
The Quadratic Shortest Path Problem:
Complexity, Approximability, and Solution

Methods

Borzou Rostami1, André Chassein2, Michael Hopf2, Davide Frey4, Christoph
Buchheim1, Federico Malucelli3, Marc Goerigk5

1 Fakultät für Mathematik, TU Dortmund, Germany
2 Fachbereich Mathematik, TU Kaiserslautern, Germany

3 Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy
4 INRIA-Rennes Bretagne Atlantique, Rennes, France

5 Department of Management Science, Lancaster University, United Kingdom

Abstract. We consider the problem of finding a shortest path in a di-
rected graph with a quadratic objective function (the QSPP). We show
that the QSPP cannot be approximated unless P = NP. For the case
of a convex objective function, an n-approximation algorithm is pre-
sented, where n is the number of nodes in the graph, and APX-hardness
is shown. Furthermore, we prove that even if only adjacent arcs play
a part in the quadratic objective function, the problem still cannot be
approximated unless P = NP. In order to solve the problem we first
propose a mixed integer programming formulation, and then devise an
efficient exact Branch-and-Bound algorithm for the general QSPP, where
lower bounds are computed by considering a reformulation scheme that
is solvable through a number of minimum cost flow problems. In our
computational experiments we solve to optimality different classes of in-
stances with up to 1000 nodes.

Keywords: Shortest path problem; Quadratic 0–1 optimization; Com-
putational complexity, Branch and Bound.

1 Introduction

The Shortest Path Problem (SPP) of finding a path in a directed graph from an
origin node s to a target node t with minimal arc length is a well-studied com-
binatorial optimization problem. Many classical algorithms such as Dijkstra’s
labeling algorithm [8] have been developed to solve the SPP efficiently.

Several extensions of the basic SPP exist to model more complex settings.
These include problems where the travel costs of an arc follow a distribution and
the shortest path is constrained by parameters such as the variance of the cost
of the path [20], and problems in which additional costs arise from pairs of arcs
in a solution [1].

In this paper we consider the shortest path problem with a quadratic objec-
tive function (the QSPP). Specifically, writing the linear objective function of

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/
by-nc-nd/4.0/
Published Journal Article available at: http://dx.doi.org/10.1016/j.ejor.2018.01.054

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.ejor.2018.01.054

2 Rostami et al.

the classical shortest path problem as c⊤x with a cost vector c, the objective
function of the QSPP is x⊤Qx+ c⊤x with a quadratic matrix Q.

1.1 Applications and Related Work

One variant of the SPP studied in the literature that is directly related to QSPP
is that of finding a variance-constrained shortest path [20] where the arc costs
are not deterministic but follow a distribution and the objective is to find a path
with minimum expected costs subject to the constraint that the variance of the
costs is less than a specific threshold. In particular, a solution consists of a path
that must have both a short expected length and a low risk of exploding costs
in an unfortunate event. An application for this problem is the transportation
of hazardous materials. Possible approaches to solve the Variance-Constrained
Shortest Path problem involve a relaxation in which the quadratic variance con-
straint is incorporated into the objective function, thus yielding a QSPP problem.
In this case, the quadratic part of the objective function is determined by the
covariance matrix of the coefficient’s probability distributions, and hence convex.
In a similar way, instead of bounding the variance, one may search for a solution
that considers both the expected cost and the variance of a path as optimization
criteria. [19] consider this as a multi-objective optimization problem. They solve
this problem by combining the linear and quadratic objective functions into a
single QSPP. Also related to variance-constrained shortest path problems are
the so-called reliable shortest paths, see [7].

A different type of applications arises from research on network protocols. [15]
study different restoration schemes for self-healing ATM networks. In particular,
the authors examine line and end-to-end restoration schemes. In the former,
link failures are addressed by routing traffic around the failed link, in the latter,
traffic is rerouted by computing an alternative path between source and target.
Within their analysis, the authors point out the need to solve a QSPP to address
rerouting in the latter scheme. Nevertheless, they do not provide details about
the algorithm used to obtain a QSPP solution.

All problems described above involve variants of the classical shortest path
problem in which additional costs arise with the presence of pairs of arcs in the
solution. Such a setting can be modeled by a quadratic objective function on
binary variables associated with each arc, and leads to the definition of a QSPP.

To the best of our knowledge there is no specific method in the literature
to solve the QSPP. The only algorithmic approach that has been applied to
solve instances of the the QSPP is the one proposed by [4]. They studied a
generic framework for solving binary quadratic programming problems. In their
computational experiments, they solve some special classes of quadratic 0 − 1
problems including the QSPP.

1.2 Main Contributions

In this paper, we analyze the complexity of the general QSPP and several of
its special cases. In particular, we show that the general QSPP cannot be ap-

Quadratic Shortest Path Problem 3

GRAPH TYPE

PROBLEM general acyclic series-parallel graph

QSPP not approximable∗ not approximable∗ not approximable∗

convex QSPP APX-hard APX-hard APX-hard

AQSPP not approximable∗ P P

Table 1: Our complexity results for different variants of the Quadratic Shortest
Path Problem. The entries marked with in asterisk (*) hold true unless NP = P.

proximated unless P = NP. This is done by reducing an instance of the Path
with Forbidden Pairs Problem (known to be NP-complete) to a corresponding
instance of the QSPP. We also show that, even if we restrict the quadratic part
of the cost function to pairs of arcs which are adjacent (AQSPP), the problem
still cannot be approximated unless P = NP. This is done by a gap-producing
reduction from an instance of 3SAT to an instance of the AQSPP. Moreover, for
the convex QSPP where the quadratic form is positive semidefinite and, thus, the
objective function is convex, we show that the problem is APX-hard and provide
an n-approximation algorithm, where n is number of nodes in the graph. Our
complexity results are summarized in Table 1.

From the practical point of view, we present a mixed integer programming
formulation whose size is linear in terms of the number of variables in the original
quadratic formulation. We also propose an exact Branch-and-Bound algorithm
for the general QSPP, where lower bounds are computed by considering a re-
formulation scheme that is solvable through a number of minimum cost flow
problems. In our computational experiments we solve to optimality different
types of instances with up to 1000 nodes and show that our results outperform
a state-of-the-art solver.

Parts of this paper have been published as conference proceedings [18], where
the authors show the NP-hardness of the general QSPP, analyze polynomially
solvable special cases, and propose some bounding procedures for the general
QSPP.

2 Problem Formulation

Let a directed graph G(V,A) be given, with a source node s ∈ V , a target node
t ∈ V , a cost function c : A → R+, which maps every arc to a non-negative cost,
and a cost function q : A×A → R+ that maps every pair of arcs to a non-negative
cost. We denote by δ−(i) = {j ∈ V | (j, i) ∈ A} and δ+(i) = {j ∈ V | (i, j) ∈ A}
the sets of predecessor and successor nodes for any given i ∈ V , by n the number
of nodes, and by m the number of arcs. Using binary variables xij indicating the

4 Rostami et al.

presence of arc (i, j) ∈ A on the optimal path, the QSPP is represented as:

QSPP: z∗ = min
∑

(i,j),(k,l)∈A

qijklxijxkl +
∑

(i,j)∈A

cijxij

s.t. x ∈ Xst, x binary.

(1)

Here the feasible region Xst is the path polyhedron

Xst =
{
0 ≤ x ≤ 1 :

∑
j∈δ+(i)

xij −
∑

j∈δ−(i)

xji = b(i) ∀i ∈ V
}

with b(i) = 1 for i = s, b(i) = −1 for i = t, and b(i) = 0 for i ∈ V \ {s, t}.
Note that, like in the case of classic shortest path problems, it is not necessary
to include cycle-elimination constraints, as all costs are positive.

Note that the objective function of the QSPP can be represented by a
quadratic and a linear term f(x) := xTQx + cTx for an appropriate matrix Q.
We can assume without loss of generality that the matrix Q is symmetric and
denote the special case where Q is positive semi-definite, i.e. when f is convex,
as the convex QSPP.

Next we define some special cases of the QSPP where the quadratic part
of the cost function has a local structure, meaning that each pair of variables
appearing jointly in a quadratic term in the objective function corresponds to a
pair of arcs lying close to each other. We define the Adjacent QSPP (AQSPP),
where interaction costs of all non-adjacent pair of arcs are assumed to be zero.
Therefore, only the quadratic terms of the form xijxkl with j = k and i ̸= l or
with j ̸= k and i = l have nonzero objective function coefficients.

As a variant of the AQSPP, we may count additional costs for adjacent
arc pairs only if these arcs are traversed consecutively. This problem was in-
vestigated in [1, 18]. To distinguish it from the AQSPP, we call it Consecutive
QSPP (CQSPP) here. In fact, the AQSPP and the CQSPP are identical if the
given graph is acylic. However, for general graphs they are not equivalent. In
fact, while the AQSPP is not even approximable in general, as shown in this
paper, the CQSPP turns out to be tractable for any graph. This even remains
true when taking all arc pairs into account that appear with a fixed maximal
distance on the path [18].

3 Complexity Results

3.1 The General QSPP

We start our complexity analysis with the observation that the QSPP can be
seen as a generalization of the Path with Forbidden Pairs Problem (PFPP). An
instance of the PFPP consists of a graph G = (V,A), two nodes s, t ∈ V and a
list of forbidden arc pairs L = {(a1, a1), . . . , (ak, ak)}. The goal is to find a path
from s to t that contains at most one arc of each arc pair in L. (The problem
may also be defined with a list of forbidden vertex pairs). It is known that this

Quadratic Shortest Path Problem 5

problem is NP-complete [9]. Every PFPP can be transformed to an equivalent
QSPP, which leads to the following theorem.

Theorem 1. The QSPP cannot be approximated unless P = NP.

Proof. The proof is a reduction from PFPP to QSPP. Given an instance of PFPP,
specified by a graph G = (V,A) and a list of forbidden arcs L, we construct an
instance of QSPP, specified by a graph G′, a cost vector c and a matrix Q.
We set G′ := G and c(a) := 0 ∀a ∈ A. Further, we use the quadratic cost
function Q of the QSPP to model the forbidden list of arc pairs L. For each arc
pair (a, b) ∈ L, we set qa,b := 1. All other entries of Q are zero. Hence, finding a
path with costs equal to 0 in G′ with respect to the cost function xTQx + cTx
is equivalent to finding a path in G that contains at most one arc of each pair
in L. Inapproximability follows since a feasible solution of the created QSPP has
objective value either 0 or at least 2.

3.2 The Convex QSPP

In the following we consider the convex QSPP. As it turns out it remains APX-
hard, but can be approximated within a factor of n. Hence, the non-convexity of
the general QSPP is necessary for the non-approximability result of Theorem 1.

Theorem 2. The convex QSPP is APX-hard.

Recall that to show that a problem is APX-hard, we have to give a PTAS
reduction from another APX-hard problem. For that, we use the Independent
Set on degree three graphs problem, which is known to be APX-hard [3].

Independent Set on degree three graphs (IS3)
Given an undirected graph G = (V,E) with node degree at most three
for all nodes, find a subset I ′ ⊂ V with maximum size such that there
exists no edge between two nodes of I ′.

Proof. In the following, we construct a PTAS reduction from IS3 to the convex
QSPP. A PTAS reduction from a maximization Problem A to a minimization
Problem B consists of three polynomial time computable functions f, g, and h
such that the following relations hold. Let I be an instance of problem A. Func-
tion fmaps I to an instance of problem B. The input of g is an error parameter ϵ,
instance I, and an (1+h(ϵ)) approximate solution of the corresponding problem
f(I). Function g produces an solution of I that is at most (1 − ϵ) times worse
than the optimal solution.

In the following, we define the construction that is used to map instances
of IS3 to instances of the convex QSPP, i.e., the function f. Given an instance
of IS3 with a graph G′ = (V ′, E) with V ′ = {v1, . . . , vn}, we construct the
graph G = (V,A) for the instance of the convex QSPP as follows: The node set
V = V ′ ∪ {v0} is the node set of the original graph expanded by one additional

6 Rostami et al.

node v0. The source node s = v0 and the sink node t = vn. However, the arc set
is different

A = {ai, ai = (vi−1, vi)|i = 1, . . . , n}.

We denote in the following all arcs ai as the top arcs and the arcs ai as the
bottom arcs. The graph G = (V,A) is shown in Figure 1.

..s = v0. v1. v2. vn−1. t = vn.
a1

.

a1

.
a2

.

a2

...
an

.

an

Fig. 1: The graph used for the reduction in the proof of Theorem 2.

Next we give the cost structure that defines the objective function of the convex
QSPP. The linear cost vector is set to 0, i.e. c(a) = 0 ∀a ∈ A. The costs of the
arc pairs are defined as follows:

• qai,ai = 4 ∀i = 1, . . . , n
• qai,ai = 5 ∀i = 1, . . . , n
• qai,aj = 1 ∀(i, j) with (vi, vj) ∈ E

All other arc pairs have zero costs. By construction, the resulting matrix
Q ∈ R2n×2n that represents the quadratic cost term is symmetric. To see that Q
is also positive definite, note that, since in G′ at most three edges are adjacent
to every node, we get that

∑
e′ ̸=e qee′ ≤ 3 ∀e ∈ A. As qee ≥ 4, we can conclude

that all eigenvalues of Q must be strictly positive by applying the Gershgorin
circle theorem [10].

Next, we describe the function g. We denote by P an s− t path in G. Every
such path contains either ai or ai for i = 1, . . . , n. Hence, every path P defines
a partition of the node set V ′ = VP ∪ VP̄ , where VP = {vi | ai ∈ P} and
VP̄ = {vi | ai ∈ P}. Given a path P we use this partition to construct an
independent set in G′ in the following way. If there exists an edge between two
nodes of VP , we remove one of the two nodes. We repeat this deletion procedure
until no edge connects two nodes of the set. Denote the so obtained independent
set by ṼP .
The function h is defined to be h(ϵ) = ϵ

19 .
To show that f, g, and h indeed define a PTAS reduction, we have to verify

the approximation property. Denote by f(P) the cost of an s− t path P in the
convex QSPP instance, by k the size of the maximum independent set I ′ ⊂ V ′ in
the original graph G′, and by OPT the optimal value of the constructed QSPP
instance. We claim that OPT = 5n − k. To see that OPT ≤ 5n − k consider
the following path P̂ , where arc ai belongs to P̂ if and only if vi ∈ I ′. Then,
f(P̂) = 5(n− k) + 4k = 5n− k as I ′ is an independent set and, hence, no non-
diagonal entries of Q must be considered. Assume that OPT < 5n− k. Denote
by P ∗ the optimal solution of the convex QSPP instance. We must have that

Quadratic Shortest Path Problem 7

|VP∗ | > k as otherwise a path with cost lower than 5n − k is not possible. In
this case, however, VP∗ cannot be an independent set anymore in G′ as the size
of the maximum independent set is bounded by k. Therefore, at least one edge
must connect two vertices vj , vl of VP∗ . We can improve the objective value of
path P ∗ by exchanging edge aj with aj for example. This will decrease the costs
of the path, as the diagonal cost of aj is only 1 larger as the diagonal cost of aj
and the costs paid for the two non-diagonal entries will decrease by at least 2,
as the number of edges connecting nodes from VP∗ is reduced by one and every
edge is counted twice. This contradiction shows that OPT = 5n− k.

Now let P be a solution of the convex QSPP with f(P) ≤ OPT (1 + h(ϵ)).
The costs of P are given by f(P) = 5|VP̄ |+4|VP |+2|E(VP)|, where E(VP) ⊂ E
are all edges that connect nodes of the set VP . Using that |VP̄ | = n − |VP | we
obtain

f(P) ≤ OPT (1 + h(ϵ)) ⇔ 5n− |VP |+ 2|E(VP)| ≤ (5n− k)
(
1 +

ϵ

19

)
⇔ k

(
1 +

ϵ

19

)
− 5nϵ

19
≤ |VP | − 2|E(VP)|

The solution that is produced by function g is denoted by ṼP and we have that
|ṼP | ≥ |VP | − |E(VP)|, as for every edge connecting two nodes from VP , at most
one node needs to be removed from VP . The proof is finished if we can show
that |ṼP | ≥ k(1− ϵ), as k is the optimal solution value of the original problem.
This follows from the following chain of inequalities

|ṼP | ≥ |VP | − |E(VP)|
≥ |VP | − 2|E(VP)|

≥ k
(
1 +

ϵ

19

)
− 5nϵ

19

≥ k
(
1 +

ϵ

19

)
− k

20ϵ

19
≥ k(1− ϵ),

where we used the fact that k ≥ n
4 in the penultimate inequality. To get an

independent set of this size, just pick an arbitrary node of the vertex set and
remove all neighbors of this node from the node set. Note that every node can
have at most three neighbors. In this way, at least 1

4 of all nodes can be picked
and no edge will connect two picked nodes.

Theorem 3. The convex QSPP can be approximated within a factor of n.

Proof. The objective function of the QSPP is given by the expression xTQx +
cTx, which can be simplified to xT (Q+Diag (c))x, where Diag (c) is a diagonal
matrix with c on the diagonal. This follows from the observation that xi =
x2
i ∀xi ∈ {0, 1}. Therefore, the objective function of the QSPP can be represented

by a single quadratic expression f(x) := xTMx. Without loss of generality we
can assume that M is symmetric. Denote by d the diagonal entries of matrix

8 Rostami et al.

M . Instead of minimizing function f we can also minimize a function g that
approximates f . Consider function g(x) := xTDiag (d)x. We claim that g(x) ≤
f(x) ≤ k ·g(x) for all binary vectors x with k one-entries. As every vector x that
represents a simple path has at most n one-entries, we get that g(x) ≤ f(x) ≤ n ·
g(x) for all binary vectors representing simple paths. We can restrict the analysis
to simple paths as all costs are non negative. Note that it is a classic shortest
path problem to solve the problem minx∈Xst g(x), since xTDiag (d)x = dTx for
all binary x.

We now prove the approximation guarantee of g. As all entries of the matrix
M are positive, we have that g(x) ≤ f(x) ∀x ≥ 0 . The other direction can be
seen as follows (without loss of generality we assume that the first k entries of x
are one):

f(x) = xTMx =

k∑
i=1

Miix
2
i + 2

k∑
i=1

k∑
j=i+1

Mijxixj

= k
k∑

i=1

Miix
2
i − (k − 1)

k∑
i=1

Miix
2
i + 2

k∑
i=1

k∑
j=i+1

Mijxixj

= k · g(x)− (k − 1)

k∑
i=1

Miix
2
i + 2

k∑
i=1

k∑
j=i+1

Mijxixj

= k · g(x)−
k∑

i=1

k∑
j=i+1

Miix
2
i − 2Mijxixj +Mjjx

2
j

≤ k · g(x)

It remains to show that 0 ≤ Miix
2
i − 2Mijxixj + Mjjx

2
j for all i, j. Define

x̂ := ei ·xi − ej ·xj , where ei is the i
th unit vector. As f is a convex function, M

must be positive semi definite. Hence, 0 ≤ x̂TMx̂ = Miix
2
i − 2Mijxixj +Mjjx

2
j .

Denote by x̃ the path that minimizes g and by x∗ the optimal path of the
QSPP. Then,

f(x̃) ≤ n · g(x̃) ≤ n · g(x∗) ≤ n · f(x∗)

The first and the last inequality follow from the approximation guarantee of g.
The second inequality holds as x̃ is a minimizer of function g.

3.3 The Adjacent QSPP

The next theorem shows that the restriction to the AQSPP does not suffice to
reduce the complexity of the problem. A similar (but simpler) reduction can be
used to show that the QSPP cannot be approximated unless P = NP, even if the
underlying graphs is series-parallel.

Theorem 4. The AQSPP cannot be approximated unless P = NP.

Quadratic Shortest Path Problem 9

Proof. We give a gap-producing reduction from 3SAT. Given an instance of
3SAT we create an instance of the AQSPP in polynomial time. If the instance
of 3SAT is a yes-instance, i.e., there is an assignment for the literals such that
each clause is satisfied, the optimal path of the AQSPP instance has cost zero.
Conversely, if the instance of 3SAT is a no-instance, i.e., there is no assignment
for the literals such that each clause is satisfied, the optimal path has cost of
at least 2. Thus, the existence of an approximation algorithm for AQSPP that
runs in polynomial time would imply an algorithm that can decide 3SAT in
polynomial time, implying P = NP.

Let an instance of 3SAT be given in conjunctive normal form containing n lit-
erals x1, . . . , xn and m clauses C1, . . . , Cm. For convenience, we assume that each
clause Cj consists of exactly three literals xj(1), xj(2), and xj(3) in positive or neg-
ative form (the proof also works without this assumption). For the three literals
of every clause, there exist 8 possible assignments from which seven satisfy the
clause. For example, consider the clause C1 = (x1∨x2∨x3). The seven satisfying
assignments are given by (x1, x2, x3) = (0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 0, 1),
(1, 1, 0), or (1, 1, 1).

Given a 3SAT instance, we construct an instance of AQSPP, specified by
a graph G = (V,A), a cost vector c and a matrix Q. The vertex set V =
{s} ∪ {v1, . . . , vn} ∪ {C1, . . . , Cm} ∪ {t} ∪ V ′ consists of a source node s, one
node vi for each literal xi, one node Cj for each clause Cj , and a sink node t
(= Cm+1) as well as an additional vertex set V ′ (cf. Figure 2). The vertex
set V ′ = {vijk, vijk|i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}, k ∈ {1, . . . , 7}} consists of
14mn vertices that are used to establish an individual connection between each
clause and each literal. We connect s and v1 as well as each vi and vi+1 with
two distinctive paths Pi, P i of length 7m+ 1 where

Pi = (vi, vi11, . . . , vi17, vi21, . . . , vim7, vi+1) and

P i = (vi, vi11, . . . , vi17, vi21, . . . , vim7, vi+1).

All arcs introduced so far are arcs of type I. Additionally, there is an arc from
vn to the first clause node C1.

From each clause node Cj , seven paths Qj1, . . . , Qj7 are emanating. The arcs
of these paths are of type II. Each of these seven paths represents one of the seven
feasible assignments of clause Cj . Each of these paths consists of four arcs and
connects Cj with Cj+1. In the following we give an exact description of path Qjk

for clause Cj = (x̃j(1) ∨ x̃j(2) ∨ x̃j(3)). Denote by x′ the kth feasible assignment
of clause Cj . The first arc points to the node vj(1),j,k if x′

j(1) = 0, otherwise,

it points to the node vj(1),j,k. The second arc points to the node vj(2),j,k (or
vj(2),j,k) if x′

j(2) = 0 (or x′
j(2) = 1). The third arc points to the node vj(3),j,k

(or vj(3),j,k) if x′
j(3) = 0 (or x′

j(3) = 1). This might become more clear with a

concrete example. Consider again clause C1 = (x1 ∨ x2 ∨ x3). The first feasible
assignment is given by (x1, x2, x3) = (0, 0, 0), hence the resulting path Q11 =
(C1, v1,1,1, v2,1,1, v3,1,1, C2), the fifth feasible assignment is given by (x1, x2, x3) =
(1, 0, 1), hence, Q15 = (C1, v1,1,5, v2,1,5, v3,1,5, C2). Path Q11 is shown in Figure 2.
Observe that we connect a clause node with the opposite literal assignments.

10 Rostami et al.

....s......... v1......... v2......... v3..... vn...

C1

.

C2

.

t

.........

Fig. 2: The graph used for the reduction in the proof of Theorem 4. All horizontal
arcs pointing from left to right are of type one, all dotted arcs are of type two. All
dashed arcs indicate chains of arcs. The dotted path that is completely shown
corresponds to the assignment x1 = 0, x2 = 0, and x3 = 0 for clause C1.

Next, we give the description of the cost structure. All linear costs in the
corresponding AQSPP instance are zero, i.e., c(a) = 0 for all a ∈ A. Quadratic
costs occur if and only if two arcs are adjacent and belong to different arc types.
All arcs corresponding to the assignments of the clauses, i.e., the arcs on the
assignment paths Qj1, . . . , Qj7 from Cj to Cj+1 (as described above) are of
type II. All other arcs are of the type I, except of the arc from vn to C1.

Next, we show that a 3SAT instance is satisfiable if and only if the optimal
solution of the corresponding AQSPP instance has costs zero.

First, suppose the given 3SAT instance is satisfiable. Let x∗ be a literal as-
signment that fulfills all clauses. We need to construct a path P ∗ in G from s to
t with costs zero, thus, without producing quadratic costs. The first part of P ∗

from s to vn traverses path Pi if we have x
∗
i = 1, and P i if we have x

∗
i = 0. Since

x∗ is a feasible literal assignment each clause Cj is satisfied. If Cj is satisfied by
its kth feasible assignment Qjk is part of P ∗. Note that the constructed path is
clearly an s−t path. Note further that no quadratic costs can occur since assign-
ment paths Qjk consist only of nodes which correspond to the opposing literal
assignment. This may become more clear using a concrete example. Consider the
clause C1 = (x1, x2, x3). Assume that this clause is satisfied in the 3SAT instance
by the literal assignment x∗

1 = 0, x∗
2 = 0, and x∗

3 = 0. Hence, P 1, P 2, and P 3 are
part of P ∗. As Q11 only contains nodes of the paths P1, P2, and P3, no arc pair
producing quadratic costs lies on this section of the path (cf. Figure 2).

Conversely, suppose the given 3SAT instance is not satisfiable. We claim that
the optimal path of the constructed AQSPP instance has costs of at least 2.

Quadratic Shortest Path Problem 11

Assume this is not the case and there is a path P ′ with costs zero. Such a
path can never switch from an arc of type I to an arc of type II and vice versa
since, then, quadratic costs of at least 2 would occur. Hence, the path P ′ must
traverse from s to vn, then from C1 to Cm and finally to t. Thus, the path P ′

must represent a literal and clause assignment. As the 3SAT instance is a no-
instance for each literal assignment, at least one clause, is not satisfied. Let x′

be the literal assignment represented by P ′. Let Cj be the clause which is not
satisfied by x′. Since one of the seven paths Qj1, . . . , Qj7 is present in P ′ and
none of the seven feasible assignments of Cj is represented by x′, at least one
variable is assigned inconsistently. Hence, there exists a node on P ′ which occurs
twice. As the corresponding arcs are of different type quadratic costs of at least 2
occur and we obtain the desired contradiction. Again we use a concrete example
to make this more clear. Consider again clause C1 = (x1, x2, x3). Assume that
P 1, P2, and P 3 are part of P ′, i.e. P ′ represents a literal assignment which does
not satisfy clause C1. Note that Q1k ∩ (P 1 ∪ P2 ∪ P 3) ̸= ∅ for k = 1, . . . , 7 and,
hence, the cost of P ′ are at least 2.

We conclude the proof with a final remark about the size of the reduction.
Graph G consists of O(mn) nodes and arcs. Hence, the reduction is indeed
polynomial.

Note that the proof of Theorem 4 can be used to show that the PFPP remains
NP-complete even if the list L is restricted to adjacent arc pairs. The same graph
construction is used and the list L is defined to be all pairs of arcs that have a
non zero contribution to the quadratic function. To the best of our knowledge,
this result has not been observed yet.

4 Effective Computation of Tight Lower Bounds

Lower bounds are a basic component of Branch-and-Bound algorithms, and a
standard tool for the evaluation of heuristic solutions for a minimization problem.
In practice, the lack of efficiently computable tight lower bounds can be one of
the main reasons for the difficulty of solving even small size instances. However,
the choice of the lower bounding procedure should trade off the tightness of the
obtained bound and the required computation time. Keeping in mind both the
tightness of the bounds and the computational effort to compute these bounds,
in this section, we propose lower bounding schemes for the general QSPP based
on a closer investigation of the problem structure.

4.1 The Gilmore-Lawler Type Bound

The Gilmore-Lawler (GL) procedure, proposed by [11] and [14], is one of the
most popular approaches to find a lower bound for the Quadratic Assignment
Problem (QAP) and has been adapted to many other quadratic 0–1 problems
in the meantime [5, 16].

For each arc (i, j) ∈ A, potentially in the solution, we consider the minimum
interaction cost of (i, j) in a path from s to t. To find these costs we need to

12 Rostami et al.

compute the shortest among the paths from s to t which contain arc (i, j), using
the ij-th row of the quadratic cost matrix as the cost vector. Unfortunately, this
problem is NP-complete as it corresponds to the Two Disjoint Paths Problem,
which is known to be NP-complete [2]. To avoid computing the exact solution of
this problem, we relax the integrality constraints to obtain a minimum cost flow
problem. In this way we underestimate the true value of the original problem
and, hence, generate also a valid lower bound. Let Pij be such a subproblem
for a given arc (i, j) ∈ A. The minimum cost flow problem contains two origins
s and j and two destinations i and t. One unit of flow needs to be transferred
from each origin and to each destination. The resulting solution consists either
of a path from s to i and from j to t or of the union of a path from s to t that
does not contain arc (i, j) and a cycle containing (i, j). These two possibilities
are shown in Figure 3

..s. i. j. t.

s

.

i

.

j

.

t

Fig. 3: The two feasible solutions of Pij are dashed. Note that only the first
solution corresponds to an s− t path.

The resulting minimum cost flow problem for each fixed (i, j) ∈ A is given by:

min
∑

(k,l)∈A

qijkl(xij)kl (Pij)

s.t. xij ∈ Xst

(xij)ij = 1

Denote by zij the optimal value of Pij . This value underestimates the smallest
possible quadratic contribution to the QSPP objective function when arc (i, j)
is in the solution. Once zij has been computed for each (i, j) ∈ A, the GL bound
is given by the solution to the following shortest path problem:

LBGL = min

 ∑
(i,j)∈A

(cij + zij)xij : x ∈ Xst

 .

The popularity of the GL approach for computing lower bounds stems from
its low computational cost. However, for some quadratic 0–1 problems the ob-
tained bounds deteriorate quickly as the size of the problem increases [6, 17]. To

Quadratic Shortest Path Problem 13

overcome this problem, we present an iterated GL procedure in the following
subsection.

4.2 A Reformulation-Based Bound

The GL procedure described above transfers part of the quadratic costs to the
linear-cost vector by solving each of the Pij subproblems. Nevertheless, the part
of quadratic costs that is not included in the solutions of Pij is simply ignored
when computing LBGL. Inspired by the reformulation scheme proposed by [6]
for the QAP, our next lower bound captures this left-over part by means of the
reduced costs associated to the optimal solution of each Pij subproblem. To
define the reduced cost we have to consider the dual problems Dij of problems
Pij . For all (i, j) ∈ A the dual of Pij is given by:

max (λij)t − (λij)s + πij (Dij)

s.t. (λij)l − (λij)k ≤ qijkl ∀(k, l) ∈ A, (k, l) ̸= (i, j)

(λij)j − (λij)i + πij ≤ qijij

For all (i, j) ∈ A the new linear and quadratic costs are given by

c̃ij = cij + zij

q̃ijkl = qijkl + (λ∗
ij)k − (λ∗

ij)l ∀(k, l) ∈ A, (k, l) ̸= (i, j)

q̃ijij = qijij + (λ∗
ij)i − (λ∗

ij)j − π∗
ij

where λ∗
ij and π∗

ij are the optimal dual values of Dij . Note that the constraints
of Dij ensure that q̃ ≥ 0. Replacing the costs leads to problem RQSPP, which is
equivalent to QSPP, but has increased linear costs.

RQSPP: z∗ = min
∑

(i,j),(k,l)∈A

q̃ijklxijxkl +
∑

(i,j)∈A

c̃ijxij

s.t. x ∈ Xst, x binary.

(2)

Theorem 5. Problems QSPP and RQSPP are equivalent.

Proof. To show that both problems are equivalent, we prove that all feasible
solutions x ∈ Xst have the same objective function value. Hence, let x ∈ Xst be

14 Rostami et al.

arbitrary and fixed. Then∑
(i,j)∈A

∑
(k,l)∈A

q̃ijklxklxij +
∑

(i,j)∈A

c̃ijxij

=
∑

(i,j)∈A

 ∑
(k,l)∈A

(qijkl + (λ∗
ij)k − (λ∗

ij)l)xklxij − π∗
ijx

2
ij

+
∑

(i,j)∈A

(cij + zij)xij

=
∑

(i,j)∈A

∑
(k,l)∈A

qijklxklxij −
∑

(i,j)∈A

 ∑
(k,l)∈A

((λ∗
ij)l − (λ∗

ij)k)xklxij + π∗
ijxij

+

∑
(i,j)∈A

cijxij +
∑

(i,j)∈A

zijxij

=
∑

(i,j)∈A

∑
(k,l)∈A

qijklxklxij +
∑

(i,j)∈A

cijxij (∗)

The last equality (∗) can be derived by the following arguments. For all (i, j) ∈ A
we have that ∑

(k,l)∈A

((λ∗
ij)l − (λ∗

ij)k)xkl = (λ∗
ij)t − (λ∗

ij)s = zij − π∗
ij

as x represents an s− t path and strong duality holds between Pij and Dij . This
is equivalent to ∑

(k,l)∈A

((λ∗
ij)l − (λ∗

ij)k)xkl + π∗
ij = zij

Multiplying with xij and summing over all (i, j) ∈ A on both sides yields

∑
(i,j)∈A

 ∑
(k,l)∈A

((λ∗
ij)l − (λ∗

ij)k)xklxij + π∗
ijxij

 =
∑

(i,j)∈A

zijxij

It can be shown that the procedure, when applied to the reformulated prob-
lem again, cannot increase the linear costs anymore, as zij = 0 ∀(i, j) ∈ A. But,
further improvements on the bound may be obtained by directly changing the
quadratic cost matrix. Let Π be a matrix with Πij = −Πji ∀i, j. If Q+Π con-
tains only non negative values, the QSPPs with cost matrix Q and Q +Π are
equivalent, nevertheless, it turns out they may yield to different lower bounds.
We propose the following procedure to obtain a strong lower bound: compute
the new linear costs c̃ and the new quadratic cost matrix Q̃. Shift the costs of
the quadratic cost matrix Q̃ to obtain a symmetric matrix. Repeat this process.
This results in a sequence of equivalent QSPP instances (Q0, Q1, . . . , Qk with
Q0 = QSPP), each characterized by a stronger impact of linear costs than the
previous ones, and thus providing a better bound. Note that the GLT bound is
obtained by considering only the linear portion of the objective function in the

Quadratic Shortest Path Problem 15

first iteration. At some point of this iteration process all subproblems Pij have
an objective value of zero. Hence, no more costs can be transferred from the
quadratic to the linear part of the objective function. At this point we stop the
process.

4.3 An MILP-Based Bound

In this section we present an MILP formulation for the QSPP which takes ad-
vantage of the GL bounds presented in Section 4.1. We associate an overall cost
aij(x) = cij +

∑
(k,l)∈A qijklxkl to each arc (i, j) that depends on the arcs that

are present in the solution. This allows us to rewrite QSPP as

z∗ = min

 ∑
(i,j)∈A

aij(x)xij : x ∈ Xst

 . (3)

If we replace each aij(x) with its minimum value cij +zij over the set of possible
feasible solutions where arc (i, j) is in the solution, the GL bound is obtained.
Let us define a new variable yij = aij(x)xij for all (i, j) ∈ A. Therefore, we have

yij ≥ (cij + zij)xij (i, j) ∈ A. (4)

Moreover, let wij represent an upper bound on the cost
∑

(k,l)∈A qijklxkl. In

principle, we can compute wij by setting wij =
∑

(k,l)∈A qijkl. However, taking
into account the structure of the graph, a better estimation may be obtained.
For acyclic graphs, for example, wij can be computed by solving the following
minimum cost flow problem:

wij = max{
∑

(k,l)∈A

qijklxkl : x ∈ Xst} = −min{
∑

(k,l)∈A

−qijklxkl : x ∈ Xst}.

Following the well-known results of [12], we can derive the following inequality:

yij ≥
∑

(k,l)∈A

qijklxkl − wij(1− xij) + cijxij (i, j) ∈ A. (5)

Using (4) and (5) the QSPP can be linearized as follows:

MILP: z∗ = min
∑

(i,j)∈A

yij

s.t. yij ≥ (cij + zij)xij (i, j) ∈ A

yij ≥
∑

(k,l)∈A

qijklxkl − wij(1− xij) + cijxij (i, j) ∈ A

x ∈ Xst, x binary.

Observe that an optimal solution to the MILP will yield an optimal solution
to the QSPP. However, if the binary restrictions on variables x are relaxed in
the MILP, the problem is no longer equivalent to the QSPP, providing a lower
bound on the optimal value of the QSPP.

16 Rostami et al.

5 The Branch-and-Bound Algorithm

In this section we describe our approach to incorporating the previous lower
bounds into a Branch-and-Bound strategy in order to obtain an optimal solution
of the QSPP. More specifically, The application of Branch-and-Bound to the
QSPP requires a method to obtain a lower bound, a method to obtain a feasible
solution (and an upper bound), and a method to partition the feasible region of
a given problem (branching rules). The first two requirements are automatically
satisfied by any of the lower bounds we described in Sections 4.1 and 4.2 as their
application also provides feasible QSPP solutions.

At the root node of the branching tree, we apply the reformulation-based
lower bound to define tight upper and lower bounds followed by a reduction
procedure in which we try to fix the values of some variables. The nodes of the
branching tree other than the root node are processed quite fast, without the re-
formulation procedure. We simply solve a linear SPP with the linear costs found
by the reformulation scheme at the root node, possibly updating the incumbent
solution and applying branching. We should note here that we also considered
different versions of the branch-and-bound algorithm with different combinations
of using the GL and reformulation procedures at the root node and at the other
nodes of the branching tree. However, the overall computing times were much
worse in these cases.

To address the branching strategy we need to consider the nature of the
problem in an efficient way. This is done in the following subsection.

5.1 Branching Strategy

Given a source node s and a target node t, a feasible solution to our problem is
a path connecting these two nodes. A simple way to partition the solution space
is therefore to consider the subproblems associated with each of the neighbors
of the start node. The solution to each of these subproblem consists of the
combination of the arc from the start node to the neighbor v, and the solution
to a quadratic shortest path problem from v to the target node. This idea must
clearly be refined to obtain a correct subproblem when forcing a neighbor as a
new start node. Let us consider what happens when we partition the original
problem by considering the paths that start with one of the neighbors of the
start node. Let s′ be the current start node and v be the considered neighbor.
Our branching step involves forcing arc (s′, v) into the solution. This means that
the cost of the paths starting from v will have to include the cost of arc (s′, v).
The quadratic contribution of arc (s′, v) must therefore be incorporated in the
new QSPP instance starting from node v. This is easily achieved by summing
the row and the column of the quadratic cost matrix corresponding to arc (s′, v)
to the linear costs vector of the new problem.

5.2 Reduction Test

The size of the QSPP instance may be considerably reduced by eliminating the
variables which do not appear in any optimal solution of a given instance. This

Quadratic Shortest Path Problem 17

can be done by considering the reduced costs associated with each arc in the
lower bound computation at a given Branch-and-Bound node. For this, consider
an incumbent solution x of value z, and Let ℓij be a lower bound on the QSPP
obtained when imposing the additional constraint xij = 1. If ℓij ≥ z, then we
can fix xij to zero. Note that the value of ℓij can be computed as the sum of the
current bound and the reduced cost associated to an arc (i, j).

This reduction test, in principle, can be performed for all arcs at each Branch-
and-Bound node. However, in our computational experiments we found it more
convenient to apply it at the root node and then at some small subset of nodes
in the Branch-and-Bound tree.

6 Computational Results

In this section we present our computational experiments with the MILP for-
mulation and the Branch-and-Bound algorithm introduced in this paper. We
compare our methods with Cplex 12.6 when applied directly to the problem for-
mulation (1). We also use Cplex 12.6 with default parameter settings to solve
the MILP formulation. We implemented the algorithms in C++ and ran them
on an Intel Xeon CPU E5335 (2 quad core CPUs with 2GHz). In the following,
we first present the test instances and then provide the results in detail.

6.1 Test Instances

To evaluate and compare the approaches studied in this paper, we consider two
groups of instances described as follows:

Grid1 Consists of a single class of grid-like networks with k × k nodes and
2k(k − 1) arcs, for k = 10, . . . , 15. Each node is linked by an arc to the node to
the right and to the node above. The source node s is the node in the lower left
corner of the grid, and the target node t is in the upper right corner. The linear
and quadratic costs are generated uniformly at random in {1, . . . , 10}.

Grid2 Consists of three classes of grid-like networks with a stricter scheme [13].
Each network consists of transshipment nodes forming a grid of nr rows and
nc columns as well as a source node s and a target node t. The source node
s is connected to the nodes of the first column, and the nodes of the last
column are connected to the target node t. Each transshipment node is con-
nected to the node on the right and to the node below if these exist. We ran-
domly generate the linear and quadratic costs uniformly in {1, . . . , 10}. Based
on different values for nr and nc, we consider three classes: Grid2Square with
nr = nc ∈ {16, 23}, Grid2Long with nr = 16, nc ∈ {32, 64}, and Grid2Wide
with nr ∈ {32, 64}, nc = 16.

18 Rostami et al.

6.2 Results

Tables 2 to 5 present the results. In each table, the first three columns give the
number of nodes (n), number of arcs (m), and the optimal objective values (opt.)
obtained by our Branch-and-Bound algorithm. The next columns present the
results of CPLEX applied to the problem formulation (1) (Cplex(QP)), CPLEX
applied to the MILP formulation (Cplex(MILP)), and the Branch-and-Bound
algorithm. For each algorithm, we present the lower bound in the root node
(lbroot), the total number of nodes enumerated in the search tree (nodes), and
the total required time (in seconds) to solve the problem (time). An entry “TL”
indicates that the corresponding algorithm was not able to solve the instance
within the specified time limit. We considered a time limit of 10800 seconds
for each instance. The lower bound in the root node of our Branch-and-Bound
algorithm is the reformulation based bound. Note that all graphs in our test bed
are acyclic, hence, we used the minimum flow formulation to find the parameters
wij needed for the MILP formulation.

Table 2 reports the results for Grid1 instances. As we can observe, the
bounds obtained by the reformulation scheme are stronger than those obtained
by Cplex(QP) and Cplex(MILP). Moreover, the bounds obtained by Cplex(MILP)
are much stronger than those of Cplex(QP). More precisely, the bounds produced
by the reformulation scheme are, on average, 16.2% stronger than those pro-
duced by Cplex(MILP) and 64.6% stronger than those obtained by Cplex(QP).
In addition, the bounds obtained by Cplex(MILP) are, on average, 57% stronger
than Cplex(QP). Concerning the overall performance for solving the instances
to optimality, both Cplex(MILP) and the Branch-and-Bound algorithm could
solve all instances within the time limit while Cplex(QP) reached its limit for
n = 225. When all approaches are able to solve an instance to optimality within
the time limit, the Branch-and-Bound algorithm is, on average, about 160 times
faster than Cplex(MILP) and 370 times faster than Cplex(QP). Also comparing
Cplex(QP) and Cplex(MILP), the latter is about 2.3 faster than the former.

Tables 3 to 5 report the results for the Grid2Square, Grid2Long, and
Grid2Wide instances, respectively. Again, the bounds obtained by the reformu-
lation scheme are stronger than those obtained by Cplex(QP) and Cplex(MILP).
For these instances, Cplex(QP) either reached its limit even in the root node or
produced negative bounds. Such negative bounds can arise because Cplex(QP)
needs to convexify the instances first, in order to obtain a tractable continuous
relaxation. The convexification often leads to rather weak lower bounds, which
in our case may even become negative. In fact, Cplex(QP) was able to solve to
optimality only Grid2Square instances with n = 258 within the time limit.
Concerning the overall performance of Cplex(MILP) and the Branch-and-Bound
algorithm, the latter always outperforms the former and could solve all instances
to optimality. In particular, for the Grid2Long instances, which seems to be
the most difficult test set among the Grid2 instances, Cplex(MILP) was not
able to solve to optimality instances with n = 1026 within the time limit while
the Branch-and-Bound algorithm was able to solve all instances in less than 15
minutes.

Quadratic Shortest Path Problem 19

Tables 3 to 5 report the results for the Grid2Square, Grid2Long, and
Grid2Wide instances, respectively. Again, the bounds obtained by the reformu-
lation scheme are stronger than those obtained by Cplex(QP) and Cplex(MILP).
For these instances, Cplex(QP) either reached its limit even in the root node or
produced negative bounds. Such negative bounds can arise because Cplex(QP)
needs to convexify the instances first, in order to obtain a tractable continuous
relaxation. The convexification often leads to rather weak lower bounds, which
in our case may even become negative. In fact, Cplex(QP) was able to solve to
optimality only Grid2Square instances with n = 258 within the time limit.
Concerning the overall performance of Cplex(MILP) and the Branch-and-Bound
algorithm, the latter always outperforms the former and could solve all instances
to optimality. In particular, for the Grid2Long instances, which seems to be
the most difficult test set among the Grid2 instances, Cplex(MILP) was not
able to solve to optimality instances with n = 1026 within the time limit while
the Branch-and-Bound algorithm was able to solve all instances in less than 15
minutes. For the instances of Grid2Square and Grid2Long for which both
Cplex(MILP) and the Branch-and-Bound algorithm solve the problem to opti-
mality within the time limit, the Branch-and-Bound algorithm is, on average,
about 15 and 3.3 times faster than Cplex(MILP), respectively.

7 Conclusion

In this paper, we have studied the QSPP. We have shown that both the general
QSPP and the AQSPP cannot be approximated unless P = NP. For the case of
a convex objective function, we have presented an n-approximation algorithm,
where n is the number of nodes in the graph, and showed that the problems is
APX-hard. In order to solve the problem efficiently, we reformulated the prob-
lem as an MILP and solve it using a state-of-the-art solver. Moreover, we have
proposed an exact Branch-and-Bound algorithm, where lower bounds are com-
puted using a reformulation scheme. Our computational experiments indicate
the power of our Branch-and-Bound algorithm. For the tested graph classes, it
solves the QSPP to optimality considerably faster than the generic solver.

8 Acknowledgments

The first author has been supported by the German Research Foundation (DFG)
under grant BU 2313/2. The second author is sponsored by the Air Force Office
of Scientific Research, Air Force Material Command, USAF, under grant num-
ber FA8655-13-1-3066. The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purpose not-withstanding any copyright
notation thereon.

References

1. Amaldi, E., Galbiati, G., Maffioli, F.: On minimum reload cost paths, tours, and
flows. Networks 57(3), 254–260 (2011)

20 Rostami et al.

2. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Pro-
tasi, M.: Complexity and Approximation: Combinatorial Optimization Problems
and Their Approximability Properties. Springer (1999)

3. Berman, P., Fujito, T.: On approximation properties of the independent set prob-
lem for degree 3 graphs. In: Algorithms and Data Structures, Lecture Notes in
Computer Science, vol. 955, pp. 449–460. Springer (1995)

4. Buchheim, C., Traversi, E.: Quadratic 0–1 optimization using separable underes-
timators. Tech. rep., Optimization Online (2015)

5. Caprara, A.: Constrained 0-1 quadratic programming: Basic approaches and ex-
tensions. European Journal of Operational Research 187(3), 1494–1503 (2008)

6. Carraresi, P., Malucelli, F.: A new lower bound for the quadratic assignment prob-
lem. Operations Research 40(1-supplement-1), 22–27 (1992)

7. Chen, B.Y., Lam, W.H.K., Sumalee, A., Li, Q., Shao, H., Fang, Z.: Finding re-
liable shortest paths in road networks under uncertainty. Networks and Spatial
Economics 13(2), 123–148 (2012)

8. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1(1), 269–271 (1959)

9. Gabow, H., Maheshwari, S.N., Osterweil, L.: On two problems in the generation of
program test paths. Software Engineering, IEEE Transactions on SE-2(3), 227–231
(Sept 1976)

10. Gerschgorin, S.: Über die Abgrenzung der Eigenwerte einer Matrix. Izvestija
Akademii Nauk SSSR, Serija Matematika 7(3), 749–754 (1931)

11. Gilmore, P.C.: Optimal and suboptimal algorithms for the quadratic assignment
problem. Journal of the Society for Industrial & Applied Mathematics 10(2), 305–
313 (1962)

12. Glover, F.: Improved linear integer programming formulations of nonlinear integer
problems. Management Science 22(4), 455–460 (1975)

13. Kovács, P.: Minimum-cost flow algorithms: An experimental evaluation. Optimiza-
tion Methods and Software 30(1), 94–127 (2015)

14. Lawler, E.L.: The quadratic assignment problem. Management science 9(4), 586–
599 (1963)

15. Murakami, K., Kim, H.S.: Comparative study on restoration schemes of survivable
atm networks. In: INFOCOM’97. Sixteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings IEEE. vol. 1, pp. 345–352.
IEEE (1997)

16. Öncan, T., Punnen, A.P.: The quadratic minimum spanning tree problem: A lower
bounding procedure and an efficient search algorithm. Computers & Operations
Research 37(10), 1762–1773 (2010)

17. Rostami, B., Malucelli, F.: Lower bounds for the quadratic minimum spanning tree
problem based on reduced cost computation. Computers & Operations Research
64, 178–188 (2015)

18. Rostami, B., Malucelli, F., Frey, D., Buchheim, C.: On the quadratic shortest
path problem. In: Bampis, E. (ed.) Experimental Algorithms, Lecture Notes in
Computer Science, vol. 9125, pp. 379–390. Springer International Publishing (2015)

19. Sen, S., Pillai, R., Joshi, S., Rathi, A.K.: A mean-variance model for route guid-
ance in advanced traveler information systems. Transportation Science 35(1), 37–49
(2001)

20. Sivakumar, R.A., Batta, R.: The variance-constrained shortest path problem.
Transportation Science 28(4), 309–316 (1994)

Quadratic Shortest Path Problem 21

Table 2: Results for the Grid1 instances. All times are given in seconds.

Instance Cplex (QP) Cplex (MILP) B-and-B

n m opt. lbroot nodes time lbroot nodes time lbroot nodes time

100 180 621.0 200.0 7264 16.9 442.8 1943 2.8 511.0 601 0.3
100 180 635.0 211.0 8482 17.5 438.7 2687 3.7 512.0 1345 0.4
100 180 636.0 217.0 7078 15.6 452.5 2229 3.2 530.0 1159 0.3
100 180 661.0 209.0 11814 20.2 457.2 7332 15.8 534.0 1097 0.3
100 180 665.0 233.0 10974 20.6 468.3 7141 16.1 545.0 1145 0.4

121 220 813.0 253.0 33736 72.9 547.4 12135 35.5 663.0 1595 0.6
121 220 788.0 251.0 24883 61.9 539.1 9049 29.1 631.0 1767 0.7
121 220 795.0 225.0 26607 59.0 543.0 11211 33.0 645.0 1555 0.6
121 220 782.0 236.0 24863 62.4 544.0 9797 30.6 648.0 1335 0.6
121 220 767.0 228.0 19309 51.8 540.1 6111 20.2 644.0 2231 0.7

144 264 959.0 271.0 67971 203.8 640.6 26869 117.8 775.0 4555 1.8
144 264 963.0 282.0 91341 254.3 641.6 33383 157.1 764.0 7259 2.3
144 264 900.0 259.0 61308 209.1 615.6 15423 66.8 735.0 4991 1.9
144 264 960.0 236.0 104978 285.8 642.1 33939 152.2 766.0 5579 1.9
144 264 976.0 289.0 86862 249.8 654.5 33710 141.4 772.0 5651 2.0

169 312 1159.0 335.0 338092 1367.2 747.7 140710 727.6 891.0 14739 5.5
169 312 1178.0 333.0 342119 1315.2 765.4 119759 636.0 920.0 10145 4.3
169 312 1164.0 325.0 305351 1218.8 751.9 133369 750.6 876.0 13957 5.6
169 312 1110.0 301.0 231176 951.6 746.7 79201 458.7 875.0 6745 3.0
169 312 1115.0 322.0 175669 816.5 757.6 37872 211.8 897.0 8865 3.7

196 364 1363.0 364.0 1021928 5857.6 863.8 362553 2699.4 1064.0 25585 11.4
196 364 1367.0 357.0 1104406 6276.7 876.5 361179 2541.6 1056.0 27881 11.9
196 364 1320.0 334.0 715390 4171.6 841.2 216562 1586.1 1009.0 18447 8.3
196 364 1347.0 348.0 918668 5087.0 876.3 284703 2017.9 1062.0 16923 9.3
196 364 1344.0 354.0 835595 4706.4 878.9 278683 2105.2 1043.0 28473 12.2

225 420 1551.0 367.0 1539600 TL 989.4 405943 3598.9 1200.0 20395 10.7
225 420 1588.0 412.0 1707723 TL 1003.4 464441 3600.6 1211.0 55001 55.5
225 420 1561.0 419.0 1787478 TL 953.6 485195 3710.1 1168.0 88461 95.6
225 420 1569.0 386.0 1769978 TL 966.4 485644 3650.3 1146.0 47169 57.5
225 420 1582.0 389.0 1699500 TL 1001.7 471452 3689.5 1203.0 36603 35.0

22 Rostami et al.

Table 3: Results for the Grid2Square instances. All times are given in seconds.

Instance Cplex (QP) Cplex (MILP) B-and-B

n m opt. lbroot nodes time lbroot nodes time lbroot nodes time

258 512 622 -330.0 9747 1951.3 530.6 161 4.3 593.6 89 3.9
258 512 632 -333.1 10599 2357.2 530.8 235 5.6 588.9 123 4.2
258 512 650 -334.7 14249 2866.3 530.6 309 6.4 564.6 99 3.8
258 512 641 -333.9 13720 1525.7 514.5 295 5.7 586.0 91 4.3
258 512 593 -329.6 8533 1749.5 521.9 74 3.7 562.8 49 3.6

531 1058 1283 -759.4 4684 TL 997.9 5579 518.6 1125.6 414 22.1
531 1058 1281 -757.0 4783 TL 1001.3 4899 492.9 1146.4 438 22.2
531 1058 1302 -812.7 4688 TL 1007.4 4944 490.1 1130.3 768 25.5
531 1058 1283 -757.8 5419 TL 979.2 5113 526.3 1129.0 568 27.1
531 1058 1263 -807.4 3354 TL 1009.2 2101 125.9 1132.3 314 27.8

Table 4: Results for the Grid2Long instances. All times are given in seconds.

Instance Cplex (QP) Cplex (MILP) B-and-B

n m opt. lbroot nodes time lbroot nodes time lbroot nodes time

514 1008 2469 -254.1 57932 TL 1880.7 16655 1575.6 2140.5 1232 24.5
514 1008 2518 -318.7 72043 TL 1901.6 18219 1523.0 2145.2 1525 25.0
514 1008 2453 -254.8 64599 TL 1880.6 14214 1226.8 2134.5 1283 23.0
514 1008 2400 -250.9 95704 TL 1866.3 9880 861.7 2120.7 532 21.7
514 1008 2453 -243.3 100000 TL 1889.6 9104 825.3 2184.2 1025 21.8

1026 2000 9392 TL TL TL 7300.4 16564 TL 8308.8 11943 263.9
1026 2000 9521 TL TL TL 7285.4 14398 TL 8281.7 28518 525.9
1026 2000 9514 TL TL TL 7345.9 19723 TL 8264.7 30169 546.3
1026 2000 9546 TL TL TL 7299.5 16174 TL 8335.8 45043 750.3
1026 2000 9542 TL TL TL 7318.2 11747 TL 8381.2 34461 631.2

Table 5: Results for the Grid2Wide instances. All times are given in seconds.

Instance Cplex (QP) Cplex (MILP) B-and-B

n m opt. lbroot nodes time lbroot nodes time lbroot nodes time

514 1040 633 TL TL TL 514.2 500 41.9 572.1 259 20.9
514 1040 621 TL TL TL 501.3 631 46.4 567.2 187 26.6
514 1040 605 TL TL TL 512.2 383 38.0 585.1 63 27.0
514 1040 645 TL TL TL 512.6 921 61.0 569.0 479 22.5
514 1040 604 TL TL TL 496.2 406 40.1 559.1 321 23.4

1026 2096 633 TL TL TL 499.0 1723 436.6 562.3 403 107.0
1026 2096 620 TL TL TL 507.6 1193 363.7 574.8 245 109.8
1026 2096 631 TL TL TL 504.8 1416 376.8 581.0 299 101.5
1026 2096 639 TL TL TL 497.6 2138 516.4 574.5 455 103.9
1026 2096 602 TL TL TL 496.7 776 261.7 567.2 137 119.1

