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Abstract We consider convex optimization problems with uncertain, probabilisti-
cally described, constraints. In this context, scenario optimization is a well 
recognized methodology where a sample of the constraints is used to describe 
uncertainty. One says that the scenario solution generalizes well, or has a high 
robustness level, if it sat-isfies most of the other constraints besides those in the 
sample. Over the past 10 years, the main theoretical investigations on the scenario 
approach have related the robust-ness level of the scenario solution to the number of 
optimization variables. This paper breaks into the new paradigm that the robustness 
level is a-posteriori evaluated after the solution is computed and the actual number of 
the so-called support constraints is assessed (wait-and-judge). A new theory is 
presented which shows that a-posteriori observing k support constraints in dimension 
d > k allows one to draw conclusions close to those obtainable when the problem is 
from the outset in dimension k. This new  theory provides evaluations of the 
robustness that largely outperform those carried out based on the number of 
optimization variables.
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1 Introduction

Given a linear cost function cT x ,where x ∈ X ⊆ R
d is the optimization variable andX

is a convex set, consider a family of convex constraints x ∈ Xδ ⊆ R
d parameterized by

δ, where δ is a randomoutcome froma probability space (�,F,P). ProbabilityP is not
known, but one is given a sample δ(i), i = 1, . . . , N , with N > d, of independent and
identically distributed (i.i.d.) realizations from (�,F,P) and constructs the scenario
optimization program

SPN : min
x∈X

cT x

subject to: x ∈
⋂

i=1,...,N

Xδ(i) , (1)

In (1), δ(1), δ(2), . . . , δ(N ) are called “scenarios”, and they have to be interpreted as
observations from which one wants to make a decision, i.e., select a value of x . In
other words, SPN is used to make data-based optimization [5,18,49].

To make (1) more concrete, one can e.g. think of an example where one wants
to split a given amount of money among q different assets so as to minimize a loss
function. Assuming that the loss function is written as

∑q
j=1 � j p j , where � j is a

random loss associated to asset j and p j is the percentage of capital allocated to asset

j , and that one has observed the losses �
(i)
j over N periods i = 1, . . . , N , one may opt

to hedge against the worst among the observed periods and set out to split the capital
according to program

min
p j≥0,

∑q
j=1 p j=1

max
i=1,...,N

q∑

j=1

�
(i)
j p j .

This program can be written as in (1) by an epigraphic reformulation:

min
p j≥0,

∑q
j=1 p j=1, L

L

subject to: L ≥
q∑

j=1

�
(i)
j p j , i = 1, . . . , N .

Besides the example above, the setup of (1) accommodates many other problems 
in fields ranging from machine learning and prediction [9,10,17,35], to quantitative 
finance [25,40–42], from management [21], to control design [14]. We do not dwell on 
describing these application domains here, and refer the reader to the above references 
to this purpose.

Scenario optimization has been introduced in [7], and has ever since attracted an 
increasing interest. The SAA approach with γ = 0 of [40] coincides with (1). Robust-



ness properties have been studied in [8,12,16] and, under regularization and structural
assumptions, further investigated in [2,11,45,53]. Papers [13,22] consider constraints
removal, and [50] examines multi-stage problems. Generalizations to a non-convex
setup are proposed in [1,20,23]. See also [8,14,34,36,43,46,48] for a comparison of
scenario optimization with other methods in stochastic optimization.

Since (1) only includes the constraints associated to N scenarios, it is a standard
convex program that can be numerically solved via common optimization software
such as CVX [24], or YALMIP [29], which are handy interfaces for various solvers.
Note that a linear cost function cT x in (1), rather than a more general convex cost
function f (x), comes to no loss of generality. In fact, should the cost be f (x), one could
reformulate the program in epigraphic form, that is, a new variable y is introduced
and this variable is minimized (so that the cost function becomes linear) under the
additional constraint y ≥ f (x).

Throughout the paper we assume that program (1) admits solution. A classical
condition for the existence of a solution is that the intersections between the feasibility
domain and the level sets of (1) are compact, see [6,30]. If more than one solution
exists, we assume that a solution is singled out by means of a convex rule, that is, the
tie is broken by minimizing an additional convex function t1(x), and, possibly, other
convex functions t2(x), t3(x),…if the tie still occurs; this is the same approach as Rule
1 in [7]. An example of a tie-break function is the norm of x, t1(x) = ‖x‖. Another
example is the lexicographic rule, which consists in minimizing the components of
x in succession, i.e. t1(x) = x1, t2(x) = x2, …. After breaking the tie, the unique
solution is denoted by x∗

N .

1.1 The robustness quantification issue

Upon solving program (1), the solution x∗
N becomes available to the user, and the cor-

responding cost cT x∗
N can be calculated. On the other hand, the decision as to whether

x∗
N is adopted and implemented in practice also depends on the level of constraint sat-

isfaction warranted by the solution. Depending on the application at hand, constraint
satisfaction means e.g. that the prediction is correct, or that the estimated return level
in a financial investment is met, or that the designed system, or controller, satisfies the
indicated specifications. Enforcing the scenario constraints x ∈ Xδ(i) , i = 1, . . . , N ,
in (1) aims at finding a solution which is “robust” against constraint violation, and one
hopes that the solution to program (1) satisfies the constraints associated to most δ’s
beyond those corresponding to the scenarios. To formalize this concept, introduce the
following definition.

Definition 1 (Violation) The violation of a given x ∈ X is defined as

V (x) = P{δ ∈ � : x /∈ Xδ}.

V (x) quantifies the probability with which a new randomly selected constraint Xδ is
violated by x . If V (x) ≤ ε, then x is robust against constraint violation at level ε. In
general, however, V (x) is not directly computable since P is not known. In this paper,
we are interested in evaluating the violation V (x∗

N ) of the solution x∗
N to program



(1). Often times, the observations δ(i)’s are a costly and limited resource, and the
assessment of V (x∗

N ) is better done without resorting to new observations besides the
δ(1), . . . , δ(N ) used in (1). In this setup, the studies in [7,8,12] have pioneered a theory
that links the sample size N to V (x∗

N ). We here revise the tightest among these results,
which has been proven in [12], as we shall have to compare it with the findings of this
paper.

V (x∗
N ) is a random variable1 because of the dependence of x∗

N on δ(1), . . . , δ(N )

and the main result of [12] states that V (x∗
N ) is bigger than ε with a probability upper-

bounded by a Beta distribution according to the following formula (in the formula, PN

refers to the sample δ(1), . . . , δ(N ), which determines x∗
N ; P

N is a product probability
due to independence of δ(1), . . . , δ(N )):

P
N {V (x∗

N ) > ε} ≤
d−1∑

i=0

(
N

i

)
εi (1 − ε)N−i . (2)

This result provides a quantitative tool to evaluate the confidence with which x∗
N is

robust at level ε, and it represents a fundamental breakthrough in the theoretical study
of scenario optimization.2 Importantly, (2) is valid for any program of the form (1),
that is, it holds irrespective of all elements, c,X , {Xδ},P which define (1). For short,
in the sequel the quadruple (c,X , {Xδ},P) will be referred to as a “problem”.

Looking into the derivation of (2) given in [12], one sees that a crucial concept is
that of support constraint.

Definition 2 (Support constraint)A constraint of the scenario program (1) is a support
constraint if its removal changes the solution x∗

N . 	

In paper [7], it is shown that SPN cannot have more than d support constraints, that is,
the number of support constraints is nomore than the number of optimization variables.
Correspondingly, in [12], a problem (c,X , {Xδ},P) is called fully-supported if, for any
N > d, the scenario program (1) has d support constraints with probability 1. En route
towards (2), in [12] it is first shown that (2) holds with equality for fully-supported
problems, yielding

P
N {V (x∗

N ) > ε} =
d−1∑

i=0

(
N

i

)
εi (1 − ε)N−i , (3)

and then it is proven that any other problem is “dominated” by fully-supported prob-
lems, which gives (2).

1 Measurability of V (x∗
N ), as well as of other quantities, is taken for granted in this paper.

2 An alternative way to express that x∗
N is robust at level ε is that x∗

N is chance-constrained feasible at 
level ε [19,44,46]. See [4,31,32,37–39,54] for more discussion on chance-constrained optimization and
its connection with scenario optimization.



1.2 The wait-and-judge perspective of this paper

Often, optimization problems encountered in applications are not fully-supported. In
fact, in scenario programs with many variables it is not rare that way fewer support
constraints are found than there are optimization variables, see e.g. [15,45,51,52] and
the example in Sect. 2 below. When a problem is not fully-supported, one can object
against applying the bound in (2), which is tight only for fully-supported problems
according to (3). Hence, onewishes to incorporate in the theory that less than d support
constraints have been seen.

In [12], ε is a deterministic constant, set in advance prior to seeing any δ(i). The
new perspective introduced in this paper is that ε is a function of the number of support
constraints that have been found in the instance of the scenario program (1) at hand.3

To this aim, we let ε(k) be a function that takes values in [0, 1], where k is an integer
ranging over {0, 1, . . . , d}. After computing the solution x∗

N , one also evaluates the
number of support constraints s∗

N of the scenario program (1), andmakes the statement
that V (x∗

N ) ≤ ε(s∗
N ). In this way, the bound on the violation is a-posteriori determined

and it is adjusted to the number of support constraints.
V (x∗

N ) is a random variable, and so is ε(s∗
N ), because of the dependence of x∗

N and
s∗
N on δ(1), . . . , δ(N ). The probability space on which V (x∗

N ) and ε(s∗
N ) are defined is

(�N ,DN ,PN ). This paper establishes that for anyproblem (c,X , {Xδ},P) it holds that

P
N {V (x∗

N ) > ε(s∗
N )} ≤ γ ∗, (4)

where γ ∗ depends on N and function ε(k) (Theorem 1). Notice that the left-hand side
of (4) can also be written as

P
N

(
d⋃

k=0

{
V (x∗

N ) > ε(k) and s∗
N = k

}
)

, (5)

so that γ ∗ bounds the probability of seeing k support constraints, where k can be any
number in {0, 1, . . . , d}, and then a wrong statement that V (x∗

N ) ≤ ε(k) is made. One
is interested in making γ ∗ very small, for example γ ∗ = 10−6, which means that
V (x∗

N ) ≤ ε(s∗
N ) holds with very high confidence 1 − γ ∗. When ε(k) is chosen to be

constant, ε(k) = ε for all k, the γ ∗ in (4) turns out to be the same as the right-hand
side of (2), and result (2) is recovered as a particular case of result (4) of this paper
(Corollary 1). On the other hand, we show that the function ε(k) can be selected so
that it largely improves over the constant ε, i.e., ε(k) is significantly smaller than ε for
most values of k when γ ∗ is equal to the right-hand side of (2). Hence, the flexibility
introduced by the new theory permits one to formulate much stronger conclusions on
the violation V (x∗

N ) than the result in [12].
Interestingly, establishing (4) requires a genuinely new line of work and a simplistic

approach where Eq. (3) with k in place of d is used to bound (5) leads to a wrong
conclusion. In more specific terms, after rewriting (5) as

3 Computing the number of support constraints requires removing one by one the active constraints and veri-
fyingwhether the solution changes, an operation that can be carried out at reasonably lowcomputational cost.



d∑

k=0

P
N {

V (x∗
N ) > ε(k) and s∗

N = k
}
, (6)

if eachprobability in (6) is boundedby
∑k−1

i=0

(N
i

)
ε(k)i (1−ε(k))N−i (which is obtained

from (3) with k in place of d and ε(k) in place of ε), then one obtains

P
N {V (x∗

N ) > ε(s∗
N )} ≤

d∑

k=0

k−1∑

i=0

(
N

i

)
ε(k)i (1 − ε(k))N−i . (7)

However, as shown in Appendix 1, Eq. (7) is incorrect. This is the sign of a deep fact:
a-posteriori observing k in dimension d is not the same as working in dimension k, or,
said differently, simple solutions (supported by k constraints) to complex problems (in
dimension d > k) are not as guaranteed as solutions to simple problems (in dimension
k).

Although observing k support constraints is not the same as working in dimension
k, this paper establishes the fundamental fact that the gap between the two is quantita-
tively minor: the function ε(k) can be chosen so that it is close for all k to the result that
is valid in dimension k. In other words, a-posteriori checking the number of support
constraints does lead to conclusions quantitatively similar to those achievable when
the optimization problem has as many optimization variables as there are support con-
straints in the program (1) at hand. Remarkably, this result holds true distribution-free,
and it is applicable without any knowledge on the probability P.

1.3 Structure of the paper

The example in the next Sect. 2 gives a quantitative preview of the findings of this
paper. The main result is presented in Sect. 3, Sect. 4 discusses the interpretation and
use of themain result, and Sect. 5 contains the proofs of all results given in this first part
of the paper. Section 6 takes a broader perspective and the theory developed in the first
five sections is generalized to optimization problems in infinite-dimensional/general
spaces. The proofs of the results of this section can be found in Sect. 7. Section 8
closes the paper with a critical overview of the presented theory.

2 A preview example

N = 1000 points p(i) ∈ R
100 are independently sampled froman unknownprobability

density, and the hyper-sphere S of smallest volume that contains all the points is
constructed by resolving the following program where q is the center of S and r is its
radius:

min
q∈R100,r∈R

r

subject to: ‖p(i) − q‖ ≤ r, i = 1, . . . , N . (8)



We want to provide estimates on the probabilistic mass contained in the hyper-sphere
S, or, which is the same, on the probability that one next point sampled independently
of the initial set of 1000 points falls in S.

In this problem, we identify a point p in R100 with the uncertainty parameter δ, the
p(i)’s are the scenarios δ(i)’s, and (8) is a scenario program of the type (1). A new point
p falls outside the hyper-sphere constructed by resolving (8) if ‖p − q∗

1000‖ > r∗
1000,

where (q∗
1000, r

∗
1000) is the solution of (8). The probability for this to happen is the

violation V (q∗
1000, r

∗
1000) of the solution (q∗

1000, r
∗
1000).

The optimization variables are the radius r and the 100 coordinates defining the
center q, which yields d = 101 and N = 1000. With these values, an application of
Theorem 2 in Sect. 4 gives that V (q∗

1000, r
∗
1000) ≤ ε(s∗

1000) holds with high confidence
1 − 10−6 with the function ε(k) that is profiled in Fig. 1. Upon resolving program
(8), we found 28 support constraints. This is the number of points p(i) that are on the
surface of S. Since ε(28) = 6.71%, we conclude that the probabilistic volume outside
the hyper-sphere does not exceed 6.71%.
Some remarks are in order.

(i) Figure 1 profiles ε(k) as given by Theorem 2 when N = 1000, d = 101, and
β = 10−6. Using instead Eq. (2) with the same values for N , d, and β, one finds
ε = 15.17%, so that resorting to the theory of [12] a weaker conclusion by a
factor more than 2 is drawn. For easy reference, ε is also represented in Fig. 1.
One sees that Theorem 2 improves over the result in [12] for most values of k. The
fewer the support constraints, the larger the improvement. Notice that improving
for all values of k is impossible due to fundamental theoretical reasons explained
in Sect. 4.

(ii) The use of Theorem 2 does not require any knowledge of the distribution accord-
ing to which the points in R

100 are sampled. The distribution-free nature of
Theorem 2 makes it perfectly suitable for observation-based problems.

(iii) In our example,which is by simulation, some post-experiment analysis is possible
becausewe actually generated the points and their distribution is therefore known.
This analysis highlights some important features of the method. The points were
generated from a Gaussian distribution with zero mean and identity covariance
matrix. The probabilistic mass outside the hyper-sphere found by solving (8) was

Fig. 1 ε(k) and ε for the preview example



3.67%, below the value ε(28) = 6.71%. We then performed a repetition of 500
trials of the same experiment and the number of support constraints was always
between 20 and 43.All the times the probabilisticmasswas below the value ε(s∗

N )

as it is expected since the confidence is 1 − 10−6. On average, the probabilistic
mass outside the sphere was in a ratio of 0.44 with ε(s∗

N ). A margin between
the real mass and ε(s∗

N ) is required because the mass outside the hyper-sphere is
subject to stochastic fluctuation.

(iv) In the simulation run of the example, we found 28 support constraints. Given
any fully-supported problem in d = 28 dimensions, it is not difficult to augment
the optimization domain with 73 dummy variables to make the total number of
optimization variables equal to 101, which is the same as the number of variables
we have in this example, while the number of support constraints remains 28. For
these problems, one can show that result (3) can be applied with d = 28. There-
fore, any result that is valid distribution-free for all problems with 101 variables
cannot possibly return a value for ε(28) that outdoes the ε obtained from (3) with
d = 28. Interestingly, setting the right-hand side of (3) to 10−6 gives ε = 5.97%,
a value not too different from ε(28) = 6.71% obtained with Theorem 2. This
result is interpreted that a-posteriori discovering that there are 28 support con-
straints leads to certificates on the violation that are not too different from a-priori
knowing that the support constraints are always deterministically equal to 28.

(v) The result of this section is relevant to the theory of tolerance regions, [26,28],
whichwe briefly recall here. Awell studied problem in statistics is that of estimat-
ing a cumulative distribution function from data. This concerns with evaluating
the probability of sets having specific shapes, like half-lines or quadrants. When
more general shapes are considered, one speaks of “tolerance regions”, and the
results in our previous contribution [12] can be applied to this context. The exam-
ple of this section shows the potentials of the new theory of this paper to obtain
results for tolerance regions that are tighter than those obtainable from [12].

3 Main result

It turns out that studying the properties of the solution of the convex scenario opti-
mization program SPN in (1), which has N scenarios, calls for the consideration of
other programs with the same structure as SPN but with a set of constraints whose
cardinality ranges over all integersm = 0, 1, 2, . . .. Accordingly, we consider replicas
of (1) with m constraints as follows:

min
x∈X

cT x, (9a)

when m = 0, and

min
x∈X

cT x

subject to: x ∈
⋂

i=1,...,m

Xδ(i) , (9b)



Fig. 2 Constraints 1, 2, and 3 are active, but 1 is the only support constraint, since removing 2 while
maintaining 1 and 3 or removing 3 while maintaining 1 and 2 does not change the solution x∗

N . If the sole
support constraint is maintained, then the solution moves to a lower value

when m = 1, 2, . . ., where δ(i), i = 1, . . . ,m, is an i.i.d. sample from (�,F,P). To
these programs the same tie-break rule used to make x∗

N unique in (1) is applied.
The following assumptions are in order.

Assumption 1 (Existence and uniqueness) For everym and for every sample δ(i), i =
1, . . . ,m, program (9) admits solution, which becomes unique after the application of
the tie-break rule.

Similarly toDefinition 2, a constraintXδ(i) of (9) is called a “support constraint” if its
removal changes the solution of (9). Support constraints are always active constraints.
The converse is not true in general, and an active constraint need not be a support
constraint. This can be easily understood by thinking of a given program to which
a new constraint is added whose boundary passes through the solution of the initial
program. The new constraint is not a support constraint of the augmented program
since with or without this constraint the solution remains the same, and yet the new
constraint is active. When all the active constraints are support constraints, which is
the typical case, keeping the support constraints and removing all the other constraints
leaves the solution unchanged. On the other hand, when some of the active constraints
are not support constraints, maintaining only the support constraints gives a new
program whose solution may be different from the solution of the initial program, see
Fig. 2 for an example. If this happens, program (9) is called degenerate. The following
assumption requires that program (9) is non-degenerate with probability 1.

Assumption 2 (Non-degeneracy) For every m, with probability 1 with respect to the
sample δ(i) i = 1, . . . ,m, the solution to program (9) with all constraints in place
coincides with the solution to the program where only the support constraints are
kept.

Assumption 2 rules out situations where the boundary of distinct constraints accu-
mulate anomalously with nonzero probability. Indeed, given δ(i), i = 1, . . . ,m, one
can isolate a minimal (of smallest cardinality) subset of constraints giving the same
solution as (9). Then, in order for (9) to be degenerate, at least the boundary of onemore



constraint must pass through the solution given by the subset of constraints. Moreover,
in degenerate cases, one can conceive using a heating and cooling approach akin to
that of Section 3 of [12] to remove this assumption. More discussion on Assumption
2 is provided in the concluding Sect. 8.

In preparation of the main Theorem 1 below, consider now the following auxiliary
variational problem (recall that d is the number of optimization variables in (1)):

γ ∗ = inf
ξ(·)∈Cd [0,1]

ξ(1)

subject to:
1

k!
dk

dtk
ξ(t) ≥

(
N

k

)
t N−k · 1[0,1−ε(k))(t), t ∈ [0, 1],

k = 0, 1, . . . , d, (10)

where 1A(t) denotes the indicator function of set A,Cd [0, 1] is the class of d times
differentiable functions with continuous d-th derivative over the interval [0, 1], and
dk

dtk
with k = 0 means that no derivative operator is applied.4

Theorem 1 Let ε(k), k = 0, 1, . . . , d, be any [0, 1]-valued function. Under Assump-
tions 1 and 2, it holds that

P
N {V (x∗

N ) > ε(s∗
N )} ≤ γ ∗,

where γ ∗ is given by (10).

4 Problem (10) can be equivalently written as the following optimal control problem, which may offer
further insight in the usability of the approach.
Auxiliary dynamical system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt z0(t) = z1(t)

d
dt z1(t) = 2 z2(t)

.

.

.

d
dt zd−2(t) = (d − 1) zd−1(t)

d
dt zd−1(t) = d u(t).

Auxiliary optimal control problem:

γ ∗ = inf
z0(0),...,zd−1(0),u(·)∈C0[0,1]

z0(1)

subject to: zk (t) ≥
(
N

k

)
t N−k · 1[0,1−ε(k))(t), t ∈ [0, 1], k = 0, 1, . . . , d − 1,

u(t) ≥
(
N

d

)
t N−d · 1[0,1−ε(d))(t), t ∈ [0, 1].

In the auxiliary optimal control problem, the optimization variables are the initial state and the input of the 
auxiliary dynamical system.



Proof See Sect. 5.1. 	

Obtaining the result stated in Theorem 1 requires a main departure from the proof
machinery developed in paper [12]. In the proof provided in Sect. 5.1, problems
(c,X , {Xδ},P) are first characterized in terms of a generalized moment problem, and
the theorem is then proved by duality theory based on this characterization. Theorem
1 bears a new vision on scenario programs with profound implications, as discussed
in the next section. We conclude this section by noticing that the main result (2) of
[12] is a corollary of Theorem 1 by the selection ε(k) = ε ∀k.
Corollary 1 Take ε(k) = ε ∀k. Under Assumptions 1 and 2, it holds that

P
N {V (x∗

N ) > ε} ≤
d−1∑

i=0

(
N

i

)
εi (1 − ε)N−i .

Proof See Sect. 5.2. 	


4 Consequences and practical use of Theorem 1

As compared to Corollary 1, the power of Theorem 1 stems from the flexibility given
by the fact that ε(s∗

N ) is a-posteriori evaluated depending on the number of support
constraints found in the scenario program at hand. This flexibility is explored in this
section. Implementation schemes are also provided that allow for an easy use of The-
orem 1.

Theorem 1 gives a bound γ ∗ on the probability that V (x∗
N ) > ε(s∗

N ). In normal
cases, one desires that V (x∗

N ) > ε(s∗
N ) happenswith very low probability so that ε(s∗

N )

can be taken as an upper bound to V (x∗
N ) with high confidence. This suggests that

for a practical use of Theorem 1 one reverts the order in which quantities in (10) are
computed: one first assigns a very small β (e.g. β = 10−6), and then a function ε(k) is
determined, which, substituted in (10), gives γ ∗ ≤ β so thatPN {V (x∗

N ) > ε(s∗
N )} ≤ β

by Theorem 1. It turns out that, given a β, infinitely many functions ε(k) attain the
desired result. The following Theorem 2 describes one such function. The significance
of this choice is discussed after the theorem.

Theorem 2 Given β ∈ (0, 1), for any k = 0, 1, . . . , d, the polynomial equation in
the t variable

β

N + 1

N∑

m=k

(
m

k

)
tm−k −

(
N

k

)
t N−k = 0 (11)

has one and only one solution t (k) in the interval (0, 1). Letting ε(k) := 1 − t (k),
under Assumptions 1 and 2, it holds that

P
N {V (x∗

N ) > ε(s∗
N )} ≤ β.

Proof See Sect. 5.3. 	




(a) (b)

(c) (d)

Fig. 3 Comparison between ε(k), ε, and ε̄(k). a N = 500 d = 50; b N = 500 d = 100; c N = 1000 d =
50; d N = 1000 d = 100

To compute the ε(k), k = 0, 1, . . . , d , given in Theorem 2 one can e.g. use a
bisection numerical algorithm. A MATLAB code for this is provided in Appendix 2.
It can be cut and pasted into the MATLAB workspace for a handy implementation.

Figure 3 profiles the function ε(k) given by Theorem 2 when β = 10−6 against
the ε obtained from Corollary 1 for the same confidence value, i.e. ε such that∑d−1

i=0

(N
i

)
εi (1 − ε)N−i = 10−6. The figure refers to various choices of N and d.

ε(k) is smaller than ε for most values of k, while ε(k) is slightly bigger than ε for k
close to d. Notice that no theory can deliver a valid ε(k) such that ε(k) < ε ∀k, since
the ε given by Corollary 1 is tight for fully supported problems in dimension d (see
[12]).5

Further, it is interesting to compare the function ε(k) of Theorem 2 with an insur-
mountable lower limit. Similarly to point (iii) in the previewexample of Sect. 2, one can
consider fully-supported problems in dimension k, k = 1, . . . , d, and augment them
with d − k dummy variables to recast the problems in dimension d. After computing
ε̄(k) from relation

∑k−1
i=0

(N
i

)
ε̄(k)i (1 − ε̄(k))N−i = β, one notices that ε̄(k) is exact

for fully-supported problems in dimension k, i.e. (3) gives PN {V (x∗
N ) > ε̄(k)} = β,

and the same holds for the augmented problems in dimension d. Since ε(k) is valid
for any problem in dimension d , it must necessarily be no less than ε̄(k), that is,
ε(k) ≥ ε̄(k), k = 1, . . . , d . Figure 3 also profiles ε̄(k) for an easy comparison with
ε(k).

Figure 3 suggests an additional interesting observation. Since ε̄(k) is also insur-
mountable in dimension k, one sees that a-posteriori observing k support constraints
leads to a conclusion which is close to the best possible result attainable when one

5 At the present state of knowledge, whether or not a valid ε(k) exists such that ε(k) < ε  for some k 

while ε(k) ≤ ε for any k is still an open problem.



works with k optimization variables only. Similarly, knowing in advance that the
number of support constraints never exceeds k in a problem in dimension d > k
provides little advantage as compared to waiting and seeing that the cardinality of
the set of support constraints is k. This result embodies the essence of the “wait-
and-judge” philosophy: exploiting the information contained in δ(1), . . . , δ(N ) by
a-posteriori assessing the number of support constraints in the program at hand “kills”
the advantage that comes from knowing in advance an upper limit to the largest pos-
sible cardinality of the support constraint set.

5 Proofs of results in Sects. 3 and 4

5.1 Proof of Theorem 1

5.1.1 The distributions F0, F1, . . . , Fd

For k = 0, 1, . . . , d , consider the scenario program with only k constraints

SPk : min
x∈X

cT x

subject to: x ∈
⋂

i=1,...,k

Xδ(i) ,

where it is understood that the “subject to” part is suppressed when k = 0, and let x∗
k

be its solution and s∗
k be the number of support constraints. Define

Fk(v) = P
k{V (x∗

k ) ≤ v ∧ s∗
k = k}, (12)

where ∧ denotes the “and” operator. Fk(v) is the probability that the sample
δ(1), . . . , δ(k) gives that all k constraints are of support and the solution has a vio-
lation no more than v. The Fk’s are generalized distribution functions, that is, each Fk
has the same properties as a distribution function except that its limit when v → +∞
need not be 1, see e.g. [47]. To a problem P , that is, to a choice of (c,X , {Xδ},P),
there is associated a (d+1)-tuple F0, F1, . . . , Fd , and the (d+1)-tuple F0, F1, . . . , Fd
is different for different problems.

We next show that PN {V (x∗
N ) > ε(s∗

N )} can be computed from F0, F1, . . . , Fd . In
words, F0, F1, . . . , Fd is the “backbone” that permits one to characterize the violation
of the solution of a scenario program.

Start by noting that s∗
N takes value in {0, 1, . . . , d} and that the event where s∗

N
takes on one value does not overlap with the event where it takes another value. Thus,

P
N {V (x∗

N ) > ε(s∗
N )} =

d∑

k=0

P
N {V (x∗

N ) > ε(k) ∧ s∗
N = k}. (13)

The set

Sk = {V (x∗
N ) > ε(k) ∧ s∗

N = k} ⊆ �N ,



which is the event where the violation of x∗
N is above ε(k) and there are k support

constraints, can be decomposed as follows: for each sample δ(1), . . . , δ(N ) ∈ Sk ,
consider the indexes of the corresponding k support constraints, and group together all
the samples with the same indexes. In this way,

(N
k

)
subsets are constructed forming

a partition of Sk . All these subsets have the same probability because of the i.i.d.
assumption on the sample. Hence,

P
N {Sk} =

(
N

k

)
P
N {A}, (14)

where A is one of these subsets, say the onewhere the indexes of the support constraints
are 1, 2, . . . , k, viz.,

A := {V (x∗
N ) > ε(k) ∧ s∗

N = k ∧ the first k constraints are of support}. (15)

We next show that the probability of A is computed as

P
N {A} =

∫

(ε(k),1]
(1 − v)N−kdFk(v). (16)

To prove (16), introduce the event

B := {
V (x∗

k ) > ε(k) ∧ s∗
k = k ∧ the constraints with indexes

k + 1, . . . , N are satisfied by x∗
k

}
.

It can be shown that A = B up to a zero probability set, so that PN {A} = P
N {B}. The

proof of this intuitive fact is differed till the end of this Sect. 5.1.1 to avoid breaking
the flow of discourse here. We here concentrate on showing that the probability of B is
given by the right-hand side of (16), namely, PN {B} = ∫

(ε(k),1](1− v)N−kdFk(v). To
show this, note that for a fixed value v of the violation of the solution x∗

k generated by
the first k constraints, (1−v)N−k is the probability that the other N −k constraints are
satisfied by x∗

k , so that, recalling the definition (12) of Fk , the integral of (1 − v)N−k

over the interval (ε(k), 1]with respect to Fk yields PN {B}. Thus, (16) remains proven.
Wrapping up, substituting (16) in (14) and further plugging the result into (13) yields

P
N {V (x∗

N ) > ε(s∗
N )} =

d∑

k=0

(
N

k

)∫

(ε(k),1]
(1 − v)N−kdFk(v). (17)

This is a fundamental formula by which PN {V (x∗
N ) > ε(s∗

N )} can be computed from
F0, F1, . . . , Fd .

Proof of the fact that A = B up to a zero probability set
We first prove that A ⊆ B up to a zero probability set.

Since in A the support constraints are the first k, by the non-degeneracy Assumption
2, x∗

N = x∗
k up to a zero probability set. Thus, V (x∗

k ) = V (x∗
N ) > ε(k) up to a zero



probability set. Moreover, the problem with only the first k constraints has clearly this
k constraints as support constraints while all the other constraints are satisfied.

Next, we show that B ⊆ A up to a zero probability set.
In B, the constraints with indexes k + 1, . . . , N are satisfied by x∗

k , thus x
∗
N = x∗

k
and V (x∗

N ) = V (x∗
k ) > ε(k). The first k constraints are the support constraints for

the program with N constraints up to a zero probability set, a fact that we prove by
contradiction. Assume that not all the first k constraints are of support for the program
with N constraints with non-zero probability. Since the other constraints with indexes
k+1, . . . , N cannot be of support for the program with N constraints (because, if one
of them is removed, the solution x∗

N = x∗
k does not change), then the set of support

constraints for the program with N constraints would be a strict subset of the set of
support constraints for the program with the first k constraints. But then the solution
of the program with the sole support constraints for the program with N constraints
would be different from x∗

k and, hence, different from x∗
N with non-zero probability.

This, however, contradicts the non-degeneracy Assumption 2.

5.1.2 Moment conditions on F0, F1, . . . , Fd

Equation (17) allows one to compute the probability that V (x∗
N ) > ε(s∗

N ) from
F0, F1, . . . , Fd . Given an arbitrary (d + 1)-tuple of generalized distribution func-
tions Fk’s, it may or may not be the case that these Fk’s are associated to some convex
optimization problemP . In other words, the set of all the Fk’s that are compatible with
convex optimization problems does not coincide with the set of all generalized distri-
bution functions. We next give moment conditions that are necessarily satisfied by the
Fk’s that are compatible with convex optimization problems. The proof of Theorem 1
will then be obtained by taking sup of PN {V (x∗

N ) > ε(s∗
N )} over the Fk’s satisfying

these conditions.
Consider again Eq. (17). If the > in the left-hand side of this equation is replaced

by ≥, then it is immediate to see that the equation still holds provided that the integral
on the right-hand side is computed over the closed interval [ε(k), 1]. Moreover, in (17)
we can also substitute N with a generic m ranging over all integers 0, 1, . . ., with the
precaution that whenm < d , so that the number of support constraints cannot possibly
be more than m, the summation goes from 0 to m. With these generalizations, and
taking ε(k) = 0 for any k and further noting that Pm{V (x∗

m) ≥ 0} is equal to 1, we
obtain

min{m,d}∑

k=0

(
m

k

) ∫

[0,1]
(1 − v)m−kdFk(v) = 1, m = 0, 1, . . . . (18)

Equation (18) gives joint conditions on the moments of the Fk’s that need be satisfied
for the Fk’s to be compatible with convex optimization problems.6 Since more than
one distribution is involved, the infinitely many conditions in (18), one for any m, do
not completely determine the Fk’s, and more choices of Fk’s satisfy (18). This is not

6 Equation (18) can also be written in a more compact form using moment generating functions. Let
F̃k (t) := 1 − Fk (1−t) and M̃k (z) be the moment generating function of F̃k (t). Multiplying the two sides
of (18) by zm/m! and summing up over m gives the equivalent characterization:



surprising as not all convex optimization problems can be expected to have the same
Fk’s. To help a more concrete vision, Appendix 3 provides a couple of examples of
Fk’s that satisfy Eq. (18) and are indeed associated to convex optimization problems.

5.1.3 Primal problem for computing sup(c,X ,{Xδ},P) P
N {V (x∗

N ) > ε(s∗
N )}

The probability P
N {V (x∗

N ) > ε(s∗
N )} can be upper bounded for all convex optimiza-

tion problems by maximizing the right-hand side of (17) over the set of the Fk’s
satisfying Eq. (18), i.e., PN {V (x∗

N ) > ε(s∗
N )} ≤ γ with γ given by

γ = sup
F0,F1,...,Fd

d∑

k=0

(
N

k

) ∫

(ε(k),1]
(1 − v)N−kdFk(v)

subject to:
min{m,d}∑

k=0

(
m

k

) ∫

[0,1]
(1 − v)m−kdFk(v) = 1, m = 0, 1, . . .

F0, F1, . . . , Fd ∈ C, (19)

where C is the positive cone of generalized distribution functions. This is a generalized
moment problem that involves d + 1 distributions [27]. In the next section, problem
(19) is studied by duality.

5.1.4 Duality analysis and conclusions

For any M ≥ d, consider the following truncated version of problem (19) that only
has finitely many moment constraints

γM = sup
F0,F1,...,Fd

d∑

k=0

(
N

k

) ∫

(ε(k),1]
(1 − v)N−kdFk(v)

subject to:
min{m,d}∑

k=0

(
m

k

) ∫

[0,1]
(1 − v)m−kdFk(v) = 1, m = 0, 1, . . . , M

F0, F1, . . . , Fd ∈ C. (20)

Footnote 6 continued

d∑

k=0

zk

k! M̃k (z) = exp(z),

m
which is explained as follows. The right-hand side is obtained because 

∑
m
∞=0 z

m /m! =  exp(z), while 

in the left-hand side the kth term is calculated as follows, 
∑

m
∞=k z

m /m!( 
k 
) ∫

[0,1] tm−k d F̃k (t) = zk /k! ∫
[0,1] 

∑
m
∞=k (zt)

m−k /(m−k)!d F̃k (t) = zk /k! ∫[0,1] exp(zt)d F̃k (t) = (zk /k!)M̃ k (z).



Since in (20) the number of constraints increases with M and, for any M , (20) is less
constrained than (19), γM is non increasing and γ ≤ γM ∀M . The dual problem, [3],
of (20) is

γ ∗
M = inf

λ0,λ1,...,λM

M∑

m=0

λm

subject to:
M∑

m=k

λm

(
m

k

)
(1 − v)m−k ≥

(
N

k

)
(1 − v)N−k · 1(ε(k),1](v), v ∈ [0, 1]

k = 0, 1, . . . , d, (21)

where 1A(v) denotes the indicator function of set A. By weak duality, we have that
γM ≤ γ ∗

M , as can be easily established by observing that the following inequality holds
for any feasible point F0, F1, . . . , Fd of (20) and any feasible point λ0, λ1, . . . , λM

of (21):

d∑

k=0

(
N

k

) ∫

(ε(k),1]
(1 − v)N−kdFk(v) =

d∑

k=0

∫

[0,1]

(
N

k

)
(1 − v)N−k · 1(ε(k),1](v)dFk(v)

≤
d∑

k=0

∫

[0,1]

M∑

m=k

λm

(
m

k

)
(1 − v)m−kdFk(v)

=
M∑

m=0

λm

min{m,d}∑

k=0

(
m

k

) ∫

[0,1]
(1 − v)m−kdFk(v)

=
M∑

m=0

λm .

Thus, γ ≤ γM ≤ γ ∗
M for any M , and, hence,

γ ≤ inf
M

γ ∗
M . (22)

We next show that problem (21) can be recast as a variational problem from which
infM γ ∗

M can be evaluated.
For convenience let t := 1 − v, and note that

1

k!
dk

dtk
tm =

{
0 m < k(m
k

)
tm−k m ≥ k

. (23)

Now, define

p(t) =
M∑

m=0

λmt
m .



Using (23), one sees that

1

k!
dk

dtk
p(t) =

M∑

m=k

λm

(
m

k

)
tm−k,

which is the left-hand side of the constraints in (21). Noticing also that the objective∑M
m=0 λm of (21) equals p(1), the dual problem (21) can be rewritten as

γ ∗
M = inf

p(·)∈PM

p(1)

subject to:
1

k!
dk

dtk
p(t) ≥

(
N

k

)
t N−k · 1[0,1−ε(k))(t), t ∈ [0, 1],

k = 0, 1, . . . , d,

where PM is the class of polynomials of degree M .
We next want to show that infM γ ∗

M = γ ∗, the optimal value of (10). To this
purpose, consider the feasibility domain F ⊆ Cd [0, 1] of problem (10). We show
that (

⋃
M≥d PM ) ∩ F is dense in F with respect to the distance d(·, ·) in Cd [0, 1]

(d(ξ, ζ ) = ∑d
k=0 maxt∈[0,1]

∣∣∣ dk

dtk
ξ(t) − dk

dtk
ζ(t)

∣∣∣). Indeed, if ξ(t) ∈ F , then, for any

α > 0, ξ(t) + α exp(t) is an interior point of F because the term α exp(t) increases
all the derivatives in the left-hand side of the constraints in (10) and moves them
away from the boundary of the constraints given by the right-hand side of (10), viz.(N
k

)
t N−k · 1[0,1−ε(k))(t). Therefore, any point in F admits an interior point of F

arbitrarily close to it (take α small enough). If we now take any small ball in the
Cd [0, 1] metric all contained inF and centered in ξ(t)+α exp(t), we can further find
a polynomial p(t) ∈ ⋃

M≥d PM in this ball, and thereby contained inF and arbitrarily
close to ξ(t). Indeed, polynomial p(t) can be constructed as follows: by Weierstrass

theorem, the d-th derivative dd

dtd
[ξ(t)+α exp(t)] can be approximated uniformly over

[0, 1] with a polynomial q(t); then, p(t) is the polynomial whose d-th derivative is
q(t) and such that

dk

dtk
p(t)

∣∣
t=0 = dk

dtk
[ξ(t) + α exp(t)]∣∣t=0, k = 0, 1, . . . , d − 1.

Hence, density of (
⋃

M≥d PM ) ∩ F in F remains proven. The conclusion that

inf
M

γ ∗
M = γ ∗, (24)

now follows by observing that the cost ξ(1) in (10) is a continuous functional from
Cd [0, 1] to R.

To conclude the proof of Theorem 1, use (19), (22) and (24) in succession to obtain

P
N {V (x∗

N ) > ε(s∗
N )} ≤ γ ≤ inf

M
γ ∗
M = γ ∗.

	




5.2 Proof of Corollary 1

Consider problem (10) with ε(0) = ε(1) = · · · = ε(d) = ε. In this case, the
constraints in (10) are written as

1

k!
dk

dtk
ξ(t) ≥

(
N

k

)
t N−k · 1[0,1−ε)(t), k = 0, 1, . . . , d. (25)

Take ξ̄ (t) to be function d!(Nd
)
t N−d1[0,1−ε)(t) integrated d times. A simple computa-

tion yields

1

k!
dk

dtk
ξ̄ (t) =

(
N

k

)
t N−k1[0,1−ε)(t)

+
d−1∑

i=k

(
i

k

)(
N

i

)
(t − 1 + ε)i−k(1 − ε)N−i1[1−ε,1](t),

k = 0, 1, . . . , d, showing that ξ̄ (t) satisfies (25).

One thing that should be noticed is that dd

dtd
ξ̄ (t) = d!(Nd

)
t N−d1[0,1−ε)(t) is not

continuous, so that ξ̄ (t) does not belong to Cd [0, 1]. However, we show that the
optimal value of (10) still satisfies γ ∗ ≤ ξ̄ (1), and the corollary remains proven in
view of Theorem 1 by noticing that

ξ̄ (1) =
d−1∑

i=0

(
N

i

)
εi (1 − ε)N−i . (26)

To prove that γ ∗ ≤ ξ̄ (1), consider the sequence of continuous functions

fn(t) = d!
(
N

d

)
t N−d1[0,1−ε)(t) + n

ε

(
1 − ε + ε

n
− t

)
d!

×
(
N

d

)
(1 − ε)N−d1[1−ε,1−ε+ ε

n )(t), n = 1, 2, . . . ,

profiled in Fig. 4, and let ξ̄n(t) be function fn(t) integrated d times.
ξ̄n(t) satisfies (25) for any n, and the result is obtained by letting n → ∞. 	


Remark 1 It is actually true that γ ∗ = ξ̄ (1), a fact that can be seen in two differ-
ent ways. First, the d-th derivative d!(Nd

)
t N−d1[0,1−ε)(t) of ξ̄ (t) cannot be further

decreased without violating (25), and hence γ ∗ cannot be reduced below ξ̄ (1). Sec-
ond, in [12] it has been shown that PN {V (x∗

N ) > ε} = ∑d−1
i=0

(N
i

)
εi (1 − ε)N−i for

fully-supported problems. Should γ ∗ be further reducible below the value of ξ̄ (1)
given in (26), one would obtain from Corollary 1 the result that PN {V (x∗

N ) > ε} <∑d−1
i=0

(N
i

)
εi (1 − ε)N−i , which would be in contradiction with the result in [12].



Fig. 4 Function fn(t)

5.3 Proof of Theorem 2

In problem (10), take

ξ̄ (t) = β

N + 1

N∑

m=0

tm, (27)

which gives

1

k!
dk

dtk
ξ̄ (t) = β

N + 1

N∑

m=k

(
m

k

)
tm−k, k = 1, . . . , d. (28)

We will show that:

(i) the intersection between 1
k!

dk

dtk
ξ̄ (t) and the function

(N
k

)
t N−k in the interval (0, 1)

is unique (and given by t (k) obtained from (11)), and, moreover,
(ii) it holds that

1

k!
dk

dtk
ξ̄ (t) ≥

(
N

k

)
t N−k, k = 0, . . . , d, (29)

for t < t (k) = 1 − ε(k).

Hence, ξ̄ (t) is feasible for problem (10), and the statement of the theorem easily
follows from Theorem 1 because

γ ∗ ≤ ξ̄ (1) = β

N + 1

N∑

m=0

1 = β.

To prove (i) and (ii), define

ϕk(t) = 1

k!
dk

dtk
ξ̄ (t) −

(
N

k

)
t N−k = β

N + 1

N∑

m=k

(
m

k

)
tm−k −

(
N

k

)
t N−k,

for all k = 0, 1, . . . ,  N − 1. Here, we regard ϕk (t) as a function defined for all t > 
0. By induction, we show that ϕk (t) = 0, k = 0, 1, . . . ,  N − 1, has a unique



solution in (0, 1), which we denote t (k) also for k > d, and that ϕk(t) > 0 for
t ∈ [0, t (k)), ϕk(t) < 0 for t > t (k), and ϕk(t) → −∞ as t → +∞. Note that
this suffices to prove (i) and (ii) so concluding the proof of the theorem. The result
is trivially true for ϕN−1(t) = β

N+1 (1 + Nt) − Nt = β
N+1 − N (1 − β

N+1 )t , which
is a straight line. If the result holds true for ϕk(t), then it also holds true for ϕk−1(t)
because

ϕk−1(t) = β

N + 1
+ k

∫ t

0
ϕk(τ )dτ,

and, thanks to the inductive assumption on ϕk(t),
∫ t
0 ϕk(τ )dτ is strictly increasing and

≥ 0 till t (k) and then strictly decreasing and diverging to −∞ for t > t (k). The fact
that t (k) ∈ (0, 1) holds because

ϕk(1) = β

N + 1

N∑

m=k

(
m

k

)
−

(
N

k

)
≤ β

N + 1

N∑

m=0

(
N

k

)
−

(
N

k

)

= (β − 1)

(
N

k

)
< 0.

	


6 Scenario optimization over generic sets

In previous sections, convex, finite-dimensional, scenario optimization programs have
been investigated. It turns out that the key ideas developed there have more general
breadth than what has been exploited so far, and they carry over, with suitable modifi-
cations, to optimization problems defined over generic sets. This extension is presented
in this section.

Let X be a generic set. For example, X can be an infinite dimensional vector space or
just a setwithout an algebraic structure. Let f (x) be a real-valued function defined over
X , and let X ,Xδ be subsets of X , where δ is a random outcome from a probability
space (�,F,P). No restrictions apply to f,X , and Xδ . For example, when X is a
vector space, f (x) is not required to be a convex function, nor X and Xδ are required
to be convex sets. The scenario optimization program is

min
x∈X

f (x)

subject to: x ∈
⋂

i=1,...,N

Xδ(i) , (30)

where δ(i), i = 1, . . . , N , is an i.i.d. sample from (�,F,P) and N is any positive
integer.Definition 1 of violation andDefinition 2 of support constraint hold unchanged.
Assumptions 1 and 2 are still in force with (9) written with the obvious modification
that cT x is replaced by f (x). Regarding Assumption 1, conditions for the existence
of the solution is a classical topic in optimization and are discussed e.g. in [30,33].



Again, x∗
N is the solution uniquely identified by a tie-break rule, which in the present

setup is not required to be convex. Assumption 2 is key to obtain our results, and
Sect. 8 provides more discussion on this assumption.

In the present context, the number of support constraints is not a-priori bounded.
Hence, in program (30), s∗

N is only bounded by N . For instance, Example 1 below
introduces a situation where s∗

N is systematically equal to N . Correspondingly, ε(k)
is a function ranging over k = 0, 1, . . . , N . As before, guarantees on the violation of
x∗
N are adapted to s∗

N , and we want to compute PN {V (x∗
N ) > ε(s∗

N )}. The apparatus
to perform this computation is similar to the one developed for the finite-dimensional
convex setup, where the auxiliary variational problem is modified as follows.

γ ∗ = inf
ξ(·)∈PN

ξ(1)

subject to:
1

k!
dk

dtk
ξ(t) ≥

(
N

k

)
t N−k · 1[0,1−ε(k))(t), t ∈ [0, 1],

k = 0, 1, . . . , N , (31)

where PN is the class of polynomials of degree N .

Theorem 3 Let ε(k), k = 0, 1, . . . , d, be any [0, 1]-valued function. Under Assump-
tions 1 and 2 (with cT x in (9) replaced by f (x) in the statements of these assumptions),
it holds that

P
N {V (x∗

N ) > ε(s∗
N )} ≤ γ ∗,

where γ ∗ is given by (31).

Proof See Sect. 7.1. 	

The counterpart of Theorem 2 becomes as follows.

Theorem 4 Given β ∈ (0, 1), for any k = 0, 1, . . . , N − 1, the polynomial equation
in the t variable

β

N + 1

N∑

m=k

(
m

k

)
tm−k −

(
N

k

)
t N−k = 0 (32)

has one and only one solution t (k) in the interval (0, 1). Letting ε(k) := 1− t (k), k =
0, 1, . . . , N − 1, and ε(N ) = 1, under Assumptions 1 and 2 (with cT x in (9) replaced
by f (x) in the statements of these assumptions), it holds that

P
N {V (x∗

N ) > ε(s∗
N )} ≤ β.

Proof See Sect. 7.2.

In the theorem, ε(N ) is set to 1. It could not be otherwise, because there are problems
where the number of support constraints is systematically equal to N and V (x∗

N ) is 
always equal to 1 so that PN {V (x∗

N ) > ε(N )} =  1 whenever ε(N ) <  1. See 
Example 1 for one such problem.



Fig. 5 Function ε(k) versus ε̄(k)

Equation (32) is the same as Eq. (11) where, however, k ranges over a wider interval
of integers that extends till N . Figure 5 displays function ε(k) obtained from (32)
when β = 10−6 and N = 1000. The insurmountable lower limit ε̄(k) obtained
from fully-supported problems in dimension k = 1, . . . , N (that is, ε̄(k) is such that∑k−1

i=0

(N
i

)
ε̄(k)i (1−ε̄(k))N−i = β, see the discussion in Sect. 4) is also visualized. The

two curves are quite close to each other, which shows a fact that much surprised the
authors of this paper at the time of discovery: even in infinite dimensional problems, the
conclusion drawn after a-posteriori inspecting that the number of support constraints
is k is almost the same as the conclusion obtainable when the problem is from the
outset in dimension k.

An example illustrates the results of this section.

Example 1 (Convex hull in R2) Points p(i) i = 1, . . . , N , are independently sampled
from a probability distribution P on R

2 and the problem of constructing the smallest
convex set that contains all the points is considered:

min
C∈C μ(C) (33)

subject to: p(i) ∈ C, i = 1, . . . , N ,

where μ is Lebesgue measure on R
2 and C is the collection of all convex sets of

R
2. Program (33) is a scenario program with X = C, f (x) = μ(C), δ(i) = p(i),

and Xδ(i) = {C ∈ C : p(i) ∈ C}. Its unique solution C∗
N is the convex hull of

points p(i) i = 1, . . . , N , and the problem is non-degenerate if and only if P has
no concentrated mass on isolated points. As a matter of fact, when the p(i)’s are all
distinct, the support constraints are those obtained in correspondence of the p(i)’s at
the vertexes of the convex hull, and the convex hull of the vertex points coincides with
the convex hull of all points.

We want to evaluate the probability mass that is left outside the convex hull. This
is the same as assessing the violation V (C∗

N ), and Theorem 4 is used to this purpose.
We consider two probability distributions P. Suppose first that P is the uniform

distribution on the boundary of a circle. In this case, the convex hull is a polygon



(a) (b)

Fig. 6 Two convex hulls of N points. a Points are sampled from the boundary of a circle; b points are
sampled from a Gaussian distribution

inscribed in the circle with vertexes coincident with the points p(i)’s, see Fig. 6a for
an instance with N = 7.

Hence, the number of support constraints is N , i.e. s∗
N = N , with probability one

and Theorem 4 gives ε(s∗
N ) = ε(N ) = 1. This is the correct evaluation of V (C∗

N )

since every polygon inscribed in the circle leaves outside a probability mass equal
to 1.

Suppose now that the points are sampled from a Gaussian distribution with zero
mean and identity covariance matrix. See Fig. 6b for an instance with N = 250,
where the number of support constraints is 10. Setting β = 10−6, Eq. (32) gives
ε(10) = 0.147, that is, the probabilistic mass outside the obtained convex hull is no
more than 14.7%. To draw this conclusion, no use was made of the fact that the points
were generated from a Gaussian distribution.

7 Proofs of the results in Sect. 6

7.1 Proof of Theorem 3

The proof of Theorem 3 is obtained along lines similar to the proof of Theorem 1, and
we here highlight the differences.

Since in the present setup the number of support constraints of a program with m
constraints is only bounded by m and m grows without limit, we define the Fk’s as in
Sect. 5.1.1, where this time k can be any nonnegative integer,

Fk(v) = P
k{V (x∗

k ) ≤ v ∧ s∗
k = k}, k = 0, 1, . . . .

Equation (13), and then (17), become

P
N {V (x∗

N ) > ε(s∗
N )} =

N∑

k=0

P
N {V (x∗

N ) > ε(k) ∧ s∗
N = k}

=
N∑

k=0

(
N

k

) ∫

(ε(k),1]
(1 − v)N−kdFk(v),



where summation runs up to N since the number of support constraints can take any
value between 0 and N in this setup. In characterizing optimization problems in terms
of F0, F1, . . ., as it was done for convex problems in Sect. 5.1.2, we here have

m∑

k=0

(
m

k

) ∫

[0,1]
(1 − v)m−kdFk(v) = 1, m = 0, 1, . . . ,

where the number of terms in the summation grows unbounded with m. Again, we
can write sup(c,X ,{Xδ},P) P

N {V (x∗
N ) > ε(s∗

N )} ≤ γ where γ is here obtained as

γ = sup
Fk , k=0,1,...

N∑

k=0

(
N

k

) ∫

(ε(k),1]
(1 − v)N−kdFk(v)

subject to:
m∑

k=0

(
m

k

) ∫

[0,1]
(1 − v)m−kdFk(v) = 1, m = 0, 1, . . .

Fk ∈ C, k = 0, 1, . . . . (34)

The conclusion inTheorem3 is obtained byduality analysis as itwas done inSect. 5.1.4
for the finite dimensional convex case, and at this step we have to register the main
differences from before. For any M ≥ N , consider the following truncated version of
problem (34)

γM = sup
F0,F1,...,FM

N∑

k=0

(
N

k

)∫

(ε(k),1]
(1 − v)N−kdFk(v)

subject to:
m∑

k=0

(
m

k

) ∫

[0,1]
(1 − v)m−kdFk(v) = 1, m = 0, 1, . . . , M,

F0, F1, . . . , FM ∈ C, (35)

which can be dualized after the substitution t := 1 − v as

γ ∗
M = inf

λ0,λ1,...,λM

M∑

m=0

λm (36)

subject to:
M∑

m=k

λm

(
m

k

)
tm−k ≥

{ (N
k

)
t N−k · 1[0,1−ε(k))(t), k = 0, 1, . . . , N

0, k = N + 1, . . . , M
, t ∈ [0, 1].

As in the finite dimensional case, we have γ ≤ γM ≤ γ ∗
M ∀M , where the first

inequality is because the truncated primal problem (35) is less constrained than (34)
and the second inequality follows from weak duality. Thus, γ ≤ infM γ ∗

M . Clearly,
γ ∗
M is a non-increasing function of M , but, somehow unexpectedly, we shall show that

γ ∗
M = γ ∗

N for any M ≥ N , so that, unlike the finite dimensional case, pushing one’s
search beyond M = N has no payoff, and we later use relation



Fig. 7 Functions
(m
1
)
tm−1

γ ≤ γ ∗
N , (37)

to draw the theorem’s conclusion.
To prove that γ ∗

M = γ ∗
N for any M ≥ N , consider the family of functions

(m
k

)
tm−k

indexed with m = k, . . . , M . To help intuition, these functions are profiled in Fig. 7
for k = 1 and M = 5.

Denote by t̄m,k,m = k, . . . , M − 1, the value t > 0 where one such function
intersects the next, i.e.

(
m

k

) (
t̄m,k

)m−k =
(
m + 1

k

) (
t̄m,k

)m+1−k
, t̄m,k > 0.

It turns out that t̄m,k = 1 − k
m+1 . The following properties hold:

(i) t̄m,k ≤ t̄m+1,k ;
(ii) function

(m
k

)
tm−k is the largest function over [t̄m−1,k, t̄m,k], where we let t̄k−1,k =

0;
(iii)

(m
k

)
tm−k ≥ (m+h

k

)
tm+h−k over [0, t̄m,k] ∀h ≥ 0.

We next show that, for any feasible point λ = (λ0, λ1, . . . , λM ), there is another
feasible point λ′ = (λ′

0, λ
′
1, . . . , λ

′
M ) with λ′

m = 0 for m ≥ N + 1 which attains the
same value as λ in the dual problem (36). As a consequence, the optimal value γ ∗

M of
(36) is achieved in correspondence of a point λ′ with λ′

m = 0 for m ≥ N + 1. In turn,
this implies that γ ∗

M = γ ∗
N for any M ≥ N .

So, let λ be a feasible point, which satisfies the constraints in (36). Notice that
evaluating the constraints at t = 0 gives λm ≥ 0 m = 0, 1, . . . , M . Two cases may
occur,

∑M
m=0 λm ≥ 1 or

∑M
m=0 λm < 1.

If
∑M

m=0 λm ≥ 1, take λ′
m = 0 for m �= N and λ′

N = ∑M
m=0 λm . This λ′

is feasible, because the left-hand side of the constraints in (36) for k ≤ N writes∑M
m=k λ′

m

(m
k

)
tm−k = λ′

N

(N
k

)
t N−k ≥ (N

k

)
t N−k (recall that λ′

N ≥ 1), while for k > N
it is equal to 0. Moreover, λ′ attains the same value as λ in the dual problem (36),
because

∑M
m=0 λ′

m = ∑M
m=0 λm .

Suppose instead that
∑M

m=0 λm < 1. Then, at t̄N ,k the left-hand side of the con-
straints in (36) writes



M∑

m=k

λm

(
m

k

) (
t̄N ,k

)m−k ≤ [use (ii) above]

≤
[

M∑

m=k

λm

] (
N

k

) (
t̄N ,k

)N−k

<

[
since

M∑

m=0

λm < 1

]

<

(
N

k

) (
t̄N ,k

)N−k
.

Hence, feasibility of λ implies that 1 − ε(k) ≤ t̄N ,k , since otherwise the constraint
in (36) that

∑M
m=k λm

(m
k

)
tm−k ≥ (N

k

)
t N−k · 1[0,1−ε(k))(t) would be violated at t̄N ,k .

Choose λ′ as follows: λ′
m = λm for m ≤ N − 1, λ′

N = ∑M
m=N λm , and λ′

m = 0

for m ≥ N + 1. Since
∑M

m=0 λ′
m = ∑M

m=0 λm , this λ′ attains the same value as λ

in the dual problem (36). Moreover, because of (iii) above, it holds that
(N
k

)
t N−k ≥(m

k

)
tm−k, N ≤ m ≤ M , over [0, t̄N ,k], and hence

M∑

m=k

λ′
m

(
m

k

)
tm−k =

N−1∑

m=k

λm

(
m

k

)
tm−k +

[
M∑

m=N

λm

] (
N

k

)
t N−k

≥
M∑

m=k

λm

(
m

k

)
tm−k (38)

over the interval [0, t̄N ,k]. Using that 1 − ε(k) ≤ t̄N ,k and that λ is feasible, (38)
implies that λ′ is feasible as well. This shows that γ ∗

M = γ ∗
N for any M ≥ N , and (37)

remains proven.
To draw the conclusion of the theorem, we need to rewrite problem (36) with

M = N as the auxiliary variational problem (31). This is immediately done by letting

ξ(t) =
N∑

m=0

λmt
m,

and noting that ξ(1) = ∑N
m=0 λm and 1

k!
dk

dtk
ξ(t) = ∑N

m=k λm
(m
k

)
tm−k .

Hence,
γ ∗
N = γ ∗, (39)

and the proof is completed by using (34), (37), and (39) to obtain

P
N {V (x∗

N ) > ε(s∗
N )} ≤ γ ≤ γ ∗

N = γ ∗.

	




7.2 Proof of Theorem 4

Consider problem (31) and take

ξ̄ (t) = β

N + 1

N∑

m=k

tm,

which gives

1

k!
dk

dtk
ξ̄ (t) = β

N + 1

N∑

m=k

(
m

k

)
tm−k, k = 1, . . . , N .

The conclusion then follows from an application of Theorem 3, after proving that
1
k!

dk

dtk
ξ̄ (t) ≥ (N

k

)
t N−k · 1[0,1−ε(k))(t) so that γ ∗ ≤ ξ̄ (1) = β. The fact that

1
k!

dk

dtk
ξ̄ (t) ≥ (N

k

)
t N−k · 1[0,1−ε(k))(t) can be proven as in the proof of Theorem 2

for k = 0, 1, . . . , N − 1, while the result is trivially true for k = N . 	


8 Overview of the paper and final comments

Judging the robustness properties after a scenario solution has been found provides 
guarantees similar to those achievable should one know in advance that the number of 
support constraints never exceeds the number of support constraints that has been seen 
in the scenario program at hand. This is the main take-home message of this paper, 
and it bears profound implications. A-priori finding the largest possible number of 
support constraints is often an arduous endeavor. This paper suggests an alternative 
way to wait and judge that relieves the scenario’s user from paying this effort. More 
importantly, in most problems an a-priori bound on the number of support constraints 
does not even exist and, potentially, the support set can be as large as the number of 
optimization variables. The pleasant message this paper delivers is that this state of 
things is not of obstacle to establish tight robustness evaluations, which are readily 
obtainable from an inspection of the found solution.

While the gap between the robustness guarantee delivered after seeing k support 
constraints and the guarantee that can be established by knowing in advance that k 
is never exceeded is minor, the results of this paper do not set this gap to zero. It 
is worthy of note that there are intrinsic reasons for why setting this gap to zero is 
impossible, and an example in dimension 2 that gives evidence of this fact is provided in 
Appendix 1. This epistemologically important result can be phrased that a-posteriori 
ascertaining that a solution is identified by only k observations—or, equivalently, 
that it has a “representation” of size k in terms of the data set—does not give equal 
robustness guarantees as obtaining a solution from a problem whose solutions are 
always representable by k observations. That is, simple questions are more guaranteed 
than simple answers.

Central to this paper is the non-degeneracy Assumption 2. This assumption isolates 
and singles out the essential property that must hold for the theory of this paper to



(a) (b)

Fig. 8 Non convex problems. aAll three constraints are of support; b constraints 3 and 4 are not of support

be valid. Here, we wish to provide comments and further insight on this assumption.
The first part of this paper studies convex problems in finite-dimensional spaces. The
fact that the space has dimension d implies that the maximum number of support
constraints is d because the problem is convex. Importantly, in dimension d a non-
convex problem can have more than d support constraints, and Fig. 8a displays a
non-convex program in dimension d = 2 where all 3 constraints are of support.

In the first part of the paper, the only use we have made of convexity is to establish
the bound d on the number of support constraints. However, we feel that it is important
to clarify that convexity also plays a significant indirect role, and it is that Assumption
2 is normally satisfied under convexity. In convex problems, a support constraint need
be active, a fact that fails to be true for non-convex problems, refer again to Fig. 8a.
Hence, for convex problems, degeneracy is an anomalous condition requiring that
more than d constraints meet at the solution point, which shows that Assumption 2 is
quite mild. Moreover, for convex problems, one can consider to extend the theory of
this paper to the cases where Assumption 2 is not satisfied by a heating and cooling
procedure as it has been done in Sect. 3 of [12] in the context of an a-priori evaluation
of the robustness properties. Hence, this paper virtually sets a final word for the convex
finite-dimensional case.

In the general setup of Sect. 6, instead, applicability of the non-degeneracyAssump-
tion 2 is much more delicate, and, while the main achievement of this paper is that
it points to the non-degeneracy Assumption 2 as the key property for the theory to
hold, the issue of identifying the classes of problems for which Assumption 2 is sat-
isfied certainly demands more research. For reasons similar to the finite dimensional
case, Assumption 2 is mild for convex infinite-dimensional problems, which is an
important class in itself. Problems with convex constraints and a quasi-convex cost
can be studied similarly to the convex case. Moreover, many isolated problems satisfy
Assumption 2, and we have one such example in Sect. 6 where we constructed the
convex hull of a set of points. On the other hand, missing to satisfy Assumption 2
cannot be seen as a pathological situation for non-convex problems. The reason lies
in that support constraints need not be active for non-convex problems and thereby an
anomalous concentration of constraints is not required for a non-convex problem to



Fig. 9 A problem with
V-shaped constraints and
U-shaped constraints. The
probability of V-shaped
constraints is p and that of
U-shaped constraints is 1 − p.
V-shaped constraints are above
U-shaped constraints. When 1
support constraint is seen either
all constraints are of the U-type
or at most 1 constraint is of the
V-type. In both cases, all
V-shaped constraints, with at
most the exception of one
V-shaped constraint, are
violated, and violation is at least
p

be degenerate. Figure 8b shows a degenerate situation: only constraints 1 and 2 are of
support, but removing constraints 3 and 4 simultaneously changes the solution. As a
program for future research we indicate (i) identifying general classes of non-convex
problems for which Assumption 2 hold; and (ii) developing a theory for non-convex
problems for when Assumption 2 fails, which is not an easy goal since the heating
and cooling approach is not effective in this context because the constraints need not
group anomalously, and therefore they cannot be scattered by a heating procedure.

Finally, we want to warn the reader on a completely different issue so as to avoid
a misinterpretation of our results: the results of this paper do not have a conditional
validity. For example, Theorem 1 permits one to keep under control the probability
P
N {V (x∗

N ) > ε(s∗
N )}, not the conditional probability P

N {V (x∗
N ) > ε(s∗

N )|s∗
N = k}.

Bounding P
N {V (x∗

N ) > ε(s∗
N )|s∗

N = k} to a value less than 1 is in general impos-
sible. For example, given an arbitrary ε(1) < 1, Fig. 9 illustrates a situation where
seeing 1 support constraint leads systematically to a violation of at least p, so that
P
N {V (x∗

N ) > ε(1)|s∗
N = 1} = 1 if p > ε(1). On the other hand, by relation

P
N {V (x∗

N ) > ε(s∗
N ) ∧ s∗

N = k} = P
N {V (x∗

N ) > ε(s∗
N )|s∗

N = k} · PN {s∗
N = k}

we see that setting PN {V (x∗
N ) > ε(s∗

N )} to a very small value, say 10−6, implies that
the left-hand side PN {V (x∗

N ) > ε(s∗
N ) ∧ s∗

N = k} is no more than 10−6 so that a large
value ofPN {V (x∗

N ) > ε(s∗
N )|s∗

N = k} is only possible if there is a very low probability
of seeing s∗

N = k.

Appendix 1: The guarantee valid in dimension 1 is unattainable when 1 
support constraint is seen in dimension 2

Consider the optimization problem illustrated in Fig. 9 where the probabilistic mass of 
the V-shaped constraints is p and that of the U-shaped constraints is 1− p. For a given



ε(1) < p, the event
{
V (x∗

N ) > ε(1) ∧ s∗
N = 1

}
is met when all N constraints are

U-shaped or when only 1 constraint is V-shaped. This event has probability (1− p)N +
Np(1 − p)N−1. The sup of this probability over the p values that satisfy p > ε(1)
is (1 − ε(1))N + Nε(1)(1 − ε(1))N−1. According to (3), this is the probability that
V (x∗

N ) > ε(1) in a fully-supported problem in dimension 2. This probability is bigger
than the probability (1− ε(1))N , let us call it β, of V (x∗

N ) > ε(1) in a fully-supported
problem in dimension 1. Hence, for the problem in dimension 2 given in Fig. 9 one has
to increase ε(1) to the value ε′(1) such that (1−ε′(1))N +Nε′(1)(1−ε′(1))N−1 = β

to obtain that the probability of the event
{
V (x∗

N ) > ε′(1) ∧ s∗
N = 1

}
is bounded by

β.
Next we show that this example constitutes a counterexample to the validity of

Eq. (7). To see this, take a generic ε(1) and ε(0) = ε(2) = 1. The right-hand side of
(7) becomes (1 − ε(1))N , which is smaller than

(1 − ε(1))N + Nε(1)(1 − ε(1))N−1

= sup
p

P
N {

V (x∗
N ) > ε(1) ∧ s∗

N = 1
}

= sup
p

[
P
N {

V (x∗
N ) > 1 ∧ s∗

N = 0
}

+P
N {

V (x∗
N ) > ε(1) ∧ s∗

N = 1
} + P

N {
V (x∗

N ) > 1 ∧ s∗
N = 2

}]

= sup
p

P
N {

V (x∗
N ) > ε(s∗

N )
}
.

Since PN
{
V (x∗

N ) > ε(s∗
N )

}
is the left-hand side of (7), this contradicts (7).

Appendix 2: MATLAB code

The following MATLAB code returns ε(k), k = 0, 1, . . . , d, for user assigned d, N ,
and β.

function out = epsilon(d,N,bet)
out = zeros(d+1,1);
for k = 0:d

m = [k:1:N];
aux1 = sum(triu(log(ones(N-k+1,1)*m),1),2);
aux2 = sum(triu(log(ones(N-k+1,1)*(m-k)),1),2);
coeffs = aux2-aux1;
t1 = 0;
t2 = 1;
while t2-t1 > 1e-10

t = (t1+t2)/2;
val = 1 - bet/(N+1)*sum( exp(coeffs-(N-m’)*log(t)) );
if val >= 0

t2 = t;



else
t1 = t;

end
end
out(k+1) = 1-t1;

end

Appendix 3: Examples of solutions of Eq. (18)

Fully-supported problems

One can easily verify that the following Fk’s satisfy Eq. (18):

Fk(v) =
{
0, v < 1
1, v ≥ 1

, k = 0, 1, . . . , d − 1, (40)

Fd(v) =
⎧
⎨

⎩

0, v < 0
vd , 0 ≤ v ≤ 1
1, v > 1.

(41)

These are the Fk’s of fully-supported problems. The fact that for fully-supported
problems Fd(v) is as in (41) is proven in [12]. To show instead the validity of (40),
argue as follows. For 0 ≤ k < d , relation

V (x∗
k ) = 1 (42)

holds with probability one since, otherwise, complementing the set of k constraints
with d − k + 1 other constraints that are satisfied by x∗

k , which would be an event
with nonzero probability, leads to a total set of d + 1 constraints among which fewer
than d are of support, so contradicting the fully-supportedness assumption. Thus, the
measures corresponding to Fk, k = 0, 1, . . . , d − 1, concentrate in 1. Further, (40)
claims that the mass in 1 is equal to 1, which corresponds to say that the number of
support constraints is equal to k with probability one. For k = 0 this is obvious. For
0 < k < d, this is also true because, if less than k constraints were of support, then
at least one of the constraints would be satisfied by the solution generated when only
the other constraints are in place, a fact that happens with probability zero since the
violation of the solution generated when only the other constraints are in place is equal
to 1 as shown in (42).

Two examples of problems in dimension d = 2

Consider the problem

min
x1≥0,x2≥0

x2

subject to: |x1 − δ| ≤ x2,



where δ is uniform in [0, 1]. As it can be easily verified, this problem is fully-supported
so that, according to (40),(41), its Fk’s are

F0(v) = F1(v) =
{
0, v < 1
1, v ≥ 1

, F2(v) =
⎧
⎨

⎩

0, v < 0
v2, 0 ≤ v ≤ 1
1, v > 1

.

Consider instead problem

min
x1≥0,x2≥0

x1 + x2

subject to: xδ1 ≥ δ2,

where δ1 takes value 1 or 2 with probability 0.5 each, and δ2 is independent of δ1 and
is uniformly distributed on [0, 1]. This problem is not fully-supported and a simple
calculation shows that

F0(v) =
{
0, v < 1
1, v ≥ 1

, F1(v) =
⎧
⎨

⎩

0, v < 0.5
2v − 1, 0.5 ≤ v ≤ 1
1, v > 1

,

F2(v) =
⎧
⎨

⎩

0, v < 0
0.5v2, 0 ≤ v ≤ 1
0.5, v > 1

.

These Fk’s are another solution of Eq. (18).
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