on combining CT and MAPE and supporting them
with ML in an example case. Finally, Section VI wraps up
and outlines a set of open questions for further research.

II. RELATED WORK

We summarise a selection of related work, starting with
approaches that combine MAPE with CT. Then we look at
work that combines MAPE or CT with ML. We conclude by
motivating the research question posed in this paper.
Combining MAPE with CT. DYNAMICO is a conceptual
model that considers three levels of dynamics in adaptive
systems that map to three interacting feedback loops [19]. A
first feedback loop monitors requirements (adaptation goals)
to ensure their fulfilment. A second feedback loop manages
context information preserving context information relevant
to adaptation. Finally, a third feedback loop controls the
target system according to control objectives, while taking into
account the context. The feedback loops can be realised using
different adaptation mechanisms, e.g., MAPE for the first and
second and CT for the third feedback loop. The idea of com-
bining MAPE-based discrete decision-makers/planners with
continuous low-level controllers has also been proposed in the
context of symbolic control, with applications in robotics [20],
self-driving cars and driver-assist systems [21], [22]. In these
approaches, the higher levels guarantee satisfaction of user

1The 3rd Shonan Meeting on Controlled Adaptation of Self-adaptive
Systems (CASaS). Report: https://shonan.nii.ac.jp/docs/No.153.pdf

https://shonan.nii.ac.jp/docs/No.153.pdf


goals (often specified in temporal logics) under discrete exter-
nal factors, while lower levels ensure robust tracking of the
goals set by the higher levels under disturbances.
Supporting MAPE with ML. As the complexity of self-
adaptive software has steadily grown over time, the opportuni-
ties to exploit ML to support MAPE have also increased. Just
as ML has found substantial success in recent years in the
perception pipeline of automotive vehicles, such techniques
have been deployed to monitor computing systems at runtime
to derive meaningful measures from data gathered in complex
environments [23] and to detect faults [24]. During the anal-
ysis phase, ML has been used when the space of possible
adaptations grows too large to be handled with traditional
techniques [25] or where patterns may be extracted from large
data sets (e.g., network traffic [26]). Finally, we see ML used
in the planning stage where selecting a policy for adaptation
becomes difficult due to the size of the adaptation space. Here
ML can pre-filter adaptation options and present a set of Pareto
optimal solutions from which the MAPE solution can choose
an appropriate action [27], or evolutionary search can be used
to change control parameters to more optimal settings [28].
Supporting CT with ML. ML has been used in control
theoretical solutions for a long time. One established area is
the use of ML for model and system identification, see for
instance [29]–[32]. Recent examples that use ML techniques
to derive a linear model of a system are [33], [34], while [35]
uses recurrent neural networks to capture the behaviour of
non-linear systems. More generally, neural networks have been
used for a long time to solve highly non-linear control prob-
lems [36], [37]. Recently, reinforcement learning has gained
increasing attention to deal with control problems where the
state space is large and unknown a priori [38], or the number
of controller parameters that need to be tuned is large [39].
Motivation for Research Question. While some efforts show
benefits of combining MAPE with CT on the one hand
and the potential of exploiting ML to support the adaptation
mechanisms on the other hand, further research is required
on how these approaches can be combined to build better
adaptive systems. In particular, further research is required to
understand: (1) the characteristics and strengths of CT and
MAPE and the use of ML for adaptation, (2) how CT and
MAPE can be combined with and supported by ML, (3) how
we can consolidate this knowledge into reusable assets.

III. CONCEPTS AND SCOPE

We briefly describe the main concepts and the scope of the
work presented in this paper. We start with the two adaptation
techniques we focus on: CT and MAPE, and conclude with
ML that we aim to use in support for adaptation.

A. Control Theory

In this paper, for CT we essentially mean classical control
structures – single-loop or at most feed forward compensa-
tion, cascade controls – made of individually simple linear
time-invariant blocks such as Proportional-Integral-Derivative

controllers (PID), running at a fixed sampling rate or triggered
by events. These structures have demonstrated to be powerful
at keeping some variable(s) at prescribed set points or within
prescribed ranges in the face of disturbances, provided that
the relationship between the control signal and the controlled
variable is not too complex and does not vary too much
over time [40]. In large applications, the “classical CT layer”
is often extended with a higher “advanced layer” realised
as Model Predictive Control (MPC). This upper layer feeds
commands to the lower one, adapting its behaviour when the
conditions of the system (plant) require such an action.

This two-layer control scheme fits domains like process
control very well, where the plant is ruled by clearly defined
physical laws, but in general does not seem to fit equally well
adaptive software. Among the reasons are that similar laws are
not so easy to define for software systems, that objectives can
be very heterogeneous, and time scales for decision-making
may not fit well [12], [14]. Moreover, adaptive software sys-
tems often require complex types of adaptations, e.g., changing
the structure of a managed system.
Key insights: CT’s strength lies in keeping variables at
prescribed set points or within prescribed ranges, regardless
of disturbances. Adding an MPC control layer atop a classical
control layer fits well for process control, but does not seem
to map naturally to software systems. We conjecture that in
adaptive software the two control schemes can be re-used,
where the upper layer may be realised using MAPE.

B. MAPE

MAPE concerns techniques usually covered by the software
engineering for self-adaptive systems community. MAPE is an
acronym introduced by Kephart and Chess [41] referring to
the essential activities (functions) that should be covered by
any systems with adaptive capabilities: Monitoring, Analysis,
Planning, and Execution. The aim of MAPE is usually to adapt
software – its configuration, structure, behaviour, etc. – rather
than physical phenomena. While all forms of control are likely
to have one or more of these activities (or are known in other
guises as Sense-Plan-Act, for example), we use MAPE as a
label in this paper to capture approaches to adapt software and
the techniques that have been developed to handle this.

The MAPE activities are centered around Knowledge mod-
els that typically include various forms of runtime models [42],
such as software architecture models of the managed system
and environment, goal models, Markov networks that allow
predicting qualities of different system configurations, etc.
These models usually focus on the properties that one wishes
to maintain the software [43]–[45]. Monitoring is used to
update these models with data about the current state of the
software, the environment in which it is running, and the goals
of the software. Analysis typically involves taking the current
state and determining if the properties align with user or busi-
ness goals. Often, analysis is focused on a multi-dimensional
space that trades off different quality attributes of the software
– for example, balancing performance, reliability, security, or
cost. Tools that can be used here include runtime simulations,



model checking, architecture analysis, etc. Analysis can be
expressed as thresholds or constraints that the software should
achieve or maintain. E.g., we might desire a response time
less than two seconds; we may aim to minimise operational
costs. Planning then decides the set of steps required to change
the software to satisfy the properties. In simple condition-
based MAPE systems, planning would just be choosing which
action to take based on some condition. Other approaches
might choose some organised sequence or tree of actions that
maximise some utility function. Sometimes more advanced
techniques are required, possibly based on AI, to generate
plans. Finally, execution takes these actions and manages their
enactment on the actual software system. This may involve
non-trivial synchronisation with the system that is adapted.

A pioneering work that applies different levels of control is
IBM’s Autonomic Computing Reference Architecture [46], see
also [47]. Yet this work considers hierarchies of MAPE loops
rather than integrations of MAPE and CT-based solutions.

A key aspect for the industrial adoption of MAPE is frame-
works that offer interfaces for monitoring and safe adaptations
of the underlying system. A typical example is OSGi [48] that
offers a dynamic component model for Java.
Key insights: MAPE addresses adaptation of software rather
than physical properties or resources; MAPE has a global
perspective on the system (or subsystems being managed);
MAPE deals with trading off requirements/quality attributes
to determine what needs to be changed about the software.

C. Machine Learning

ML techniques can be considered in four dimensions [49],
[50]. First: unsupervised vs supervised vs interactive. An un-
supervised learner aims at finding patterns in data sets without
labels. Cluster analysis is an example [51]. A supervised
learner learns a function that maps input to output based
on example pairs. An interactive learner collects the input-
output pairs by interaction with the environment. A classic
example is reinforcement learning [52]. Second: active vs
passive. An active learner queries some information source
in the environment (e.g., a user or teacher [53]) to obtain the
outputs at new data points that are then used to affect the
environment. A passive learner only perceives the information
from the environment without affecting it. Third: adversarial vs
non-adversarial. Adversarial learning attempts to fool models
through malicious input. An example is using obfuscated spam
messages in email filtering [54]. Non-adversarial learning has
no concept of malicious input. Fourth: online vs batch [55].
Online learning updates the learning model using sequential
data, while batch learning learns the model using the entire
training data set at once.

We focus here on ML techniques that support building
models and/or strategies for CT and MAPE. In applications
with high dimensional data that operate in uncertain envi-
ronments, it is often difficult to manually build models with
appropriate precision. ML, especially deep learning, has shown
to be a powerful tool to build effective models with small size

and high precision by predicting future behaviours based on
previously observed data in uncertain environments [56], [57].

IV. CHARACTERISTICS OF APPROACHES

We outline characteristics of CT and MAPE emphasising
strengths, and look at the support ML can offer to adaptation.

A. Control Theory

Discrete- and continuous-time models: CT works with both
discrete-time and continuous-time models [58], like those used
in “fluid” modelling for queuing systems [59]. Continuous-
time models are often written based on conservation laws.
Their parameters have a natural physical meaning (e.g., the
maximum speed of a CPU), and the effect of modifying them
can be foreseen based on physical intuition.
Preserving system properties: both for the discrete- and
the continuous-time cases, CT offers formal means to assess
whether the system will not drift away from the desired oper-
ating point (stability) and what are the tolerable modifications
to the system that preserve a given property, such as settling
time (robustness) [60]. As long as linear theory applies [61],
which is often obtained by convenient local-in-the-operating-
point approximations, such checks can be done offline and do
not require measured data or synthetic stimuli.
Atomic vs. sequence of control actions: controllers naturally
lend themselves to “atomic” control actions, like setting a
value for some input to the controlled system. They are not
equally apt to more articulated control actions, for example
involving a sequence of operations. If some characteristic
parameter (e.g., maximum CPU speed) of the system changes,
CT can accommodate for such variations as long as a means to
detect them online is available (adaptive control [62]). If the
same detection implies complex operations on large sets of
data, possibly analysing the history of the system, alternative
techniques (ML) may be more appropriate.

B. MAPE

Complex combination of sensor data: raw data may be
of low-level and need to be combined in complex ways to
generate meaningful knowledge to reason about adaptations;
different dimensions may apply to combine data, for which
MAPE offers support, e.g., combining measurements over
time, or integrating data from different data sources.
Complex relation between observable data and properties
of interest: deriving properties that are needed to reason about
adaptation from observable parameters may be complex and
require advanced models and analysis techniques that naturally
fit MAPE, e.g., interference in a wireless network may be
represented as parameters of a probabilistic model; packet loss
can then be predicted using online model checking [45].
Complex quality goals need to be combined: stakeholders
often require an adaptive system to provide different quality
goals; these goals may be different in nature, e.g., maximise
profit, minimise delay, ensure a minimum level of perfor-
mance, ensure a constant throughput; this leads to conflicts



and requires potentially complex trade-off analysis. Such types
of analysis are at the heart of MAPE [63].
Variability: the variation of a software system under control
can be parametric or structural (e.g., adding/removing compo-
nents, changing their connections, and changing deployment
of components); MAPE approaches can handle the structural
variability in analysis and planning.
Switching types of adaptations/modes: MAPE offers means
for adaptations ranging from system parameter tuning to archi-
tectural reconfigurations; the latter requires discrete changes of
the system, such as activation/deactivation of components, and
switching the operation mode of the system.

Long-time scale: achieving the objectives of adaptive systems
may require reasoning and planning over long time spans
during which the conditions of the system or the environment
may change significantly requiring complex replanning.
Known complex actuation: actuation on a software system
may require performing a sequence of low-level parametric or
structural changes; its execution is not instantaneous generally,
but its consequence is predictable. MAPE works with such
complex actuation types.

C. Machine Learning

Model building: ML provides methods to build a model
for dynamical systems using data, even where first-principle
modelling is not possible. This includes, but is not limited to
classical system identification techniques used in CT. Recently
popular is to use deep learning to complement a rough first-
principle model, in order to add non-linear effects and external
disturbances, which are difficult to model.
Complexity reduction: ML can be used to reduce the com-
plexity or dimension of a model supporting the design of a
CT controller efficiently and effectively. Commonly used ML
approaches for model reduction include principal component
analysis, singular value decomposition, and auto-encoder.
Estimating properties: For MAPE, ML can provide an a-
priori estimation of performance where the environment con-
tains uncertainties or where the environment is not directly
observable. ML can also be used for clustering the data,
which may provide increased understanding of the patterns
in the data. Indeed ML can be used to generate models for
the analysis phase of the MAPE loop to provide complex
non-linear inference where deriving models traditionally are
difficult or impossible. Dimensionality reduction may also help
understanding or allow computationally intractable problems
to be tackled using traditional software techniques.
Optimise policies: In many domains deriving plans for MAPE
is non-trivial and ML techniques may help. Where the problem
can be specified as an abstract state representation, reinforce-
ment learning may be employed to optimise policies, i.e., a
plan of action in each state, which can then be encoded as a
plan in the MAPE loop.
Designing control input: (Deep) Reinforcement learning may
also be used to design a sequence of control inputs with or

without using a model. However, unlike MPC, it is not always
straightforward to incorporate hard-constraints.

V. COMBINING ADAPTATION TECHNIQUES

With the characteristics and strengths of CT and MAPE in
hand, we combine the two and support them with ML. To that
end, we use a Cloud-based enterprise system. We also studied
a second case of a self-driving car, but due to space limitations,
we refer to [64]. Based on our experiences, we propose a first
pattern for combining CT with MAPE supported by ML. This
pattern offers an initial reusable asset in this area.

A. Cloud-based Enterprise System

Consider a cloud application consisting of logical partitions,
e.g., a web application deployed across web, application, and
data tiers, or an IoT deployed across fog, edge, and central
cloud partitions. Partitions are made of Virtual Machines (VM)
with containers (C) that host the application, e.g., microser-
vices that communicate over links within and across VMs.

A common high-level goal of such applications is to serve
users with high quality services, while minimising the cost.
Goals can be expressed in terms of Service Level Agreements
(SLA), budget constraints, and user satisfaction. Goals can be
translated into technological metrics, such as response time
and cost, which can be considered controlled outputs. The
outputs can be affected by control inputs, such as the number
of VMs (#vm), the number of containers (#containers), and
the number of threads (#threads), buffer or connection pool
sizes. Applications are subject to uncertainties (perturbations).
Load, which is the rate of service requests that arrive at the
application, can be highly unpredictable, non-linear, and multi-
dimensional. Another uncertainty is cloud interference, which
is the effect other applications running on the cloud have on
the application. Cloud interference that can affect the CPU,
IO, memory, bandwidth, etc., can be highly non-linear and is
usually not directly measurable.

B. Designing the Controller.

To achieve the goals of a cloud-based enterprise system
in the presence of uncertainties, we combine the strengths of
MAPE and CT and support these with ML in a four-layer
architecture as shown in Figure 1.
Goal layer: The goal layer takes the application owner goals,
e.g., an SLA, budget constraints, and user satisfaction, as input
and converts them into technological goals for MAPE, such
as end-to-end response times and penalties that affect cost.
MAPE Layer: The MAPE layer monitors the progress of the
goals and makes reconfiguration decisions, such as changing
the number of VMs/containers on each partition. MAPE will
also determine the set points for the lower-level CT controllers.
To that end, the MAPE layer monitors the response time of
each partition, the end-to-end response time, and the current
cost (given by the cost of resources in the cloud eventually the
cost model of the cloud provider). To determine the control
decisions (number of VMs/containers and set points for the
CT layer), the MAPE layer can rely on techniques such as



Goals
(SLA, budget constraints, user satisfaction)

(GOALS Layer)

MAPE
(MAPE Layer)

CT CT CT

VM

C

C

C

C

VM

C

C

VM

C

C

C

C

C

C

C

C

1 2 3

Global 
Environment 
Uncertainty

Sensing

ML
Global 

Environment 
Model

Local
Environment 
Uncertainty

Sensing

ML
Local 

Environment 
Model

Load Cloud interference

Tier 1 Tier 2 Tier 3

response time 
cost

#VM and #containers
partitions response time
setpoints

partition response time

#threads
buffer size

connection pools

(CT Layer)

(System Layer)

Fig. 1. Adaptive Cloud-based enterprise system.

look-ahead optimisation, search-based algorithms, simulation,
or queuing models. The decisions of the MAPE layer are
produced in a time scale of order of minutes.
CT layer: The CT layer controls the number of threads used
by the microservices among other local parameters, such as
buffer sizes, and connection pools. The decisions of the CT
layer are produced in a time scale in the order of milliseconds
to seconds. By using control theory-based adaptation, this
layer is able to deal with fast transients and attenuate high
frequency uncertainties. CT is appropriate here since the
control inputs and their effects on the outputs are close to
a continuous time domain, and assurance for stability and
robustness is crucial.
System layer: The system layer that is the subject of adapta-
tion comprises the application logic of a cloud system that is
set up as a three-tier architecture as explained above.
The role of ML: ML in our application provides models
for: (a) the load over time (of the day) as service requests
can vary in frequency, data size, and required data outputs,
and (b) the cloud interference along with high dimensional
OS/VM/container metrics over long periods of time. By pre-
dicting the request load and expected extra load on the appli-
cation, the MAPE layer can make better adaptation decisions.

C. Analysis of Combined Architecture

As an initial evaluation of combining MAPE and CT,
supported by ML, we model and simulate a simplified version
of the three-tier cloud application in Modelica, see Figure 2.
The application is modelled in continuous time as three
queue-plus-server blocks, each one receiving as input the
output of its predecessor. The processing speed is obtained by
allotting more or less “Computational Units” (CUs for short,
e.g., #threads, #connections) that can range from 0 to some

maximum. By changing that maximum, for example by adding
or removing threads, we can re-configuring the system.

The CT layer comprises Proportional-Integral (PI) controller
that allots CUs to each tier to maintain the desired response
time in the face of dynamics of the load and network dis-
turbances (uncertainties unc) that affect the throughput. In
addition, the PI controllers compute the number of CUs that
they would allow to comply with the required response time
if an infinite number of CUs would be available as follows:

CUneed =
CUdesired − CUmaxavail

CUmaxavail
(1)

The CU needs are fed to the upper MAPE/ML layer. Knowing
these indices and the required response time for the overall
system, this layer can (i) decide the response times for the
individual tiers (set points for the PIs) and (ii) reconfigure the
system by modifying the maximum CU availability.

Figure 3 shows a simulation run with a randomly varying
load (input rate rin at the top, plotted normalised to its nominal
value) and efficiencies (2nd plot). We see that the CT layer can
keep the system on track when this is feasible. We also see that
the CU need indices do signal the need for a reconfiguration,
and more importantly, that their shape distinguishes short-
time infeasibilities from sustained ones. Dealing with the
complex information of these indices and adapting the system
accordingly, is a task for which MAPE/ML is particularly well
suited. This is illustrated by comparing the CU allocation (3rd
and 5th plot) and the obtained response times (4th and 6th plot)
respectively without and with activating the functionality of the
MAPE/ML layer. The results show that the adaptations applied
by the MAPE/ML layer enable the underlying CT layer to
better manage temporary infeasibilities.



Goal layerGoal layer

CT layer

MAPE/ML layer

System
layer

Environment

i
f
 
t
i
m
…

unc1

1

response_time_requirement

PI PI

i
f
 
t
i
m
…

unc2

PI

i
f
 
t
i
m
…

unc3

Load

MAPE

Fig. 2. Modelica diagram for a simplified version of the cloud example.

0.8

0.9

1

1.1

normalised rin

0

0.5

1
T1 eff.
T2 eff.
T3 eff.

0

20

40 w/o MAPET1 CU alloc.
T2 CU alloc.
T3 CU alloc.

0

10

20
w/o MAPErequired resp. time

T1 resp. time
T2 resp. time
T3 resp. time

0

20

40 with MAPET1 CU alloc.
T2 CU alloc.
T3 CU alloc.

0 50 100 150 200

0

10

20
with MAPE

time

required resp. time
T1 resp. time
T2 resp. time
T3 resp. time

Fig. 3. Simulation results: from the top: in-out rate, efficiencies, required and
obtained response times, CU allocation, and resource need indices.

D. Pattern: 1-MAPE-n-CT with ML for Uncertainty Modelling

Based on our experiences, we identified a first pattern for
combining MAPE and CT as shown in Figure 4.

The pattern structures the self-adaptive system in four
layers where a single MAPE loop is combined with multiple
controllers to adapt a distributed system. The rationale for
applying the pattern is: (i) CT handles small perturbations, (ii)
when CT cannot cope, MAPE is called to adapt the system
and change the CT settings to achieve the high-level goals.
ML is used to generate up-to-date models of the environment
that produces uncertainties the system needs to withstand.

CT CT CT1 i n

Environment 
Uncertainty

Sensing

ML
Environment 

Model

system response constraints

CT Layer

SYSTEM Layer

MAPE Layer

GOAL Layer

local monitoring local adaptations

… …

Fig. 4. 1-MAPE-n-CT with ML for uncertainty modelling pattern.

VI. CONCLUSIONS AND FURTHER RESEARCH

This paper presented work in progress on how to combine
MAPE and CT and support them with ML to produce better
adaptive systems. We characterised the different adaptation
approaches: MAPE’s strength is its global perspective on the
system and its ability to deal with complex trade-offs between
requirements. CT’s strength lies in keeping variables at pre-
scribed set points or within prescribed ranges, regardless of
disturbances. ML, on the other hand, can support MAPE and
CT in different ways; one key way is to build runtime models
and adaptation strategies from complex and high dimensional
data obtained from uncertain environments.

Second, we illustrated how CT and MAPE can be combined
and supported by ML using a use case from the cloud domain.
In particular, the case shows how self-adaptive software can
be organised in four layers. At the top, a goal layer translates
user requirements to operational goals for the adaptation logic.
Next, a MAPE layer monitors the progress of the goals, the re-
sources available to the system, and system-wide uncertainties
in the environment to determine bounds for the reconfiguration
decisions. Then, a CT layer tracks the system behaviour and
local uncertainties in the environment, to make reconfiguration
decisions of the system within the bounds defined by MAPE.
Finally, the system layer comprises the managed system that is
subject to adaptation. ML techniques can support the MAPE
and CT layers in different functions, for instance, building
global and local models of the environment.

While these initial insights are promising, further research
is needed to better understand how to combine adaptation
approaches. Crucial questions to be answered will be: What
are the typical use cases for combining MAPE and CT? How
to allocate adaptation responsibilities when MAPE and CT
are combined? Can we identify patterns to combine MAPE
and CT, and what are their tradeoffs? Can we identify typical
coordination mechanisms for MAPE and CT to interact? What
are the interesting use cases for ML to be applied in adaptive
systems? How can we provide guarantees for the adaptation
goals in hybrid architectures that combine CT and MAPE?
Answering these questions will require a substantial joint
effort among researchers with backgrounds in architecture-
based adaptation, control theory, and machine learning.



REFERENCES

[1] P. Oreizy et al., “An architecture-based approach to self-adaptive soft-
ware,” IEEE Intelligent Systems and their Applications, vol. 14, no. 3,
pp. 54–62, 1999.

[2] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and
research challenges,” ACM Transactions on Autonomous and Adaptive
Systems, vol. 4, no. 2, 2009.

[3] B. H. C. Cheng et al., Software Engineering for Self-Adaptive Systems:
A Research Roadmap. Springer, 2009, pp. 1–26.

[4] R. de Lemos et al., Software Engineering for Self-Adaptive Systems: A
Second Research Roadmap. Springer, 2013.

[5] ——, “Software engineering for self-adaptive systems: Research chal-
lenges in the provision of assurances,” in Software Engineering for
Self-Adaptive Systems III. Assurances. Cham: Springer International
Publishing, 2017, pp. 3–30.

[6] D. Weyns, Introduction to Self-Adaptive Systems: A Contemporary
Software Engineering Perspective. Wiley, IEEE Press, 2020.

[7] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, 2003.

[8] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-based self-adaptation with reusable infrastruc-
ture,” Computer, vol. 37, no. 10, p. 46–54, 2004.

[9] J. Kramer and J. Magee, “Self-managed systems: An architectural
challenge,” in Future of Software Engineering, 2007.

[10] D. Weyns et al., “FORMS: Unifying reference model for formal
specification of distributed self-adaptive systems,” ACM Transactions
on Autonomous and Adaptive Systems, vol. 7, no. 1, 2012.

[11] D. Weyns, “Software engineering of self-adaptive systems,” Handbook
of Software Engineering, 2019.

[12] J. Hellerstein et al., Feedback Control of Computing Systems. USA:
John Wiley Sons, Inc., 2004.

[13] A. Filieri et al., “Control strategies for self-adaptive software systems,”
ACM Trans. on Autonomous and Adaptive Systems, vol. 11, no. 4, 2017.

[14] S. Shevtsov et al., “Control-theoretical software adaptation: A systematic
literature review,” IEEE TSE, vol. 44, no. 8, pp. 784–810, Aug. 2018.

[15] O. Gheibi et al., “Applying machine learning in self-adaptive systems:
A systematic literature review,” in arXiv, 2103.04112, 2021.

[16] F. Quin et al., “Efficient analysis of large adaptation spaces in self-
adaptive systems using machine learning,” in SEAMS. IEEE, 2019.

[17] N. Bencomo et al., “RaM: Causally-Connected and Requirements-Aware
Runtime Models using Bayesian Learning,” in Models, 2019.

[18] P. Jamshidi et al., “Fuzzy self-learning controllers for elasticity man-
agement in dynamic cloud architectures,” in QoSA, April 2016.

[19] G. Tamura et al., “Improving context-awareness in self-adaptation using
the DYNAMICO reference model,” in SEAMS, 2013.

[20] C. Belta et al., “Symbolic planning and control of robot motion,” IEEE
Robotics & Automation Magazine, vol. 14, no. 1, 2007.

[21] T. Wongpiromsarn et al., “Receding horizon temporal logic planning,”
IEEE Transactions on Automatic Control, vol. 57, no. 11, 2012.

[22] P. Nilsson et al., “Correct-by-construction adaptive cruise control: Two
approaches,” Trans. on Control Systems Technology, vol. 24, no. 4, 2015.

[23] A. Metzger et al., “Feature-model-guided online learning for self-
adaptive systems,” arXiv preprint arXiv:1907.09158, 2019.

[24] F. Affonso et al., “A framework based on learning techniques for
decision-making in self-adaptive software.” in SEKE, vol. 15, 2015.

[25] J. Van Der Donckt et al., “Applying deep learning to reduce large
adaptation spaces of self-adaptive systems with multiple types of goals,”
in International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, 2020.

[26] L. Fernández Maimó et al., “A self-adaptive deep learning-based system
for anomaly detection in 5g networks,” IEEE Access, vol. 6, 2018.

[27] P. Jamshidi et al., “Machine learning meets quantitative planning:
Enabling self-adaptation in autonomous robots,” in SEAMS, 2019.

[28] R. Diniz Caldas et al., “A hybrid approach combining control theory
and AI for engineering self-adaptive systems,” in SEAMS, 2020.

[29] K. Åström and P. Eykhoff, “System identification—a survey,”
Automatica, vol. 7, no. 2, pp. 123 – 162, 1971. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0005109871900598

[30] A. Chiuso and G. Pillonetto, “System identification: A machine learning
perspective,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 2, no. 1, pp. 281–304, 2019.

[31] J. Sjöberg, H. Hjalmarsson, and L. Ljung, “Neural networks in system
identification,” IFAC Proceedings, vol. 27, no. 8, 1994.

[32] L. Ljung, System Identification. American Cancer Society, 2017,
pp. 1–19. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/047134608X.W1046.pub2

[33] A. Filieri, H. Hoffmann, and M. Maggio, “Automated design of self-
adaptive software with control-theoretical formal guarantees,” in 36th
International Conference on Software Engineering, 2014.

[34] S. Shevtsov, D. Weyns, and M. Maggio, “Simca*: A control-theoretic
approach to handle uncertainty in self-adaptive systems with guarantees,”
ACM Trans. on Autonomous and Adaptive Systems, vol. 13, no. 4, 2019.

[35] Z. Wu et al., “Machine learning-based predictive control of nonlinear
processes. Part I: Theory,” AIChE Journal, vol. 65, no. 11, 2019.

[36] D. Nguyen and B. Widrow, “Neural networks for self-learning control
systems,” IEEE Control systems magazine, vol. 10, no. 3, 1990.

[37] T. Chow et al., “A recurrent neural-network-based real-time learning
control strategy applying to nonlinear systems with unknown dynamics,”
IEEE Transactions on Industrial Electronics, vol. 45, no. 1, 1998.

[38] R. Kamalapurkar et al., Model-Based Reinforcement Learning for Ap-
proximate Optimal Regulation. Elsevier, 2016.

[39] Y. Wen et al., “Online reinforcement learning control for the personal-
ization of a robotic knee prosthesis,” Transactions on Cybernetics, 2019.

[40] A. Leva et al., Control-based operating system design. IET, 2013.
[41] J. Kephart and D. Chess, “The vision of autonomic computing,” Com-

puter, vol. 36, no. 1, pp. 41–50, Jan. 2003.
[42] G. Blair, N. Bencomo, and R. B. France, “Models@ run.time,”

Computer, vol. 42, no. 10, p. 22–27, Oct. 2009. [Online]. Available:
https://doi.org/10.1109/MC.2009.326

[43] J. Cámara et al., Analyzing Self-Adaptation via Model Checking of
Stochastic Games. Springer, 2017, no. LNCS 9640.

[44] D. Weyns and M. Iftikhar, “Model-based simulation at runtime for self-
adaptive systems,” in Models at Runtime, IEEE International Conference
on Autonomic Computing, 2016, pp. 364–373.

[45] R. Calinescu et al., “Engineering trustworthy self-adaptive software with
dynamic assurance cases,” vol. 44, no. 11, 2018, pp. 1039–1069.

[46] “An Architectural Blueprint for Autonomic Computing,” IBM, Tech.
Rep., Jun. 2005. [Online]. Available: https://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.150.1011&rep=rep1&type=pdf

[47] Villegas et al., “Architecting software systems for runtime self-
adaptation: Concepts, models, and challenges,” in Managing Trade-Offs
in Adaptable Software Architectures. Morgan Kaufmann, 2017.

[48] A. de Castro Alves, OSGi in Depth. Manning Publ. Co., USA, 2011.
[49] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning:

From theory to algorithms. Cambridge University Press, 2014.
[50] C. Bishop, Pattern recognition and machine learning. Springer, 2006.
[51] A. Albalate and W. Minker, Semi-Supervised and Unsupervised Machine

Learning: Novel Strategies. Wiley, 2013.
[52] R. S. Sutton and A. G. Barto, Reinforcement Learning, second edition:

An Introduction. Westchester, 2018.
[53] B. Settles, “Active learning literature survey,” TR1648, 2009.
[54] E. Blanzieri and A. Bryl, “A survey of learning-based techniques of

email spam filtering,” Artificial Intelligence Review, vol. 29, p. 63–92,
2008.

[55] N. Littlestone, “From on-line to batch learning,” in 2nd Annual Work-
shop on Computational Learning Theory. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1989, p. 269–284.

[56] Y. Bengio, Learning deep architectures for AI. Now Publishers, 2009.
[57] J. Schmidhuber, “Deep learning in neural networks: An overview,”

Neural networks, vol. 61, pp. 85–117, 2015.
[58] G. F. Franklin, J. D. Powell, M. L. Workman et al., Digital control of

dynamic systems. Addison-wesley Reading, MA, 1998, vol. 3.
[59] R. Kumar, Y. Liu, and K. Ross, “Stochastic fluid theory for p2p

streaming systems,” in IEEE INFOCOM 2007-26th IEEE International
Conference on Computer Communications. IEEE, 2007, pp. 919–927.

[60] D. Hinrichsen and A. J. Pritchard, Mathematical systems theory I:
modelling, state space analysis, stability and robustness. Springer
Science & Business Media, 2011, vol. 48.

[61] J. P. Hespanha, Linear systems theory. Princeton university press, 2018.
[62] K. J. Åström and B. Wittenmark, Adaptive control. Courier Corporation,

2013.
[63] S.-W. Cheng, D. Garlan, and B. Schmerl, “Architecture-based self-

adaptation in the presence of multiple objectives,” in Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS), 2006.

[64] Weyns et al., “Self-driving car case,” 2021. [Online]. Available:
https://people.cs.kuleuven.be/danny.weyns/material/smart-vehicle.pdf

http://www.sciencedirect.com/science/article/pii/0005109871900598
https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W1046.pub2
https://onlinelibrary.wiley.com/doi/abs/10.1002/047134608X.W1046.pub2
https://doi.org/10.1109/MC.2009.326
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.1011&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.1011&rep=rep1&type=pdf
https://people.cs.kuleuven.be/danny.weyns/material/smart-vehicle.pdf

	Introduction
	Related Work
	Concepts and Scope
	Control Theory
	MAPE
	Machine Learning

	Characteristics of Approaches
	Control Theory
	MAPE
	Machine Learning

	Combining Adaptation Techniques
	Cloud-based Enterprise System
	Designing the Controller.
	Analysis of Combined Architecture
	Pattern: 1-MAPE-n-CT with ML for Uncertainty Modelling

	Conclusions and Further Research
	References

