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Fig. 1. Competition scenarios of the resident–invader dynamics between two
similar strategies x1 (resident, density n1) and x2 (invader, density n2), possibly
interacting with other resident populations (densities in vector N, graphically
represented as one-dimensional). Strategies x1 and x2 are thought to be close to a
reference strategy x, that is nonsingular in cases a and b, and singular (i.e., λ ð0;1Þ ¼ 0)
in cases c–f. The singular strategy x is generic in cases c and d (i.e., λ ð1;1Þa0), and
degenerate in cases e and f. In the absence of invader, the resident populations
coexist at the stable equilibrium ðnðx1Þ;N ðx1ÞÞ. After resident substitution, the new
residents coexist at ðnðx2Þ;N ðx2ÞÞ. The dynamics of the relative density of the
invader, r ≔ n2=ðn1þn2Þ, are schematically represented in the top-left of each
panel. The sketches of the r-dynamics will be used to identify the six scenario in
Section 4.
1. Introduction

Many systems, both natural and artificial, are regulated by the 
competition between groups of similar agents. E.g., the struggle for 
life between a resident and a similar mutant phenotype for the 
same environmental niche is the basis of the Darwinian concept of 
natural selection (Mayr, 1982; Maynard-Smith, 1993); marginal 
innovations characterize the battle for market share in many 
economic sectors (Grossman and Helpman, 1991; Ziman, 2000); 
similar strategies produced by imperfect imitation, learning or 
cultural transmission challenge each other in both real-life and 
virtual social networks and define the behavioral schemes of 
artificial intelligence (Sutton and Barto, 1998; Gintis, 2000; Hof-
bauer and Sigmund, 2003).
The performance of an invader strategy x2 against a resident 
strategy x1 is universally called the invasion fitness of the invader
and is typically quantified by a function, that we denote λðx1; x2Þ, 
measuring the initial rate of growth shown by the invader popu-
lation when introduced at very small density (Metz et al., 1992). 
Positive/negative fitness thus indicates invasion/extinction of the 
invader. Typically, the best performing strategy takes over the 
others (Gause, 1934; Hardin, 1960; Geritz, 2005; Meszéna et al., 
2005; Dercole and Rinaldi, 2008) (see Fig. 1a and b). This leads to 
evolutionary steps in the resident strategy in the direction of the
invasion fitness gradient ∂x2 λðx1; x2Þj x2 ¼ x1 (Metz et al., 1996; 
Dieckmann and Law, 1996), i.e., in the direction that is advanta-
geous for the invader (Fig. 1b). However, there are singular stra-
tegies x near which selection is not directional and allows the 
coexistence of similar strategies (Fig. 1c), the prerequisite for 
evolutionary branching (Metz et al., 1996; Geritz et al., 1997, 1998).
These are strategies x where the fitness gradient vanishes at x1 ¼ x 
and the resident–invader dynamics are ruled by the “curvatures”
of the fitness landscape (i.e., by the fitness second-derivatives w.r.t. 
resident and invader strategies).

Resident–invader coexistence between nearly singular strate-
gies is typically protected—each of the two types can invade the 
other, so that no one can take over the other (Fig. 1c). This is well 
known since from the first classification of singular strategies (Metz 
et al., 1996; Geritz et al., 1997, 1998), though the arrange-ment of 
the internal attractors of the resident–invader dynamics has been 
poorly investigated. Restricting to stationary coexistence, we show 
that competition between similar strategies works as in the 
classical model of Lotka (1920) and Volterra (1926): either one type 
dominates and leads to a stable monomorphic equilibrium (Fig. 1a 
and b), or coexistence is protected, with a unique stable internal 
equilibrium (Fig. 1c), or the two types mutually exclude each other, 
with a unique internal saddle equilibrium separating the basins of 
attraction of the two monomorphic equilibria (Fig. 1d).

Although this result may seem rather intuitive and has been 
surmised since Metz et al. (1996) and Geritz et al. (1997, 1998) (see 
also Durinx et al., 2008, where the result is shown for a particular 
class of single-species physiologically structured population 
models), its formal derivation is rather involved, as will be seen in 
the next sections, and its implications are broad. If, for example, an 
innovative strategy is able to coexist with the established ones, 
then we know a priori that, generically (the genericity condition 
turns out to be the nonvanishing fitness cross-derivative, see Fig. 
1c), it cannot take over the similar residents, even if its relative 
abundance is arbitrarily increased. Moreover, the coexistence
equilibrium being unique, there is only one way in which evolu-
tion can proceed after branching.

Resident–invader unprotected coexistence—coexistence that is 
stable together with at least one of the monomorphic equilibria—is 
possible close to a singular strategy characterized by degeneracies 
in the curvatures of the fitness landscape. The two most simple 
configurations are depicted in Fig. 1e and f. We show that these are 
the only possible competition scenarios if fitness degeneracies do 
not involve the third-order derivatives at the singular strategy. 
Note that in Fig. 1f there is only one stable equilibrium of



coexistence, so that, again, there is no ambiguity on about how 
evolution may proceed. And more in general, we show that fitness 
degeneracies up to order kZ1 are required to have up to k internal 
equilibria in the resident–invader competition dynamics.

In this paper we restrict the analysis to the stationary coex-
istence between two similar strategies involved in intra- as well as 
inter-specific interactions, and we place our analysis in the clas-
sical framework in which most of theoretical ecology and evolu-
tion have been developed. That is: unstructured and asexual 
populations varying in continuous time in an isolated, homo-
geneous, and constant abiotic environment, with individual 
behavioral and phenotypic traits quantified by scalar (i.e., one-
dimensional) continuous strategies. This is also the classical fra-
mework for the game-theoretical view of economics and social 
sciences, where individuals are natural or artificial agents (e.g., 
human beings, robots, segments of computer code, and commer-
cial products) playing different strategies in a market or in a social 
network.

We unfold the competition scenarios between two sufficiently 
similar strategies x1 (resident) and x2 (invader) that can generically 
occur: (1) away from singularity, thus reobtaining the “invasion 
implies substitution principle” (Geritz, 2005; Meszéna et al., 2005; 
Dercole and Rinaldi, 2008); (2) close to a generic singular strategy, 
proving that competition between similar strategies is “essentially 
Lotka–Volterra”; and (3) close to degenerate singular strategies 
characterized by trivial configurations (e.g., vanishing) second-
order fitness derivatives. Analogous results are expected to hold for 
the case of structured populations, where the total population 
density is partitioned into physiological classes, e.g., according to 
age or stage, living in heterogeneous habitats, and for the case of 
multi-dimensional (vector-valued) strategies. However, the deri-
vation is much more involved and will be addressed separately.

We do not investigate the evolutionary dynamics resulting from 
repeated invasions, locally to the singular strategy. The 
evolutionary scenarios are well known only locally to generic 
singular strategies (Geritz et al., 1997, 1998), whereas nothing is 
basically known for degenerate fitness configurations. In parti-
cular, unexpected evolutionary scenarios are possible when the 
evolutionary dynamics are dominated by third- (or higher-) orders 
in the fitness expansion, e.g., evolutionary branching has been 
numerically observed by Doebeli and Ispolatov (2010) locally to an 
attracting evolutionary stable strategy (convergence-stable ESS). 
This remains an open problem in the modeling framework of 
Adaptive Dynamics (AD; Metz et al., 1996; Dieckmann and Law, 
1996; Geritz et al., 1997, 1998; Dercole and Rinaldi, 2008), that we 
will address separately, but we note that our analyses of the 
underlying competition scenarios are suited for that purpose, too.

The methodological approach is based on the series expansion 
of a generic demographic model with respect to the small differ-
ence between the resident and invader strategies. As a result, the 
sum of the resident and invader population densities, as well as 
the abundances of the other interacting populations, change faster
than the resident–invader relative densities (1�r and r in Fig. 1).
Because of this separation of time scales, the slow dynamics of the 
invader relative density are essentially one-dimensional and can be 
studied in isolation (see the sketches of the r-axis in Fig. 1). 
Moreover, by exploiting a specific structure relating the derivatives 
w.r.t. the resident strategies of the populations’ growth rates 
(recently introduced by Dercole, 2015), all our results are expres-
sed in terms of quantities to be evaluated at the resident mono-
morphic equilibrium (i.e., at ðnðx1Þ; Nðx1ÞÞ in Fig. 1), before the
invasion occurs. This is important in applications, where all such 
quantities can be interpreted biologically or economically and 
experimentally estimated without waiting for the appearance of 
the invader strategy.
The competition scenarios that are generically possible in the 
above mentioned situations (1)–(3) are classified, together with the 
bifurcation boundaries (Kuznetsov, 2004; Meijer et al., 2009)
separating them in the plane

fi 
ðx1; x2Þ of the resident and invader

strategies. In case (1), the rst-order expansion is enough to fully 
characterize the resident–invader dynamics, provided, as expec-
ted, the slope of the invasion fitness does not vanish, whereas case 
(2) requires a second-order expansion and, as genericity condi-
tions, a nonvanishing fitness cross-derivative (i.e., the second-
derivative λð1;1Þ in Fig. 1) and unequal second-order pure-deriva-
tives. These two conditions were already shown to discriminate the 
classification of singular strategies (Metz et al., 1996; Geritz et al., 
1997, 1998). In addition, we show that a nonvanishing fitness 
cross-derivative is the genericity condition under which coex-
istence is protected whenever it occurs between nearly singular 
strategies. This result attributes quite an important role to the 
fitness cross-derivative, that can be geometrically thought as 
determining the fitness sign (positive/negative for invasion/
extinction of the invader) when the competing strategies x1 and x2 

are locally perturbed from the singular value x in opposite direc-
tions. That is, a negative/positive λð1;1Þ (see Fig. 1c and d) gives a
positive/negative fitness for x1 ¼ x�ε, x2 ¼ xþε, ε small.

As for nongeneric singular strategies, we consider all possible 
degeneracies related to particular configurations of the second-
order fitness derivatives. That is: case (3.1) of equal pure-
derivatives (and nonvanishing cross-derivative), characterized by 
two colliding singular strategies; case (3.2) of vanishing cross-
derivative (and nonvanishing pure-derivatives), showing that 
unprotected coexistence is indeed possible for nearby resident and 
invader strategies; case (3.3) in which the above degeneracies 
occurs together, which implies that all second-order fitness deri-
vatives vanish, so that the resident–invader dynamics are fully 
determined by third-order terms in the expansion. The latter 
double degeneracy (codimension-two, in the jargon of bifurcation 
theory) is definitely less important in applications, but yet inter-
esting because the evolutionary scenarios at these singular stra-
tegies are also ruled by third-order conditions that still need to be 
explored.

Higher-order degeneracies can also be analyzed by means of our 
approach, by simply breaking the genericity conditions at one 
order, e.g., due to particular symmetries in the model formulation, 
and proceeding to the next order expansion. Also worth to note is 
that, within a given assumed degeneracy (cases (3.1)–(3.3)), we 
assume a generic demographic model. This means that each time 
our results hold under a certain condition, we assume that con-
dition as generically satisfied. However, if this is not the case, 
because of the peculiarity of a specific model, again our approach 
can go through, to the analysis of the leading order. One example 
for all: Lotka–Volterra competition models are nongeneric. Because 
the per-capita growth rates of the two competing stra-tegies are 
linearly density dependent, they cannot show unpro-tected 
coexistence (there cannot be more than one internal equi-librium 
in the resident–invader dynamics). Given the popularity of Lotka–
Volterra competition models in ecological theory, they are 
specifically analyzed in the example section.

The main significance of this paper resides in the proposed 
methodological approach and in the analysis of degenerate sin-
gular strategies (cases (3.1)–(3.3) above), as cases (1) and (2) has 
been long known or conjectured. An important result emerging 
from our analysis is that some specific degeneracies in the third-
order derivatives of the model equations are required in order to 
have more than one stable way of coexistence between the two 
competing strategies. Thus, even though coexistence can be 
unprotected under second-order degeneracies, there is generically 
only one way in which evolution can proceed after branching. The



analytic expressions of the third-order degeneracies yielding two 
stable coexistence equilibria are not easily interpretable but, again, 
can be experimentally tested prior to invasion.

Another interesting result can be drawn by complementing our 
local analysis (strategies x1 and x2 in the vicinity of a reference 
strategy x) with the global analysis of Priklopil (2012) of the 
boundaries, in the strategy plane ðx1; x2Þ, of the region allowing 
coexistence. We can indeed conclude that the competition 
scenarios that we see locally to a degenerate singular strategy do 
also occur in the vicinity of a generic, though nearly degenerate 
singu-larity, but require a small finite difference between the 
resident and invader strategies. For example, we can generically 
expect unpro-tected coexistence close to a singular strategy with 
small (negative) fitness cross-derivative (see Fig. 1c and e and f). 
This justifies the extra effort required for unfolding the competition 
scenarios that are possible locally to degenerate singular strategies.

The paper is organized as follows. We start by introducing in 
Section 2.1 the basic notation and assumptions of our demo-
graphic model and, in Section 2.2, the fast and slow variables that 
are useful for the analysis. Then, in Section 2.3, we exploit the 
time-scale separation and derive the approximation of the (one-
dimensional) invader relative dynamics up to third order in the 
difference between resident and invader strategies. Most compu-
tations have been handled symbolically, so part of the proof relies 
on the output of a Mathematica script that is attached as online 
Supplementary Data. Some intermediate results are reported in 
Appendices A and B.

In Section 3, the classification of the competition scenarios is 
organized in the three levels of genericity corresponding to cases 
(1), (2), and (3.1)–(3.3) above: away from singularity (Section 3.1), 
close to a generic singular strategy (Section 3.2), and close to 
(codimension-one and -two) degenerate singular strategies 
(Sections 3.1–3.3). Sections 3.1–3.3 are essentially analytic and can 
be skipped by the non-interested reader (though the opening of 
Section 3 is worth reading). The results are summarized (with 
emphasis on geometrical and biological interpretation) in Section 
4, that can be used as a practical guide to the classification of 
competition scenarios.

Section 5 is dedicated to two examples. The first is a model 
proposed in the literature to study the evolution of cannibalism 
(Dercole and Rinaldi, 2002; Dercole, 2003), in which all studied 
degenerate singular strategies occur for suitable values of the 
model parameters. The second particularizes our analysis to the 
case of Lotka–Volterra competition models. In particular, we show 
that all degenerate singular strategies (vanishing fitness cross-
derivative) are further degenerate than generically expected, and 
this indeed prevents the possibility of unprotected coexistence. 
However, in the presence of any non-Lotka–Volterra interaction, e. 
g., resident and invader prey are preyed upon by a predator with 
Holling-type-II functional response (see, e.g., Dercole et al., 2003), 
the model turns out to be generic (in respect of our analysis), even 
if resident–invader competition is Lotka–Volterra.

Section 6 closes the paper with first a discussion of the pre-
sented results in the light of those already available in the litera-
ture (mainly in the original papers Metz et al., 1996; Geritz et al., 
1997, 1998, but also in Geritz, 2005; Meszéna et al., 2005, and in 
Durinx et al., 2008) and then a vision on the future directions for 
the analysis of resident–invader and evolutionary dynamics.
2. Methods

2.1. Basic notation and assumptions

We consider two similar competing populations with abun-
dances measured by densities n1ðtÞ and n2ðtÞ at time t, whose
individuals only differ in the value of a one-dimensional strategy
(or trait) x that takes value x1 in population 1 and x2, arbitrarily
close to x1, in population 2. We refer to populations 1 and 2 as the 
resident and the invader, respectively, and allow them to interact 
with P other populations of the same or different type (or species),
with densities packed in the vector NðtÞARP and corresponding 
strategies (finitely different from x1 and x2 in the case of populations 
of the resident and invader type) not explicitly pointed out. We study 
the demographic dynamics of the community in the 
ð2þPÞ�dimensional space ðn1; n2; NÞ (see Fig. 1, where the N-axis 
represents a P-dimensional subspace). Note that strategies x1 and x2 

play the role of constant parameters. Since populations 1 and 2 are 
each composed of individuals of the same type, their percapita 
growth rates n_ 1=n1 and n_ 2=n2 can be expressed through a unique 
function suitably operating on the densities ðn1; n2; NÞ and on the 
strategies ðx1; x2Þ. This can be done using the so-called fit-ness 
generating function (or g-function, Vincent and Brown, 2005) gðn1; n2; 
N; x1; x2; x0Þ that gives the per-capita growth rates of a population of 
strategy x0 with infinitesimally small density, in an environment 
where strategies x1 and x2 are present with densities n1 and n2 and all 
other populations are present according to the density vector N. 
Then, n_ 1=n1 and n_ 2=n2 are given by the g-function evaluated for x0 ¼ 
x1 and x0 ¼ x2, respectively (see Section 5 for specific examples). 
Packing the population growth rates N_ in the vector-valued 
function F, the demographic dynamics of the community read:

_n1 ¼ n1 gðn1;n2;N; x1; x2; x1Þ; ð1aÞ

_n2 ¼ n2 gðn1;n2;N; x1; x2; x2Þ; ð1bÞ

_N ¼ Fðn1;n2;N; x1; x2Þ: ð1cÞ
Model (1) is henceforth called the resident–invader model.

In order to define reasonable population dynamics, we assume 
that functions g and F enjoy the four basic properties described 
below. The first three are trivial, whereas the fourth one is more 
involved and has been recently shown in Dercole (2015) to be a 
consequence of the natural way in which ecological models are 
written in terms of individual strategies. Here and in the rest of the 
paper, we assume smoothness and use lists of integer superscripts 
to indicate the position of the arguments w.r.t. which we take 
derivatives and the order of differentiation (this is the notation 
used by Mathematica for derivatives and should facilitate the 
inspection of the Mathematica scripts accompanying the paper), e. 
g., gð1;0;0;0;0;0Þ and gð0;0;1;0;0;0Þ are the first-order partial derivatives of 
g w.r.t. n1 and N, so, while the first is a real number, the second is a 
P-dimensional row vector; gð2;0;0;0;0;0Þ, gð1;0;1;0;0;0Þ, and gð0;0;2;0;0;0Þ are 
examples of second-order derivatives, a real number, a P-dimen-
sional row vector, and tensor operator from RP � RP into R, 
respectively,

P1 : gðn1; 0; N; x1; x2; x0Þ ¼ g1ðn1; N; x1; x0Þ;
Fðn1;0;N; x1; x2Þ ¼ F1ðn1;N; x1Þ;

for suitable functions g1 and F1. The per-capita growth rate of a
strategy x0, as well as those of the populations in N, are not
affected by the strategy x2 of an absent population:

P2 : gðn1;n2;N; x; x; x0Þ ¼ gðαðn1þn2Þ; ð1�αÞðn1þn2Þ;N; x; x; x0Þ;
Fðn1;n2;N; x; xÞ ¼ Fðαðn1þn2Þ; ð1�αÞðn1þn2Þ;N; x; xÞ;

for any 0rαr1. Any partitioning of the total density ðn1þn2Þ
into two populations with same strategy x must result in the
same per-capita growth rate for strategy x0 and for the
populations in N.

P3 : gðn1;n2;N; x1; x2; x0Þ ¼ gðn2;n1;N; x2; x1; x0Þ;
Fðn1;n2;N; x1; x2Þ ¼ Fðn2;n1;N; x2; x1Þ:



The order in which populations 1 and 2 are considered is
irrelevant.

P4 : gð0;0;0;d1 ;0;0Þðn1;n2;N; x; x; x0Þ ¼
Xd1
i1 ¼ 1

ϕd1 ;i1 ðn1þn2;N; x; x0Þni1
1 ;

gð0;0;0;d1 ;d2 ;0Þðn1;n2;N; x; x; x0Þ ¼
Xd1
i1 ¼ 1

Xd2
i2 ¼ 1

ϕd1 ;d2 ;i1 ;i2 ðn1þn2;N; x; x0Þni1
1 n

i2
2 ;

F ð0;0;0;d1 ;0Þðn1;n2;N; x; xÞ ¼
Xd1
i1 ¼ 1

ψd1 ;i1 ðn1þn2;N; xÞni1
1 ;

F ð0;0;0;d1 ;d2Þðn1;n2;N; x; xÞ ¼
Xd1
i1 ¼ 1

Xd2
i2 ¼ 1

ψd1 ;d2 ;i1 ;i2 ðn1þn2;N; xÞni1
1 n

i2
2 ;

for suitable functions ϕd1 ;i1 
, ϕd1 ;d2 ;i1 ;i2 

, ψd1 ;i1 
, and ψd1 ;d2 ;i1 ;i2 

, d1, 
d2 Z1. This follows from a generalization of the principle of 
mass-action, according to which function g (resp. F) describes
the interactions of a target individual with strategy x0 (resp. 
belonging to a population in N) through pairwise encounters 
with other individuals, which are, in turn, involved in other
interactions (Dercole, 2015). When considering identical resi-
dent and invader strategies, x1 ¼ x2 ¼ x, the sensitivity (i.e., the 
derivative) of the growth rate g (resp. F) w.r.t. x at fourth or
fifth argument is proportional to the density of the corre-
sponding individuals, n1 or n2, whose strategy is being per-
turbed by the derivative, with a proportionality coefficient
that can be density-dependent only as a function of the total
density n1 þn2. Moreover, due to nonlinear density depen-
dencies in g (resp. F), higher powers of n1 and n2 may appear
in further derivatives (up to the order d1 and d2 of 
differentiation).

Properties P1–P4 can be combined to produce further relations 
among g-derivatives that will be taken into account in our com-
putations (in particular in the Supplementary Data). Specifically:

P1;2a : gðl1 ;l2 ;0;0;0;0Þðn1;n2;N; x; x; x0Þ ¼ gðl1 þ l2 ;0;0;0Þ
1 ðn1þn2;N; x; x0Þ;

Fðl1 ;l2 ;0;0;0Þðn1;n2;N; x; xÞ ¼ F ðl1 þ l2 ;0;0Þ
1 ðn1þn2;N; xÞ;

i.e., n1- and n2-perturbations simply perturb the total
density ðn1þn2Þ if the two populations have the same
strategy x:

P1;2b :
Xd
i ¼ 0

d

i

� �
gðl1 ;l2 ;0;i;d� i;0Þðn1;n2;N; x; x; x0Þ ¼ gðl1 þ l2 ;0;d;0Þ

1 ðn1þn2;N; x; x0Þ;

Xd
i ¼ 0

d

i

� �
F ðl1 ;l2 ;0;i;d� iÞðn1;n2;N; x; xÞ ¼ F ðl1 þ l2 ;0;dÞ

1 ðn1þn2;N; xÞ;

dZ1, obtained by x-differentiating P1,2a:

P1;3 : gð0;n2;N; x1; x2; x0Þ ¼ g1ðn2;N; x2; x0Þ;
Fð0;n2;N; x1; x2Þ ¼ F1ðn2;N; x2Þ:

P1;4 : gð0;0;d;0Þ1 ðn;N; x; x0Þ ¼
Xd
i ¼ 1

ϕd;iðn;N; x; x0Þni;

F ð0;0;dÞ1 ðn;N; xÞ ¼
Xd
i ¼ 1

ψd;iðn;N; xÞni:

P1;2;4 :
Xd� i2

i ¼ i1

d
i

� �
ϕi;d� i;i1 ;i2 ðn;N; x; x0Þ ¼

i1þ i2
i1

!
ϕd;i1 þ i2 ðn;N; x; x0Þ;

Xd� i2

i ¼ i1

d

i

� �
ψ i;d� i;i1 ;i2 ðn;N; xÞ ¼

i1þ i2
i1

!
ψd;i1 þ i2 ðn;N; xÞ;

for each i1; i2Z1 with i1þ i2rdZ2, obtained by sub-
stituting P4 and P1,4 into P1,2b (with l1 ¼ l2 ¼ 0) and
by balancing same ðn1;n2Þ�monomials at the left- and
right-hand sides. In particular,

d¼ 2; i1 ¼ 1; i2 ¼ 1 gives 2ϕ1;1;1;1 ¼ 2ϕ2;2;

d¼ 3; i1 ¼ 1; i2 ¼ 1 gives 3ϕ1;2;1;1þ3ϕ2;1;1;1 ¼ 2ϕ3;2;

d¼ 3; i1 ¼ 1; i2 ¼ 2 gives 3ϕ1;2;1;2 ¼ 3ϕ3;3;

d¼ 3; i1 ¼ 2; i2 ¼ 1 gives 3ϕ2;1;2;1 ¼ 3ϕ3;3;

thus linking the functions ϕ's with two sum indexes to
those characterized by a single sum index, and simi-
larly for functions ψ's.

P3;4a : gð0;0;0;0;d2 ;0Þðn1;n2;N; x; x; x0Þ ¼
Xd2
i2 ¼ 1

ϕd2 ;i2 ðn1þn2;N; x; x0Þni2
2 ;

F ð0;0;0;0;d2Þðn1;n2;N; x; xÞ ¼
Xd2
i2 ¼ 1

ψd2 ;i2 ðn1þn2;N; xÞni2
2 :

P3;4b : ϕd1 ;d2 ;i1 ;i2 ¼ ϕd2 ;d1 ;i2 ;i1 ;

ψd1 ;d2 ;i1 ;i2 ¼ ψd2 ;d1 ;i2 ;i1 :

P1�4 : ϕ1;1;1;1 ¼ ϕ2;2; ϕ2;1;1;1 ¼ ϕ1;2;1;1 ¼ 1
3 ϕ3;2;

ϕ2;1;2;1 ¼ ϕ1;2;1;2 ¼ ϕ3;3; ψ1;1;1;1 ¼ ψ2;2;

ψ2;1;1;1 ¼ ψ1;2;1;1 ¼ 1
3 ψ3;2; ψ2;1;2;1 ¼ ψ1;2;1;2 ¼ ψ3;3;

obtained by exploiting P3,4b in the examples of P1,2,4.
Moreover, further derivatives w.r.t. N and x0 can be added
to all properties.

Examples of property P4 are

gð0;0;0;1;0;0Þ ¼ ϕ1;1 n1; gð0;0;0;1;1;0Þ ¼ ϕ2;2 n1n2; gð0;0;0;2;0;0Þ ¼ ϕ2;1 n1þϕ2;2 n2
1

(where arguments have been omitted for brevity), to which deri-
vatives w.r.t. ðn1;n2Þ apply as follows:

gð1;0;0;1;0;0Þ ¼ ϕ1;1þϕð1;0;0;0Þ
1;1 n1;

gð0;1;0;1;0;0Þ ¼ ϕð1;0;0;0Þ
1;1 n1;

gð1;1;0;1;0;0Þ ¼ ϕð1;0;0;0Þ
1;1 þϕð2;0;0;0Þ

1;1 n1;

gð1;0;0;1;1;0Þ ¼ ϕ2;2 n2þϕð1;0;0;0Þ
2;2 n1n2;

gð1;0;0;2;0;0Þ ¼ ϕ2;1þðϕð1;0;0;0Þ
2;1 þ2ϕ2;2Þn1þϕð1;0;0;0Þ

2;2 n2
1

(analogous examples hold for function F).
As anticipated in the Introduction, we consider the (simplest, 

but most typical) case of stationary coexistence. In particular, we 
assume that for all values of the strategy x1 that we consider, the 
resident population (population 1) coexists with the other popu-
lations accounted for by vector N at a strictly positive and 
(hyperbolically) stable equilibrium of the model ((1a) and (1c)),
with n2 ¼ 0. Denoting the equilibrium densities with functions 
nðx1Þ and Nðx1Þ, we thus have

0¼ g1ðnðx1Þ;Nðx1Þ; x1; x1Þ; ð2aÞ

0¼ F1ðnðx1Þ;Nðx1Þ; x1Þ ð2bÞ
(see property P1 above). Note that the hyperbolicity of the resident
equilibrium (i.e., nonzero real part of all associated eigenvalues)
and the similarity between the resident and invader populations
ðx1Cx2Þ, guarantee that the invader population (population 2) is
also able to coexist with populations N at the strictly positive (and
hyperbolically stable) equilibrium ðnðx2Þ;Nðx2ÞÞ of model ((1b) and
(1c)) with n1 ¼ 0. In other words, the resident–invader model (1)
admits the two monomorphic equilibria ðnðx1Þ;0;Nðx1ÞÞ and
ð0;nðx2Þ;Nðx2ÞÞ (see Fig. 1) for all the pairs ðx1; x2Þ that we consider.

One of the most important concept in evolutionary biology is
that of invasion fitness (Metz et al., 1992), defined as the expo-
nential rate of growth initially shown by the invader population
when introduced at very small density in the resident community



Fig. 2. Polar coordinates in the plane of resident and invader strategies.
at equilibrium, i.e.,

λðx1; x2Þ ≔ g1ðnðx1Þ;Nðx1Þ; x1; x2Þ: ð3Þ
A positive fitness means that the invader population indeed
invades the resident community, at least temporary, while inno-
vative strategies with a negative fitness go extinct (as it is implied
by our analysis in Section 3 and previously proven in Geritz et al.
(2002), invasion followed by eventual extinction—see, e.g., Mylius
and Diekmann (2001) and Dercole et al. (2002)—requires a non-
hyperbolic resident equilibrium).

Technically, λðx1; x2Þ is the eigenvalue (from which the symbol λ
in lieu of the traditionally used s) of the monomorphic equilibrium
ðnðx1Þ;0;Nðx1ÞÞ of model (1) corresponding to the (unique) eigen-
vector with nonzero n2 component (see Fig. 1). So, the sign of
λðx1; x2Þ tells the (local) stability of the equilibrium, all other
eigenvalues having negative real part by the hyperbolic stability of
the resident equilibrium. Similarly, λðx2; x1Þ is the eigenvalue of the
monomorphic equilibrium ð0;nðx2Þ;Nðx2ÞÞ corresponding to the
eigenvector with nonzero n1 component.

The invasion fitness gives only local information on the resi-
dent–invader dynamics. The eventual fate of the invader population
depends, in principle, on the full nonlinearity of the demographic
model (1). What can be said based only on invasion considerations,
i.e., without looking in the interior of the resident–invader demo-
graphic state space, has puzzled theoretical biologists since from
the advent of the phenotypic approaches to evolutionary biology. A
major role is played by the so-called selection gradient, λð0;1Þðx1; x1Þ, i.
e., the slope of the fitness landscape at the resident strategy in the
direction of the invader strategy. The evolution of the resident
strategy has been postulated in the direction of the selection gra-
dient, grounded on the principle that invasion always (or, better,
generically) implies substitution (see Fig. 1b), and this type of
evolutionary dynamics has been called “canonical” (Dieckmann and
Law, 1996; Dercole and Rinaldi, 2008), as it also agrees with
quantitative genetics considerations (Bulmer, 1980). But the prin-
ciple became a theorem only much later (Geritz, 2005; Meszéna et
al., 2005; Dercole and Rinaldi, 2008) and, as already mentioned in
the Introduction, it is revisited in Section 2.2 and also in Section 3.1.
Whereas the unfolding of resident–invader coexistence, whether
protected or not, based on information prior to invasion, remained
incomplete. In Section 3 we show how suitable evaluations of the g-
function g1 (and of function F1, see property P1) at the resident
equilibrium are sufficient to fully characterize the resident–invader
dynamics for x1 sufficiently close to x2.

2.2. A useful change of variables and parameters

Following Meszéna et al. (2005) and Dercole and Rinaldi
(2008), we introduce the sum s of the resident and invader den-
sities and the relative density of invaders rA ½0;1� as new variables,
i.e.,

s¼ n1þn2; r ≔
n2

n1þn2
; ð4aÞ

with invertible transformations given by

n1 ¼ ð1�rÞs; n2 ¼ rs: ð4bÞ
We also introduce polar coordinates in the parameter plane of the
resident and invader strategies, i.e., we set

x1 ¼ xþε cos θ; x2 ¼ xþε sin θ ð5Þ
(see Fig. 2), where x is a reference strategy close to x1 and x2, that
will be assumed to be nonsingular in Section 3.1 and singular in
Sections 3.2 and 3.3. In other words, x is the strategy around which
we study the competition between similar strategies and θ
(obviously different from 1

4π and 5
4π) gives the direction of pertur-

bation of point ðx1; x2Þ from (x,x). Our aim is to determine the
competition scenarios in the limit ε-0 for any given θ, i.e., for
sufficiently similar strategies x1 and x2 along each possible ray
emanating from x.

Due to the symmetry of model (1) w.r.t. the diagonal x1 ¼ x2
(see property P3), we only need to consider the region of the
strategy plane above the diagonal, where
1
4 πoθo5

4 π and x2�x1 ¼ εð sin θ� cos θÞ40: ð6Þ
The resident–invader dynamics for ðx1; x2Þ below the diagonal 
can be obtained from those corresponding to the symmetric point
ðx2; x1Þ above the diagonal, by also exchanging n1 with n2.

In the new variables (4) and parameters (5), we can write
model (1) as

s_ ¼ n_ 1 þn_ 2
¼ n1 gðn1;n2;N; xþε cos θ; xþε sin θ; xþε cos θÞ
þn2 gðn1;n2;N; xþε cos θ; xþε sin θ; xþε sin θÞ
¼ s gðs;0;N; x; x; xÞþOðεÞ; ð7aÞ

_r ¼ _n2ðn1þn2Þ�n2ð _n1þ _n2Þ
ðn1þn2Þ2

¼ n1n2

ðn1þn2Þ2
gðn1;n2;N; xþε cos θ; xþε sin θ; xþε sin θÞ

� n1n2

ðn1þn2Þ2
gðn1;n2;N; xþε cos θ; xþε sin θ; xþε cos θÞ

¼ εð sin θ� cos θÞrð1�rÞgð0;0;0;0;0;1Þðs;0;N; x; x; xÞþOðε2Þ; ð7bÞ

_N ¼ Fðn1;n2;N; xþε cos θ; xþε sin θÞ ¼ Fðs;0;N; x; xÞþOðεÞ; ð7cÞ
where the right-hand sides have been ε-expanded around ε¼ 0 (i.
e., x1 ¼ x2 ¼ x), property P2 has been exploited, and the big-O
notation collects higher-order terms.

From Eqs. (7), we see that s and N are “fast” variables, con-
verging if ε¼ 0 to the resident equilibrium, nðxÞ and NðxÞ,
respectively, on the time scale of time t, whereas r is a “slow”

variable, whose dynamics develop on the time scale of the new
time variable τ¼ εt. We also see that r¼0 and r¼1 are constant
solutions for r (also for small but finite ε), corresponding to the
two monomorphic equilibria.

Well-known results on time-scale separation (see Hoppen-
steadt, 1966; Fenichel, 1979, for the original contributions and Hek,
2010, for a survey oriented to ecology), say that, thanks to the
hyperbolicity of the resident equilibrium, the dynamics of model
(7) for sufficiently small ε are equivalent to the so-called “singular”
ones (not to be confused with the singularity of strategies!),
obtained for ε¼ 0. That is, the fast segment

_s ¼ s gðs;0;N; x; x; xÞ; _N ¼ Fðs;0;N; x; xÞ; rðtÞ ¼ rð0Þ; tZ0; ð8aÞ
along which s and N converge to nðxÞ and NðxÞ at constant r,
concatenated with the slow segment ruled by

dr
dτ

1
ð sin θ� cos θÞrð1�rÞ ¼ gð0;0;0;0;0;1ÞðnðxÞ;0;NðxÞ; x; x; xÞ ¼ λð0;1Þðx; xÞ;

ð8bÞ



with constant sðτÞ ¼ nðxÞ and NðτÞ ¼NðxÞ, τZ0 (the factor ð sin θ�
cos θÞrð1�rÞ has been moved to the left-hand side just for type-
setting convenience).

From Eq. (8b) we immediately get the “invasion implies sub-
stitution” theorem: invasion with nonzero selection gradient, i.e.,
positive λð0;1Þðx; xÞ and ð sin θ� cos θÞ (x24x1, recall (6)), or nega-
tive λð0;1Þðx; xÞ and ð sin θ� cos θÞ ðx2ox1Þ, implies the substitution
of the resident type (rðτÞ-1 for any rð0ÞA ð0;1Þ).

In order to shorten the notation, in the next sections, we will
omit the arguments of functions g and F, by indicating with a “bar”
the evaluations at ðnðxÞ;0;NðxÞ; x; x; xÞ and at ðnðxÞ;0;NðxÞ; x; xÞ,
respectively, otherwise we assume evaluations at ðn1;n2;N; x; x; xÞ
and ðn1;n2;N; x; xÞ. Similarly, we will write ϕ

ðl;m;0;qÞ
d1 ;i1 , ϕ

ðl;m;0;qÞ
d1 ;d2 ;i1 ;i2 ,

ψ ðl;m;0Þ
d1 ;i1

, and ψ ðl;m;0Þ
d1 ;d2 ;i1 ;i2

for ϕðl;m;0;qÞ
d1 ;i1

ðnðxÞ;NðxÞ; x; xÞ, ϕðl;m;0;qÞ
d1 ;d2 ;i1 ;i2

ðnðxÞ;
NðxÞ; x; xÞ, ψ ðl;m;0;qÞ

d1 ;i1
ðnðxÞ;NðxÞ; xÞ, and ψ ðl;m;0;qÞ

d1 ;d2 ;i1 ;i2
ðnðxÞ;NðxÞ; xÞ when

using property P4 of Section 2.1, λðd;qÞ for λðd;qÞðx; xÞ, and nðdÞ and

N
ðdÞ

for nðdÞðxÞ and N
ðdÞðxÞ. For example, we have g ð0;0;0;0;0;1Þ ¼ λ

ð0;1Þ

and g ð1;0;0;1;0;0Þ ¼ ϕ1;1þϕ
ð1;0;0;0Þ
1;1 n.

Our aim is that of writing the expansion of Eq. (7b) in terms of
“bar”-evaluations, i.e., evaluations prior to invasion at the resident
equilibrium (note that “bar”-evaluations only require functions g1
and F1 of property P1). We will see that this is indeed possible
thanks to properties P1–P4, property P4 in particular.

2.3. Time-scale separation

When the selection gradient λ
ð0;1Þ vanishes, the singular slow

equation becomes dr=dτ¼ 0 and is not informative on the
dynamics of model (7) for small ε. And expanding the right-hand
side of Eq. (7b) up to second-order is not useful, because the ε-
term in the right-hand side does not disappear (though gð0;0;0;0;0;1Þ

ðs;0;N; x; x; xÞ vanishes on the fast time scale), so that the singular
slow segment cannot be studied in the time τ¼ ε2t.

The proper way to perform the time-scale separation when
λ
ð0;1Þ ¼ 0 is that of keeping ε small but finite during the fast seg-

ment and then take the limit ε-0 in the slow one. For small ε40,
the equilibrium of the fast variables s and N is given by suitable
functions sf ðr; ε; θÞ and Nf ðr; ε; θÞ of the slow variable rA ½0;1�,
which also depend on the scaling parameter ε and on the per-
turbation angle θ. For given ðε; θÞ, fsf ðr; ε; θÞ;Nf ðr; ε; θÞ; rA ½0;1�g is
the r-parametrization of the one-dimensional “fast-equilibrium
manifold”, connecting the two monomorphic equilibria (see Fig. 3
(left)), i.e.,

sf ð0; ε; θÞ ¼ nðxþε cos θÞ ¼ nðx1Þ; Nf ð0; ε; θÞ ¼Nðxþε cos θÞ ¼Nðx1Þ;

sf ð1; ε; θÞ ¼ nðxþε sin θÞ ¼ nðx2Þ; Nf ð1; ε; θÞ ¼Nðxþε sin θÞ ¼Nðx2Þ:

For ε-0 the fast-equilibrium manifold degenerates into the
straight segment connecting ðn;0;NÞ and ð0;n;NÞ (see Fig. 3
(right)) and composed of a continuum of (critically) stable equili-
bria of model (7).
Fig. 3. The fast-equilibrium manifold in the state space ðn1 ;n2 ;NÞ for small ε40
(sketched in the left panel) and for ε¼ 0 (right).
Time-scale separation (Hoppensteadt, 1966; Fenichel, 1979; 
Hek, 2010) and the hyperbolicity of the resident equilibrium 
guarantee that, for sufficiently small ε, the slow dynamics of model 
(7) are equivalent to those restricted to the fast-equilibrium 
manifold (more precisely, the slow dynamics of model (7) for small 
ε develop on the so-called “Fenichel invariant manifold,” that 
shares equilibria and equivalent global dynamics with the fast-
equilibrium manifold). We can therefore ε-expand the right-hand 
side of (7b) after using the substitutions

n1 ¼ ð1�rÞsf ðr; ε; θÞ; n2 ¼ r sf ðr; ε; θÞ; N¼Nf ðr; ε; θÞ: ð9Þ
Note that this is different from expanding before the substitution
(as we did in (7b) up to first-order), since we now take the ε-
perturbation of the fast-equilibrium manifold into account (i.e., we
take g-derivatives also w.r.t. n1, n2, and N to be multiplied by the
derivatives of sf and Nf w.r.t. ε).

The resulting expansion, up to order k, can be rearranged
according to the following structure:

_r
1

ðsin θ� cos θÞrð1�rÞ ¼

R0;1ðθÞεþ R0;2ðθÞε2þR0;3ðθÞε3þ⋯þR0;kðθÞεk

þ�R1;2ðθÞε2þ R1;3ðθÞε3þ⋯þR1;kðθÞεk
�
r

þ�R2;3ðθÞε3þ⋯þR2;kðθÞεk
�
r2

þ⋯

þRk�1;kðθÞεk rk�1þOðεkþ1Þ; ð10Þ

where the functions Ri;j, io j, up to j¼3 are reported in Table 1 (their
derivation can be checked, up to j¼4, in the Supplementary Data).

First note that the right-hand side of (10) is a polynomial
expression in r. This is due to property P4 of Section 2.1, that
expresses the g-derivative

gð0;0;m;d1 ;d2 ;qÞðð1�rÞn; rn;N ; x; x; xÞ
as an r-polynomial of degree d1þd2 with coefficients that depend
on the resident equilibrium ðn;NÞ and on “bar”-evaluations of the
functions ϕð0;m;0;qÞ

d1 ;d2 ;i1 ;i2
; and similarly for the F-derivative

F ð0;0;m;d1 ;d2Þðð1�rÞn; rn;N ; x; xÞ:
Second note that the terms of order k in the right-hand side of

(10) form an r-polynomial with degree less or equal to ðk�1Þ (i.e.,
the functions Ri;j are defined for io j). In other words, r-powers
with degree k only appear if we ε-expand up to order greater than
k. This is the crucial property on which all our results in the next
section are based. It is due to the structure of Eq. (7b), where the
difference between the invader and resident per-capita growth
rates is taken, i.e., two evaluations of function g that only differ in
the last argument. Thus, only the derivatives of g with at least one
order of differentiation w.r.t. the invader strategy matter in Eq.
(7b), the other simply cancel in the difference. Relevant derivatives
of order k can therefore be only up to order k�1 jointly w.r.t.
arguments one-to-five, and each of such differentiations can
contribute at most one degree in r (again due to property P4).

Functions Ri;j collect the coefficients of ri among the terms of
order j in the ε-expansion (10) ðio jÞ. They depend on the reference
strategy x (not shown as an argument; it is needed to evaluate the
resident equilibrium ðn;NÞ and the “bar”-evaluations of functions g
and F, as well as ϕ's and ψ's) and on the perturbation angle θ ( cos θ
and sin θ appear due to the ε-derivatives of x1 ¼ xþε cos θ and
x2 ¼ xþε sin θ), and are therefore known prior to invasion.

Whenever possible, the functions Ri;j are expressed in Table 1 in
terms of invasion fitness derivatives, taking into account that by
the fitness definition we have

λ
ð1;0Þ ¼ g ð1;0;0;0;0;0Þnð1Þ þg ð0;0;1;0;0;0ÞN

ð1Þ þg ð0;0;0;1;0;0Þ; ð11aÞ



Table 1
Functions Ri;jðθÞ, io j. Note that R1;3 and R2;3 (with a star over the equal sign in their
definition) cannot be expressed only in terms of invasion fitness derivatives and

involve the ðPþ1Þ � ðPþ1Þ nonsingular matrix M defined at the bottom ( ~M is the
adjugate matrix, i.e., the transpose of the matrix of cofactors of M).

R0;1ðθÞ ≔ λ
ð0;1Þ

R0;2ðθÞ ≔ cos θ λ
ð1;1Þ þ1

2 ð sin θþ cos θÞλ ð0;2Þ

R1;2ðθÞ ≔ ð sin θ� cos θÞλ ð1;1Þ

R0;3ðθÞ ≔ 1
2 cos 2θ λ

ð2;1Þ þ1
2 cos θð sin θþ cos θÞλ ð1;2Þ þ1

6 ð1þ sin θ cos θÞλ ð0;3Þ

R1;3ðθÞ ≔n cos θð sin θ� cos θÞλ ð2;1Þ þ1
2ð sin

2θ� cos 2θÞλ ð1;2Þ �1
2ð sin θ� cos θÞ2

� 1
det M

g ð0;0;1;0;0;1Þ ~F
ð1;0;0;0;0Þ þg ð1;0;0;0;0;1Þ ~g ð1;0;0;0;0;0Þ

� �
λ
ð0;2Þ þϕ2;1 n

� ��

þ 1
detM

g ð0;0;1;0;0;1Þ ~F
ð0;0;1;0;0Þ þg ð1;0;0;0;0;1Þ ~g ð0;0;1;0;0;0Þ

� �
ψ 2;1 n�ϕ

ð0;0;0;1Þ
2;1 n

�

R2;3ðθÞ ≔n 1
2 ð sin

2θ� cos 2θÞ λ
ð2;1Þ þλ

ð1;2Þ� �
�R1;3ðθÞ

M ≔
g ð1;0;0;0;0;0Þ g ð0;0;1;0;0;0Þ

F
ð1;0;0;0;0Þ

F
ð0;0;1;0;0Þ

" #
; ~M ≔

~g ð1;0;0;0;0;0Þ ~g ð0;0;1;0;0;0Þ

~F
ð1;0;0;0;0Þ ~F

ð0;0;1;0;0Þ

" #
; ~MM ¼M ~M ¼ det M I1þP
λ
ð0;1Þ ¼ g ð0;0;0;0;0;1Þ; ð11bÞ

λ
ð2;0Þ ¼ g ð2;0;0;0;0;0Þðnð1ÞÞ2þ2g ð1;0;1;0;0;0Þnð1ÞN

ð1Þ þ2g ð1;0;0;1;0;0Þnð1Þ

þg ð1;0;0;0;0;0Þnð2Þ þg ð0;0;2;0;0;0Þ½N ð1Þ
;N

ð1Þ�þ2g ð0;0;1;1;0;0ÞN
ð1Þ

þg ð0;0;1;0;0;0ÞN
ð2Þ þg ð0;0;0;2;0;0Þ; ð11cÞ

λ
ð1;1Þ ¼ g ð1;0;0;0;0;1Þnð1Þ þg ð0;0;1;0;0;1ÞN

ð1Þ þg ð0;0;0;1;0;1Þ; ð11dÞ

λ
ð0;2Þ ¼ g ð0;0;0;0;0;2Þ; ð11eÞ

and similarly for higher-order derivatives. In particular, we use λ-
derivatives with at least one order of differentiation w.r.t. the
invader strategy, since pure-derivatives w.r.t. the resident strategy
can be eliminated by exploiting the identity λðx; xÞ ¼ 0 (invasion is
neutral when resident and invader are identical; see Eqs. (2a) and
(3)), e.g.,

λ
ð1;0Þ ¼ �λ

ð0;1Þ
; λ

ð2;0Þ ¼ �2 λ
ð1;1Þ �λ

ð0;2Þ
: ð12Þ

When it is not possible to express a function Ri;j only in terms of 
fitness derivatives (see, e.g., functions R1;3 and R2;3), a star is added 
over the equal sign in the definition, and we will use this notation
for all relevant quantities throughout the paper. These are the
quantities that explicitly depends on the ðP þ1Þ � ðP þ1Þ matrix M, 
defined in Table 1 and shown to be nonsingular (in Appendix A) by
the hyperbolicity of the resident equilibrium. Of course the
expressions for the star-quantities greatly simplify in the special
case in which the resident and invader populations have no other
intra- or inter-specific interaction, i.e., the case P¼0. The simpli-
fied expressions of functions R1;3 and R2;3 can be easily obtained
from those derived for P40 assuming that the resident popula-
tions in N do not affect the dynamics of the resident and invader
types, i.e., setting

g ðl;0;m;d;0;qÞ ¼ 0 ðimplying ϕ
ð0;m;0;qÞ ¼ 0Þ; m40; ð13aÞ

detM ¼ g ð1;0;0;0;0;0Þdet F
ð0;0;1;0;0Þ

; ð13bÞ

~g ð1;0;0;0;0;0Þ ¼ det F
ð0;0;1;0;0Þ

; ð13cÞ

~g ð0;0;1;0;0;0Þ ¼ 0 ð13dÞ
and then removing the argument N from the resulting expressions.
The result for function R1;3 (R2;3 is expressed in terms of R1;3, see 
Table 1) is reported below for the reader's convenience
R1;3ðθÞ ≔n cos θðsin θ� cos θÞλð2;1Þ þ1
2
ð sin 2θ� cos 2θÞλð1;2Þ

�1
2
ðsin θ� cos θÞ2 g ð1;0;0;0;1Þ

g ð1;0;0;0;0Þ λ
ð0;2Þ þϕ2;1 n

� �
�ϕ

ð0;0;1Þ
2;1 n

 !
ðP ¼ 0Þ;

ð14Þ
where g ð1;0;0;0;0Þo0 is the condition for the hyperbolic stability of
the resident equilibrium nðxÞ (note that, after dropping the argu-
ment N, g has five arguments in (14), ðn1;n2; x1; x2; x0Þ, and ϕ2;1 has
three, ðn; x; x0Þ).

The expressions of the x-derivatives of the resident equilibrium
ðnðxÞ;NðxÞÞ that appear in (3) can be expressed in terms of “bar”-
evaluations of the functions g and F (by differentiation of Eqs. (2)
w.r.t. x1 at x1 ¼ x) and this is done in Appendix A (see Table A1 for
the general case P40 and Table A2 for the case P¼0).

Finally, the expressions of the ε-derivatives of the fast-
equilibrium manifold fsf ðr; ε; θÞ, Nf ðr; ε; θÞ, rA ½0;1�g, that are nee-
ded for computing the expansion (10) and the functions Ri;j, are
computed in Appendix B (see Table B1 for P40 and Table B2 for
P¼0). They characterize the ε-perturbations of the fast-
equilibrium manifold from the zero-order solution sf ðr;0; θÞ;

�
Nf ðr;0; θÞÞ ¼ n;N

� �
, corresponding to the straight segment of Fig. 3

(right). They are also polynomial expressions in r (again due to
property P4), with degree equal to the order of differentiation and
coefficients that are ultimately functions of the reference strategy
x and of the perturbation angle θ.
3. Analysis

We now unfold the resident–invader dynamics, based on the
expansion (10) and on time-scale separation (under the hyper-
bolicity of the resident equilibrium). For a given perturbation angle
θ and in the limit of small ε ðε-0Þ, the fast variables s and N
converge to sf ðr; ε; θÞ and Nf ðr; ε; θÞ and we can study the slow
dynamics of r by means of Eq. (10). During the slow dynamics, the
resident and invader densities n1 and n2 track the ð1�rÞ and r
fractions of s¼ sf ðr; ε; θÞ, while N¼Nf ðr; ε; θÞ.

If the first-order term in (10) does not vanish, i.e., when the
reference strategy x is nonsingular, we can study the slow
dynamics in the time scale of time τ¼ εt and this is quickly done in
Section 3.1 (reobtaining the “invasion implies substitution” theo-
rem already discussed in Section 2.2). Otherwise, when x is sin-
gular and generic, i.e., without assuming any degeneracy in the
second-order terms in Eq. (10), we must consider the slow time
τ¼ ε2t (Section 3.2). The nongeneric cases, involving degeneracies
in the second-order derivatives of the invasion fitness, are unfol-
ded in Section 3.3, and some require a third-order analysis in the
slow time τ¼ ε3t. The genericity conditions that are assumed or
violated case by case are progressively labeled with a G prefix.

In all cases, the dynamics of model (7) for sufficiently small ε
are equivalent to those obtained in the limit ε-0. Since the fast-
equilibrium manifold fsf ðr; ε; θÞ;Nf ðr; ε; θÞ; rA ½0;1�g introduced in
Section 2.3 is one-dimensional, the asymptotic limits of the slow-
dynamics can only be the monomorphic equilibria at r¼0 and
r¼1, or internal equilibria at rAð0;1Þ. Moreover, since the k-th-
order in the right-hand side of (10) is an r-polynomial with degree
k�1, model degeneracies up to order k40 are needed to have up
to k internal equilibria.

When several resident–invader competition scenarios are
possible for different values on the angle θ, the bifurcation
boundaries (Kuznetsov, 2004; Meijer et al., 2009) separating
neighboring scenarios are computed in the plane of the strategies
ðx1; x2Þ. Bifurcation curves necessarily emanate from the point (x,
x), otherwise they are irrelevant in our local analysis for ε-0 (see
Priklopil, 2012 for cases with small but finite ε). They are described
in terms of ε-expansions of their polar parametrization θ¼ θðεÞ,



where θð0Þ (in the interval (6)) gives the tangent direction at ε¼ 0,
while the first nonvanishing derivative θðkÞð0Þ, kZ1, determines
the curvature (whether θ increases or decreases when moving
away from ε¼ 0 starting in the θð0Þ�direction).

3.1. Away from singularity

In the time scale of time τ¼ εt, Eq. (10) becomes

dr
dτ

1
ð sin θ� cos θÞrð1�rÞ ¼ λ

ð0;1Þ þOðεÞ: ð15Þ

From (15) we obtain that invasion with

G1 ≔ λ
ð0;1Þ

a0 ðG1Þ

by a sufficiently similar invader implies (under the hyperbolicity of
the resident equilibrium) the substitution of the resident type.
More precisely, for sufficiently small ε, strategy x2 (resp. x1)
dominates the competition if λðx1; x2Þ ¼ λ

ð0;1Þðx2�x1ÞþOðεÞ is
positive (resp. negative). In fact, recalling ðx2�x1Þ from (6), we
have dr=dτ positive (resp. negative) for all rAð0;1Þ, i.e., r is
Fig. 4. The two competition scenarios that are generically possible away from
singularity.
increasing (resp. decreasing) and asymptotically tends to one
(resp. zero). The two cases are graphically represented in Fig. 4.

3.2. Close to a generic singular strategy

If G1 ¼ 0, i.e., if x is a singular strategy, then, in the time scale of
time τ¼ ε2t, Eq. (10) becomes

dr
dτ

1
ð sin θ� cos θÞrð1�rÞ ¼ R0;2ðθÞþR1;2ðθÞrþOðεÞ

¼ cos θ λ
ð1;1Þ þ1

2
ð sin θþ cos θÞλð0;2Þ

þð sin θ� cos θÞλð1;1Þ rþOðεÞ: ð16Þ
As expected from the analysis of Section 2.3, the right-hand side at
ε¼ 0 is linear in r. This implies that the resident–invader compe-
tition scenarios that are generically possible for x1ox2 (recall (6))
close to a singular strategy are the four classical Lotka–Volterra
scenarios: x2- (resp. x1-) dominance if the right-hand side of (16)
at ε¼ 0 is positive (resp. negative) at both r¼0 and r¼1, protected
coexistence at an intermediate rAð0;1Þ if the right-hand side is
positive at r¼0 and negative at r¼1, mutual exclusion if it is
negative at r¼0 and positive at r¼1 (symmetrically, the compe-
tition scenarios for x14x2 are obtained by exchanging x1 with x2
and n1 with n2).

The above analysis fails when θ is such that the second-order
terms R0;2ðθÞ and R1;2ðθÞ both vanish, so that higher-order terms
matter. Within the θ-interval in (6), this is possible if and only if
λ
ð1;1Þ ¼ 0 together with either θ¼ 3

4π or λð0;2Þ ¼ 0 (see Table 1). This
means that the unfolding of the resident–invader dynamics close
to a singular strategy x is fully determined (i.e., for any given θ in
interval (6) and ε-0) by the second-order fitness derivatives if
and only if

G2;1 ≔ λ
ð1;1Þ

a0: ðG2:1Þ

The fitness cross-derivative λ
ð1;1Þ thus fully characterizes the gen-

ericity of a singular strategy. If and only if it is nonzero, we can
neglect third- and higher-order fitness derivatives.

Which of the four Lotka–Volterra scenarios occurs for a given θ
and ε-0 depends on θ and, of course, on the values of the fitness
derivatives λ

ð1;1Þ and λ
ð0;2Þ. The boundaries separating the four

scenarios in the strategy plane ðx1; x2Þ correspond to bifurcation
curves involving the equilibria of Eq. (16). Only two bifurcations
are generically possible by varying θ from 1

4π to 5
4π, namely the so-

called transcritical bifurcations at which the internal equilibrium
collides (and exchanges stability) with one of the two mono-
morphic equilibria. They are mathematically characterized by the
fact that the right-hand side of Eq. (16) (including higher-order
terms!) changes sign at r¼0 and r¼1, respectively.

Recalling the structure of Eq. (10) and that R0;1ðθÞ ≔ λ
ð0;1Þ ¼ G1

¼ 0 at the singular strategy x, the point ðε; θÞ of the ðx1; x2Þ-plane is
on the transcritical bifurcation curve involving the monomorphic
equilibrium at r¼0 if

R0;2ðθÞþR0;3ðθÞεþ⋯þR0;kðθÞεk�2þ⋯¼ 0:

The bifurcation curve θ¼ θT2ðεÞ is hence implicitly defined by
imposing

R0;2ðθT2ðεÞÞþR0;3ðθT2ðεÞÞεþ⋯þR0;kðθT2ðεÞÞεk�2þ⋯¼ 0 ð17Þ
for any small ε. Along the curve θ¼ θT2ðεÞ the invader density n2 is
vanishing at the internal equilibrium (i.e., the bifurcating equili-
brium is ðn1;n2;NÞ ¼ ðnðx1Þ;0;Nðx1Þ). By evaluating (17) and its ε-
derivatives at ε¼ 0, and solving for θT2ð0Þ and for the derivatives
θðkÞT2ð0Þ, kZ1, we can fully characterize the bifurcation curve locally
to ε¼ 0 (εo0 can be used in the expansion θT2ðεÞ ¼ θT2ð0Þþθð1ÞT2 ð0Þ
εþ⋯ to characterize the curve below the diagonal x1 ¼ x2). For
example, up to k¼1, we have

R0;2ðθT2ð0ÞÞ ¼ 0; Rð1Þ
0;2ðθT2ð0ÞÞθð1ÞT2 ð0ÞþR0;3ðθT2ð0ÞÞ ¼ 0; ð18Þ

from which we obtain (taking also the second relation in (12) into
account)

tan θT2ð0Þ ¼ �2λð1;1Þ þλ
ð0;2Þ

λ
ð0;2Þ ¼ λ

ð2;0Þ

λ
ð0;2Þ; θð1ÞT2 ð0Þ ¼ �R0;3ðθT2ð0ÞÞ

Rð1Þ
0;2ðθT2ð0ÞÞ

ð19Þ

(we always consider an arctan with values in our interval (6) of
interest). Note that Rð1Þ

0;2ðθT2ð0ÞÞ is nonzero under condition (G2.1)

(Rð1Þ
0;2ðθT2ð0ÞÞ ¼ 0 is equivalent to tan θT2ð0Þ ¼ λ

ð0;2Þ
=ð2λð1;1Þ þλ

ð2;0ÞÞ ¼
�λ

ð0;2Þ
=λ

ð2;0Þ, which gives a 1
2π difference w.r.t. the first equation in

(19)), and this guarantees that the bifurcation does take place when
moving ðx1; x2Þ across the bifurcation curve (this is technically called
the transversality of the bifurcation). Indeed, R0;2ðθT2ð0ÞÞ ¼ 0 (from
(18)) and a nonzero Rð1Þ

0;2ðθT2ð0ÞÞ implies that the right-hand side of
Eq. (16) at r¼0 changes sign for small ε when θ moves across θT2ð0Þ.

At the transcritical bifurcation at r¼1, the right-hand side of Eq.
(16) vanishes along the curve θ¼ θT1ðεÞ (the resident density n1 is
vanishing at the internal equilibrium, the bifurcating equilibrium
being ðn1;n2;NÞ ¼ ð0;nðx2Þ;Nðx2ÞÞ), i.e.,
R0;2ðθT1ðεÞÞþR0;3ðθT1ðεÞÞεþ⋯þ R0;kðθT1ðεÞÞεk�2þ⋯

þR1;2ðθT1ðεÞÞþR1;3ðθT1ðεÞÞεþ⋯þ R1;kðθT1ðεÞÞεk�2þ⋯

þR2;3ðθT1ðεÞÞεþ⋯þ R2;kðθT1ðεÞÞεk�2þ⋯
þ⋯

þRk�1;kðθT1ðεÞÞεk�2þ⋯
þ⋯¼ 0 ð20Þ



for any small ε, from which we derive

R0;2ðθT1ð0ÞÞþR1;2ðθT1ð0ÞÞ ¼ 0; ð21aÞ

Rð1Þ
0;2ðθT1ð0ÞÞþRð1Þ

1;2ðθT1ð0ÞÞ
� �

θð1ÞT1 ð0ÞþR0;3ðθT1ð0ÞÞ
þR1;3ðθT1ð0ÞÞþR2;3ðθT1ð0ÞÞ ¼ 0; ð21bÞ

i.e.,

tan θT1ð0Þ ¼
λ
ð0;2Þ

λ
ð2;0Þ; θð1ÞT1 ð0Þ ¼ �R0;3ðθT1ð0ÞÞþR1;3ðθT1ð0ÞÞþR2;3ðθT1ð0ÞÞ

Rð1Þ
0;2ðθT1ð0ÞÞþRð1Þ

1;2ðθT1ð0ÞÞ
:

ð22Þ
Again, Rð1Þ

0;2ðθT1ð0ÞÞþRð1Þ
1;2ðθT1ð0ÞÞa0 is the transversality condition for

the bifurcation and is implied by (G2.1) (Rð1Þ
0;2ðθT1ð0ÞÞþ Rð1Þ

1;2ðθT1ð0ÞÞ ¼ 0

is equivalent to tan θT1ð0Þ ¼ ð2λð1;1Þ þλ
ð2;0ÞÞ=λð0;2Þ ¼ �λ

ð2;0Þ
=λ

ð0;2Þ,
which gives a 1

2π difference w.r.t. the first equation in (22)).
Note that θT2ð0Þ and θT1ð0Þ are symmetric angles w.r.t. the anti-

diagonal x1þx2 ¼ 2x (the θ¼ 3
4π direction), which is of no surprise

due to the symmetry of model (1) w.r.t. the diagonal x1 ¼ x2. If the
equilibrium at r¼0 bifurcates at point ðx1; x2Þ, then the equilibrium
at r¼1 does the same at the symmetric point ðx2; x1Þ, so the
bifurcation curve of the equilibrium at r¼1 is simply obtained by
mirroring the curve for the equilibrium at r¼0 w.r.t. the diagonal
(this also implies θð1ÞT2 ð0Þ ¼ θð1ÞT1 ð0Þ, that can be easily verified, and
more in general that θðkÞT2ð0Þ ¼ ð�1Þk�1θðkÞT1ð0Þ, kZ1).

Also the type of transcritical bifurcation, namely the fact that
the internal equilibrium involved in the bifurcation is stable or not
(non-catastrophic and catastrophic cases, respectively), can be for-
malized. In fact, if the slope w.r.t. r of the right-hand side of (16) at
the bifurcation (r¼0 or r¼1; small ε) is negative (resp. positive),
then the internal equilibrium ðrAð0;1ÞÞ present at one side of the
bifurcation is attracting (resp. repelling) orbits originating at
nearby values of r (this is clear when picturing the right-hand side
Fig. 5. Classification of the competition scenarios that are possible close to a generic sing
G2;1 40 in cases c–f (instability of the internal equilibrium). G2;2 o0 in cases a–d (selecti
cases e–h. The top-right panel (adapted from Geritz et al., 1998) shows how the competiti
of (16) as a function of r locally to r¼0 or r¼1). Thus, the slope at
ε¼ 0 being R1;2ðθT2ð0ÞÞ at r¼0 and R1;2ðθT1ð0ÞÞ at r¼1 (and recalling
(6)), we conclude that under (G2.1) the transcritical bifurcations
are of the same type: non-catastrophic (resp. catastrophic) if the
fitness cross-derivative is negative (resp. positive).

A concise summary of the above analysis is presented in Fig. 5,
which classifies the competition scenarios that are possible close
to a generic singular strategy. Genericity requires (G2.1) together
with θT2ð0Þ and θT1ð0Þ being different from 1

4π and 5
4π, i.e.,

G2;2 ≔ λ
ð1;1Þ þλ

ð0;2Þ ¼ 1
2 λ

ð0;2Þ �λ
ð2;0Þ� �

a0 ðG2:2Þ

( tan θT2ð0Þa1 in (19)). Note that G2;2 is the x1-derivative of the

selection gradient λð0;1Þðx1; x1Þ at the singular strategy x. That is, we
also assume that the selection gradient changes sign with nonzero
slope at the singularity. Thus, negative/positive G2;2 means that
selection favors larger/smaller strategy values when x1 is smaller
than x, and smaller/larger strategy values when x1 is larger than x
(convergence/divergence to/from the singular strategy in a one-
dimensional adaptive dynamics; as we will see in Section 3.3.1, the
case of vanishing G2;2 corresponds to a bifurcation of singularity
itself).

In Fig. 5, the cases with negative/positive G2;2 are depicted in
the first/second row of panels, all others conditions being equal.
Note that the cases with positive G2;2 can be easily obtained from
the corresponding cases with negative G2;2 by reversing the sta-
bility of all equilibria (boundary at r¼0 and r¼1 and internal) and,
consequently, the type of transcritical bifurcations. Further note
that, locally to point (x,x) (small ε), the two transcritical bifurcation
curves define a cone where resident–invader protected coex-
istence (resp. mutual exclusion) occurs if the fitness cross-
derivative is negative (resp. positive).
ular strategy x. G2;1 o0 in cases g–b clockwise (stability of the internal equilibrium); 
on favors larger/smaller strategy values when x1 is smaller/larger than x); G2;2 40 in 
on scenarios classify in terms of the fitness second pure-derivatives at the singularity.



Fig. 6. Unfolding of the saddle-node bifurcation of singular strategies. Two singular 
strategies xð1Þ and xð2Þ of class h (G2;2 40, G3;1 o0) and a (G2;2 o0, G3;1 o0) (com-
pare the PIP locally to xð1Þ and xð2Þ and those of cases h and a in Fig. 5) collide and 
disappear. At the bifurcation, the competition scenario is that of the left panel in 
Fig. 7.

Fig. 7. Classification of the competition scenarios that are generically possible close
to a saddle-node singular strategy x. Only the cases with G3;1o0 are shown
(selection favors smaller strategy values on both sides of x); the cases with G3;140
can be obtained by reversing the stability of all equilibria.

Table 2

Quantities R
ðkÞ
i;j , io j, kZ0 (see Table 1).

R
ð1Þ
0;2 ¼ �

ffiffiffi
2

p

2
λ
ð0;2Þ

; R
ð2Þ
0;2 ¼ 0

R0;3 ¼ 1
12 3 λ

ð2;1Þ þλ
ð0;3Þ� �

; R
ð1Þ
0;3 ¼ 1

2 λ
ð2;1Þ þλ

ð1;2Þ� �
R1;3 ¼ �R2;3 ¼n �λ

ð2;1Þ þϕ
ð0;0;0;1Þ
2;1 n

� 1
det M

g ð0;0;1;0;0;1Þ ~F
ð1;0;0;0;0Þ þg ð1;0;0;0;0;1Þ ~g ð1;0;0;0;0;0Þ

� �
λ
ð0;2Þ þϕ2;1 n

� �
� 1
det M

g ð0;0;1;0;0;1Þ ~F
ð0;0;1;0;0Þ þg ð1;0;0;0;0;1Þ ~g ð0;0;1;0;0;0Þ

� �
ψ 2;1 n ðP40Þ

R1;3 ¼ �R2;3 ¼n �λ
ð2;1Þ þϕ

ð0;0;1Þ
2;1 n�g ð1;0;0;0;1Þ

g ð1;0;0;0;0Þ λ
ð0;2Þ þϕ2;1 n

� �
ðP ¼ 0Þ

R0;4 ¼ �
ffiffiffi
2

p

24
λ
ð3;1Þ þλ

ð1;3Þ� �
3.3. Close to degenerate singular strategies

3.3.1. Saddle-node singular strategy
In this section we analyze the degenerate (codimension-one)

case in which (G2.1) is met at the singular strategy x, but G2;2 ¼ 0.
The analysis of Section 3.2 still holds true, except for the fact that
the selection gradient, λð0;1Þðx1; x1Þ, generically has the same sign
for x1 close to x. The sign is that of the quadratic coefficient of the
selection gradient around x, that we expect to be nonzero, i.e.,

G3;1 ≔ λ
ð2;1Þ þ2λð1;2Þ þλ

ð0;3Þ
a0: ðG3:1Þ

Thus, selection favors larger (resp. smaller) strategy values on both
sides of x if G3;1 is positive (resp. negative).

This correspond to a saddle-node (or fold) bifurcation of sin-
gular strategies, i.e., the collision and disappearance of two sin-
gular strategies—typically one attracting and one repelling the
nearby adaptive dynamics—as G2;2 goes through zero due to gra-
dual changes in some model parameters (see Fig. 6). At the
bifurcation (central panel in Fig. 6), the saddle-node singular
strategy (the merging of the two colliding singularities) is gener-
ically unstable, attracting/repelling from below and repelling/
attracting from above if G3;1 is positive/negative.

Fig. 7 shows the two competition scenarios that are possible for
G3;1o0 (the two cases with G3;140 can be obtained by reversing
the stability of all equilibria and the type of transcritical bifurca-
tion). The transcritical bifurcation curves involving the two
monomorphic equilibria, r¼0 and r¼1, are tangent to the diagonal
x1 ¼ x2 at point (x,x). In fact, as G2;2 vanishes, one of the angles
θT2ð0Þ and θT1ð0Þ approaches 1
4π, the other 5

4π (recall (19), (22), and
(G2.2)). When G2;2 ¼ 0, we can arbitrarily set θT2ð0Þ ¼ 1

4π and
θT1ð0Þ ¼ 5

4π, with

θð1ÞT2 ð0Þ ¼ θð1ÞT1 ð0Þ ¼
G3;1

2
ffiffiffi
2

p
G2;1

a0 ð23Þ

(see (19)) and Table 1; the alternative choice would switch the sign 
of the right-hand side in (23), but would still represent the same

T2bifurcation curves). If θð1Þð0Þ≷0 (left/right panel in Fig. 7), the curve
T2 develops above/below the diagonal (recall that curves T2 and T1

are symmetric w.r.t. the diagonal). The case with θð1ÞT2 ð0Þ40 is
assumed in the unfolding of Fig. 6.

3.3.2. Vanishing fitness cross-derivative
Symmetrically, we now analyze the (codimension-one) case in

which (G2.2) is met at the singular strategy x, but G2;1 ¼ 0. Note
that, by taking the second relation in (12) with λ

ð1;1Þ ¼ 0 into
account, (G2.2) can now be written as λð0;2Þa0. Geometrically, this
is the case approaching which—along with gradual changes in
some model parameters—the cone of resident–invader coexistence
closes up (θT2ð0Þ ¼ θT1ð0Þ ¼ 3

4π in Eqs. (19) and (22).
Note that the analysis of Section 3.2 still holds true in the limit

ε-0 if θa3
4π. In fact, θa3

4π and (G2.2) guarantee that in Eq. (16)

the second-order term R0;2ðθÞ ¼ 1
2ð sin θþ cos θÞλð0;2Þ does not

vanish. Moreover, R1;2ðθÞ ¼ 0 under G2;1 ¼ 0 (see Table 1), so that
the right-hand side of (16) is constant at ε¼ 0 and x1- (resp. x2-)
dominance is the outcome for R0;2ðθÞo0 (resp. R0;2ðθÞ40).

Only if θ¼ 3
4π, we have to consider the third-order terms in the

expansion (10) and look at the following equation in the time scale
of time τ¼ ε3t:

dr
dτ

1ffiffiffi
2

p
rð1�rÞ

¼ R0;3þR1;3 rþR2;3 r2þOðεÞ; ð24Þ

where the bar over functions Ri;j (and their derivatives) hereafter
stands for evaluation at θ¼ 3

4π under G2;1 ¼ 0. The evaluations that
are used below are summarized in Table 2 (note that R1;3 ¼ �R2;3,
the only two quantities that cannot be expressed only in terms of
invasion fitness derivatives, are also displayed in the special case
P¼0, see Eq. (14)).

The OðεÞ-terms in Eq. (24) can be neglected in the limit ε-0
provided the third-order terms R0;3, R1;3, and R2;3 do not all vanish,
a requirement that reduces to one of the two following conditions:

G3;2 ≔ 12 R0;3 ¼ 3 λ
ð2;1Þ þλ

ð0;3Þ
a0 ðG3:2Þ

or

G3;3 ≔ R1;3 ¼ �R2;3a0 ðG3:3Þ
(see Table 2).



A little thought on the stationary solutions of Eq. (24) at ε¼ 0
(the roots r of the parabola R0;3þR1;3rð1�rÞ) shows that there can
only be either none or two internal solutions rAð0;1Þ: none (one
negative solution and one positive solution r41) if R0;3 and R1;3

have same sign; two (resp. none) if R0;3 and R1;3 have opposite sign
and the solutions are real (resp. complex). Thus, in the limit ε-0,
only x1- or x2-dominance, or unprotected coexistence, are possible
under the genericity condition (G3.2) or (G3.3).

The analysis of the transcritical bifurcation at r¼0 starts again
from Eq. (17), but now the two conditions in (18) give

θT2ð0Þ ¼
3
4
π; θð1ÞT2 ð0Þ ¼ �R0;3

R
ð1Þ
0;2

¼ 3 λ
ð2;1Þ þλ

ð0;3Þ

6
ffiffiffi
2

p
λ
ð0;2Þ ¼ G3;2

6
ffiffiffi
2

p
G2;2

; ð25Þ

where R
ð1Þ
0;2a0 under (G2.2) assures the transversality of the

bifurcation. The type of the bifurcation is determined by the sign
of R1;3 ¼ G3;3a0 (the slope w.r.t. r of the right-hand side of (24) at
r¼0 and ε¼ 0), negative (resp. positive) for the non-catastrophic
(resp. catastrophic) case. Similarly, the analysis at r¼1 (see (21a),
where R1;2ðθÞ ¼ 0 under G2;1 ¼ 0) gives

θT1ð0Þ ¼
3
4
π; θð1ÞT1 ð0Þ ¼ �R0;3þR1;3þR2;3

R
ð1Þ
0;2

¼ θð1ÞT2 ð0Þ

(recall that R1;3þR2;3 ¼ 0 and the symmetry between the two
bifurcation curves), R

ð1Þ
0;2a0 assures transversality, and the type of

the bifurcation is determined by the sign of R1;3þ2 R2;3 ¼ �R1;3

(the r-slope of the right-hand side of (24) at r¼1), i.e., the two
bifurcations have opposite type.

To prove that there indeed are two distinct transcritical bifur-
cations, and to say which one comes first when θ is increased, we
need to compute the second-order derivative θð2ÞT2 ð0Þ ¼ �θð2ÞT1 ð0Þ
locally characterizing the deviations of the bifurcation curves from
the curve at constant curvature θ¼ 3

4πþθð1ÞT2 ð0Þε. The computation
of θð2ÞT2 ð0Þ involves up to fourth-order terms in the expansion (10)
(see Supplementary Data) and the result is

θð2ÞT2 ð0Þ ¼ �θð2ÞT1 ð0Þ ¼ �
R
ð2Þ
0;2 θð1ÞT2 ð0Þ
� �2

þ2 R
ð1Þ
0;3 θð1ÞT2 ð0Þþ2 R0;4

R
ð1Þ
0;2

¼
λ
ð2;1Þ þλ

ð1;2Þ� �
θð1ÞT2 ð0Þ�

ffiffi
2

p
12 λ

ð3;1Þ þλ
ð1;3Þ� �

ffiffi
2

p
2 λ

ð0;2Þ ð26Þ

(note that R
ð2Þ
0;2 ¼ 0 under G2;1 ¼ 0 and recall. (G2.2)). Thus, sub-

stituting θð1ÞT2 ð0Þ from (25) into (26), we have two distinct tran-
scritical bifurcations if the genericity condition

G4 ≔ λ
ð2;1Þ þλ

ð1;2Þ� � G3;2

6
ffiffiffi
2

p
G2;2

�
ffiffiffi
2

p

12
λ
ð3;1Þ þλ

ð1;3Þ� �
a0 ðG4Þ

is satisfied. Generically, we expect θð1ÞT2 ð0Þ ¼ θð1ÞT1 ð0Þ to be nonzero by
(G3.2), so the two bifurcation curves are bended to the same side
of the anti-diagonal x1þx2 ¼ 2x. Otherwise (when θð1ÞT2 ð0Þ ¼
θð1ÞT1 ð0Þ ¼ 0), the curvature is determined by θð2ÞT2 ð0Þ ¼ �θð2ÞT1 ð0Þ, i.e.,
under (G4) the curves are locally bended symmetrically w.r.t. the
anti-diagonal.

Having now up to two internal equilibria, we also need to
analyze the possible saddle-node bifurcation at which they collide
and disappear. The saddle-node conditions are

R0;2ðθÞþ R0;3ðθÞεþ⋯þ R0;kðθÞεk�2þ⋯

þ R1;3ðθÞεþ⋯þ R1;kðθÞεk�2þ⋯
� �

r

þ R2;3ðθÞεþ⋯þ R2;kðθÞεk�2þ⋯
� �

r2

þ⋯þ Rk�1;kðθÞεk�2þ⋯
� �

rk�1

þ⋯¼ 0; ð27aÞ
which says that r is an equilibrium of Eq. (10) (in which R0;1ðθÞ and
R1;2ðθÞ are now null by assumption), and its r�derivative

R1;3ðθÞεþ⋯þ R1;kðθÞεk�2þ⋯

þ2 R2;3ðθÞεþ⋯þ R2;kðθÞεk�2þ⋯
� �

r

þ⋯

þðk�1Þ Rk�1;kðθÞεk�2þ⋯
� �

rk�2

þ⋯¼ 0; ð27bÞ
which imposes the saddle-node (the zero slope of the right-hand
side of (10) w.r.t. r at r). They implicitly defines two functions rðεÞ
and θFðεÞ that satisfy Eqs. (27) for any small ε and, respectively,
identify the saddle-node equilibrium and the bifurcation curve.
Evaluating (27) and their ε-derivatives at ε¼ 0, and solving for rð0Þ
and θFð0Þ and for their derivatives r ðkÞð0Þ and θðkÞF ð0Þ, kZ1, we can
fully characterize both functions locally to ε¼ 0. Up to k¼1, we
have

0¼ R0;2ðθFð0ÞÞ;
0¼ Rð1Þ

0;2ðθFð0ÞÞθð1ÞF ð0ÞþR0;3ðθFð0ÞÞþR1;3ðθFð0ÞÞrð0ÞþR2;3ðθFð0ÞÞrð0Þ2;

0¼ R1;3ðθFð0ÞÞþ2 R2;3ðθFð0ÞÞrð0Þ;
from which we obtain

rð0Þ ¼ 1
2
; θFð0Þ ¼

3
4
π; θð1ÞF ð0Þ ¼ �R0;3þR1;3=4

R
ð1Þ
0;2

¼ θð1ÞT2 ð0Þþ
G3;3

2
ffiffiffi
2

p
G2;2

:

ð28Þ
Note that, under (G3.3), the curvature of the saddle-node bifur-
cation curve is different from that of the transcritical bifurcations
and that, when ε-0, the saddle-node equilibrium tends to 1

2, i.e.,
the two colliding equilibria are indeed internal and characterized
by the same proportion of resident and invader densities. Further
note that we generically expect

G3;4 ≔ 4 R0;3þR1;3 ¼ 1
3G3;2þG3;3a0; ðG3:4Þ

otherwise the curvature of the bifurcation curve is determined by
fourth-order terms in the expansion (10).

For completeness, we should check the transversality of the
bifurcation, that is however granted by the fact that the right-hand
side of (10) is locally a parabola for small ε (second- and third-
orders matter), so that two internal equilibria do collide and dis-
appear when θ moves across the bifurcation curve. Precisely, the
second r�derivative of the left-hand side of (27a) at ðr ; θÞ ¼ ð12; 34πÞ
is given by 2R2;3 εþOðε2Þ, that is nonzero under (G3.3) along the
bifurcation curve for small ε40. Finally, note that the saddle-node
bifurcation is always catastrophic, since it involves the dis-
appearance of a stable equilibrium.

We can now summarize the classification of the competition
scenarios that are possible close to the (codimension-one) singular
strategies characterized by the degeneracy G2;1 ¼ 0 (vanishing fit-
ness cross-derivative) and by the genericity conditions (G2.2),
(G3.2)–(G3.4), and (G4). This is done graphically in Fig. 8, where
only the cases where G2;2 is negative, i.e., those in which selection
favors larger/smaller invader strategies when the resident x1 is
smaller/larger than x (convergence to the singular strategy in a
one-dimensional adaptive dynamics), are reported. The cases with
positive G2;2 can be obtained by reversing the stability of all
equilibria (boundary at r¼0 and r¼1 and internal) and, conse-
quently, the type of transcritical bifurcations.

3.3.3. Vanishing all second-order fitness derivatives
In this section we analyze the (codimension-two) case in which

G2;1 ¼ G2;2 ¼ 0, i.e., the fitness cross-derivative λ
ð1;1Þ and the pure-

derivatives λ
ð2;0Þ and λ

ð0;2Þ all vanish (recall the second relation in
(12)). Geometrically, this is the case approaching which—along



Fig. 8. Classification of the competition scenarios that are generically possible close to a singular strategy x with vanishing fitness cross-derivative. Only the cases with
G2;2o0 are shown (selection favors larger/smaller strategy values when x1 is smaller/larger than x); the cases with G2;240 can be obtained by reversing the stability of all
equilibria.
with gradual changes in some model parameters—the cone of
resident–invader coexistence degenerates on a saddle-node
bifurcation between singular strategies.

In the time scale of time τ¼ ε3t, Eq. (10) becomes

dr
dτ

1
ð sin θ� cos θÞrð1�rÞ ¼ R0;3ðθÞþR1;3ðθÞrþR2;3ðθÞr2þOðεÞ: ð29Þ

In the limit ε-0, there can be, depending on θ, none, one, or two
internal equilibria, so that x1- or x2-dominance, as well as pro-
tected and unprotected coexistence and mutual exclusion are
possible. Cases with more than two internal equilibria require r-
powers with degree higher than two, and are therefore ruled out
as long as the third-order terms R0;3ðθÞ, R1;3ðθÞ, and R2;3ðθÞ do not
all vanish.

Note that R1;3 and R2;3 can be written as

R1;3ðθÞ ¼ 1
2 ð sin θ� cos θÞ2R1;3þ1

2 ð sin 2θ� cos 2θÞ λ
ð2;1Þ þλ

ð1;2Þ� �
;

ð30aÞ

R2;3ðθÞ ¼ �1
2 ð sin θ� cos θÞ2R1;3; ð30bÞ

so that the genericity condition (G3.3) (where now λ
ð0;2Þ ¼ 0)

implies that R2;3 is nonzero for all θ in interval (6). If (G3.3) is not
satisfied, then R2;3 is null and, provided
G3;5 ≔ λ
ð2;1Þ þλ

ð1;2Þ
a0; ðG3:5Þ

R1;3 vanishes only for θ¼ 3
4π, at which R0;3 ¼ R0;3 is nonzero under

(G3.2) (see Table 2). Thus, condition “ (G3.3) (or G3.2) and (G3.5)”
is sufficient (even though not necessary) for dropping the
OðεÞ-terms in Eq. (29).

As for the transcritical bifurcation at r¼0, Eq. (17) now
becomes

R0;3ðθT2ðεÞÞþ⋯þR0;kðθT2ðεÞÞεk�3þ⋯¼ 0;

so that the tangent direction to the bifurcation curve is obtained
by solving

R0;3ðθT2ð0ÞÞ ¼ 0: ð31Þ
We find Eq. (31) more convenient to solve for the deviation

ΔθT2ð0Þ ≔ θT2ð0Þ�3
4 π: ð32Þ

We proceed as follows. Substituting (32) into Eq. (31), we can
rearrange terms as

3 λ
ð2;1Þ þ6ð1�CÞλð1;2Þ þð3�2 CÞλð0;3Þ ¼ �6ð7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð1�CÞ

p
Þðλð2;1Þ þλ

ð1;2ÞÞ;
ð33Þ

where C ≔ cos 2ΔθT2ð0Þ and 7
ffiffiffiffiffiffiffiffiffiffiffi
1�C

p
has been written in place of



sin ΔθT2ð0Þ. Then, squaring both sides, we can get rid of the
7ambiguity and solve the second-order equation
a C2þb Cþc¼ 0, with

1
4 a ≔ 9 λ

ð2;1Þ þλ
ð1;2Þ� �2

þ 3 λ
ð1;2Þ þλ

ð0;3Þ� �2
; ð34aÞ

� 1
12 b ≔ 3 λ

ð2;1Þ þλ
ð1;2Þ� �2

þ 3 λ
ð1;2Þ þλ

ð0;3Þ� �
λ
ð2;1Þ þ2 λ

ð1;2Þ þλ
ð0;3Þ� �
ð34bÞ

1
9 c ≔ λ

ð2;1Þ þ2 λ
ð1;2Þ þλ

ð0;3Þ� �2
: ð34cÞ

Obviously, only the positive solutions

C7 ¼ ð�b7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2�4ac

q
Þ=ð2aÞ with 0oC7 o1

are feasible, and for those we set cos Δθ7
T2 ð0Þ ¼

ffiffiffiffiffiffiffiffi
C7

p
(a negative

cosine corresponds to an angle θT2ð0Þ out of our interval (6) of
interest). For each feasible solution, which one of the two sign
alternatives solves (33) gives the sign of sin Δθ7

T2 ð0Þ.
Looking at the coefficients a, b, and c in (34c), we see that the

quadratic expression geometrically represents a upword parabola
(a40 under (G3.5)) with positive height at C¼0 (c40 under
(G3.1)) and at C¼1 ðaþbþc¼ G2

3;2Þ. Moreover, the discriminant
b2�4 a c results in 432 G2

3;5 G3;6, with (generically)

G3;6 ≔ 3 λ
ð1;2Þ� �2

�2 2 λ
ð2;1Þ þλ

ð1;2Þ� �
λ
ð0;3Þ � λ

ð0;3Þ� �2
a0 ðG3:6Þ

(see Supplementary Data), so that, if the discriminant is positive,
there are either two solutions C7 Að0;1Þ or none; no solution if
the discriminant is negative.

We therefore conclude that, under (G3.1), (G3.2), (G3.5), (G3.6),
there are either two or no transcritical bifurcation curves of the
equilibrium at r¼0, emanating from point (x,x) in the ðx1; x2Þ�
plane with directions given by θ7

T2 ð0Þ ¼ 3
4πþΔθ7

T2 ð0Þ. Similar to
Section 3.3.2, the transversality of the bifurcations is assured by

G7
3;7 ≔ Rð1Þ

0;3ðθ7
T2 ð0ÞÞ ¼ 1

3 sin Δθ7
T2 ð0Þ cos Δθ7

T2 ð0Þ 3λð1;2Þ þλ
ð0;3Þ� �

�1
2 ð sin

2Δθ7
T2 ð0Þ� cos 2Δθ7

T2 ð0ÞÞG3;5a0 ðG3:7Þ

(under which the right-hand side of Eq. (29) at r¼0 changes sign
for small ε when θ moves across the bifurcation curves) and the
bifurcation type is determined by the sign of R1;3ðθ7

T2 ð0ÞÞ, negative
(resp. positive) for the non-catastrophic- (resp. catastrophic) case.
Generically, we expect

G7
3;8 ≔ R1;3ðθ7

T2 ð0ÞÞ
¼ cos 2Δθ7

T2 ð0ÞG3;3� sin Δθ7
T2 ð0Þ cos Δθ7

T2 ð0ÞG3;5a0 ðG3:8Þ

(see Supplementary Data for the computations).
As for the transcritical bifurcation at r¼1, the condition for the 

tangent direction now becomes (from Eq. (17))

R0;3ðθT1ð0ÞÞþR1;3ðθT1ð0ÞÞþR2;3ðθT1ð0ÞÞ ¼ 0: ð35Þ
Obviously (due to the symmetry of model (1) w.r.t. the diagonal
x1 ¼ x2), Eq. (35) again yields (33), where now C ≔ cos 2ΔθT1ð0Þ
and 8

ffiffiffiffiffiffiffiffiffiffiffi
1�C

p
has been written in place of sin ΔθT1ð0Þ (note the

opposite sign in front of the square root), ΔθT1ð0Þ ≔ θT1ð0Þ�3
4π.

Thus, we have the same feasible solutions for cos ΔθT2ð0Þ and
cosΔθT1ð0Þ, but with opposite sine, i.e., opposite angle deviations
from 3

4π. There is therefore a transcritical bifurcation curve of the
equilibrium at r¼1 for each one involving the equilibrium at r¼0,
emanating from point (x,x) in the ðx1; x2Þ�plane with symmetric
direction w.r.t. the anti-diagonal, i.e., θ7

T1 ð0Þ ¼ 3
4πþΔθ7

T1 ð0Þ ¼
3
4π�Δθ7

T2 ð0Þ.
The transversality of the bifurcations is assured by

Rð1Þ
0;3ðθ7

T1 ð0ÞÞþRð1Þ
1;3ðθ7

T1 ð0ÞÞþRð1Þ
2;3ðθ7

T1 ð0ÞÞa0
(under which the right-hand side of Eq. (29) at r¼1 changes sign
for small ε when θ moves across the bifurcation curves), the left-
hand side of which turns out to be the opposite of Rð1Þ

0;3ðθ7
T2 ð0ÞÞ in

(G3.7). The bifurcation type is determined by the sign of
R1;3ðθ7

T1 ð0ÞÞþ2 R2;3ðθ7
T1 ð0ÞÞ, that turns out to be the opposite of

R1;3ðθ7
T2 ð0ÞÞ in (G3.8) (see Supplementary Data). Thus, the tran-

scritical bifurcation at r¼1 with direction θ7
T1 ð0Þ generically takes

place and has opposite type of the corresponding bifurcation at
r¼0 with direction θ7

T2 ð0Þ.
We last have to analyze the possible saddle-node bifurcations

involving two internal equilibria of Eq. (29) in the limit ε-0. The
saddle-node conditions (27) now give

0¼ R0;3ðθFð0ÞÞþR1;3ðθFð0ÞÞrð0ÞþR2;3ðθFð0ÞÞrð0Þ2; ð36aÞ

0¼ R1;3ðθFð0ÞÞþ2 R2;3ðθFð0ÞÞrð0Þ; ð36bÞ
i.e., being R2;3ðθFð0ÞÞ nonzero under (G3.3) (see (6) and (30b)),

0¼ R1;3ðθFð0ÞÞ
� �2�4 R0;3ðθFð0ÞÞR2;3ðθFð0ÞÞ;

which imposes the linear condition

G2
3;5þG3;3 �G3;3þ2 λ

ð1;2Þ þ2
3
λ
ð0;3Þ

� �� �
C ¼ G2

3;5þG3;3 G3;1 ð37Þ

on C ≔ cos 2ΔθFð0Þ, ΔθFð0Þ ≔ θFð0Þ�3
4π (see Supplementary Data).

Thus, if C results in ð0;1Þ, then we have two bifurcation curves
emanating from point (x,x) in the ðx1; x2Þ�plane with directions
3
4πþΔθFð0Þ and 3

4π�ΔθFð0Þ, symmetric w.r.t. the anti-diagonal,
where sin ΔθFð0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1�C

p
40). And R2;3ðθFð0ÞÞa0 under (G3.3)

assures the transversality of the bifurcations.
Of course, we expect the coefficients of Eq. (37) to be nonzero

and unequal:

G3;9 ≔ G2
3;5þG3;3 G3;1a0; ðG3:9Þ

G3;10 ≔ G2
3;5þG3;3 �G3;3þ2 λ

ð1;2Þ þ2
3
λ
ð0;3Þ

� �
a0; ðG3:10Þ

G3;11 ≔
G3;9�G3;10

G3;3
¼ G3;1þG3;3�2 λ

ð1;2Þ �2
3
λ
ð0;3Þ

a0; ðG3:11Þ

so that C is defined and different from 0 and 1 (i.e., we generically
expect 0oΔθFð0Þo1

2π whenever ΔθFð0Þ is defined). Finally note
that the angles of the saddle-node bifurcations cannot coincide,
locally to (x,x), with the angles of transcritical bifurcations,
otherwise, comparing Eqs. (31), (35), and (36a), we see that this
would require the saddle-node equilibrium to be at either r ¼ 0 or
r ¼ 1, but then (36b) would contradict (G3.8).

As done in the previous sections, we graphically summarize the
classification of the competition scenarios that are possible close to 
the (codimension-two) singular strategies characterized by the
degeneracies G2;1 ¼ G2;2 ¼ 0 (vanishing all second-order fitness 
derivatives) and by the genericity conditions (G3.1)–(G3.3),
(G3.5)–(G3.11). As in Fig. 7, we display in Figs. 9 and 10 only the
cases where G3;1 o0 is negative (selection favoring smaller stra-
tegies on both sides of x).
4. Summary of the results

We now summarize our results in a recipe-like style, ready to
be used. This section can be considered as the statement of a 
theorem, the proof of which is contained in the analyses of Section 
3. For each of the considered cases, where the reference strategy x 
is (1) nonsingular, (2) close to generic singularity, (3.1–3.3) close to 
degenerate (codimension-one and -two) singular strategies, we 
addressed the following two questions (with reference to Fig. 2):



Fig. 9. Classification of the competition scenarios that are generically possible close to a singular strategy x with vanishing second-order fitness derivatives. Only the cases
with G3;1 o0 (selection favors smaller strategy values on both sides of x) and C =2ð0; 1Þ (no saddle-node bifurcations) are shown. The cases with G3;1 40 can be obtained by 
reversing the stability of all equilibria. The cases with C ¼ cos 2ΔθF ð0ÞA ð0; 1Þ (two saddle-node bifurcations) are reported in Fig. 10.
� What is the competition scenario that occurs for a given per-
turbation angle θ, in the interval 1

4πoθo5
4π, and for sufficiently

small ε (i.e., in the limit ε-0)?
� If different scenarios occur for different θ (and small ε), then

what is the structure and shape of the bifurcation boundaries
separating them locally to point (x,x) in the plane of the stra-
tegies ðx1; x2Þ?

Each case assumes some degeneracy and genericity conditions, 
under which the answers are given (degeneracies are stated in 
terms of failing genericity conditions). All genericity conditions,
except the hyperbolicity of the resident equilibrium ðnðxÞ; NðxÞÞ 
(which is always assumed), are reported for the reader's con-
venience in Table 3 (those that cannot be expressed only in terms 
of invasion fitness derivatives have a star over the equal sign in
their definition; the ðP þ1Þ � ðP þ1Þ nonsingular matrix M involved 
in G3;3 for P40 is defined in Table 1).

Note that we do not discuss the competition scenarios and the
relative bifurcation boundaries if a finite distance ε from the 
reference strategy x is required. Also, we do not discuss (if not
occasionally, e.g., later in Fig. 6) the unfolding of cases (1)–
(3) along with gradual changes in some model parameters. The
latter topics are definitely interesting but are left out to limit the
length of the paper. They can be dealt with by complementing our
local analysis with the global results of Priklopil (2012) on the
boundaries in the plane ðx1; x2Þ of the region allowing coexistence.
Figs. 4–10 display the classification of the competition scenar-
ios that are possible close to the reference strategy x in cases (1),
(2), (3.1–3.3). They contain all information to answer the two
above questions: the assumed degeneracy and genericity condi-
tions and the relevant quantities to discriminate among subcases
(see Table 4 for the graphical and symbolical notation). Each sce-
nario is identified by the sketch of the resident–invader (slow)
dynamics on the one-dimensional axis of the relative invader
density, r A ½0; 1� (r-sketches in the following). The dynamics of 
model (1), in the state space of the resident–invader densities, are
qualitatively displayed in Fig. 1 for each of the involved r-sketches. 

Fig. 4 illustrates the“invasion implies substitution” theorem
(Geritz, 2005; Meszéna et al., 2005; Dercole and Rinaldi, 2008).
Invasion away from singularity, i.e., positive invasion fitness (point
ðx1; x2Þ in the gray area) under (G1), implies the extinction of the 
resident type (r converges to 1, provided ε is sufficiently small).
Conversely, the invader goes extinct if the invasion fitness is
negative (r converges to 0 if point ðx1; x2Þ lies in the white area). The 
diagram of the fitness sign is known in evolutionary biology as
the pairwise invasibility plot (PIP) and is always drawn in Figs. 4–
10, locally to the reference strategy x, in gray/white for the posi-
tive/negative sign. Another common diagram (not shown), the 
mutual invasibility plot (MIP), is obtained by the superposition of 
the PIP with its mirror image along the diagonal. Due to the 
symmetry of the resident–invader model (1), points in the gray–
gray areas of the MIP are characterized by mutant invasion
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Fig. 10. Classification of the competition scenarios that are generically possible close to a singular strategy x with vanishing second-order fitness derivatives. Only the cases
with G3;1 o0 (selection favors smaller strategy values on both sides of x) and C ¼ cos 2ΔθF ð0ÞAð0; 1Þ (two saddle-node bifurcations) are shown. The cases with G3;1 40 can be 
obtained by reversing the stability of all equilibria. The cases with C =2ð0; 1Þ (no saddle-node bifurcations) are reported in Fig. 9.
ðλðx1; x2Þ40Þ and by resident invasion close to the monomorphic
equilibrium ðn1; n2; NÞ ¼ ð0; nðx2Þ; Nðx2ÞÞ ðλðx2; x1Þ40Þ. Thus the
gray–gray areas of the MIP are those in which resident–invader 
coexistence is protected.

Fig. 5 shows that only the four classical Lotka–Volterra com-
petition scenarios can generically occur when the resident and
invader strategies are nearly singular. As it is well known from the
first classification of singular strategies (Metz et al., 1996; Geritz et
al., 1997, 1998), there are eight possible PIP configurations, that can
be discriminated in terms of the second pure-derivatives of the
invasion fitness (see the top-right panel, adapted from Geritz et al
(1998), where the genericity conditions (G2.1) and (G2.2) are also
graphically interpreted). The four configurations a–d are
characterized by G2;2 o0, i.e., selection favors larger/smaller
invader strategies when the resident x1 is smaller/larger than x
(convergence to the singular strategy in a one-dimensional
adaptive dynamics), whereas G2;2 40 in cases e–h (divergence 
from the singular strategy). Note that cases e–h can be, respec-
tively, obtained from cases a–d by reversing the stability of all 
equilibria and, consequently, the type of transcritical bifurcations 
and the gray–white filling. Cases b–e are evolutionarily stable (the 
singular strategy is locally protected against invasion; Maynard 
Smith and Price, 1973; Maynard Smith, 1982), cases f–a are not.

For each PIP configuration, the bifurcation boundaries separ-
ating different competition scenarios in the strategy plane ðx1; x2Þ 
are drawn, locally to the singular point (x,x), only for x1 ox2 (above
the diagonal x1 ¼ x2). Of course the bifurcation boundaries extend 
below the diagonal in the same direction and, due to the sym-
metry of the resident–invader model (1), the competition scenario
for x1 4x2 (below the diagonal) is obtained from the scenario at
point ðx2; x1Þ (above the diagonal) by exchanging x1 with x2 and n1



with n2 (i.e., by horizontally flipping the r-sketch). As discussed in 
Section 3.2, the bifurcation boundaries technically correspond to
transcritical bifurcations at which the internal equilibrium collides
(and exchanges stability) with the monomorphic equilibrium ðn1; 
n2; NÞ ¼ ð0; nðx2Þ; Nðx2ÞÞ (n1 ¼ 0 and r¼1) at the bifurcation T1 or 
with the monomorphic equilibrium ðn1; n2; NÞ ¼ ðnðx1Þ; 0; Nðx1ÞÞ
(n2 ¼ 0 and r¼0) at the bifurcation T2. The bifurcation curves T1
and T2 are symmetric w.r.t. to the diagonal (again due to the 
symmetry of model (1)) and emanate from the point (x,x) with
directions given by the angles θT1ð0Þ and θT2ð0Þ, that are also
expressed in terms of the second pure-derivatives of the invasion
fitness. The bifurcations are non-catastrophic if the internal equi-
librium is stable (solid lines in cases g–b characterized by G2;1 o0). 
This means that crossing the bifurcation curve, along with gradual
changes in some model parameters, does not involve a radical
change in the asymptotic state of model (1). Conversely, the
Table 4
Graphical notation and bifurcation boundaries in Figs. 4–10.

Symbol Equation Line style Description

T1 θ¼ θT1ðεÞ Solid (non-catastrophic) dashed
(catastrophic)

Transcritical bifurcat
equilibrium ðn1 ;n2;N

T2 θ¼ θT2ðεÞ Solid (non-catastrophic) dashed
(catastrophic)

Transcritical bifurcat
equilibrium ðn1 ;n2;N

T7
1 θ¼ 3

4πþΔθ7
T1 ðεÞ Solid (non-catastrophic) dashed

(catastrophic)
Transcritical bifurcat

T7
2 θ¼ 3

4πþΔθ7
T2 ðεÞ Solid (non-catastrophic) dashed

(catastrophic)
Transcritical bifurcat

F θ¼ θFðεÞ
θ¼ 3

4π7ΔθFðεÞ
Solid (catastrophic) Saddle-node (fold) b

disappear

– θ¼ 1
4π, x1 ¼ x2 Solid The diagonal is a deg

connects the monom
3
4

Anti-diagonal, no bif

Unstable (saddle) eq
Unstable (saddle) eq
Resident–invader rel
Invader invasion, λðx

– θ ¼ π, x1 þx2 ¼ 2x Dotted

Filled dots
Empty dots
r-sketches from Fig. 1
Gray region
White dots Invader extinction, λ

Table 3
Genericity conditions.

G1 ≔ λ
ð0;1Þ

a0 (G1)

G2;1 ≔ λ
ð1;1Þ

a0 (G2.1)

G2;2 ≔ λ
ð1;1Þ þλ

ð0;2Þ ¼ 1
2 λ

ð0;2Þ �λ
ð2;0Þ� �

a0 (G2.2)

G3;1 ≔ λ
ð2;1Þ þ2 λ

ð1;2Þ þλ
ð0;3Þ

a0 (G3.1)

G3;2 ≔ 3 λ
ð2;1Þ þλ

ð0;3Þ
a0 (G3.2)

G3;3≔
n �λ

ð2;1Þ þϕ
ð0;0;0;1Þ
2;1 n

� 1
det M g ð0;0;1;0;0;1Þ ~F

ð1;0;0;0;0Þ þg ð1;0;0;0;0;1Þ ~g ð1;0;0;0;0;0Þ
� �

λ
ð0;2Þ þϕ2;1 n

� �
� 1

det M g ð0;0;1;0;0;1Þ ~F
ð0;0;1;0;0Þ þg ð1;0;0;0;0;1Þ ~g ð0;0;1;0;0;0Þ

� �
ψ 2;1na0 ðP40Þ (G3.3)

G3;3 ≔n �λ
ð2;1Þ þϕ

ð0;0;1Þ
2;1 n�g ð1;0;0;0;1Þ

g ð1;0;0;0;0Þ λ
ð0;2Þ þϕ2;1 n

� �
a0 ðP ¼ 0Þ (G3.3)

G3;4 ≔n 1
3G3;2þG3;3a0 (G3.4)

G3;5 ≔ λ
ð2;1Þ þλ

ð1;2Þ
a0 (G3.5)

G3;6 ≔ 3 λ
ð1;2Þ� �2

�2 2 λ
ð2;1Þ þλ

ð1;2Þ� �
λ
ð0;3Þ � λ

ð0;3Þ� �2
a0

(G3.6)

G7
3;7 ≔ 1

3 sin Δθ7
T2 ð0Þ cos Δθ7

T2 ð0Þ 3λ ð1;2Þ þλ
ð0;3Þ� �

�1
2 ð sin

2Δθ7
T2 ð0Þ� cos 2Δθ7

T2 ð0ÞÞG3;5a0 (G3.7)

G7
3;8 ≔n cos 2Δθ7

T2 ð0ÞG3;3� sin Δθ7
T2 ð0Þ cos Δθ7

T2 ð0ÞG3;5a0 (G3.8)

G3;9 ≔n G2
3;5þG3;3G3;1a0 (G3.9)

G3;10 ≔n G2
3;5þG3;3 �G3;3þ2 λ

ð1;2Þ þ2
3λ

ð0;3Þ� �
a0 (G3.10)

G3;11 ≔n G3;1þG3;3�2 λ
ð1;2Þ �2

3λ
ð0;3Þ

a0 (G3.11)

G4 ≔ G3;2G3;5

6
ffiffi
2

p
G2;2

�
ffiffi
2

p
12 λ

ð3;1Þ þλ
ð1;3Þ� �

a0 (G4)
bifurcations are catastrophic (dashed line in cases c–f with
G2;140) if the internal equilibrium is unstable.

Note that the invasion fitness λðx1; x2Þ40 vanishes along the
bifurcation curve T2, so that T2 defines the boundary of the PIP
(above and below the diagonal). Further note that only four con-
figurations are distinguishable from the point of view of bifurca-
tion analysis, since the fact that the angle of a bifurcation curve
goes through 1

2π (e.g., from case a to b) does not qualitatively
change the unfolding of the competition scenarios locally to (x,x).
However, the distinction is biologically relevant, as the singular
strategy changes evolutionarily stability.

As it follows from the analysis of Sections 3.2 and 3.3.1 (both
assuming G2;1 o0), when along with parameter changes the 
quantity in (G2.2) vanishes, the cone of resident–invader coex-
istence becomes wider and approaches the diagonal. Generically, i. 
e., by further assuming (G3.1), two singular strategies (one for 
which G2;2 40 and one for which G2;2 o0) collide and disappear,
as sketched in Fig. 6. Note that this is not a bifurcation of model (1), 
but rather a bifurcation of the Adaptive Dynamics resulting from 
repeated invasions, first graphically discussed in Geritz et al.(1999). 
At the bifurcation, generically, four PIP configurations can occur. 
The two that are characterized by G3;1 o0 (selection favors smaller 
strategy values on both sides of x) are shown in Fig. 7. The other 
two are obtained by reversing the stability of all equilibria, and 
hence the type of the transcritical bifurcation and the gray–white 
filling.

Close to the other codimension-one-degenerate singular 
strategy, at which (G2.1) fails under (G2.2), the number of different 
generic configurations of the competition scenarios gets up to 24. 
Half of the cases are shown in Fig. 8 under G2;2 o0 (selection favors 
larger/smaller invader strategies when the resident x1 is smaller/
larger than x), that now also implies evolutionary stability, recall 
that G2;2 ¼ λð0;2Þ, so that λðx1; x1 þεÞo0 for small ε. The remaining 12 
cases can be obtained by reversing the stability of all equilibria, and 
hence the type of the transcritical bifurcation and the gray–white 
filling. Moreover, note that only four cases are distinguishable from 
the point of view of bifurcation analysis, as the four configurations 
in each column present the same unfolding of the competition 
scenarios (the order in which bifurcations are encountered by 
increasing θ is the same). The additional distinc-tions might 
however be evolutionarily relevant, though the evo-lutionary 
scenarios close to degenerate singularities are still uninvestigated.
ion at which an internal equilibrium collides with the resident monomorphic
Þ ¼ ð0;nðx2Þ;N ðx2ÞÞ (n1 ¼ 0 and r¼1 at the bifurcation)
ion at which an internal equilibrium collides with the invader monomorphic
Þ ¼ ðnðx1Þ;0;N ðx1ÞÞ (n2 ¼ 0 and r¼0 at the bifurcation)
ions at ðn1 ;n2 ;NÞ ¼ ð0;nðx2Þ;N ðx2ÞÞ (n1 ¼ 0 and r¼1)

ions at ðn1 ;n2 ;NÞ ¼ ðnðx1Þ;0;N ðx1ÞÞ (n2 ¼ 0 and r¼0)

ifurcations at which two internal equilibria (one stable, one unstable) collides and

enerate transcritical bifurcation at which a segment of critically stable equilibria
orphic states
urcation occurs

uilibria
uilibria
ative dynamics
1; x2Þ40
ðx1 ; x2Þo0



The results of Section 3.3.2 show that when along with para-
meter changes a negative fitness cross-derivative vanishes under
(G2.2), the cone of resident–invader coexistence narrows in a
cuspwise manner around the anti-diagonal θ¼ 3

4π. Generically,
more specifically by also assuming (G3.2)–(G3.4) and (G4), there
are three distinct bifurcation boundaries separating the different
competition scenarios that can occur locally to the singular point
(x,x), all emanating from (x,x) in the direction of the anti-diagonal.
Two are the (symmetric) transcritical bifurcations curves T1 and T2
(respectively, involving the monomorphic equilibria with n1 ¼ 0
and n2 ¼ 0) that are bended to the same side of the anti-diagonal
(the two first-order curvatures θð1ÞT1 ð0Þ and θð1ÞT2 ð0Þ being equal) and
indeed distinct (under (G4) the two second-order curvatures
θð2ÞT1 ð0Þ and θð2ÞT2 ð0Þ are nonzero and opposite). The third bifurcation
boundary is a saddle-node (or fold) bifurcation involving two
internal equilibria. It can be bended to either side of the anti-
diagonal (under (G3.3) its first-order curvature θð1ÞF ð0Þ is different
from that of the transcritical curves) and it delimits, together with
one of the two transcritical bifurcations, the region of resident
mutant coexistence (defined as the set of ðx1; x2Þ�combinations
allowing a stable internal equilibrium).

Of the two internal equilibria involved in the saddle-node
bifurcation, one is stable and one is not, and this makes coex-
istence unprotected (see Fig. 1e and f). We have therefore shown
that unprotected coexistence is always possible close to a singular
strategy that is degenerate only in the fitness cross-derivative. Of
course our results hold generically, i.e., provided all genericity
conditions in Table 3 are satisfied. However, the concept of gen-
ericity depends on the universe of discourse. For example, the
internal equilibria in Lotka–Volterra models are defined by linear
equations in the population densities, so that either one or no
solution is present away from bifurcations. Indeed, in Section 5.2
we show that condition (G3.3) systematically fails in Lotka–Vol-
terra competition models, and (G3.3) is exactly the condition for
the existence of the saddle-node bifurcation (see Section 3.3.2 for
details). Note that our approach immediately extends to any
degenerate situation, by simply assuming the desired degeneracies
and considering the leading order in the expansion of the resi-
dent–invader relative dynamics (see Eq. (10)).

Finally, the number of different local configurations of the
competition scenarios becomes 52 close to the codimension-two-
degenerate singular strategies at which (G2.1) and (G2.2) both fail
(i.e., all fitness second derivatives vanish at x) under the genericity
conditions (G3.1)–(G3.3), (G3.5)–(G3.11). Half of the cases (those
characterized by G3;1o0, selection favoring smaller strategies on
both sides of x) are shown in Figs. 9 and 10, and all represent
qualitatively different unfoldings of the competition scenarios. The
other half are obtained by reversing the stability of all equilibria,
and hence the type of the transcritical bifurcation and the gray–
white filling.

As it follows from the analysis in Section 3.3.3, locally to this
double-degenerate singularity, the region of resident mutant
coexistence is again conical, but not symmetric w.r.t. to the anti-
diagonal and can even be composed of several sectors delimited,
case by case, by a different mixture of transcritical and saddle-
node bifurcations. The (symmetric) transcritical bifurcations at the
monomorphic equilibria with n1 ¼ 0 and n2 ¼ 0 are either absent
(if C7 are both outside ð0;1Þ) or each of them occur on a pair of
curves (if C7 are both in ð0;1Þ), denoted Tþ

i and T�
i and locally

characterized by angles θþ
Ti ð0Þ4θ�

Ti ð0Þ. The saddle-node bifurca-
tion is also either absent (if C =2ð0;1Þ, see Fig. 9) or present on a pair
of curves (if CAð0;1Þ, see Fig. 10), symmetric w.r.t. the anti-
diagonal and with local directions, 3

4πþΔθFð0Þ and 3
4π�ΔθFð0Þ

(0oΔθFð0Þo1
2π), that generically differ from those of the tran-

scritical bifurcations. Note that unprotected coexistence is possible
even in the absence of saddle-node bifurcations (Fig. 9). Also note
the PIPs, that are locally composed of several sectors with positive
(gray) and negative (white) fitness (delimited by the transcritical
bifurcations T7

2 and by the diagonal).
5. Examples

We now apply our formulas to two examples. In the first one we 
consider a model for the evolution of cannibalism (Dercole and 
Rinaldi, 2002; Dercole, 2003), in which the three degenerate sin-
gular strategies considered in Sections 3.3.1–3.3.3 all occur for 
particular values of the model parameters. We do not exemplify 
the formulas that apply away from singularity and close to a 
generic singular strategy, as they have been available in the lit-
erature for some years (Metz et al., 1996; Geritz et al., 1997, 1998; 
Dercole and Rinaldi, 2008) and extensively tested (see again Der-
cole and Rinaldi, 2002; Dercole, 2003; Dercole et al., 2003, but also, 
e.g., Dercole, 2005; Dercole et al., 2006, 2008, 2010a,b; Der-cole 
and Rinaldi, 2010, for testing on particular examples, and Landi et 
al., 2013; Della Rossa et al., 2015, for a systematic analysis of the 
ESS-branching transition of adaptive dynamics).

In the second example we show the manner in which a Lotka–
Volterra resident–invader model is degenerate.

5.1. A model for the evolution of cannibalism

In Dercole and Rinaldi (2002) and Dercole (2003), the (non-
negative) strategy x measures the cannibalistic tendency of the 
individual, assumed to increase with adult body size. The g-func-
tion is

gðn1; n2;N; x1; x2; x0Þ ≔ e
a0ðx0ÞNþaðx0; x1Þn1þaðx0; x2Þn2

1þa0ðx0Þhðx0ÞNþaðx0; x1Þhðx0Þn1þaðx0; x2Þhðx0Þn2

� aðx1; x0Þn1

1þa0ðx1Þhðx1ÞNþaðx1; x1Þhðx1Þn1þaðx1; x2Þhðx1Þn2

� aðx2; x0Þn2

1þa0ðx2Þhðx2ÞNþaðx2; x1Þhðx2Þn1þaðx2; x2Þhðx2Þn2
�cðn1þn2Þ;

ð38Þ
where N is the density of a zooplankton resource, harvested by
both types of cannibals. The density N is later considered constant
(so we apply the formulas for P¼0), though we leave the argu-
ment N in g for consistency of notation and also for suggesting a
new example (with P¼1) with a dynamical N (e.g., chemostat or 
logistic). For an individual with strategy x0, the first term in the
right-hand side of (38) describes consumption, consisting of the 
harvesting of N and cannibalism on the resident populations; the
second and third terms describe deaths due to cannibalism; the 
final term describes intra-specific competition for space and other
limiting resources.

The energy conversion factor e and the competition coefficient
c are treated as constant parameters, while the attack rate coeffi-
cients on zooplankton and conspecifics and the handling time are
trait-dependent according to the following functions:

a0ðxÞ ≔
2A0

x
x0

� �α
þ x0

x0

� �α; ð39aÞ

aðx1; x2Þ ≔ A
2

p x1
x2

� �β

þ x2
p x1

� �β

xγ1
xγþxγ1

1� xδ1
xδþxδ1

!
; ð39bÞ

hðxÞ ≔ w1x�w2 : ð39cÞ 
Harvesting zooplankton is effective only around a lower strategy x0 

(small body size, see (39a)), while cannibalism gets significant



Fig. 11. Arrangements of the singular strategies of the g-function (38) w.r.t. para-
meters N and 1=β (reproduced from Dercole and Rinaldi, 2002, Fig. 3; parameter
values: c¼1, e¼0.6, A0 ¼ 1, x0 ¼ 0:1, α¼ 2, A¼10, p¼0.2, x ¼ 0:5, x ¼ 5, γ ¼ 8, δ¼ 2,
w1¼0.1, w2¼0.25; diagram obtained numerically with the package AUTO, Doedel
et al., 2007).

Table 5
Relevant quantities and genericity conditions at points P1, P2, and P3 in Fig. 11.

Quantity P1 P2 P3

N 50.0 200.0 112.55
β 2.0054 2.0050 2.0093
x 0.6101 0.7919 0.6345
n 0.9849 1.8032 1.6588
G2;1 �2.9516 – –

G2;2 – �0. 7575 –

G3;1 �28.6660 – �24.360
G3;2 – 72.677 110.07
G3;3 – 2.3538 5.3888
G3;4 – 26.579
G3;5 – – �24.479
G3;6 – – 4478.9
Gþ
3;7 – – �91.731

G�
3;7 – – 75.307

Gþ
3;8 – – 14.663

G�
3;8 – – �7.5244

G3;9 – – 467.93
G3;10 – – 241.18
G3;11 – – 42.078
G4 – 119.523 –

θð1ÞT2 ð0Þ 3.4337 �11.306 –

θð2ÞT2 ð0Þ – �223.12 –

θð1ÞF ð0Þ – �12.404 –

Δθþ
T2ð0Þ – – 0:3352 π

2

Δθ�
T2ð0Þ – – �0:7655 π

2

C ¼ cos 2ΔθFð0Þ : ¼ G3;9=G3;10 – =2ð0;1Þ
only at larger strategies (x4x, and up to a physically limiting
strategy x), with size preference for the victim given by the frac-
tion pAð0;1Þ of the individual size (see (39b)). Handling time per
unit of ingested food (39c) is decreasing with body size (see Der-
cole and Rinaldi, 2002, for a more detailed description).

Depending on the parameter values, there can be either one or
two convergence-stable singular strategies, the larger of which can
lead to evolutionary branching. This is shown in Fig. 11 in the plane
of parameters N and 1=β. While N describes the quality of the
environment, in terms of food richness, 1=β is a surrogate for the
juvenile-to-adult size range in the population (a larger 1=β results in
a higher attack rate toward individuals of the same strategy, and this
is possible only if the population size range is wider). Below we use
the larger singular value as the reference strategy x close to which we
unfold the resident–invader competition scenarios.

The transition from one to two singularities is the saddle-node
AD bifurcation described in Section 3.3.1, at which condition
(G2.2) fails. It occurs along the two boundaries of the cusp region
in Fig. 11. Along the nearly vertical boundary, a repelling singu-
larity collides and disappears with the non-reference (lower)
convergence-stable singular strategy, whereas the repelling sin-
gularity collides and disappears with strategy x along the other
boundary. Focusing on the reference singular strategy x, no other
degeneracy occurs at point P1 (i.e., condition (G2.1) is satisfied at
P1), whereas (G2.1) also fails at point P3 (i.e., all fitness second
derivatives vanish at P3). Moreover, starting from point P3, we can
follow the curve corresponding to the other codimension-one
degeneracy, along which (G2.1) fails while (G2.2) does not, point
P2 being an example. Points P1–P3 therefore correspond to the
degenerate singular strategies studied in Sections 3.3.1–3.3.3,
respectively. Note that from point P3 it is also possible to follow the
curve corresponding to the (codimension-one) ESS-branching
transition (along which λ

ð0;2Þ ¼ 0 under (G2.1) and (G2.2)).
We now unfold the bifurcations of the resident–invader

dynamics for strategies x1 and x2 close to the singular value x and
for parameters ðN;1=βÞ at points P1–P3 of Fig. 11. The genericity
conditions and the relevant quantities for the classification of the
singularity are reported in Table 5, according to which we expect
(counting left-to-right/top-to-bottom) case 1 of Fig. 7 at point P1,
case 4 of Fig. 8 at point P2, and case 5 of Fig. 9 at point P3. The
numerically obtained bifurcation diagrams (locally to the singular
point (x,x) in the ðx1; x2Þ�plane) are reported in Fig. 12 and confirm
the classification.

5.2. Lotka–Volterra competition models

Lotka–Volterra resident–invader competition is described by 
the g-function:

gðn1;n2; x1; x2; x0Þ ≔ rðx0Þ 1�αðx0; x1Þ
Kðx0Þ n1�

αðx0; x2Þ
Kðx0Þ n2

� �
; ð40Þ

where r(x) is the intrinsic growth rate (per-capita) of the species, K
(x) the carrying capacity, and αðx1; x2Þ the competition function,
with

αðx; xÞ ¼ 1: ð41Þ

No other intra- or inter-specific interactions are considered (i.e.,
P¼0 and argument N is omitted in g).
The g-function being linear in the resident and invader densities

n1 and n2, the right-hand side of Eq. (10) is linear in r, i.e., all 
functions Ri;j, ioj,arenullforiZ2(seeTable 1). Consequently, there 
cannot be two distinct internal equilibria for the relative invader 
density r and the saddle-node bifurcations generically expected in 
the analysis of Sections 3.3.2 (case (3.2): vanishing fitness cross-
derivative) and 3.3.3 (case (3.3): vanishing all fitness second 
deriva-tives) cannot occur. In both cases (3.2) and (3.3), the saddle-
node bifurcations occur under the genericity (transversality) 
condition (G3.3) (see the expression of (G3.3) for P¼0in Table 3). 
We now show that G3;3 ¼ 0fortheg-function in (40) at a singular 
strategy x characterized by vanishing fitness cross-derivative.

Let us start from the invasion fitness

λðx; x0Þ ¼ rðx0Þ 1�αðx0; xÞKðxÞ
Kðx0Þ

� �
;

where nðxÞ ¼ KðxÞ is the resident monomorphic equilibrium. Tak-
ing the constraint (41) into account (together with its x-deriva-
tives, e.g., αð1;0Þðx; xÞþαð0;1Þðx; xÞ ¼ 0 at first order), the singularity



(

Fig. 12. Bifurcation diagrams of the resident–invader dynamics induced by the g-function (38) w.r.t. strategies ðx1; x2Þ close to the singular point (x,x). From left to right, 
panels correspond to points P1, P2, and P3 in Fig. 11 (diagrams obtained numerically with the package AUTO Doedel et al., 2007).
condition

λ
ð0;1Þ ¼ rðxÞ

KðxÞ K ð1ÞðxÞ�KðxÞαð1;0Þðx; xÞ
� �

¼ 0

imposes

K ð1ÞðxÞ ¼ KðxÞαð1;0Þðx; xÞ; ð42Þ
whereas the degeneracy of the fitness cross-derivative

λ
ð1;1Þ ¼ �rðxÞ αð1;0Þðx; xÞ2þαð1;1Þðx; xÞ

� �
¼ 0

imposes

αð1;1Þðx; xÞ ¼ �αð1;0Þðx; xÞ2: ð43Þ
Now, taking Eqs. (41)–(43) into account, we compute

λ
ð0;2Þ ¼ rðxÞ

KðxÞ K ð2ÞðxÞ�KðxÞαð2;0Þðx; xÞ
� �

ð44Þ

and

λ
ð2;1Þ ¼ �rð1ÞðxÞ

KðxÞ K ð2ÞðxÞ�KðxÞαð2;0Þðx; xÞ
� �

þrðxÞ 2αð1;0Þðx; xÞ3�αð1;0Þðx; xÞαð2;0Þðx; xÞ�αð1;2Þðx; xÞ
� �

; ð45Þ

whereas, from the g-function in (40), we have

ϕ2;1ðn; x; x0Þ ¼ � rðx0Þ
Kðx0Þα

ð0;2Þðx0; xÞ;

ϕ2;1 ¼ � rðxÞ
KðxÞα

ð0;2Þðx; xÞ ¼ð2Þ;ð4Þ� rðxÞ
KðxÞ 2αð1;0Þðx; xÞ2�αð2;0Þðx; xÞ

� �
; ð46Þ

ϕ
ð0;0;1Þ
2;1 ¼ 1

KðxÞ
�
rðxÞ

�
αð1;0Þðx; xÞαð0;2Þðx; xÞ�αð1;2Þðx; xÞ

�
�rð1ÞðxÞαð0;2Þðx; xÞ

�

¼ð2Þ;ð4Þ 1
KðxÞ rðxÞ αð1;0Þðx; xÞ 2αð1;0Þðx; xÞ2�αð2;0Þðx; xÞ

� �
�αð1;2Þðx; xÞ

� ��
�rð1ÞðxÞ 2αð1;0Þðx; xÞ2�αð2;0Þðx; xÞ

� ��
; ð47Þ

g ð1;0;0;0;1Þ ¼ �rð1ÞðxÞ
KðxÞ ; ð48Þ

and

g ð1;0;0;0;0Þ ¼ � rðxÞ
KðxÞ: ð49Þ

Substituting Eqs. (44)–(49) into the expression for G3;3 in Table 3
(for P¼0), it is then trivial to check that all terms cancel out.

Note that all other conditions in Table 3 are generically satis-
fied, so the results of Sections 3.3.2 and 3.3.3 can be still applied,
simply removing the saddle-node bifurcations from the diagrams
in Figs. 8–10. However, further degeneracies can be obtained with
particular choices for functions r, K, and α. For example, if

(i) resident–invader competition is assumed symmetric, i.e.,
αðx1; x2Þ ¼ αðx2; x1Þ,
(ii) and determined by the strategy difference, i.e.,
αðx1; x2Þ ¼ α0ðx1�x2Þ, with function α0 even (αðkÞð0Þ ¼ 0 for odd
k) due to the symmetry assumed at point (i) and α0ð0Þ ¼ 1,

iii) and the carrying capacity symmetrically peaks at the singular
strategy x (KðkÞðxÞ ¼ 0 for odd k and K ð2ÞðxÞo0)

(see, e.g., the competition model in Doebeli and Dieckmann, 2000, 
under symmetric competition), then it is not difficult to see that
condition G3;2 also vanishes.
   In Section 3.3.2 (case (3.2)), G3;2 ¼ 0 implies that the curvature of 
the transcritical bifurcations T1 and T2 is determined by the second-

order derivative θð2ÞT2 ð0Þ ¼ �θð2ÞT1 ð0Þ (the two equal first-order curva-
tures θð1ÞT1 ð0Þ ¼ θð1ÞT2 ð0Þ vanish with G3;2, see Eq. (25)). Thus, in the
plane of the strategies ðx1; x2Þ, the two bifurcation curves symme-
trically emanate from the singular point (x,x) on opposite sides of
anti-diagonal. In Section 3.3.3 (case (3.3)), the assumptions (i)–(iii)
also imply G3;5 ¼ 0 and a fourth-order analysis is required in the
expansion in (10). This is not done here, but our methodological
approach can in principle deal with any degeneracy.

Finally, note that even though resident–invader competition is
of Lotka–Volterra type (i.e., described as in (40) by linear density
dependencies in the g-function) in most of applications (see Der-
cole and Rinaldi, 2008, and references therein), the model easily
results generic (i.e., satisfying all genericity conditions in Table 3) if
nonlinear density dependencies are present due to other intra- or
inter-specific interactions. E.g., because of Allee effects describing
spatial or mating structures or because resident and invader are
prey or predator populations and harvesting is characterized by a
nonlinear functional response.
6. Discussion and future directions

We have systematically investigated the competition between two 
similar one-dimensional strategies x1 and x2. We did that in the 
restricted but classical context of unstructured and asexual popula-
tions varying in continuous time in an isolated, homogeneous, and 
constant abiotic environment, and with intra- as well as inter-specific 
interactions described in the vicinity of a stationary regime.

The classification of the possible competition scenarios is made 
possible by a fundamental assumption on the growth rates of the 
interacting populations—property P4 of Section 2.1 (recently 
introduced by Dercole, 2015). Property P4 generalizes the classical 
mass-action principle that leads, in its original formulation, to 
linearly density-dependent per-capita growth rates (Lotka–Vol-
terra demographic models). The generalization consists in allow-
ing pairwise interactions in which the concurrent activities of the 
interacting individuals are also taken into consideration, and this 
induces a particular structure in the possible nonlinearities. 
Property P4 has two major technical consequences. One is that the 
expansion of the dynamics of invasion, w.r.t. the distance ε
between point ðx1; x2Þ in the strategy plane and the reference point 
(x,x) of interest, is composed of terms evaluated at the resident
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equilibrium. This is a desirable feature in applications that is late
discussed. The other consequence is that, up to order k in the
expansion, the internal equilibria of the resident–invader
dynamics are given by the roots of a polynomial of degree ðk�1Þ

We have unfolded the competition scenarios by increasing leve
of degeneracy in the corresponding invasion fitness. When the first
order fitness derivatives are not vanishing—i.e., away from a singular
strategy—then k¼1 is enough to characterize the dynamics of inva
sion, so there are no internal equilibria and we reobtained the
“invasion implies substitution” theorem (after Geritz, 2005; Meszéna e
al., 2005; Dercole and Rinaldi, 2008). When the second-order fit-nes
cross-derivative is not vanishing at a singular strategy—condi-
tion (G2.1)—then k¼2 is enough and, as a  result, coexistence i
protected whenever possible and it occurs at a unique internal
equilibrium. Condition (G2.1) therefore characterizes generic singula
strategies and competition in their vicinity is of Lotka–Volterra type
either stable coexistence, or mutual exclusion, or the dominance o
one of  the two types. Our  results here retrace
the original classifi-cation of singular strategies (Metz et al., 1996
Geritz et al., 1997, 1998), clarifying  the role of  the  fitness cross
derivative.

Completely new results are obtained close to singular strategie
with vanishing fitness cross-derivative. There, a third-order ana

lysis is required (k¼3) and unprotected coexistence is possible
(with two internal equilibria, one stable and one not, see Fig. 1e
and f). Two cases (with single and double degeneracy—codimen
sion-one and -two) complete the classification of degeneracie
caused by the second-order fitness derivatives. The first (codi
mension-one) is the case in which the second pure-derivatives are
nonvanishing (Section 3.3.2). Then, resident–invader coexistence i
confined in cusp regions in the plane of the two strategies (Fig. 8). In
the second case (codimension-two), pure-derivatives are also nul
(Section 3.3.3) and the coexistence region is again conical (as in the
generic case), though composed by multiple sectors (Figs. 9 and 10)
In both situations there might be multiple cusp (resp. conical
regions characterized by different coexistence scenarios, some o
which are unprotected. An important result here is that the stable
equilibrium of coexistence is unique in each region, so there is only
one way in which evolution can proceed. Alternative stable
equilibria of coexistence require at least three internal equilibria
(two stable and one not), that is possible only with fitnes
degeneracies up to third order (i.e., leading terms of
order k¼4 in the dynamics of invasion).

The arrangement of the bifurcation boundaries separating the
different competition scenarios that can occur for strategies ðx1; x2Þ 
close to the singular point (x,x) has been locally derived in each
case. This analysis answers, among other things, an important 
question in the adaptive dynamics (AD) modeling framework 
(Metz et al., 1992, 1996; Dieckmann and Law, 1996; Geritz et 
al., 1997, 1998; Dercole and Rinaldi, 2008). That is: it shows how 
the region of validity of the “invasion implies substitution” 
theorem shrinks while approaching a singular strategy.

All our results hold in the limit ε-0, i.e., for the two competing 
strategies being sufficiently similar. In this limit, the dynamics of 
the total density of residents and invaders—the variable s—are 
much faster than the changes in the relative density r of invaders, 
and the results follow from standard time-scale separation tech-
niques. Our results are therefore local to the reference point (x,x) in 
the strategy plane and complement those of Priklopil (2012) on the 
global structure of the bifurcation boundaries of the resident–
invader coexistence region. However, by a continuity argument, we 
can conclude that the competition scenarios that we see close to 
degenerate singular strategies (e.g., unprotected coexistence in 
Sections 3.3.2 and 3.3.3) are also possible close to a generic, though 
nearly degenerate, singularity, provided the difference between 
resident and invader strategies is not too small.
That coexistence, whenever possible, generically occurs at a 
unique internal equilibrium was already known from Geritz 
(2005), Meszéna et al. (2005), and Durinx et al. (2008). These three 
contributions consider a single-species model, with the same 
ecological setting considered here (though the model is physio-
logically structured in Durinx et al. (2008), and nonstationary 
coexistence is also discussed in Meszéna et al., 2005).
    Geritz (2005)assumes a “linear and finite-dimensional envir-
onmental feedback,” meaning, in the present context, that only
density-independent functions ϕd1 ;1 are present in property P4 (all
others being null) and that a special product structure ϕd1 ;1ðx; x0Þ ¼ 
ϕ0
d1 ;1

ðxÞϕ″d1;1ðx0Þ is assumed (the notion of “environmental feed-
back” was introduced in Metz and Diekmann, 1986 in the context
of physiologically structured population models; see also Diek-
mann et al., 2001; Metz and Gyllenberg, 2001; see Dercole, 2015 
for a discussion in the context of unstructured models). Geritz 
(2005) then show the uniqueness of the internal equilibrium of 
coexistence by exploiting the two-dimensionality of the resident-
mutant demographic space.

A more general approach, making use of the time-scale 
separation between the aggregated density of the species and the 
relative densities of the different strategies, is taken in Mes-zéna et 
al. (2005) and in Durinx et al. (2008). Durinx et al. (2008) also 
assume a finite-dimensional environment (the product
structure in the ðx; x0Þ�dependence of functions ϕ's) and allow for 
nonlinear density dependencies (without however being explicit
on the structure of the allowed nonlinearities). They focus on 
extending the AD framework to physiologically structured popu-
lation models and show, as a byproduct, that for sufficiently similar 
resident and invader strategies the model equilibria cor-respond to 
those of an appropriately chosen Lotka–Volterra model.

The focus in Meszéna et al. (2005) is on the joint demographic 
dynamics of a cloud of similar strategies. The fitness of the invader 
is defined as a functional over the density distribution of the 
resident strategies, the latter composed of a set of Dirac peaks in 
the strategy space. This approach has properties P1–P3 built-in, 
however, property P4 was not assumed. Although any functional 
accounting for individual birth and death processes and pairwise 
(or group) interactions also implies property P4 (Dercole, 2015), no 
restriction on the functional was considered. Meszéna et al. (2005) 
instead define an ad-hoc concept of functional derivative w.r.t. a 
distribution, through which they show P4 only up to first deriva-
tives. Their main message is that mutations should not necessarily 
be infrequent to apply the AD framework. Even if several mutant 
types concomitantly compete, only the fittest generically wins, so 
the mutation-substitution picture of AD remains valid. Only close 
to a singular strategy the coexistence of similar strategies is pos-
sible and Meszéna et al. (2005) show that there is generically a 
unique equilibrium of coexistence.

With respect to the above contributions, we further show that 
the genericity condition for the uniqueness of the equilibrium of 
coexistence is the nonvanishing of the fitness cross-derivative 
(G2.1), and we do this in a multi-species context.

Besides our new results, and our refinements of previously 
known facts, our main contribution is the general methodological 
approach that allows the analysis of competition scenarios char-
acterized by any order of degeneracies in the invasion fitness. Most 
importantly, the genericity conditions that are derived at each 
order, as well as the quantities discriminating among the compe-
tition scenarios that are possible case by case, can all be tested at 
the resident monomorphic equilibrium, i.e., before the appearance 
of the invader type. In fact, most of the genericity conditions 
(summarized in Table 3) are expressed in terms of the derivatives
of the invasion fitness λðx1; x2Þ at the reference point (x,x). When 
this is not possible (see the stars over the equal sign in Table 3),
the conditions are in any case expressed in terms of the “bar”-



 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

 

 

Table A1
Derivatives of the resident equilibrium ðnðxÞ;N ðxÞÞ.

nðdÞ ¼ 1
detM

~g ð1;0;0;0;0;0Þqdþ ~g ð0;0;1;0;0;0ÞQ d

� �

N
ðdÞ ¼ 1

det M
~F
ð1;0;0;0;0Þ

qdþ ~F
ð0;0;1;0;0Þ

Q d

� �

M ≔
g ð1;0;0;0;0;0Þ g ð0;0;1;0;0;0Þ

F
ð1;0;0;0;0Þ

F
ð0;0;1;0;0Þ

" #
; ~M ≔

~g ð1;0;0;0;0;0Þ ~g ð0;0;1;0;0;0Þ

~F
ð1;0;0;0;0Þ ~F

ð0;0;1;0;0Þ

" #
; ~MM¼M ~M ¼ det M I1þP

�q1 ≔ g ð0;0;0;1;0;0Þ þg ð0;0;0;0;0;1Þ

�Q 1 ≔ F
ð0;0;0;1;0Þ

�q2 ≔ g ð2;0;0;0;0;0Þðnð1ÞÞ2þ2 g ð1;0;1;0;0;0Þnð1ÞN
ð1Þ þg ð0;0;2;0;0;0Þ½N ð1Þ

;N
ð1Þ�

þ2 g ð1;0;0;1;0;0Þn ð1Þ þ2 g ð1;0;0;0;0;1Þn ð1Þ þ2 g ð0;0;1;1;0;0ÞN
ð1Þ þ2 g ð0;0;1;0;0;1ÞN

ð1Þ

þg ð0;0;0;2;0;0Þ þ2 g ð0;0;0;1;0;1Þ þg ð0;0;0;0;0;2Þ

�Q 2 ≔ F
ð2;0;0;0;0Þðn ð1ÞÞ2þ2 F

ð1;0;1;0;0Þ
nð1ÞN

ð1Þ þF
ð0;0;2;0;0Þ½N ð1Þ

;N
ð1Þ�

þ2 F
ð1;0;0;1;0Þ

n ð1Þ þ2 F
ð0;0;1;1;0Þ

N
ð1Þ þF

ð0;0;0;2;0Þ

�q3 ≔ 3 g ð2;0;0;0;0;0Þn ð1Þn ð2Þ þ3 g ð1;0;1;0;0;0Þ nð2ÞN
ð1Þ þn ð1ÞN

ð2Þ� �
þ3 g ð1;0;0;1;0;0Þn ð2Þ þ3 g ð1;0;0;0;0;1Þn ð2Þ þ3 g ð0;0;2;0;0;0Þ½N ð1Þ

;N
ð2Þ �

þ3 g ð0;0;1;1;0;0ÞN
ð2Þ þ3 g ð0;0;1;0;0;1ÞN

ð2Þ þg ð3;0;0;0;0;0Þðn ð1ÞÞ3

þ3 g ð2;0;1;0;0;0Þðn ð1ÞÞ2N ð1Þ þ3 g ð2;0;0;1;0;0Þðn ð1ÞÞ2þ3 g ð2;0;0;0;0;1Þðn ð1ÞÞ2

þ3 g ð1;0;2;0;0;0Þ½N ð1Þ
;N

ð1Þ�n ð1Þ þ6 g ð1;0;1;1;0;0Þn ð1ÞN
ð1Þ þ6 g ð1;0;1;0;0;1Þnð1ÞN

ð1Þ

þ3 g ð1;0;0;2;0;0Þn ð1Þ þ6 g ð1;0;0;1;0;1Þn ð1Þ þ3 g ð1;0;0;0;0;2Þn ð1Þ

þg ð0;0;3;0;0;0Þ½N ð1Þ
;N

ð1Þ
;N

ð1Þ�þ3 g ð0;0;2;1;0;0Þ½N ð1Þ
;N

ð1Þ�þ3 g ð0;0;2;0;0;1Þ½N ð1Þ
;N

ð1Þ�
þ3 g ð0;0;1;2;0;0ÞN

ð1Þ þ6 g ð0;0;1;1;0;1ÞN
ð1Þ þ3 g ð0;0;1;0;0;2ÞN

ð1Þ þg ð0;0;0;3;0;0Þ

þ3 g ð0;0;0;2;0;1Þ þ3 g ð0;0;0;1;0;2Þ þg ð0;0;0;0;0;3Þ
evaluations of functions g and F (and their derivatives, including
functions ϕ's and ψ of property P4 and their derivatives). These
“bar”-evaluations do not require the full knowledge of functions g
and F, defining the resident–invader model (1), but only the
knowledge of functions g1 and F1 of property P1. That is, only the
resident demographic equilibrium (defined by g1 and F1 in (2)) and a
model for the invader dynamics locally to this equilibrium (that is
the invasion fitness defined by g1 in (3)) are necessary and sufficient
to draw global conclusion on the resident–invader dynamics. This is
very important in applications, where a model for the initial invader
dynamics can be easily identified, theoreti-cally and/or
experimentally, at the regime of the resident strate-gies. Hence, the
potential of similar invaders can be tested without simulating and/
or waiting for the full invasion transient.

Moving to future directions of research, further degenerate
singular strategies (i.e., with degeneracies up to third or higher
order) or ad-hoc degeneracies could be studied. The interest
comes from both applications, where modeling assumptions and
symmetries make models degenerate, and theory, to fully classify
the competition scenarios that are possible for each type of
degeneracy. For example, as discussed in Section 5.2, Lotka–Vol-
terra models assume linear density dependencies in the functions
g and F and, consequently, fail to satisfy the genericity conditions
that require nonlinearities.

And not only the ecological dynamics should be unfolded, but also
the evolutionary dynamics locally to the singular strategies allowing
resident–invader coexistence. In particular, the well-known branching
conditions of Geritz et al. (1997) and Geritz et al. (1998) are given in
terms of the second-order fitness derivatives, but little is known (see a
comment in Kisdi, 1999) if the evolutionary dynamics are dominated by
third- (or higher-) orders in the fitness expansion. The analysis of
degenerate evolutionary dynamics requires the third- (or higher-) order
expansion of the dimorphic fitness—the invasion potential of a strategy
in the environment set by two incipient branching strategies. Though an
attempt appeared in Durinx (2008), the  task is definitely nontrivial
due to the nonsmoothness of the dimorphic fitness at the singular
strategy (essentially due to the presence of a continuum of
critically stable equilibria of model (1) if  x1 ¼ x2 ¼ x). The case of  the
ESS-branching transition—vanishing second-pure-derivative λð0;2Þ–has
already been discussed (Della Rossa et al., 2015), but the cases with
vanishing fitness cross-derivative are still waiting. Again property P4
plays a crucial role in allowing the derivation of a proper expansion of
the dimorphic fitness. If the expansion is taken to a sufficiently high
order, it should give a theoretical base to interesting and unexpected
evolutionary scenarios, like the evolutionary branching at an attracting
ESS numerically observed by Doebeli and Ispolatov (2010).

Finally, all the results here discussed on the ecological and evolu-
tionary dynamics between similar strategies should be extended to
the context of structured populations, characterized by multi-
dimensional (vector-valued) strategies. According to the analyses in
Durinx (2008) and Durinx et al. (2008), analogous results are expected.
 
 
 
 

�Q 3 ≔ 3 F
ð2;0;0;0;0Þ

n ð1Þn ð2Þ þ3 F
ð1;0;1;0;0Þ

n ð2ÞN
ð1Þ þn ð1ÞN

ð2Þ� �
þ3 F

ð1;0;0;1;0Þ
n ð2Þ þ3 F

ð0;0;2;0;0Þ ½N ð1Þ
;N

ð2Þ�
þ3 F

ð0;0;1;1;0Þ
N

ð2Þ þF
ð3;0;0;0;0Þðnð1ÞÞ3

þ3 F
ð2;0;1;0;0Þðn ð1ÞÞ2N ð1Þ þ3 F

ð2;0;0;1;0Þðnð1ÞÞ2

þ3 F
ð1;0;2;0;0Þ½N ð1Þ

;N
ð1Þ �n ð1Þ þ6 F

ð1;0;1;1;0Þ
n ð1ÞN

ð1Þ

þ3 F
ð1;0;0;2;0Þ

n ð1Þ þF
ð0;0;3;0;0Þ½N ð1Þ

;N
ð1Þ
;N

ð1Þ�þ3 F
ð0;0;2;1;0Þ½N ð1Þ

;N
ð1Þ�

þ3 F
ð0;0;1;2;0Þ

N
ð1Þ þF

ð0;0;0;3;0Þ
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Appendix A. Derivatives of the resident equilibrium

Differentiating Eqs. (2a) and (2b) w.r.t. x1 at x1 ¼ x and solving
for the derivatives ðnðdÞðxÞ;N ðdÞðxÞÞ, dZ1, of the resident equili-
brium, one gets the results of Table A1, where the ðPþ1Þ � ðPþ1Þ
matrix M is the same of Table 1 and is here reported for the
reader's convenience.

Matrix M is invertible thanks to the hyperbolicity of the resi-
dent equilibrium ( ~M being the adjugate matrix, i.e., the transpose
of the matrix of cofactors of M). In fact, the Jacobian of model ((1)a,
c) with n2 ¼ 0 and x1 ¼ x is nothing but M with the first row
multiplied by n. If the P� P matrix F

ð0;0;1;0;0Þ
is invertible, then we

have

detM ¼ ðg ð1;0;0;0;0;0Þ �g ð0;0;1;0;0;0ÞðF ð0;0;1;0;0ÞÞ�1F
ð1;0;0;0;0ÞÞ det F ð0;0;1;0;0Þ

;

~g ð1;0;0;0;0;0Þ ¼ det F
ð0;0;1;0;0Þ

;

~g ð0;0;1;0;0;0Þ ¼ �g ð0;0;1;0;0;0Þdet F
ð0;0;1;0;0ÞðF ð0;0;1;0;0ÞÞ�1;

~F
ð1;0;0;0;0Þ ¼ �det F

ð0;0;1;0;0ÞðF ð0;0;1;0;0ÞÞ�1F
ð1;0;0;0;0Þ

;

~F
ð0;0;1;0;0Þ ¼ ðF ð0;0;1;0;0ÞÞ�1ðdet MIPþF

ð1;0;0;0;0Þ
g ð0;0;1;0;0;0ÞdetF

ð0;0;1;0;0ÞðF ð0;0;1;0;0ÞÞ�1Þ;

but this needs not to be the case.



Table A2

Derivatives of the resident equilibrium n for P¼0 (recall that g ð1;0;0;0;0Þo0 due to
the hyperbolic stability of the equilibrium).

n ðdÞ ¼ qd

g ð1;0;0;0;0Þ

�q1 ≔ g ð0;0;1;0;0Þ þg ð0;0;0;0;1Þ

�q2 ≔ g ð2;0;0;0;0Þðnð1ÞÞ2þ2 g ð1;0;1;0;0Þ þg ð1;0;0;0;1Þ
� �

nð1Þ

þg ð0;0;2;0;0Þ þ2 g ð0;0;1;0;1Þ þg ð0;0;0;0;2Þ

�q3 ≔ 3 g ð2;0;0;0;0Þn ð1Þn ð2Þ þ3 g ð1;0;1;0;0Þ þg ð1;0;0;0;1Þ
� �

n ð2Þ þg ð3;0;0;0;0Þðn ð1ÞÞ3

þ3 g ð2;0;1;0;0Þ þg ð2;0;0;0;1Þ
� �

ðn ð1ÞÞ2

þ3 g ð1;0;2;0;0Þ þ2 g ð1;0;1;0;1Þ þg ð1;0;0;0;2Þ
� �

n ð1Þ

þg ð0;0;3;0;0Þ þ3 g ð0;0;2;0;1Þ þ3 g ð0;0;1;0;2Þ þg ð0;0;0;0;3Þ

Table B1
ε-Expansion of the fast-equilibrium manifold fsf ðr; ε; θÞ, Nf ðr; ε; θÞ, rA ½0;1�g.

sð0;k;0Þf ðr;0; θÞ ¼ ðð1�rÞ cos θþr sin θÞkn ðkÞ þ 1
detM

~g ð1;0;0;0;0;0Þqf ;kþ ~g ð0;0;1;0;0;0ÞQf ;k

� �

Nð0;k;0Þ
f ðr;0; θÞ ¼ ðð1�rÞ cos θþr sin θÞkN ðkÞ þ 1

detM
~F
ð1;0;0;0;0Þ

qf ;kþ ~F
ð0;0;1;0;0Þ

Qf ;k

� �

qf ;0 ¼Qf ;0 ¼ qf ;1 ¼Qf ;1 ≔ 0

�qf ;2 ≔ rð1�rÞð sin θ� cos θÞ2 g ð0;0;0;0;0;2Þ þϕ2;1 n
� �

�Qf ;2 ≔ rð1�rÞð sin θ� cos θÞ2 ψ 2;1 n

�qf ;3 ≔ rð1�rÞð sin θ� cos θÞ2ðð2�rÞ cos θþð1þrÞ sin θÞ g ð0;0;0;0;0;3Þ þϕ3;1 n
� �

þ3rð1�rÞð sin θ� cos θÞ2ðð1�rÞ cos θþr sin θÞ g ð0;0;0;1;0;2Þ þg ð1;0;0;0;0;2Þn ð1Þ
�

þg ð0;0;1;0;0;2ÞN
ð1Þ þϕ2;1 nð1Þ þϕ

ð1;0;0;0Þ
2;1 nnð1Þ þϕ

ð0;1;0;0Þ
2;1 nN

ð1Þ þϕ
ð0;0;0;1Þ
2;1 n

�
þrð1�rÞ ð1�rÞ cos 3θþð3r�2Þ cos 2θ sin θþð1�3rÞ cos θ sin 2θþr sin 3θ

� �
ϕ3;2 n2

�3ðð1�rÞ cos θþr sin θÞ g ð1;0;1;0;0;0ÞN
ð1Þ þg ð2;0;0;0;0;0Þn ð1Þ þg ð1;0;0;1;0;0Þ þg ð1;0;0;0;0;1Þ

� �
� ðð1�rÞ cos θþr sin θÞ2n ð2Þ �sð0;2;0Þf ðr;0; θÞ
� �

�3ðð1�rÞ cos θþr sin θÞ g ð1;0;1;0;0;0Þnð1Þ þg ð0;0;1;1;0;0Þ þg ð0;0;1;0;0;1Þ
� �

� ðð1�rÞ cos θþr sin θÞ2N ð2Þ �Nð0;2;0Þ
f ðr;0; θÞ

� �
�3ðð1�rÞ cos θþr sin θÞg ð0;0;2;0;0;0Þ ½N ð1Þ

; ðð1�rÞ cos θþr sin θÞ2N ð2Þ �Nð0;2;0Þ
f ðr;0; θÞ

� �
�

In case the resident and invader populations have no other
intra- or inter-specific interaction, i.e., the case P¼0, the expres-
sions in Table A1 simplify as in Table A2 (obtained by taking
conditions (13a)–(13d) into account and removing the argument N
from function g).
�Qf ;3 ≔ rð1�rÞð sin θ� cos θÞ2ðð2�rÞ cos θþð1þrÞ sin θÞψ 3;1 n

þ3rð1�rÞð sin θ� cos θÞ2ðð1�rÞ cos θþr sin θÞ ψ 2;1 n ð1Þ þψ ð1;0;0Þ
2;1 nnð1Þ þψ ð0;1;0Þ

2;1 nN
ð1Þ� �

þrð1�rÞ ð1�rÞ cos 3θþð3r�2Þ cos 2θ sin θþð1�3rÞ cos θ sin 2θþr sin 3θ
� �

ψ 3;2 n2

�3ðð1�rÞ cos θþr sin θÞ F
ð1;0;1;0;0Þ

N
ð1Þ þF

ð2;0;0;0;0Þ
n ð1Þ þF

ð1;0;0;1;0Þ� �
� ðð1�rÞ cos θþr sin θÞ2n ð2Þ �sð0;2;0Þf ðr;0; θÞ
� �

�3ðð1�rÞ cos θþr sin θÞ F
ð1;0;1;0;0Þ

n ð1Þ þF
ð0;0;1;1;0;0Þ� �

� ðð1�rÞ cos θþr sin θÞ2N ð2Þ �Nð0;2;0Þ
f ðr;0; θÞ

� �
�3ðð1�rÞ cos θþr sin θÞF ð0;0;2;0;0Þ½N ð1Þ

; ðð1�rÞ cos θþr sin θÞ2N ð2Þ �Nð0;2;0Þ
f ðr;0; θÞ

� �
�

Table B2
ε-Expansion of the fast-equilibrium manifold fsf ðr; ε; θÞ, rA ½0;1�g for P¼0 (recall

that g ð1;0;0;0;0Þo0 due to the hyperbolic stability of the equilibrium).

sð0;k;0Þf ðr;0; θÞ ¼ ðð1�rÞ cos θþr sin θÞknðkÞ þ qf ;k
g ð1;0;0;0;0Þ

qf ;0 ¼ qf ;1 ≔ 0

�qf ;2 ≔ rð1�rÞð sin θ� cos θÞ2 g ð0;0;0;0;2Þ þϕ2;1 n
� �

�qf ;3 ≔ rð1�rÞð sin θ� cos θÞ2ðð2�rÞ cos θþð1þrÞ sin θÞ g ð0;0;0;0;3Þ þϕ3;1 n
� �

þ3rð1�rÞð sin θ� cos θÞ2ðð1�rÞ cos θþr sin θÞ
� g ð0;0;1;0;2Þ þg ð1;0;0;0;2Þnð1Þ þϕ2;1 nð1Þ þϕ

ð1;0;0Þ
2;1 nn ð1Þ þϕ

ð0;0;1Þ
2;1 n

� �
þrð1�rÞ ð1�rÞ cos 3θþð3r�2Þ cos 2θ sin θþð1�3rÞ cos θ sin 2θþr sin 3θ

� �
ϕ3;2 n2

�3ðð1�rÞ cos θþr sin θÞ g ð2;0;0;0;0Þn ð1Þ þg ð1;0;1;0;0Þ þg ð1;0;0;0;1Þ
� �

� ðð1�rÞ cos θþr sin θÞ2n ð2Þ �sð0;2;0Þf ðr;0; θÞ
� �
Appendix B. Expansion of the fast-equilibrium manifold

The fast-equilibrium manifold fsf ðr; ε; θÞ;Nf ðr; ε; θÞ; rA ½0;1�g is
defined by the equilibrium condition for Eqs. (7a) and (7c) (including
the OðεÞ-terms!), after using the substitutions in (9), i.e.,

0¼ ð1�rÞgðð1�rÞsf ðr; ε; θÞ; rsf ðr; ε; θÞ;Nf ðr; ε; θÞ; xþε cos θ; xþε sin θ; xþε cos θÞ

þrgðð1�rÞsf ðr; ε; θÞ; rsf ðr; ε; θÞ;Nf ðr; ε; θÞ; xþε cos θ; xþε sin θ; xþε sin θÞ;
ðB:1aÞ

0¼ Fðð1�rÞsf ðr; ε; θÞ; rsf ðr; ε; θÞ;Nf ðr; ε; θÞ; xþε cos θ; xþε sin θÞ:
ðB:1bÞ

By expanding both equations in (B.1) around ε¼ 0, taking the
results of Table A1 into account, and separately solving the terms
of order k¼ 0;…;3 for sð0;k;0Þf ðr;0; θÞ and Nð0;k;0Þ

f ðr;0; θÞ, we get the
results in Table B1 (where the ðPþ1Þ � ðPþ1Þ nonsingular matrix
M is the same of Tables 1 and A1, see Supplementary Data).

As anticipated in Section 2.3, the derivatives sð0;k;0Þf ðr;0; θÞ and

Nð0;k;0Þ
f ðr;0; θÞ, kZ1, characterize the ε-perturbations of the fast-

equilibrium manifold from the zero-order solution
sf ðr;0; θÞ; Nf ðr;0; θÞ
� �¼ n;N

� �
. They are given by polynomial

expressions in r with degree equal to the order of differentiation and
coefficients that are ultimately functions of the reference strategy x
and of the perturbation angle θ.

Recall that only the derivatives sð0;k;0Þf ðr;0; θÞ and Nð0;k;0Þ
f ðr;0; θÞ

up to order k�1 are needed to determine functions Ri;k in Table 1.
This is due to the fact that only g-derivatives with at least one
order of differentiation w.r.t. the last argument (the invader
strategy) matter in Eq. (7b). Thus, only first and second derivatives
are needed to derive the results in Table 1, whereas the third
derivatives are used to derive the expression of R0;4 in Table 2, that
is used to evaluate (G4).

Finally, the expressions in Table B1 simplify as in Table B2
(taking conditions ((2)a–d) into account and removing the argu-
ment N from functions g and ϕ's), if the resident and invader
populations have no other intra- or inter-specific interaction (the
case P¼0).
Appendix C. Supplementary data

Supplementary data associated with this paper can be found in 
the online version at http://dx.doi.org/10.1016/j.jtbi.2015.11.032.

http://dx.doi.org/10.1016/j.jtbi.2015.11.032
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