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Abstract: This study presents a semi-analytical formulation for the nonlinear vibration and dynamic instability of 16 

a randomly distributed carbon nanotube-reinforced composite (RD-CNTRC) plate. Three cases of localized in-plane 17 
periodic loadings are studied. The analytical stress fields within the RD-CNTRC plate for all the in-plane stress 18 
components (σij, (i, j = x, y)) are developed by solving the in-plane elastic problem using Airy’s stress approach. The 19 
effective mechanical properties of the RD-CNTRC plate are evaluated by the Eshelby-Mori-Tanaka technique. The 20 
plate is modeled based on higher-order shear deformation theory (HSDT) in conjunction with the von-Kármán 21 
nonlinearity. Using Hamilton’s principle, the governing partial differential equations (PDEs) are derived, whose 22 
approximate solution is sought, referring to the Galerkin method. The resulting nonlinear ODEs are solved using the 23 
Incremental Harmonic Balance Method (IHB) to compute the nonlinear vibration response of the RD-CNTRC plate. 24 
Further dropping the nonlinear terms, these ODEs are solved by Bolotin’s method to trace the instability region. The 25 
proposed semi-analytical method is an effective strategy for studying the influence of different parameters such as 26 
agglomeration models, CNT mass fraction, pre-loading, and boundary conditions on the nonlinear vibration and 27 
dynamic instability characteristics of the RD-CNTRC plates. The reduced computational effort allows the design 28 
phase to be supported in selecting parameters when designing RD-CNTRC plates with stability and vibration 29 
requirements.  30 
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Introduction 34 

Carbon nanotubes (CNTs) were introduced three decades back by Iijima (1991). They gained enormous popularity in 35 
aerospace, civil, mechanical, and naval industries due to their potential to achieve lighter and more efficient structures. 36 
Previous studies have shown the possibility to improve strength-to-weight and stiffness-to-weight ratios as well as 37 
thermal behaviors of the plate (Gojny et al. 2004; Shi et al. 2004; Shokrieh and Rafiee 2010; Ciecierska et al. 2013; 38 
García-Macías et al. 2017; Yengejeh et al. 2017). Also, the load-carrying capacity of the plate has been shown to 39 
benefit from the use of CNTs as reinforcement (Schadler et al. 1998; Patra and Mitra 2014; Mehar and Panda 2019). 40 
Since then, a large number of investigations have been carried out. Among them, analytical and semi-analytical 41 
methods are of particular interest, as they can be successfully used for gathering insights into the additional design 42 
parameters offered by CNTs. For instance, a Navier approach was developed in Kumar and Srinivas (2017) to address 43 
vibration, buckling, and bending of a functionally graded carbon nanotubes-reinforced composite (FG-CNTRC) plate. 44 
Alternative strategies for analyzing the FG-CNTRC panel refer to the Kantorovich-Galerkin and Ritz methods, as 45 
presented in Wang et al. (2016), Kiani (2017) and Gorgeri et al. (2020) respectively.  46 

Please, add this reference: Gorgeri, A., R. Vescovini, and L. Dozio. "Sublaminate variable kinematics shell models 47 
for functionally graded sandwich panels: Bending and free vibration response." Mechanics of Advanced Materials 48 
and Structures (2020): 1-18. 49 

While many studies focus on static loads, real-life applications are often characterized by design requirements in the 50 
form of static and dynamic loads. In this regard, two crucial aspects are worth investigating: dynamic instability and 51 
nonlinear vibrations. Dynamic instability consists in the onset of a dynamically unstable phenomenon due to a specific 52 
combination of loading frequency, amplitude in conjunction with the natural frequencies of the members. As it 53 
concerns nonlinear vibration, the response of interest is represented by the frequency-amplitude curve of a nonlinear 54 
system excited harmonically through external forces. In the context of the first aspect, Heydarpour and Malekzadeh 55 
(2018) investigated the dynamic instability of a rotating shear deformable FG-CNTRC cylindrical shell under a 56 
uniform periodic axial load using the differential quadrature (DQ) method. They observed that the dynamic instability 57 
region shifts towards high-frequency regimes with increasing CNT volume fraction. Similar studies on the dynamic 58 
instability analysis of the FG-CNTRC plates can be found in Ke et al. (2013), Kolahchi et al. (2016), and Wu et al. 59 
(2018), where DQ is used as a solution methodology. All these studies are limited to uniform loading conditions, 60 
which is a relatively severe restrictions as loads acting on structural members of plate-like structures are generally not 61 
uniform. 62 

Moreover, load nonuniformity may stem from the interaction with adjoining members or in the presence of partial 63 
damages at the boundaries. For this reason, it is essential to extend the capabilities of semi-analytical methods to 64 
address the dynamic instability of the CNT-reinforced composite (CNTRC) in the presence of non-uniform loadings. 65 
While a few works in the literature cover the case of dynamic instability of plates with no CNT under localized (i.e., 66 

non-uniform) in-plane periodic loadings ‒ e.g. Deolasi and Datta (1997) and Sahu and Datta (2000), Ovesy and 67 
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Fazilati (2014),  Kumar et al. (2015), Ramachandra and Panda (2012), Kumar et al. (2016b) ‒ no previous works are 68 

available for CNTRC plates. 69 

A second fundamental aspect with the design of plate-like structures deals with their vibration behavior: structural 70 
members may experience vibration due to periodic loadings, and their amplitude must be guaranteed not to exceed 71 
the design limit. Previous research activities are available for the free vibration response of CNT plates (Aragh et al. 72 
2012; Yas et al. 2013; Moradi-Dastjerdi and Malek-Mohammadi 2017; Loja and Barbosa 2020), while relatively few 73 
authors have investigated their nonlinear vibration. For instance, the nonlinear vibration of the FG-CNTRC plate based 74 
on HSDT with an elastic foundation under the thermal environment was studied using different solution 75 
methodologies such as the Galerkin method (Wang and Shen 2011) and improved perturbation technique (Thanh et 76 
al. 2017). No previous studies are available on the nonlinear vibration of the CNTRC plates under non-uniform in-77 
plane periodic excitations. Also, the effect of CNT agglomeration models and CNT mass fraction on the dynamic 78 
instability and nonlinear vibration of the CNT-reinforced composite plates are unavailable. 79 

The scope of this work is to present a novel semi-analytical approach is to fill some of the existing gaps in the dynamic 80 
analysis of the RD-CNTRC plates. Specifically, the focus of this study is the development of a semi-analytical 81 
approach for the dynamic instability and nonlinear vibration of the RD-CNTRC plates under the action of localized 82 
in-plane periodic loadings. The formulation presented herein covers the current gap in the literature and allows us to 83 
gather a further understanding of the mechanical response of CNTRC plate-like structures.  84 
The the paper is organized as follows: the mathematical formulation is presented first, which consist of Fourier 85 
expansion of the localized in-plane loadings, estimation of the effective properties of the RD-CNTRC plate, in-plane 86 
elasticity problem, kinematics of the RD-CNTRC plate, governing partial differential equations, Galerkin method and 87 
followed by dynamic instability and nonlinear vibration analyses. Results and discussion are then presented: validation 88 
studies are conducted against Abaqus simulations and results from the literature, while parametric studies are 89 
presented to illustrate the potential of the formulation developed here. 90 

Mathematical Formulation 91 

Subjects of the investigation are plates characterized by randomly distributed carbon nanotube-reinforced composite 92 
(RD-CNTRC). The length and width of the plate are denoted as a and b, while the thickness is h. A Cartesian reference 93 
system is taken according to the sketch of Fig. 1, where loading conditions are illustrated. They are three cases of 94 
localized in-plane compressive periodic loadings in addition to the uniform one.  95 

 96 

 97 
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(a)                                    (b) 

 
 

(c)                                   (d) 

Fig. 1. Three cases of localized in-plane compressive periodic loadings, (a) Case-I, (b) Case-II, (c) Case-III, and (d) 98 
uniform periodic loading are shown. 99 

The localized in-plane loading is modeled using the Fourier series expansion along the y-direction. The generalized 100 
form of localized in-plane loading function is defined as: 101 

𝑁𝑁(𝑦𝑦) =
𝑏𝑏
𝑑𝑑
�𝑁𝑁�0
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𝑏𝑏
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𝜋𝜋𝜋𝜋
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𝑑𝑑
2
−
𝑏𝑏
2
� +  𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑖𝑖 �

𝑏𝑏
2
− 𝑑𝑑0��

∞

𝑟𝑟=1

𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑖𝑖𝑦𝑦 �    (1) 

where 𝑑𝑑0 represents the distance of the load from the top or bottom edges, and d denotes the total width of the loading 102 

at any edge of the plate, as shown in Fig. 1. The three load cases above can be representative of the connection between 103 
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a stiffened plate and a plate without stiffener, where load transfer tends to localized. Depending on 𝑑𝑑0, the generalized 104 

form of localized in-plane loading function is reduced into three cases: 105 

• Case I (𝑑𝑑0 = 0):  106 

𝑁𝑁(𝑦𝑦) =
𝑏𝑏
𝑑𝑑
�
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2𝑁𝑁�0
𝜋𝜋𝜋𝜋

 
∞
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2
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𝑏𝑏
2
� 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑖𝑖𝑦𝑦�    (2) 

• Case II (𝑑𝑑0 = 0.125𝑏𝑏): 107 

𝑁𝑁(𝑦𝑦) =
𝑏𝑏
𝑑𝑑
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+ �
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• Case III (𝑑𝑑0 = 0.25𝑏𝑏):  108 
 109 

𝑁𝑁(𝑦𝑦) =
𝑏𝑏
𝑑𝑑
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𝑏𝑏
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�
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𝑟𝑟=1

𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑖𝑖𝑦𝑦�    (4) 

For the three cases, the total loading width at the edge of the plate is kept constant, such that different distributions 110 
share the same load resultant. This choice allows the effect of different distributions/shapes of localized in-plane loads 111 
to be assessed ceteris paribus. The detailed derivation of all three cases of localized in-plane loadings at the edge of 112 
the plate is given in Appendix A.   113 

The Eshelby-Mori-Tanaka Scheme 114 

The constituents used in the plate are single-walled carbon nanotubes (SWCNT) (chiral indices (n0, m0) = (10, 10)) 115 
and polymer matrix (epoxy resin). SWCNT is considered transversely isotropic (Odegard et al. 2003), and hence, five 116 
independent material properties are needed to illustrate the equations of the equivalent continuum model. These 117 
properties can be used in the form of Hill’s elastic moduli (𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶 , 𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶,  𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶 and 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶) (Eshely 1957; Mori 118 
and Tanaka 1973). The polymer matrix is considered as isotropic and hence has two independent elastic constants 119 
(𝐸𝐸𝑒𝑒𝑒𝑒 and 𝜈𝜈𝑒𝑒𝑒𝑒). The mechanical characterizations of the CNT embedded matrix (i.e., hybrid matrix) are estimated using 120 

Eshelby-Mori-Tanaka scheme in this present investigation. In this connection, when CNTs are randomly mixed with 121 
polymer matrix, these CNTs have a tendency to agglomerate into spherical shaped inclusions within the matrix 122 
because of low bending rigidity, high aspect ratio, and high Van der Waals forces (Daghigh and Daghigh 2018; Shaffer 123 
and Windle 1999; Shi et al. 2004; Vigolo et al. 2000). To model the agglomeration, the Mori-Tanaka technique is 124 
employed here; in fact, this technique has provisions to consider the agglomeration effect of CNTs using two different 125 
parameters α and β, respectively. The former, α, is the ratio of the volume of spherical inclusions to the total volume 126 
of the CNTs embedded in the matrix; the latter, β, is the ratio of the volume of CNTs within the inclusions to the total 127 
volume of CNTs. The agglomeration can be categorized into three cases: complete agglomeration (α<β, β = 1), null 128 
agglomeration (α = 1, β = 1), and partial agglomeration (α<β, β<1), as shown in Fig. 2. The bulk and shear moduli of 129 
the CNT embedded matrix are computed with the help of the bulk and shear moduli of the CNT embedded matrix 130 
when CNTs in spherical inclusions and CNTs outside spherical inclusions, respectively. The bulk and shear moduli 131 
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of the CNT embedded matrix are denoted by 𝐵𝐵𝑎𝑎𝑎𝑎ℎ  and 𝑆𝑆𝑎𝑎𝑎𝑎ℎ , respectively, when the inclusion is spherical. In this case, 132 

they are calculated as shown in Eqs. (5) and (6). When CNTs fall outside the inclusion, the bulk and shear moduli are 133 

denoted by 𝐵𝐵𝑠𝑠𝑠𝑠ℎ  and 𝑆𝑆𝑠𝑠𝑠𝑠ℎ , respectively, and computed as given in Eqs. (7) and (8) (Tornabene et al. 2017) . 134 

𝐵𝐵𝑎𝑎𝑔𝑔ℎ = 𝐵𝐵𝑒𝑒𝑒𝑒 +
𝑉𝑉𝑟𝑟�𝑐̂𝑐 − 3𝐵𝐵𝑒𝑒𝑒𝑒 · 𝑎𝑎��𝛽𝛽

3(𝛼𝛼 − 𝑉𝑉𝑟𝑟𝛽𝛽 + 𝑉𝑉𝑟𝑟𝛽𝛽 · 𝑎𝑎�)     (5) 

𝑆𝑆𝑎𝑎𝑎𝑎ℎ = 𝑆𝑆𝑒𝑒𝑒𝑒 +
𝑉𝑉𝑟𝑟�𝑑̂𝑑 − 2𝑆𝑆𝑒𝑒𝑒𝑒 · 𝑏𝑏��𝛽𝛽

3�𝛼𝛼 − 𝑉𝑉𝑟𝑟𝛽𝛽 + 𝑉𝑉𝑟𝑟𝛽𝛽 · 𝑏𝑏��
     (6) 

𝐵𝐵𝑠𝑠𝑠𝑠ℎ = 𝐵𝐵𝑒𝑒𝑒𝑒 +
𝑉𝑉𝑟𝑟(1 − 𝛽𝛽)�𝑐𝑐 − 3𝐵𝐵𝑒𝑒𝑒𝑒 · 𝑎𝑎��

3(1 − 𝛼𝛼 − 𝑉𝑉𝑟𝑟(1 − 𝛽𝛽) + 𝑉𝑉𝑟𝑟(1 − 𝛽𝛽) · 𝑎𝑎�)     (7) 

𝑆𝑆𝑠𝑠𝑠𝑠ℎ = 𝑆𝑆𝑒𝑒𝑒𝑒 +
𝑉𝑉𝑟𝑟(1 − 𝛽𝛽)�𝑐𝑐 − 2𝑆𝑆𝑒𝑒𝑒𝑒 · 𝑏𝑏��

2�1 − 𝛼𝛼 − 𝑉𝑉𝑟𝑟(1 − 𝛽𝛽) + V𝑟𝑟(1 − 𝛽𝛽) · 𝑏𝑏��
     (8) 

 

(a) 

 

(b) 

 
(c) 

 

 

 

 (d) 
 

Fig. 2. (a) Schematic diagram of the RD-CNTRC plate and agglomeration models of CNTs for the randomly 135 
distributed CNTs in the matrix: (b) complete agglomeration; (c) partial agglomeration; (d) null agglomeration. 136 

In Eqs. (5)-(8), 𝑉𝑉𝑟𝑟  denotes the CNT volume fraction (i.e., the ratio of the volume of CNTs to the total volume of the 137 

matrix, including CNTs), and the following paramters are introduced: 138 
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𝑎𝑎� =
3�𝐵𝐵𝑒𝑒𝑒𝑒 + 𝑆𝑆𝑒𝑒𝑒𝑒� + 𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶

3�𝑆𝑆𝑒𝑒𝑒𝑒 + 𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶�
     (9) 

𝑏𝑏� =
1
5
�

4𝑆𝑆𝑒𝑒𝑒𝑒 + 2𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶
3�𝑆𝑆𝑒𝑒𝑒𝑒 + 𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶�

+
4𝑆𝑆𝑒𝑒𝑒𝑒

𝑆𝑆𝑒𝑒𝑒𝑒 + 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶
+ 

2 �𝑆𝑆𝑒𝑒𝑒𝑒�3𝐵𝐵𝑒𝑒𝑒𝑒 + 𝑆𝑆𝑒𝑒𝑒𝑒� + 𝑆𝑆𝑒𝑒𝑒𝑒�3𝐵𝐵𝑒𝑒𝑒𝑒 + 7𝑆𝑆𝑒𝑒𝑒𝑒��

𝑆𝑆𝑒𝑒𝑒𝑒�3𝐵𝐵𝑒𝑒𝑒𝑒 + 𝑆𝑆𝑒𝑒𝑒𝑒� + 𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶�3𝐵𝐵𝑒𝑒𝑒𝑒 + 7𝑆𝑆𝑒𝑒𝑒𝑒�
�    (10) 

𝑐̂𝑐 =
1
3
�𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶 + 2𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶 +

(2𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶)�3𝐵𝐵𝑒𝑒𝑒𝑒 + 𝑆𝑆𝑒𝑒𝑒𝑒 − 𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶�
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𝑆𝑆𝑒𝑒𝑒𝑒 + 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶
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2(𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶)�2𝑆𝑆𝑒𝑒𝑒𝑒 + 𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶�

3�𝑆𝑆𝑒𝑒𝑒𝑒 + 𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶�
� + 
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5
�

8𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑒𝑒𝑒𝑒�3𝐵𝐵𝑒𝑒𝑒𝑒+4𝑆𝑆𝑒𝑒𝑒𝑒�
3𝐵𝐵𝑒𝑒𝑒𝑒�𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑆𝑆𝑒𝑒𝑒𝑒� + 𝑆𝑆𝑒𝑒𝑒𝑒�7𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑆𝑆𝑒𝑒𝑒𝑒�

� 

   (12) 

where the terms Bep and Sep denote the bulk and shear moduli of the matrix, respectively, defined as:. 139 

𝐵𝐵𝑒𝑒𝑒𝑒 =
𝐸𝐸𝑒𝑒𝑒𝑒

3�1 − 2𝜈𝜈𝑒𝑒𝑒𝑒�
 (13) 

𝑆𝑆𝑒𝑒𝑒𝑒 =
𝐸𝐸𝑒𝑒𝑒𝑒

2�1 + 𝜈𝜈𝑒𝑒𝑒𝑒�
 (14) 

The Poisson’s ratio 𝜈𝜈𝑠𝑠𝑠𝑠ℎ  of the CNT embedded matrix when CNTs outside spherical inclusions reads: 140 

𝜈𝜈𝑠𝑠𝑠𝑠ℎ =
3𝐵𝐵𝑠𝑠𝑠𝑠ℎ − 2𝑆𝑆𝑠𝑠𝑠𝑠ℎ

6𝐵𝐵𝑠𝑠𝑠𝑠ℎ + 2𝑆𝑆𝑠𝑠𝑠𝑠ℎ
 (15) 

Using Eqs. (5)-(8), and Eq. (15), the overall bulk modulus (𝐵𝐵ℎ𝑚𝑚) and shear modulus (𝑆𝑆ℎ𝑚𝑚) of the CNT embedded 141 

matrix can be computed as follows: 142 

𝐵𝐵ℎ𝑚𝑚 = 𝐵𝐵𝑠𝑠𝑠𝑠ℎ

⎝

⎜
⎛

1 +
𝛼𝛼 �

𝐵𝐵𝑎𝑎𝑎𝑎ℎ

𝐵𝐵𝑠𝑠𝑠𝑠ℎ
− 1�

1 + (1 − 𝛼𝛼)�
𝐵𝐵𝑎𝑎𝑎𝑎ℎ
𝐵𝐵𝑠𝑠𝑠𝑠ℎ

− 1� 1 + 𝜈𝜈𝑠𝑠𝑠𝑠ℎ
3 − 3𝜈𝜈𝑠𝑠𝑠𝑠ℎ ⎠

⎟
⎞

 

 

(16) 

𝑆𝑆ℎ𝑚𝑚 = 𝑆𝑆𝑠𝑠𝑠𝑠ℎ

⎝

⎜
⎛

1 +
𝛼𝛼 �

𝑆𝑆𝑎𝑎𝑎𝑎ℎ

𝑆𝑆𝑠𝑠𝑠𝑠ℎ
− 1�

1 + (1 − 𝛼𝛼)�
𝑆𝑆𝑎𝑎𝑎𝑎ℎ
𝑆𝑆𝑠𝑠𝑠𝑠ℎ

− 1� 8 − 10𝜈𝜈𝑠𝑠𝑠𝑠ℎ
15 − 15𝜈𝜈𝑠𝑠𝑠𝑠ℎ ⎠

⎟
⎞

 (17) 

Using the above values of 𝐵𝐵ℎ𝑚𝑚  and 𝑆𝑆ℎ𝑚𝑚, Young’s modulus (𝐸𝐸ℎ𝑚𝑚) and Poisson’s ratio (𝜈𝜈ℎ𝑚𝑚) of the CNT embedded 143 
matrix is available as: 144 

𝐸𝐸ℎ𝑚𝑚 =
9𝐵𝐵ℎ𝑚𝑚𝑆𝑆ℎ𝑚𝑚

3𝐵𝐵ℎ𝑚𝑚 + 𝑆𝑆ℎ𝑚𝑚
 (18) 

𝜈𝜈ℎ𝑚𝑚 =
3𝐵𝐵ℎ𝑚𝑚 − 2𝑆𝑆ℎ𝑚𝑚
6𝐵𝐵ℎ𝑚𝑚 + 2𝑆𝑆ℎ𝑚𝑚

 (19) 
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The overall density of the CNT embedded matrix (𝜌𝜌hm) can be calculated using the rule of mixture (Voigt model), 145 

𝜌𝜌ℎ𝑚𝑚 = 𝜌𝜌𝑟𝑟𝑉𝑉𝑟𝑟 + 𝜌𝜌𝑒𝑒𝑒𝑒𝑉𝑉𝑒𝑒𝑒𝑒 (20) 

where the sum of volume fraction of CNT and epoxy is equal to 1 (i.e., 𝑉𝑉𝑟𝑟 + 𝑉𝑉𝑒𝑒𝑒𝑒 = 1), and volume fraction of CNT is 146 

calculated by Eq. (21) using the values of given density of CNT and epoxy (i.e., 𝜌𝜌𝑟𝑟 and 𝜌𝜌𝑒𝑒𝑒𝑒), and mass fraction of 147 

CNT (𝑤𝑤𝑟𝑟). 148 

𝑉𝑉𝑟𝑟 =
1

𝜌𝜌𝑟𝑟/(𝑤𝑤𝑟𝑟𝜌𝜌𝑟𝑟) − 𝜌𝜌𝑟𝑟/𝜌𝜌𝑒𝑒𝑒𝑒 + 1
 (21) 

Kinematics of the RD-CNTRC Plate 149 

In the present study, the higher-order shear deformation theory (HSDT) due to Reddy and Liu (1985) is employed. 150 
Based on the HSDT, the displacement field, following Soldatos (1991), is presented as: 151 

𝑢𝑢 = 𝑢𝑢0 − 𝑧𝑧𝑤𝑤,𝑥𝑥
0 + 𝑓𝑓(𝑧𝑧)𝜙𝜙𝑥𝑥0 (22) 

𝑢𝑢 = 𝑢𝑢0 − 𝑧𝑧𝑤𝑤,𝑥𝑥
0 + 𝑓𝑓(𝑧𝑧)𝜙𝜙𝑥𝑥0 (23) 

𝑤𝑤 = 𝑤𝑤0 (24) 

which guarantees shear strains to be zero at the top and the bottom of the plate. In the above equations, u, v, and w 152 
indicate the displacements of a material point (x, y), which is at a distance z away from the reference surface of the 153 

plate along x, y, z directions, respectively. Similarly, 𝑢𝑢0, 𝑣𝑣0and 𝑤𝑤0 denote the displacements of the point on the 154 

reference surface along x, y, z directions, respectively. The terms 𝜙𝜙𝑥𝑥0 and 𝜙𝜙𝑦𝑦0 represent the net rotation of the cross-155 

section perpendicular to x and y axes, respectively. The suffix (),x, and (),y symbolize the differentiation with respect 156 

to x and y, respectively. Here, 𝑓𝑓(𝑧𝑧) = 𝑧𝑧 �1 − 4𝑧𝑧2

3ℎ2
�. At a distance z from the neutral surface of a plate, the strain-157 

displacement equations, including the von-Kármán nonlinearity, can be written as, 158 

𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜀𝜀𝑥𝑥𝑥𝑥0 − 𝑧𝑧𝑤𝑤,𝑥𝑥𝑥𝑥
0 + 𝑓𝑓(𝑧𝑧)𝜙𝜙𝑥𝑥,𝑥𝑥

0  (25) 

𝜀𝜀𝑦𝑦𝑦𝑦 = 𝜀𝜀𝑦𝑦𝑦𝑦0 − 𝑧𝑧𝑤𝑤,𝑦𝑦𝑦𝑦
0 + 𝑓𝑓(𝑧𝑧)𝜙𝜙𝑦𝑦,𝑦𝑦

0  (26) 

𝛾𝛾𝑥𝑥𝑥𝑥 = 𝛾𝛾𝑥𝑥𝑥𝑥0 − 2𝑧𝑧𝑤𝑤,𝑥𝑥𝑥𝑥
0 + 𝑓𝑓(𝑧𝑧)𝜙𝜙𝑥𝑥,𝑦𝑦

0 + 𝑓𝑓(𝑧𝑧)𝜙𝜙𝑦𝑦,𝑥𝑥
0  (27) 

𝛾𝛾𝑥𝑥𝑥𝑥 = 𝑢𝑢,𝑧𝑧 + 𝑤𝑤,𝑥𝑥 = 𝑓𝑓′(𝑧𝑧)𝜙𝜙𝑥𝑥0 (28) 

𝛾𝛾𝑦𝑦𝑦𝑦 = 𝑣𝑣,𝑧𝑧 + 𝑤𝑤,𝑦𝑦 = 𝑓𝑓′(𝑧𝑧)𝜙𝜙𝑦𝑦0 (29) 

where, 𝜀𝜀𝑥𝑥𝑥𝑥0 , 𝜀𝜀𝑦𝑦𝑦𝑦0  and 𝛾𝛾𝑥𝑥𝑥𝑥0  are the strains at the neutral surface of the plate defined as, 159 
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𝜀𝜀𝑥𝑥𝑥𝑥0 = 𝑢𝑢,𝑥𝑥
0 +

1
2
�𝑤𝑤,𝑥𝑥

0�2 (30a) 

𝜀𝜀𝑦𝑦𝑦𝑦0 = 𝑣𝑣,𝑦𝑦
0 +

1
2
�𝑤𝑤,𝑦𝑦

0�2 (30b) 

  𝛾𝛾𝑥𝑥𝑥𝑥0 = 𝑢𝑢,𝑥𝑥
0 + 𝑣𝑣,𝑦𝑦

0 + 𝑤𝑤,𝑥𝑥
0𝑤𝑤,𝑦𝑦

0  (30c) 

The force resultants 𝐍𝐍𝑇𝑇=�𝑁𝑁𝑥𝑥𝑥𝑥 ,𝑁𝑁𝑦𝑦𝑦𝑦 ,𝑁𝑁𝑥𝑥𝑥𝑥�, moment resultants 𝐌𝐌𝑇𝑇=�𝑀𝑀𝑥𝑥𝑥𝑥 ,𝑀𝑀𝑦𝑦𝑦𝑦 ,𝑀𝑀𝑥𝑥𝑥𝑥�, additional moment resultants due 160 

to additional changes in curvatures 𝐌𝐌a𝑇𝑇=�𝑀𝑀𝑥𝑥𝑥𝑥
𝑎𝑎 ,𝑀𝑀𝑦𝑦𝑦𝑦

𝑎𝑎 ,𝑀𝑀𝑥𝑥𝑥𝑥
𝑎𝑎 � and shear resultants 𝐐𝐐𝑇𝑇=�𝑄𝑄𝑦𝑦𝑦𝑦 ,𝑄𝑄𝑥𝑥𝑥𝑥� are related respectively 161 

to the membrane strains 𝛆𝛆𝟎𝟎𝑇𝑇=�𝜀𝜀𝑥𝑥𝑥𝑥0 , 𝜀𝜀𝑦𝑦𝑦𝑦0 , 𝜀𝜀𝑥𝑥𝑥𝑥0 �, bending strains 𝛋𝛋𝑇𝑇=�−𝑤𝑤,𝑥𝑥𝑥𝑥
0 ,−𝑤𝑤,𝑦𝑦𝑦𝑦

0 ,−2𝑤𝑤,𝑥𝑥𝑥𝑥
0 �, additional bending strains 162 

𝛋𝛋𝒂𝒂𝑇𝑇= �𝜙𝜙𝑥𝑥,𝑥𝑥
0 ,𝜙𝜙𝑦𝑦,𝑦𝑦

0 ,𝜙𝜙𝑥𝑥,𝑦𝑦
0 + 𝜙𝜙𝑦𝑦,𝑥𝑥

0 � and shear strains 𝛄𝛄𝑇𝑇=�𝛾𝛾𝑦𝑦𝑦𝑦, 𝛾𝛾𝑥𝑥𝑥𝑥� through the constitutive relations, 163 

𝐍𝐍 = 𝐀𝐀𝛆𝛆𝟎𝟎 + 𝐁𝐁𝐁𝐁 + 𝐂𝐂𝛋𝛋𝒂𝒂 (31) 

𝐌𝐌 = 𝐁𝐁𝛆𝛆𝟎𝟎 + 𝐃𝐃𝐃𝐃 + 𝐄𝐄𝛋𝛋𝒂𝒂 (32) 

𝐌𝐌𝒂𝒂 = 𝐂𝐂𝛆𝛆𝟎𝟎 + 𝐄𝐄𝐄𝐄 + 𝐅𝐅𝛋𝛋𝒂𝒂 (33) 

𝐐𝐐 = 𝐇𝐇𝐇𝐇 (34) 

 
Here, bold upright letters are used to denote matrices and vectors. In the above Eqs. (31) –(34), A (𝐴𝐴𝑖𝑖𝑖𝑖, i,j = 1,2,6), B 164 

(𝐵𝐵𝑖𝑖𝑖𝑖 , i,j = 1,2,6), C (𝐶𝐶𝑖𝑖𝑖𝑖, i,j = 1,2,6), D (𝐷𝐷𝑖𝑖𝑖𝑖 , i,j = 1,2,6), E (𝐸𝐸𝑖𝑖𝑖𝑖 , i,j = 1,2,6), F (𝐹𝐹𝑖𝑖𝑖𝑖, i,j = 1,2,6) and H (𝐻𝐻𝑖𝑖𝑖𝑖 , i,j = 4,5) are 165 

stiffness matrices of the RD-CNTRC plate. These stiffness matrices of the RD-CNTRC plate are expressed in terms 166 

of in-plane material stiffness 𝐐𝐐 (𝑄𝑄𝑖𝑖𝑖𝑖 , i,j = 1,2,6) and through-thickness material stiffness 𝐐𝐐 (𝑄𝑄𝑖𝑖𝑖𝑖 , i,j = 4,5), as stated 167 

below, 168 

�𝐴𝐴𝑖𝑖𝑖𝑖 ,𝐵𝐵𝑖𝑖𝑖𝑖 ,𝐷𝐷𝑖𝑖𝑖𝑖� = � 𝑄𝑄𝑖𝑖𝑖𝑖(1, 𝑧𝑧, 𝑧𝑧2)𝑑𝑑𝑑𝑑
ℎ
2�

−ℎ 2�
 

(i,j) = (1,2,6) (35) 

�𝐶𝐶𝑖𝑖𝑖𝑖 ,𝐸𝐸𝑖𝑖𝑖𝑖 ,𝐹𝐹𝑖𝑖𝑖𝑖� = � 𝑄𝑄𝑖𝑖𝑖𝑖�1, 𝑧𝑧, 𝑓𝑓(𝑧𝑧)�𝑓𝑓(𝑧𝑧)𝑑𝑑𝑑𝑑
ℎ
2�

−ℎ 2�
 

(i,j) = (1,2,6) (36) 

�𝐻𝐻𝑖𝑖𝑖𝑖� = � 𝑄𝑄𝑖𝑖𝑖𝑖𝑓𝑓′(𝑧𝑧)𝑓𝑓′(𝑧𝑧)𝑑𝑑𝑑𝑑
ℎ
2�

−ℎ 2�
 

(i,j) = (4,5) (37) 

where the nonzero values of  𝑄𝑄𝑖𝑖𝑖𝑖  (i, j = 1, 2, 4, 5, 6) are expressed in terms of engineering constants of CNT embedded 169 

matrix as: MISSING NUMBER IN THE FOLLOWING EQUATION 170 

𝑄𝑄11 =  𝑄𝑄22 =  𝐸𝐸ℎ𝑚𝑚/(1 − 𝜈𝜈ℎ𝑚𝑚2),  𝑄𝑄12 = 𝜈𝜈ℎ𝑚𝑚𝐸𝐸ℎ𝑚𝑚/(1 − 𝜈𝜈ℎ𝑚𝑚2), 𝑄𝑄66 =  𝑄𝑄44 =  𝑄𝑄55 = 𝐸𝐸ℎ𝑚𝑚/2(1 + 𝜈𝜈ℎ𝑚𝑚).  171 

In-plane Elasticity Problem 172 

The evaluation of in-plane stresses due to localized loads is conducted using the well-known approach based on the 173 
Airy stress function. The equilibrium equation in terms of Airy’s stress function (𝜙𝜙) is defined as (Kumar et al. 2016a): 174 

𝜕𝜕4𝜙𝜙
𝜕𝜕𝜕𝜕4

+ 2 𝜕𝜕4𝜙𝜙
𝜕𝜕𝜕𝜕2𝜕𝜕𝜕𝜕2

+ 𝜕𝜕4𝜙𝜙
𝜕𝜕𝜕𝜕4

= 0                                                                                                       (38) 175 
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and Airy’s stress function (ϕ) is defined by: 176 

𝜂𝜂𝑥𝑥𝑥𝑥 = 𝜕𝜕2𝜙𝜙
𝜕𝜕𝜕𝜕2

 , 𝜂𝜂𝑦𝑦𝑦𝑦 = 𝜕𝜕2𝜙𝜙
𝜕𝜕𝜕𝜕2

 , 𝜂𝜂𝑥𝑥𝑥𝑥 = − 𝜕𝜕2𝜙𝜙
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

                                  
(39) 177 

The in-plane stress boundary conditions at all edges of the plate of the given problem are defined as:  178 

𝜂𝜂𝑥𝑥𝑥𝑥 �± 𝑎𝑎
2

,𝑦𝑦� = 𝑅𝑅(𝑦𝑦), 𝜂𝜂𝑥𝑥𝑥𝑥 �± 𝑎𝑎
2

,𝑦𝑦� = 0,  𝜂𝜂𝑥𝑥𝑥𝑥 �𝑥𝑥, ± 𝑏𝑏
2
� = 0, 𝜂𝜂𝑦𝑦𝑦𝑦 �𝑥𝑥, ± 𝑏𝑏

2
� = 0                                      (40) 179 

where, 𝑅𝑅(𝑦𝑦) represents different types of localized in-plane mechanical load distributions at the edge of the plate. 180 
The solution is sought by assuming the stress function in terms of series as: 181 

𝜙𝜙(x,𝑦𝑦) = ∑ 𝑟𝑟𝑖𝑖(𝑦𝑦) cos(𝛼𝛼𝑖𝑖𝑥𝑥)∞
𝑖𝑖=1 + ∑ 𝑠𝑠𝑗𝑗(𝑥𝑥) cos�𝛽𝛽𝑗𝑗𝑦𝑦�∞

𝑗𝑗=1 + 𝑅𝑅0𝑦𝑦2                                            (41) 182 

where,  𝛼𝛼𝑖𝑖 = 2𝑖𝑖𝑖𝑖/𝑎𝑎, 𝛽𝛽𝑗𝑗 = 2𝑗𝑗𝑗𝑗/𝑏𝑏, 𝑟𝑟𝑖𝑖(𝑦𝑦) and 𝑠𝑠𝑗𝑗(𝑥𝑥) are unknown functions in 𝑦𝑦 and 𝑥𝑥, respectively. Substituting the 183 

above expression in the in-plane compatibility requirement ofEq. (38) and equating the coefficients of cos(𝛼𝛼𝑖𝑖𝑥𝑥) and 184 

cos�𝛽𝛽𝑗𝑗𝑦𝑦�  results in two ordinary differential equations in 𝑟𝑟𝑖𝑖(𝑦𝑦) and 𝑠𝑠𝑗𝑗(𝑥𝑥) respectively, 185 

𝜕𝜕4𝑟𝑟𝑖𝑖(𝑦𝑦)
𝜕𝜕𝜕𝜕4

− 2𝛼𝛼𝑖𝑖2
𝜕𝜕2𝑟𝑟𝑖𝑖(𝑦𝑦)
𝜕𝜕𝜕𝜕2

+ 𝛼𝛼𝑖𝑖4𝑟𝑟𝑖𝑖(𝑦𝑦) = 0 

 
                                       (42) 

𝜕𝜕4𝑠𝑠𝑗𝑗(𝑥𝑥)
𝜕𝜕𝜕𝜕4

− 2𝛽𝛽𝑗𝑗2
𝜕𝜕2𝑠𝑠𝑗𝑗(𝑥𝑥)
𝜕𝜕𝜕𝜕2

+ 𝛽𝛽𝑗𝑗4𝑠𝑠𝑗𝑗(𝑥𝑥) = 0                                        (43) 

 186 

Substitution of 𝑟𝑟𝑖𝑖(𝑦𝑦) = exp (𝜆𝜆2���𝑦𝑦) and 𝑠𝑠𝑗𝑗(𝑥𝑥) = exp (𝜆𝜆1� 𝑥𝑥) in the above equations allows the roots of the equation  to 187 

be found as 𝜆𝜆2��� = ±𝛼𝛼𝑖𝑖1, ±𝛼𝛼𝑖𝑖2  and 𝜆𝜆1� = ±𝛽𝛽𝑗𝑗1, ±𝛽𝛽𝑗𝑗2, where, 𝛼𝛼𝑖𝑖1,𝛼𝛼𝑖𝑖2 = ±𝛼𝛼𝑖𝑖  and 𝛽𝛽𝑗𝑗1,𝛽𝛽𝑗𝑗2 = ±𝛽𝛽𝑗𝑗 . Since the functions 188 

𝑟𝑟𝑖𝑖(𝑦𝑦) and 𝑠𝑠𝑗𝑗(𝑥𝑥) are symmetric about 𝑦𝑦 and 𝑥𝑥 axes respectively, we can write 189 

𝑟𝑟𝑖𝑖(𝑦𝑦) = 𝑅𝑅𝑖𝑖 cos ℎ(𝛼𝛼𝑖𝑖1𝑦𝑦) + 𝑅𝑅𝑖𝑖 𝑦𝑦cos ℎ(𝛼𝛼𝑖𝑖2𝑦𝑦)  (44) 

𝑠𝑠𝑗𝑗(𝑥𝑥) =  𝑆𝑆𝑗𝑗 cos ℎ�𝛽𝛽𝑗𝑗1𝑥𝑥� + 𝑆𝑆𝑗𝑗 𝑥𝑥cos ℎ�𝛽𝛽𝑗𝑗2𝑥𝑥�  (45) 

Substituting the expressions for 𝑟𝑟𝑖𝑖(𝑦𝑦) and 𝑠𝑠𝑗𝑗(𝑥𝑥) in Eq. (41), the expression for Airy’s stress function is written as: 190 

𝜙𝜙 (𝑥𝑥, 𝑦𝑦) = �{𝑅𝑅𝑖𝑖1 cos ℎ(𝛼𝛼𝑖𝑖𝑦𝑦) + 𝑅𝑅𝑖𝑖2 𝑦𝑦cos ℎ(𝛼𝛼𝑖𝑖𝑦𝑦) } 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼𝑖𝑖𝑥𝑥)
∞

𝑖𝑖=1

+ �{𝑆𝑆𝑗𝑗1 cos ℎ�𝛽𝛽𝑗𝑗𝑥𝑥� + 𝑆𝑆𝑗𝑗2 𝑥𝑥cos ℎ�𝛽𝛽𝑗𝑗𝑥𝑥� } 𝑐𝑐𝑐𝑐𝑐𝑐�𝛽𝛽𝑗𝑗𝑦𝑦�
∞

𝑗𝑗=1

+ 𝑅𝑅0𝑦𝑦2 

              (46) 

The in-plane stress resultants are obtained by differentiating the stress function according to Eq. (39), thus: 191 
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𝜂𝜂𝑥𝑥𝑥𝑥 = � cos(𝛼𝛼𝑖𝑖𝑥𝑥) (𝑅𝑅𝑖𝑖 cos ℎ(𝛼𝛼𝑖𝑖𝑦𝑦)𝛼𝛼𝑖𝑖2 + 𝑅𝑅𝑖𝑖2𝑦𝑦 cosℎ(𝛼𝛼𝑖𝑖𝑦𝑦) 𝛼𝛼𝑖𝑖22 + 2𝑅𝑅𝑖𝑖2𝛼𝛼𝑖𝑖𝑦𝑦 cos ℎ(𝛼𝛼𝑖𝑖𝑦𝑦) )
∞

𝑖𝑖=1

 

−� cos�𝛽𝛽𝑗𝑗𝑦𝑦� �𝑆𝑆𝑗𝑗1 cosℎ�𝛽𝛽𝑗𝑗𝑥𝑥� + 𝑆𝑆𝑗𝑗2𝑥𝑥 cosℎ�𝛽𝛽𝑗𝑗𝑥𝑥� �
∞

𝑗𝑗=1

𝑦𝑦 𝛽𝛽𝑗𝑗
2 + 2𝑅𝑅0 

  (47) 

𝜂𝜂𝑦𝑦𝑦𝑦 = � cos(𝛼𝛼𝑖𝑖𝑥𝑥) (𝑅𝑅𝑖𝑖1 cosℎ(𝛼𝛼𝑖𝑖𝑦𝑦) + 𝑅𝑅𝑖𝑖2𝑦𝑦 cos ℎ(𝛼𝛼𝑖𝑖𝑦𝑦) ) 𝑥𝑥 𝛼𝛼𝑖𝑖2
∞

𝑖𝑖=1

+ � cos�𝛽𝛽𝑗𝑗𝑦𝑦� �𝑆𝑆𝑗𝑗1 cos ℎ�𝛽𝛽𝑗𝑗𝑥𝑥�𝛽𝛽𝑗𝑗1
2 + 𝑆𝑆𝑗𝑗2 𝑥𝑥 cosℎ�𝛽𝛽𝑗𝑗𝑥𝑥� 𝛽𝛽𝑗𝑗

2
∞

𝑗𝑗=1

+ 2𝑆𝑆𝑖𝑖2𝛼𝛼𝑖𝑖 cosℎ�𝛽𝛽𝑗𝑗𝑥𝑥� � 

  (48) 

𝜂𝜂𝑥𝑥𝑥𝑥 = −� sin (𝛼𝛼𝑖𝑖𝑥𝑥)𝛼𝛼𝑖𝑖(𝑅𝑅𝑖𝑖1 sinℎ(𝛼𝛼𝑖𝑖𝑦𝑦)𝛼𝛼𝑖𝑖 + 𝑅𝑅𝑖𝑖2 sin ℎ(𝛼𝛼𝑖𝑖𝑦𝑦) + 𝑅𝑅𝑖𝑖2 𝛼𝛼𝑖𝑖𝑦𝑦 cos ℎ(𝛼𝛼𝑖𝑖𝑦𝑦) )
∞

𝑖𝑖=1

+ � sin�𝛽𝛽𝑗𝑗𝑦𝑦�𝛽𝛽𝑗𝑗 �𝑆𝑆𝑖𝑖1 sinℎ�𝛽𝛽𝑗𝑗𝑥𝑥�𝛽𝛽𝑗𝑗 + 𝑆𝑆𝑖𝑖2𝑥𝑥 cosℎ�𝛽𝛽𝑗𝑗𝑥𝑥� 𝛽𝛽𝑗𝑗 + 𝑆𝑆𝑖𝑖2 cos ℎ�𝛽𝛽𝑗𝑗𝑥𝑥� �
∞

𝑗𝑗=1

 

  (49) 

 The coefficients, 𝑅𝑅𝑖𝑖1,𝑅𝑅𝑖𝑖2, 𝑆𝑆𝑗𝑗1, 𝑆𝑆𝑗𝑗2 in expressions 𝜂𝜂𝑥𝑥𝑥𝑥(𝑥𝑥, 𝑦𝑦), 𝜂𝜂𝑦𝑦𝑦𝑦(𝑥𝑥, 𝑦𝑦) and 𝜂𝜂𝑥𝑥𝑥𝑥(𝑥𝑥, 𝑦𝑦) are determined using in-plane 192 

stress boundary conditions Eq. (40), resulting in: 193 

𝑅𝑅𝑖𝑖1 =  −
𝑅𝑅𝑖𝑖2
𝛼𝛼𝑖𝑖

�
𝑏𝑏
2
𝛼𝛼𝑖𝑖 cot ℎ

𝛼𝛼𝑖𝑖𝑏𝑏
2

+ 1� (50) 

𝑆𝑆𝑗𝑗1 = −
𝑆𝑆𝑖𝑖2
𝛽𝛽𝑗𝑗
�
𝑎𝑎
2
𝛽𝛽𝑗𝑗 cot ℎ

𝛽𝛽𝑗𝑗𝑎𝑎
2

+ 1� (51) 

𝑅𝑅𝑖𝑖2 = 𝑆𝑆𝑗𝑗2𝛽𝛽𝑗𝑗cos
𝛽𝛽𝑗𝑗𝑏𝑏

2
��1 −

𝑎𝑎
2
𝛽𝛽𝑗𝑗 cot ℎ

𝛽𝛽𝑗𝑗𝑎𝑎
2
� 𝐼𝐼1 + 𝛽𝛽𝑗𝑗𝐼𝐼2� × 

�
2/𝑎𝑎

�−𝛼𝛼𝑖𝑖2
𝑏𝑏
2 cot ℎ 𝛼𝛼𝑖𝑖𝑏𝑏2 − 𝛼𝛼𝑖𝑖� cos ℎ

𝛽𝛽𝑗𝑗𝑏𝑏
2 + 𝛼𝛼𝑖𝑖2

𝑏𝑏
2 𝑠𝑠𝑠𝑠𝑠𝑠 ℎ

𝛼𝛼𝑖𝑖𝑏𝑏
2

� 

(52) 

𝑆𝑆𝑗𝑗2 = �
2
𝑏𝑏cos

𝛽𝛽𝑗𝑗𝑏𝑏
2

𝛽𝛽𝑗𝑗
2 𝑎𝑎
2𝑠𝑠𝑠𝑠𝑠𝑠 ℎ

𝛽𝛽𝑗𝑗𝑎𝑎
2 −�𝛽𝛽𝑗𝑗+

𝑎𝑎
2𝛽𝛽𝑗𝑗

2 cot ℎ
𝛽𝛽𝑗𝑗𝑎𝑎
2 � cosℎ

𝛽𝛽𝑗𝑗𝑎𝑎
2

�× 

�−𝐼𝐼0 + 𝛼𝛼𝑖𝑖𝑅𝑅𝑖𝑖2cos
𝛼𝛼𝑖𝑖𝑎𝑎

2
����1 −

𝑏𝑏
2
𝛼𝛼𝑖𝑖 cot ℎ

𝛼𝛼𝑖𝑖𝑏𝑏
2
� 𝐼𝐼3 + 𝛼𝛼𝑖𝑖𝐼𝐼4�

∞

𝑛𝑛=1

 

 (53) 

 

                                                                                                                                           194 

Here,  𝐼𝐼0 =  ∫ 𝑅𝑅(𝑦𝑦) cos�𝛽𝛽𝑗𝑗𝑦𝑦� 𝑑𝑑𝑑𝑑
𝑏𝑏/2
−𝑏𝑏/2 ,  𝐼𝐼1 =  � cos ℎ�𝛽𝛽𝑗𝑗𝑥𝑥� cos(𝛼𝛼𝑖𝑖𝑥𝑥)𝑑𝑑𝑑𝑑

𝑎𝑎/2

−𝑎𝑎/2
 

𝐼𝐼2 =  � 𝑥𝑥 sinℎ�𝛽𝛽𝑗𝑗𝑥𝑥� cos(𝛼𝛼𝑖𝑖𝑥𝑥)𝑑𝑑𝑑𝑑
𝑎𝑎/2

−𝑎𝑎/2
 𝐼𝐼3 =  � cos ℎ�𝛼𝛼𝑗𝑗𝑦𝑦� cos(𝛽𝛽𝑖𝑖𝑦𝑦) 𝑑𝑑𝑑𝑑

𝑏𝑏/2

−𝑏𝑏/2
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𝐼𝐼4 =  � 𝑦𝑦 sinℎ(𝛼𝛼𝑖𝑖𝑦𝑦) cos�𝛽𝛽𝑗𝑗𝑦𝑦� 𝑑𝑑𝑑𝑑
𝑏𝑏/2

−𝑏𝑏/2
 

 

 

Goverining Equation of Motion 195 

Hamilton’s principle Eq. (54) is used to derive the equations of motion of the RD-CNTRC plate. The variational 196 
principle reads: 197 

𝛿𝛿(1) �� (𝑈𝑈 −𝑊𝑊 − 𝑇𝑇)
𝑡𝑡1

𝑡𝑡0
� = 0     (54) 

where U is the strain energy, W is the external work done by the prescribed loads, and T is the kinetic energy in the 198 

time interval t0 to t1 whereas 𝛿𝛿(1)denotes the first variation. The equations of motion of the RD-CNTRC plate are then 199 

obtained as: 200 

𝑁𝑁
^
𝑥𝑥𝑥𝑥,𝑥𝑥 + 𝑁𝑁

^
𝑥𝑥𝑥𝑥,𝑦𝑦 = 𝜌𝜌𝑔𝑔𝑢𝑢,𝑡𝑡𝑡𝑡

0      (55) 

𝑁𝑁
^
𝑥𝑥𝑥𝑥,𝑥𝑥 + 𝑁𝑁

^
𝑦𝑦𝑦𝑦,𝑦𝑦 = 𝜌𝜌𝑔𝑔𝑣𝑣,𝑡𝑡𝑡𝑡

0      (56) 

𝑀𝑀𝑥𝑥𝑥𝑥,𝑥𝑥𝑥𝑥 + 2𝑀𝑀𝑥𝑥𝑥𝑥,𝑥𝑥𝑥𝑥 + 𝑀𝑀𝑦𝑦𝑦𝑦,𝑦𝑦𝑦𝑦 + �𝑁𝑁
^
𝑥𝑥𝑥𝑥𝑤𝑤,𝑥𝑥 + 𝑁𝑁

^
𝑥𝑥𝑥𝑥𝑤𝑤,𝑦𝑦�

,𝑥𝑥
+ �𝑁𝑁

^
𝑥𝑥𝑥𝑥𝑤𝑤,𝑥𝑥 + 𝑁𝑁

^
𝑦𝑦𝑦𝑦𝑤𝑤,𝑦𝑦�

,𝑦𝑦
= 𝜌𝜌𝑔𝑔𝑤𝑤,𝑡𝑡𝑡𝑡

0      (57) 

𝑀𝑀𝑥𝑥𝑥𝑥,𝑥𝑥
𝑎𝑎 + 𝑀𝑀𝑥𝑥𝑥𝑥,𝑦𝑦

𝑎𝑎 − 𝑄𝑄𝑥𝑥𝑥𝑥𝑎𝑎 = 𝜌𝜌ℎ𝜙𝜙𝑥𝑥0,𝑡𝑡𝑡𝑡     (58) 

𝑀𝑀𝑥𝑥𝑥𝑥,𝑥𝑥
𝑎𝑎 + 𝑀𝑀𝑦𝑦𝑦𝑦,𝑦𝑦

𝑎𝑎 − 𝑄𝑄𝑦𝑦𝑦𝑦𝑎𝑎 = 𝜌𝜌ℎ𝜙𝜙𝑦𝑦0,𝑡𝑡𝑡𝑡
     (59) 

In the above equations, 𝜌𝜌𝑔𝑔 = ∫ 𝜌𝜌ℎ𝑚𝑚𝑑𝑑𝑑𝑑
ℎ
2�

−ℎ
2�

, 𝜌𝜌ℎ = ∫ 𝜌𝜌ℎ𝑚𝑚𝑧𝑧2𝑑𝑑𝑑𝑑 
ℎ
2�

−ℎ
2�

and 𝑁𝑁
^
𝑖𝑖𝑖𝑖 = �𝑁𝑁𝑖𝑖𝑖𝑖 − 𝑛𝑛𝑖𝑖𝑖𝑖�, where i, j = (x, y) and 𝑛𝑛𝑖𝑖𝑖𝑖 are 201 

the internal stress resultants due to applied localized in-plane loading, and 𝑁𝑁𝑖𝑖𝑖𝑖 are the stress resultants. Therefore, 𝑁𝑁
^
𝑖𝑖𝑖𝑖  202 

are the net stress resultants within the RD-CNTRC plate.   203 

Galerkin Method  204 

The approximate solution of the partial differential equations of Eqs. (55)-(59) is sought to referring to the Galerkin 205 
method. Due to this solution strategy, the governing equations are reduced to nonlinear ordinary differential equations 206 
in the time variable by satisfying the boundary conditions. In the present study, four sets of boundary conditions are 207 
considered, SSSS, CSCS, SCSC, and CCCC. The letter S stands for simply supported and C for clamped support. The 208 
letters indicate the boundary conditions at the edge of the plate in the anti-clockwise fashion starting from the left 209 
edge. The boundary conditions at the plate edges are:  210 

(a) Simply supported boundary conditions at 𝑥𝑥 = −𝑎𝑎 2�  and 𝑎𝑎 2�  211 

𝑛𝑛𝑥𝑥𝑥𝑥 − 𝑁𝑁𝑥𝑥𝑥𝑥 = −𝑁𝑁
^
𝑥𝑥𝑥𝑥, 𝑀𝑀𝑥𝑥𝑥𝑥

𝑎𝑎 = 𝑀𝑀𝑥𝑥𝑥𝑥 = 𝑣𝑣0 = 𝑤𝑤0 = 𝜙𝜙𝑦𝑦0 = 0; and 212 
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(b)  Simply supported boundary conditions at 𝑦𝑦 = −𝑏𝑏 2�  and  𝑏𝑏 2�  213 

𝑛𝑛𝑦𝑦𝑦𝑦 − 𝑁𝑁𝑦𝑦𝑦𝑦 = −𝑁𝑁
^
𝑦𝑦𝑦𝑦 , 𝑀𝑀𝑦𝑦𝑦𝑦

𝑎𝑎 = 𝑀𝑀𝑦𝑦𝑦𝑦 = 𝑢𝑢0 = 𝑤𝑤0 = 𝜙𝜙𝑥𝑥0 = 0 214 

(c) Clamped boundary conditions at 𝑥𝑥 = −𝑎𝑎 2�  and 𝑎𝑎 2�  215 

𝑛𝑛𝑥𝑥𝑥𝑥 − 𝑁𝑁𝑥𝑥𝑥𝑥 = −𝑁𝑁
^
𝑥𝑥𝑥𝑥, 𝑣𝑣𝑜𝑜 = 𝑤𝑤𝑜𝑜 = 𝜙𝜙𝑥𝑥𝑜𝑜 = 𝜙𝜙𝑦𝑦𝑜𝑜 = 0; and 216 

(d) Clamped boundary conditions at 𝑦𝑦 = −𝑏𝑏 2�  and  𝑏𝑏 2�  217 

𝑛𝑛𝑦𝑦𝑦𝑦 − 𝑁𝑁𝑦𝑦𝑦𝑦 = −𝑁𝑁
^
𝑦𝑦𝑦𝑦 , 𝑢𝑢𝑜𝑜 = 𝑤𝑤𝑜𝑜 = 𝜙𝜙𝑥𝑥𝑜𝑜 = 𝜙𝜙𝑦𝑦𝑜𝑜 = 0 218 

Based on boundary conditions of the problem, the displacement fields are expressed as: 219 

𝑢𝑢0 = � �𝑈𝑈𝑚𝑚𝑚𝑚∗ (𝑡𝑡)𝛩𝛩1𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦)
𝑁𝑁∗

𝑛𝑛=1

𝑀𝑀∗

𝑚𝑚=1

    (60) 

𝑣𝑣0 = � �𝑉𝑉𝑚𝑚𝑚𝑚∗ (𝑡𝑡)𝛩𝛩2𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦)
𝑁𝑁∗

𝑛𝑛=1

𝑀𝑀∗

𝑚𝑚=1

    (61) 

𝑤𝑤0 = � �𝑊𝑊𝑚𝑚𝑚𝑚
∗ (𝑡𝑡)𝛩𝛩3𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦)

𝑁𝑁∗

𝑛𝑛=1

𝑀𝑀∗

𝑚𝑚=1

    (62) 

𝜙𝜙𝑥𝑥0 = � �𝐾𝐾𝑚𝑚𝑚𝑚∗ (𝑡𝑡)𝛩𝛩4𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦)
𝑁𝑁∗

𝑛𝑛=1

𝑀𝑀∗

𝑚𝑚=1

    (63) 

𝜙𝜙𝑦𝑦0 = � �𝐿𝐿𝑚𝑚𝑚𝑚∗ (𝑡𝑡)𝛩𝛩5𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦)
𝑁𝑁∗

𝑛𝑛=1

𝑀𝑀∗

𝑚𝑚=1

    (64) 

where 𝑈𝑈𝑚𝑚𝑚𝑚∗ (𝑡𝑡),𝑉𝑉𝑚𝑚𝑚𝑚∗ (𝑡𝑡), 𝑊𝑊𝑚𝑚𝑚𝑚
∗ (𝑡𝑡), 𝐾𝐾𝑚𝑚𝑚𝑚∗ (𝑡𝑡) and 𝐿𝐿𝑚𝑚𝑚𝑚∗ (𝑡𝑡) are undetermined coefficients independent of spatial coordinates; 220 

𝛩𝛩1𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦),𝛩𝛩2𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦),𝛩𝛩3𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦),𝛩𝛩4𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦) and 𝛩𝛩5𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦) are the assumed trial functions satisfying the 221 

boundary conditions of the problem. The subscripts m and n represent the mode number considered along x and y 222 
directions, respectively. The total number of terms along x and y directions are denoted with 𝑀𝑀∗ and 𝑁𝑁∗, respectively. 223 

It follows that the total number of terms is 5 × 𝑀𝑀∗ × 𝑁𝑁∗. The trial functions, which satisfy the above boundary 224 
conditions at all edges of the plate, can be expressed as: 225 

𝛩𝛩1𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦) = 𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎

� 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑛𝑛𝑛𝑛𝑛𝑛
𝑏𝑏
�   (65) 

𝛩𝛩2𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦) = 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎

� 𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑛𝑛𝑛𝑛𝑛𝑛
𝑏𝑏
�   (66) 

𝛩𝛩3𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦) = 𝑋𝑋𝑚𝑚𝑙𝑙𝑙𝑙(𝑦𝑦)𝑌𝑌𝑛𝑛𝑡𝑡𝑡𝑡(𝑦𝑦)   (67) 
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𝛩𝛩4𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦) = 𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎

� 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑛𝑛𝑛𝑛𝑛𝑛
𝑏𝑏
�   (68) 

𝛩𝛩5𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦) = 𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎

� 𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑛𝑛𝑛𝑛𝑛𝑛
𝑏𝑏
�   (69) 

 226 

where, 𝑋𝑋𝑚𝑚𝑙𝑙𝑙𝑙(𝑥𝑥) and 𝑌𝑌𝑛𝑛𝑡𝑡𝑡𝑡(𝑦𝑦) are the eigenfunctions chosen to satisfy the out-of-plane boundary conditions. Here, 227 
superscripts both lr and tb replaced with ss, then all the edges of the plate become simply supported (i.e., SSSS), and 228 
both lr and tb replaced with cc then all the edges of the plate become clamped (i.e., CCCC). If lr is replaced with ss 229 
and tb is replaced with cc, then the left and right edges of the plate becomes simply supported, and the top and bottom 230 
edges of the plate becomes clamped (i.e., SCSC); the same considerations apply for the CSCS case.  231 

The beam functions for the simply supported and clamped support at two opposite edges are: 232 

a. Simply supported at x = -a/2 and x = a/2 233 

𝑋𝑋𝑚𝑚𝑠𝑠𝑠𝑠(𝑥𝑥) = cos
𝑚𝑚𝑚𝑚𝑚𝑚
𝑎𝑎

                                           (𝑚𝑚 = 1,2,3. … . )  (70) 

b. Clamped support along two opposite edges, i.e., at x = -a/2 and x = a/2 234 

𝑋𝑋𝑚𝑚𝑐𝑐𝑐𝑐(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑐𝑐 𝜉𝜉𝑚𝑚
𝑥𝑥
𝑎𝑎

+
𝑠𝑠𝑠𝑠𝑠𝑠 𝜉𝜉𝑚𝑚2
𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝜉𝜉𝑚𝑚2

𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝜉𝜉𝑚𝑚
𝑥𝑥
𝑎𝑎

        (𝑚𝑚 = 2,4,6. . . . . )  (71) 

where, 𝜉𝜉𝑚𝑚 are the roots of the equation 235 

𝑡𝑡𝑡𝑡𝑡𝑡
𝜉𝜉𝑚𝑚
2

+ 𝑡𝑡𝑡𝑡𝑡𝑡ℎ
𝜉𝜉𝑚𝑚
2

= 0 
 (72) 

and 236 

𝑋𝑋𝑚𝑚𝑐𝑐𝑐𝑐(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠 𝜉𝜉𝑚𝑚
𝑥𝑥
𝑎𝑎
−

𝑠𝑠𝑠𝑠𝑠𝑠 𝜉𝜉𝑚𝑚2
𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝜉𝜉𝑚𝑚2

𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝜉𝜉𝑚𝑚
𝑥𝑥
𝑎𝑎

   (𝑚𝑚 = 3,5,7. . . . . )  (73) 

where, 𝜉𝜉𝑚𝑚  are obtained as roots of the equation, 237 

𝑡𝑡𝑡𝑡𝑡𝑡
𝜉𝜉𝑚𝑚
2
− 𝑡𝑡𝑡𝑡𝑡𝑡ℎ

𝜉𝜉𝑚𝑚
2

= 0 
   (74) 

The function of 𝑌𝑌𝑛𝑛(𝑦𝑦) are similarly chosen based on the condition at y = -b/2 and y = b/2 by replacing x by y and a by 238 
b and m by n in the above equations. Galerkin method implies that: 239 

 �𝐿𝐿𝑖𝑖(𝑢𝑢𝑜𝑜,  𝑣𝑣𝑜𝑜 ,  𝑤𝑤𝑜𝑜 ,𝜙𝜙𝑥𝑥0,𝜙𝜙𝑦𝑦0) 𝛩𝛩𝑖𝑖𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦)𝑗𝑗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 0
𝐴𝐴

for  𝑖𝑖 = 1, 2, 3, 4, 5 and  𝑗𝑗 = 1, 2, . . .𝑀𝑀∗ × 𝑁𝑁∗    (75) 
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where Li is the operator expressing the nonlinear partial differential equations. The expressions for the nonlinear partial 240 

differential equations of the RD-CNTRC plate in terms of displacement components (𝑢𝑢𝑜𝑜,  𝑣𝑣𝑜𝑜 ,  𝑤𝑤𝑜𝑜,𝜙𝜙𝑥𝑥0,  𝜙𝜙𝑦𝑦0)  are given 241 

in Appendix B. 242 

Dynamic Instability  243 

In dynamic instability analysis, the applied load is considered to be of the form Nx = Ns+Nt cos(pt), where Ns is the 244 
static load term, Nt is the dynamic load term, and p denotes the angular excitation frequency. After dropping the 245 
nonlinear part of the  stiffness matrix, the dynamic instability behavior of the plate is assessed by solving the following 246 
linear ordinary differential equation (i.e., Mathieu-Hill equation): 247 

𝐌𝐌𝛅̈𝛅 + (𝐊𝐊L − (𝑁𝑁𝑆𝑆 + 𝑁𝑁𝑡𝑡 cos𝑝𝑝𝑝𝑝)𝐊𝐊G)𝛅𝛅 = 𝟎𝟎                         (76) 

In the above Mathieu-Hill equation, 𝐌𝐌 stands for the mass matrix, 𝐊𝐊L stands for the linear stiffness matrix, and 𝐊𝐊G 248 
stands for the geometric stiffness matrix of the plate. Bolotin’s method is employed here for tracing the instability 249 
boundaries (Bolotin 1964). This method is suitable for the parametrically excited system as a boundary tracing method 250 
for constructing stability charts of an eigenvalue problem (Turhan 1998). In the above equation, static and dynamic 251 
load terms are varied as NS =λsNcr and Nt = λdNcr, such that λs+λd ≤1, where Ncr is the global buckling load of the RD-252 

CNTRC plate. Note that buckling loads and natural frequency are retrieved as special cases upon simplification of Eq. 253 
(76). The above linear ordinary differential has a periodic solution on the boundaries with period 2T, and the solutionis 254 
sought in the form:  255 

𝛿𝛿(𝑡𝑡) = � �𝑎𝑎𝑘𝑘sin
𝑘𝑘𝑘𝑘𝑘𝑘

2
+ 𝑏𝑏𝑘𝑘cos

𝑘𝑘𝑘𝑘𝑘𝑘
2
�

∞

𝑘𝑘=1,3,5

               (77) 

By substituting the above solutions of δ(t) into Eq. (76) and equating coefficients of identical sine and cosine terms, a 256 
homogeneous algebraic equation in terms of the constants ak and bk is obtained. The boundaries of the instability 257 
region are found by seeking for a non-trivial solution. The upper and lower boundaries of the first-order approximation 258 
of the principal instability region and corrected principal instability region, respectively, are defined as:  259 

|𝐊𝐊∗ ± 0.5𝛽𝛽𝑁𝑁𝑐𝑐𝑐𝑐𝐊𝐊𝐆𝐆 −0.25𝐌𝐌𝑝𝑝12| = 0               (78) 

  

�
𝐊𝐊∗ ± 0.5𝛽𝛽𝑁𝑁𝑐𝑐𝑐𝑐𝐊𝐊𝐆𝐆 −0.5𝛽𝛽𝑁𝑁𝑐𝑐𝑐𝑐𝐊𝐊𝐆𝐆

−𝛽𝛽𝑁𝑁𝑐𝑐𝑐𝑐𝐊𝐊𝐆𝐆 𝐊𝐊∗ − 2.25𝑀𝑀𝑝𝑝12
� − 𝑝𝑝22 �

0.25𝐌𝐌 0
0 0� = 0               (79) 

where 𝐊𝐊∗ =𝐊𝐊𝐋𝐋 − 𝑁𝑁𝑆𝑆𝐊𝐊𝐆𝐆.  260 

Nonlinear Vibration  261 

The mathematical expression of localized periodic loading can be expressed as, 𝑁𝑁𝑥𝑥 = 𝑁𝑁𝑠𝑠 + 𝑁𝑁𝑡𝑡cos (𝑝𝑝𝑡𝑡). Using 262 
Galerkin’s method, the PDEs of the RD-CNTRC plate under localized in-plane loading is converted into nonlinear 263 
ODEs pertaining to both quadratic and cubic nonlinearities. The nonlinear ODEs are expressed as:  264 
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           𝐌𝐌𝛅̈𝛅 + (𝐊𝐊L + 𝐊𝐊NL2 + 𝐊𝐊NL3 − (𝑁𝑁𝑆𝑆 + 𝑁𝑁𝑡𝑡 cos 𝑝𝑝𝑝𝑝)𝐊𝐊G)𝛅𝛅 = 𝟎𝟎                          (80) 

where, 𝐌𝐌, 𝐊𝐊L , 𝐊𝐊NL2, 𝐊𝐊NL3 and 𝐊𝐊G are the mass, linear elastic stiffness, quadratic nonlinear stiffness, cubic nonlinear 265 

stiffness, and geometric stiffness matrices, respectively. In this present study, the Incremental Harmonic Balance 266 
(IHB) method (Cheung et al. (1990) is adopted to trace the nonlinear forced vibration response (frequency-amplitude 267 
curve) of the RD-CNTFRC plate. In this connection, the nondimensional time scale 𝒯𝒯 = 𝜔𝜔𝜔𝜔 is introduced, allowing 268 

the nonlinear ordinary differential equations of Eq. (80) to be rewritten in the form: 269 

           𝜔𝜔2𝐌𝐌𝛅̈𝛅 + (𝐊𝐊L + 𝐊𝐊NL2 + 𝐊𝐊NL3 − (𝑁𝑁𝑆𝑆 + 𝑁𝑁𝑡𝑡 cos𝒯𝒯)𝐊𝐊G)𝛅𝛅 = 𝟎𝟎                          (81) 

where the prime (·) denotes differentiation with respect to 𝒯𝒯. Let 𝛅𝛅𝟎𝟎 and 𝜔𝜔0 denote a state of vibration of Eq. (81); 270 

the neighboring state can be written by adding the corresponding increments as:  271 

                                        𝛅𝛅 = 𝛅𝛅𝟎𝟎 + 𝚫𝚫𝛅𝛅   and  𝜔𝜔 = 𝜔𝜔0 + 𝛥𝛥𝜔𝜔                                                                                                           (82) 

Substituting Eq. (82) into Eq. (81) and eliminating the higher-order incremental terms, Eq. (83) is reduced to the 272 
linearized form as: 273 

𝜔𝜔0
2𝐌𝐌𝚫𝚫𝛅𝛅 ̈ + (𝐊𝐊L + 𝟐𝟐𝟐𝟐NL2 + 𝟑𝟑𝟑𝟑NL3 − (𝑁𝑁𝑠𝑠 + 𝑁𝑁𝑡𝑡 cos𝒯𝒯)𝐊𝐊G)𝚫𝚫𝛅𝛅 − (𝐑𝐑𝐞𝐞 − 2𝜔𝜔0𝐌𝐌𝛅𝛅𝟎𝟎 ̈ 𝛥𝛥𝜔𝜔) = 𝟎𝟎                 (83) 

whereby, 𝐑𝐑𝐞𝐞 = −(𝜔𝜔0
2𝐌𝐌𝛅𝛅𝟎𝟎 ̈ + (𝐊𝐊L + 𝐊𝐊NL2 +𝐊𝐊NL3 − (𝑁𝑁𝑠𝑠 + 𝑁𝑁𝑡𝑡 cos𝒯𝒯)𝐊𝐊G)𝛅𝛅𝟎𝟎). The term 𝐑𝐑𝐞𝐞 denotes the residual, 274 

which is different from zero unless the solution is the exact one. The approximate steady-state response of the system 275 
can be assumed as a truncated Fourier series. 276 

                     𝛅𝛅𝐣𝐣𝐣𝐣 = ∑ 𝑎𝑎𝑗𝑗𝑗𝑗cos (2𝑘𝑘−1
2

)𝒯𝒯𝑛𝑛𝑛𝑛
𝑘𝑘=1 + ∑ 𝑏𝑏𝑗𝑗𝑘𝑘sin (2𝑘𝑘−1

2
)𝑛𝑛𝑛𝑛

𝑘𝑘=1 𝒯𝒯 = 𝐓𝐓𝐜𝐜𝐀𝐀𝑱𝑱,                                                            (84) 277 

               𝚫𝚫𝛅𝛅𝐣𝐣 = ∑ 𝛥𝛥𝑎𝑎𝑗𝑗𝑗𝑗cos (2𝑘𝑘−1
2

)𝒯𝒯𝑛𝑛𝑛𝑛
𝑘𝑘=1 + ∑ 𝛥𝛥𝑏𝑏𝑗𝑗𝑗𝑗sin (2𝑘𝑘−1

2
)𝒯𝒯𝑛𝑛𝑛𝑛

𝑘𝑘=1 = Tc𝚫𝚫𝐀𝐀𝐽𝐽 ,                                               (85) 278 

where, 𝐓𝐓𝐜𝐜 = {cos 𝒯𝒯
2
, cos 3𝒯𝒯

2
, … … … . . cos (2𝑛𝑛𝑛𝑛−1)𝒯𝒯

2
, sin 𝒯𝒯

2
, sin 3𝒯𝒯

2
, … … . sin (2𝑛𝑛𝑛𝑛−1)𝒯𝒯

2
},   279 

𝐀𝐀𝐽𝐽 = {𝑎𝑎𝑗𝑗1, 𝑎𝑎𝑗𝑗2, … … . .𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗 , 𝑏𝑏𝑗𝑗1, 𝑏𝑏𝑗𝑗2, … … . . 𝑏𝑏𝑗𝑗𝑗𝑗𝑗𝑗}𝑇𝑇 ,𝚫𝚫𝐀𝐀𝐽𝐽 = {𝛥𝛥𝑎𝑎𝑗𝑗1,𝛥𝛥𝑎𝑎𝑗𝑗2, … … . .𝛥𝛥𝑎𝑎𝑗𝑗𝑗𝑗𝑗𝑗 ,𝛥𝛥𝑏𝑏𝑗𝑗1,𝛥𝛥𝑏𝑏𝑗𝑗2, … … . .𝛥𝛥𝑏𝑏𝑗𝑗𝑗𝑗𝑗𝑗}𝑇𝑇. The nc 280 

and ns are the numbers of cosine and sine terms considered during the expansion of the Fourier series, respectively. 281 
Based on the above expressions of A and 𝚫𝚫𝚫𝚫, the vectors 𝛅𝛅𝟎𝟎 and 𝚫𝚫𝛅𝛅𝟎𝟎 can be represented in matrix form as:  282 

                                                 𝛅𝛅𝟎𝟎 = 𝐒𝐒𝐒𝐒 and 𝚫𝚫𝛅𝛅 = 𝐒𝐒𝚫𝚫𝐀𝐀                                                                                                         (86) 

where S =  �
𝐓𝐓𝐜𝐜
   
0

 
𝐓𝐓𝐜𝐜  
 

  0
   
.    

 
.
 

 
𝐓𝐓𝐜𝐜

�. 283 

The final set of the nonlinear governing equations is derived upon substitution of Eq. (86) into Eq. (83) and by  284 
                                                   𝐊𝐊𝐦𝐦𝐦𝐦𝚫𝚫𝚫𝚫 = 𝐑𝐑 − 𝐑𝐑𝐦𝐦𝐦𝐦𝛥𝛥𝜔𝜔                                                       (87)  285 

where,  286 
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𝐊𝐊𝐦𝐦𝐦𝐦 =  � 𝐒𝐒𝐓𝐓(𝜔𝜔0
2𝐌𝐌𝐒𝐒′′ + (𝐊𝐊𝐋𝐋 + 𝟐𝟐𝐊𝐊𝐍𝐍𝐍𝐍𝐍𝐍 + 𝟑𝟑𝐊𝐊𝐍𝐍𝐍𝐍𝐍𝐍 − (𝑁𝑁𝑠𝑠 + 𝑁𝑁𝑡𝑡 cos𝒯𝒯)𝐊𝐊G)𝐒𝐒)

𝟐𝟐𝟐𝟐

𝟎𝟎
𝑑𝑑𝑑𝑑 287 

𝐑𝐑 =  −� 𝐒𝐒𝐓𝐓(𝜔𝜔0
2𝐌𝐌𝐒𝐒′′ + (𝐊𝐊𝐋𝐋 + 𝐊𝐊𝐍𝐍𝐍𝐍𝐍𝐍 + 𝐊𝐊𝐍𝐍𝐍𝐍𝐍𝐍 − (𝑁𝑁𝑠𝑠 + 𝑁𝑁𝑡𝑡 cos𝒯𝒯)𝐊𝐊G)𝐒𝐒)

𝟐𝟐𝟐𝟐

𝟎𝟎
𝐀𝐀𝑑𝑑𝑑𝑑 288 

𝐑𝐑𝐦𝐦𝐦𝐦 =  � 𝐒𝐒𝐓𝐓(2𝜔𝜔0𝐌𝐌𝐒𝐒′′)
𝟐𝟐𝟐𝟐

𝟎𝟎
𝐀𝐀𝑑𝑑𝒯𝒯 289 

The Newton-Raphson method is employed for solving the set of nonlinear equations given by Eq. (87), thus allowing 290 
the frequency-amplitude response of the RD-CNTFRC plate to be traced.  291 

Results and Discussion 292 

The present study aims to analyze the nonlinear vibration and dynamic instability characteristics of the RD-CNTRC 293 
plate. In this section, three cases of localized in-plane edge loadings are considered along with uniform loading for 294 
evaluating the buckling, dynamic instability, and nonlinear vibration analyses of the RD-CNTRC plate. All three cases 295 
of localized in-plane loadings are considered in such a way that total loading at the edge of the plate is equal to that 296 
of the magnitude of uniform loading at the edge of the plate. The first 50 terms in Fourier series are considered to 297 
guarantee converged pre-buckling stresses (𝜎𝜎𝑖𝑖𝑖𝑖 , (i, j = x, y)) within the RD-CNTRC plate.  298 

To present the nonlinear vibration results (i.e., frequency-amplitude curve), plots are traced in terms of dimensionless 299 
excitation frequency (Ω) against dimensionless amplitude (w/h). Similarly, the instability region is traced in terms of 300 

Ω against dynamic load factor (λd).  301 

The material properties are considered for the present study as per Tornabene et al. (2017). The Young’s modulus 302 
(Eep) is 2.1 GPa, Poisson’s ratio (μep) is 0.34, Mass density (ρep) is 1150 kg/m3 for matrix and for single-walled carbon 303 
nanotube (SWCNT) with chiral indices (n0=m0=10) having Hill’s Elastic moduli as 𝑘𝑘𝐶𝐶𝐶𝐶𝐶𝐶 =271 GPa, 𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶 =88 GPa, 304 

𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶 =17 GPa, 𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶 =1089 GPa, 𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶 = 442 GPa and density is 𝜌𝜌CNT =1400 Kg/m3. The above-mentioned material 305 

properties of the matrix and CNT are considered throughout the study unless otherwise specified. 306 

Validation Studies 307 

The accuracy of the semi-analytical approach is demonstrated by comparison against finite element simulations and 308 
reference results available in the literature. In the first part of this section, the developed analytical stress fields within 309 
the RD-CNTRC plates is compared with Abqus results for three cases of localized in-plane loadings. With this purpose 310 
finite element models with S4R (IS THIS CORRECT?) elements were developed, and convergence checked after 311 
preliminary studies. In the second part, the buckling and vibration of the CNT-reinforced plate are validated with 312 
published results in the literature. Lastly, the dynamic instability and nonlinear vibration characteristics of the 313 
composite plate are validated with available literature. 314 

Prebuckling Stress Distribution 315 
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In order to validate the developed analytical expression of stress, in Figs 3-5, the pre-buckling normal stress (𝜎𝜎𝑥𝑥𝑥𝑥) 316 

distributions within a simply supported (SSSS) square RD-CNTRC plate (SSSS, a/b=1, b/h=50, α=β=1, wr = 0.25, λd 317 

= 0) is shown against 𝑦𝑦/𝑏𝑏 at 𝑥𝑥/𝑎𝑎 = 0 and 𝑥𝑥/𝑎𝑎 = 0.25. The comparison against Abaqus results demonstrates close 318 

agreement for the predicted normal stress distribution, including local effects in proximity of the  boundaries.  319 
REMARK: or we report the thickness of the plate, or we report the results in nondimensional form. In the current 320 
version, results cannot be reproduted as thickness is not provided. 321 

 322 
Fig. 3. Stress distribution of a simply supported square RD-CNTRC plate subjected to localized in-plane loading 323 
(Case-I) 324 

 325 
Fig. 4. Stress distribution of a simply supported square RD-CNTRC plate subjected to localized in-plane loading 326 

(Case-II) 327 
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 328 
Fig. 5. Stress distribution of a simply supported square RD-CNTRC plate subjected to localized in-plane loading 329 
(Case-III) 330 

Similarly, the contour plots of the stresses (𝜎𝜎xx, 𝜎𝜎yy, and 𝜏𝜏xy) within a simply supported square RD-CNTRC plate (SSSS, 331 

a/b=1, b/h=50, α=β=1, wr = 0.25, λd = 0) due to three cases of localized in-plane loads are obtained in ABAQUS and 332 

compared with analytically developed stress contour plots from present Airy’s approach which are shown in Fig. 7-9. 333 
The plots in Figs. 6-8 indicate that the contour obtained from the current approach for all the three cases (d0 = 0, d0 = 334 

0.125b, and d0 = 0.25b) matched very well with the contours obtained in Abaqus.  335 
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(a) Present (𝜎𝜎xx)                       (b) ABAQUS (𝜎𝜎xx) 

  
                 (c) Present (𝜎𝜎yy)                       (d) ABAQUS (𝜎𝜎yy) 

  
                          (e) Present (𝜏𝜏xy)                         (f) ABAQUS (𝜏𝜏xy) 

Fig. 6. Comparison of stress contour obtained from present method and ABAQUS of a simply supported RD-
CNTRC plate (a/b = 1, b/h = 50, α = β = 1, wr = 0.25, λd = 0) for Case-I (d0=0). 
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(a) Present (𝜎𝜎xx)                        (b) ABAQUS (𝜎𝜎xx) 

  
                (c) Present (𝜎𝜎yy)                        (d) ABAQUS (𝜎𝜎yy) 

  
                          (e) Present (𝜏𝜏xy)                        (f) ABAQUS (𝜏𝜏xy) 

Fig. 7. Comparison of stress contour obtained from present method and ABAQUS of a simply supported RD-
CNTRC plate (a/b = 1, b/h = 50, α = β = 1, wr = 0.25, λd = 0) for Case-II (d0=0.125b). 
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                     (a) Present (𝜎𝜎xx)                     (b) ABAQUS (𝜎𝜎xx) 

  
                (c) Present (𝜎𝜎yy)                     (d) ABAQUS (𝜎𝜎yy) 

  
                          (e) Present (𝜏𝜏xy)                     (f) ABAQUS (𝜏𝜏xy) 

Fig. 8. Comparison of stress contour obtained from present method and ABAQUS of a simply supported RD-
CNTRC plate (a/b = 1, b/h = 50, α = β = 1, wr = 0.25, λd = 0) for Case-III (d0=0.25b). 

 336 
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Buckling and Vibration 337 

HERE AND SUCCESSIVE SECTION: I would mention the techniques used in referenced papers for 338 
generating the results that we use for validation. 339 
The nondimensional buckling load  is evaluated for square, simply supported isotropic (𝑎𝑎/𝑏𝑏 =  1, 𝑏𝑏/ℎ = 100,𝑛𝑛12 = 340 

0.3) and RD-CNTRC plates (a/b = 1, b/h =20, wr=0.25, α=β=1 and λd = 0)  under three cases of localized in-plane 341 
loadings. The results are compared against Abaqus and benchmark solutions from the literature in Table-1. The 342 

nondimensional buckling coefficients are denoted as 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖(= 𝜆𝜆𝑐𝑐𝑐𝑐𝑏𝑏
𝐷𝐷

;𝐷𝐷 = 𝐸𝐸1ℎ3

12(1−𝑛𝑛122)
) and 𝑘𝑘𝑐𝑐 �= 𝜆𝜆𝑐𝑐𝑐𝑐𝑏𝑏2

𝐸𝐸𝑒𝑒𝑒𝑒ℎ3
� for the isotropic 343 

and RD-CNTRC plates, respectively. As seen from Table 1, close agreement is achieved between the present 344 
formulation and the results from Abaqus simulation and  thise reported by Liew and Chen (2004), these latter for the 345 
localized in-plane loading case-III, only.  346 

Table 1. Buckling load coefficient of a simply supported plate under three cases of localized in-plane loadings. 347 

Localized in-plane 

loading 

Dimensionless buckling coefficient  

Isotropic plate (kiso) RD-CNTRC plate (kc) 

Present  Abaqus 
Liew and 

Chen (2004) 
Present  Abaqus 

Case-I (𝑑𝑑0=0) 57.05 57.14 - 116.11 

 

82.44 

 

  61.45 

116.39 

 

82.61 

 

   61.52 

Case-II 

(𝑑𝑑0=0.125b) 
40.48 40.55 - 

Case-III 

(𝑑𝑑0=0.25b) 
30.15 30.19 30.04 

 348 

Table 2. Comparison of dimensionless fundamental natural frequency (𝛺𝛺𝑛𝑛 = 𝜔𝜔𝑛𝑛𝑎𝑎2/ℎ�𝜌𝜌𝑒𝑒𝑒𝑒/𝐸𝐸𝑒𝑒𝑒𝑒) of a simply 349 
supported square plate (a/b =1) with different volume fractions of CNT and edge-thickness ratios. 350 

b/h 
𝑽𝑽𝒓𝒓= 0.11 𝑽𝑽𝒓𝒓 = 0.14 𝑽𝑽𝒓𝒓 = 0.17 

Present 
Sankar et al. 

(2016) 
Present 

Sankar et al. 
(2016) 

Present 
Sankar et al. 

(2016) 

5 8.744 8.768 9.045 9.061 10.909 10.939 

10 13.590 13.563 14.367 14.367 16.882 16.847 

20 17.336 17.321 18.915 18.915 21.428 21.409 

50 19.159 19.166 21.322 21.329 23.613 23.621 

A further comparison against reference results is provided in terms of nondimensional natural frequency. With this 351 
purpose, a single-layered SWCNT embedded PmPv matrix, a composite square plate with different CNT volume 352 
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fractions (Vr) is considered. The material properties of SWCNT are 𝐸𝐸1𝑟𝑟= 5.6466 TPa, 𝐸𝐸2𝑟𝑟 = 7.0800 TPa, 𝑆𝑆12𝑟𝑟  = 1.9445 353 

TPa, 𝜌𝜌𝑟𝑟 = 1400 kg/m3 and 𝜈𝜈𝑟𝑟 = 0.175 while the PmPV matrix properties are given by Eep = 2.1 GPa, ρep = 1150 kg/m3 354 

and νep = 0.34. The fundamental natural frequency (𝜔𝜔𝑛𝑛) is obtained for the above-mentioned composite plate with 355 

different CNT volume fractions and edge-thickness ratios. The nondimensional natural frequency (𝛺𝛺𝑛𝑛 =356 

𝜔𝜔𝑛𝑛𝑎𝑎2/ℎ�𝜌𝜌𝑒𝑒𝑒𝑒/𝐸𝐸𝑒𝑒𝑒𝑒) is compared in Table 2 against the results reported by Sankar et al. (2016), demonstrating close 357 

agreement with those of the semi-analytical method developed here.  358 

Dynamic Instability and Nonlinear Vibration 359 
To validate the present approach in terms of dynamic instability, a comparison is presented with the results reported 360 
by Adhikari and Singh (2020). Specifically, a simply supported laminated composite plate (a/b=1, 0/90/0) under 361 
parabolic in-plane loading is considered, and the influence of a/h ratio on the width of the dynamic instability region 362 
(DIR) is assessed. The material properties of the laminated composite plate are considered in this case as E1/E2 = 40; 363 
G12/E2 = G13/E2 = 0.6; G23/E2 = 0.5; υ12 = 0.25; ρ = 1 kg/m3. 364 

Here, the DIR is traced between dimensionless excitation frequency 𝛺𝛺 = 𝜔𝜔 × �
𝜌𝜌

𝐸𝐸2×ℎ2
  vs. dynamic load factor (λd) and 365 

is plotted in Figure 9 for different length-to-thickness ratios. One can not the close agreement between the results 366 
obtained using the present method and the one proposed by Adhikari and Singh.  367 

 368 
Fig. 9. Validation study of the DIR of a simply supported laminated plate (a/b=1, 0/90/0) with varying a/h ratio 369 

subjected to parabolic in-plane loading. 370 

To investigate the accuracy and effectiveness of the present semi-analytical model for the nonlinear vibrations, the test 371 
case proposed by Ribeiro and Petyt (1999) is considered. Specifically, the material properties are E1 = 173 GPa; E2 = 372 
7.2 GPa; G12=G13=3.76 GPa; υ12 = 0.29; ρ = 1540 kg/m3. The stacking sequence consists of 16 layers of laminates 373 
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with ply orientation (45/-45/0/-45/45/-45/0/45)s. The plate is characterized by dimensions a = 300 mm, b =150 mm 374 
and h = 2.72 mm. Fully clamped boundary conditions are considered.  375 
The study is conducted by considering an increasing number of trial functions up to convergence. The backbone ureves 376 
are presented in Figure 10, the results indicating that a 2-term solution is well matched with the results derived by 377 
Ribeiro and Petyt. However, these results were verified to be not converged, and increasing the basis up to 4-terms 378 

was found to be necessary. Here, the constants W11, W13, W31, and W33 are chosen corresponding 4-terms of 𝑤𝑤0 379 

displacement field and similarly, other constants are chosen for displacement fields 𝑢𝑢0, 𝑣𝑣0,𝜙𝜙𝑥𝑥0 , and  𝜙𝜙𝑦𝑦0. TYPO IN 380 

THE LEGEND OF FIGURE 10 (RIBERIORIBEIRO) 381 
WOULD BE INTERESTING TO FIGURE OUT WHY RIBEIRO DOES NOT REACH ACHIEVE 382 
CONVERGENCE AND TRY TO PROVIDE AN EXPLANATION 383 

 384 
Fig. 10. Validation study of the nonlinear vibration of a fully clamped laminated rectangular plate subjected to 385 

uniform in-plane loading. 386 

Parametric Studies 387 

The semi-analytical tool is particularly useful for performing parametric and sensitivity studies, which are necessary 388 
for gathering understanding into the nonlinear underlying mechanical response of CNTRC plates. This feature is 389 
exploited here to address the effect of agglomeration models, static and dynamic load factors, CNT mass fraction, 390 
shape of in-plane loads, and boundary conditions.  391 
With this purpose, a RD-CNTRC plate with an aspect ratio a/b=1 and edge-to-thickness ratio b/h=50 is considered. 392 
The material properties of the matrix and CNT are taken the same as mentioned in the initial paragraph of the results 393 
and discussion section. 394 
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The degree of agglomeration of CNTs is directly proportional to the poor dispersion of CNTs in the matrix while 396 
manufacturing the RD-CNTRC plate. As a result, the stiffness of the plate significantly reduces, and this 397 
phenomenon is consistent with findings in the existing literature. To avoid the agglomeration of CNTs for which the 398 
uniform dispersion of the CNTs in the matrix is required, which is difficult to achieve practically (I DON’T 399 
UNDERSTAND THIS SENTENCE; PLEASE REPHRASE). Hence, the study of the influence of different 400 
agglomeration models on the nonlinear vibration and dynamic instability becomes essential.  401 
The two plots of Fig.11 illustrate the nonlinear vibration (at a dynamic load factor of λd = 0.5) and instability of a 402 
simply supported RD-CNTRC plate (a/b=1, b/h=50, wr=0.25, λs =0) subjected to Case-III of localized in-plane 403 
loading for different agglomeration cases.  404 

 405 
Fig. 11. Effect of CNT agglomeration on (a) nonlinear vibration response at λd = 0.5 and (b) principle instability 406 

zone of a simply supported RD-CNTRC plate (a/b=1, b/h=50, wr=0.25, λs =0) under Case-III of localized in-plane 407 
loading. 408 

The results of Fig. 11(a) indicates that the nonlinear behavior in the case of null agglomeration is more than (PLEASE 409 
CLARIFY) partial agglomeration, followed by a complete agglomeration case. This phenomenon occurs because 410 
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the rate of change in dimensionless amplitude decreases with respect to dimensionless excitation frequency, which 411 
is due to the increase in stiffness of the plate with a decrease in agglomeration.  412 
By inspection of Fig. 11(b), one can note that the dimensionless excitation frequency corresponding to the origin of 413 
dynamic instability is maximum for null agglomeration. In contrast, this value is minimum for the case of complete 414 
agglomeration. For the case of partial agglomeration, this behaviour depends on the value of α and β: increasing α 415 
promotes a shifts towards the null agglomeration case. The width of the instability region changes accordingly. The 416 
width of the dynamic instability region (DIR) is minimum for the null agglomeration case and maximum for the 417 
complete agglomeration case. This shows that with the increase in the agglomeration of CNTs in the matrix, the 418 
stiffness of the plate decreases and vice-versa. The sequence of the width of the dynamic instability region (DIR) for 419 

null agglomeration, partial agglomeration, and complete agglomeration as 1.80ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒 , 2.38 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒 and 420 

4.95 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒  respectively at λd = 0.5.  421 

The buckling load coefficient 𝑘𝑘𝑐𝑐 = (𝜆𝜆𝑐𝑐𝑐𝑐𝑏𝑏2)/(𝐸𝐸𝑒𝑒𝑒𝑒ℎ3) and dimensionless natural frequency 𝛺𝛺𝑛𝑛 = 𝜔𝜔𝑛𝑛𝑏𝑏2/ℎ�𝜌𝜌𝑒𝑒𝑒𝑒/𝐸𝐸𝑒𝑒𝑒𝑒 422 

of a simply supported RD-CNTRC plate (a/b=1, b/h=20, wr=0.25, λd =0) are summarized in Table 3. Different mass 423 
fractions and agglomeration types are considered for the three types of loading. 424 

Table 3. Dimensionless buckling load coefficient (kc) and dimensionless fundamental natural frequency (Ωn) for 425 
different agglomeration models of the RD-CNTRC plate (a/b = 1, b/h =20 and λd = 0) subjected to three cases of 426 

localized in-plane loadings with varying mass fraction of CNT (wr). 427 

Type of 
loading 

Agglomeration 
Type 

Mass fraction 
wr =0 wr =0.1 wr =0.2 wr =0.3 

λcr (Ωn)   λcr (Ωn)   λcr (Ωn)   λcr (Ωn)   

Case-I 

CA (α= 0.5 & 
β= 1) 

5.29 6.01 13.68 9.58 14.80 9.87 15.24 9.93 

PA (α = 0.3 & 
β = 0.75) 

5.29 6.01 28.51 13.83 52.66 18.62 80.17 22.77 

NA (α =β = 1) 5.29 6.01 43.56 17.10 88.76 24.18 143.29 30.44 

Case-II 

CA (α= 0.5 & 
β= 1) 

3.76 6.01 9.71 9.58 10.51 9.87 10.82 9.93 

PA (α = 0.3 & 
β = 0.75) 

3.76 6.01 20.25 13.83 37.39 18.62 56.92 22.77 

NA (α =β = 1) 3.76 6.01 30.93 17.10 63.02 24.18 101.75 30.44 

Case-III 

CA (α= 0.5 & 
β= 1) 

2.80 6.01 7.24 9.58 7.83 9.87 8.06 9.93 

PA (α = 0.3 & 
β = 0.75) 

2.80 6.01 15.09 13.83 27.87 18.62 42.43 22.77 

NA (α =β = 1) 2.80 6.01 46.98 24.18 46.98 24.18 75.84 30.44 

It is interesting to note that the agglomeration has a noticeable impact on the stiffness of the plate. As a consequence, 428 
the values of buckling load coefficients and dimensionless natural frequency get effected accordingly. It can be seen 429 
that with the change in agglomeration for any case of loading, suppose Case-I, when the mass fraction of CNT is 430 
changed from 0 (i.e., wr =0), the buckling load coefficient as well as dimensionless natural frequency increases with 431 



28 
 

the change in agglomeration model from complete agglomeration (CA) to partial agglomeration (PA) and then to 432 
null agglomeration (NA) (This sentence should be rephrased. It looks too involved). At the same time, it is also 433 
observed that with the change in the mass fraction of CNT in the matrix from wr = 0 to wr = 0.3, there is an increase 434 
in the buckling load coefficient (𝑘𝑘𝑐𝑐) and dimensionless natural frequency (𝛺𝛺𝑛𝑛). Although the rate of increase in 435 

buckling load coefficient and dimensionless natural frequency is more when CNT mass fraction (wr) changes from 436 
0 to 0.1, compared to CNT mass fraction changes from 0.1 to 0.3. Again, it can be concluded from table that with 437 
the change in loading case from Case-I to Case-II and then to Case-III, the values of buckling load coefficient and 438 
dimensionless natural frequency decreases for any specific agglomeration model. This shows that the loading type 439 
Case-III has a maximum effect on the RD-CNTRC plate than the other loading cases. 440 

Effect of Pre-loading  441 
The pre-loading at the edge of the plate can be characterized by the static load factor of the localized in-plane periodic 442 
loading. Clearly, the preload can have a beneficial or a detrimental effect on the stiffness of the plate. Tensile pre-443 
loads stiffen the plate, while the opposite holds true for compressive ones. To investigate this effects, the  nonlinear 444 
vibration and dynamic instability is assessed for a simply supported RD-CNTRC plate (a/b =1, b/h=50, α=β=1, λs=0, 445 
wr = 0.25) subjected to Case-III of localized in-plane periodic loading. Firstly, the results are reported in Fig. 12 for 446 
the special case were pre-loading is null.  447 
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Fig. 12. Effect of dynamic load factor on (a) nonlinear vibration response at λd = 0, 0.4 and 0.8 and (b) principal 449 
instability zone of a simply supported RD-CNTRC plate (a/b =1, b/h=50, α=β=1, λs=0, wr = 0.25) subjected to 450 

Case-III of localized in-plane loading. 451 

The plot of Fig. 12(a) illustrates the nonlinear vibration of the RD-CNTRC plate for different dynamic load factors 452 
and width between two nonlinear vibration curves with respect to upper and lower boundaries of the principal 453 
instability region as per Fig. 12(b) at specific amplitude, increases with the increase in dynamic load factor (λd) (I 454 
would rephrase, this is too long). The backbone curve originates from the origin of instability corresponding to zero 455 
amplitude. Further, the amplitude increases with the increase of excitation frequency (i.e., the backbone curve shows 456 
the hardening behavior of the plate). Moreover, at any fixed value of dimensionless amplitude, the difference between 457 
upper and lower dimensionless excitation frequencies increases with the increase of dynamic load factor (λd) because 458 
of a decrease in the overall stiffness of the plate (KL + KNl2 + KNL3 - λd Ncr KG). The influence of static load factor (i.e., 459 
pre-loading) on the nonlinear vibration response at  λd = 0.5 and the principle instability zone of a simply supported 460 
RD-CNTRC plate (a/b =1, b/h=50, α=β=1, λs=0, wr = 0.25) subjected in-plane localized loading as Case-III is shown 461 
in Fig. 13(a) and Fig. 13(b) respectively.  462 

 463 
Fig. 13. Effect of static load factor on (a) nonlinear vibration response at λd = 0.5 and (b) principle instability zone 464 

of a simply supported RD-CNTRC plate (a/b =1, b/h=50, α=β=1, wr = 0.25) subjected to case-III in-plane localized 465 
in-plane loading. 466 
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Fig. 13(a) shows the plot of dimensionless amplitude (w/h) vs. dimensionless excitation frequency (Ω) for different 467 
static load factors(λs) such as -0.4, 0, and 0.4; Where it can be observed that the increase in static load factor (λs) from 468 
0 to 0.4, the stiffness of the plate decreases, which is due to compressive nature of the pre-loading effect on the plate. 469 
In contrast, stiffness increases with the decrease in static load factor (λs) from 0 to -0.4, which is due to the tensile 470 
nature of the pre-loading effect on the plate. Thus, the frequency-amplitude curves corresponding λs = 0.4 shift towards 471 
left with respect to the backbone curve corresponding to λs = 0, while frequency-amplitude curves corresponding to λs 472 
= -0.4 shift towards the right with respect to the backbone curve. From Fig. 13(b), it can be observed that the width of 473 

the dynamic instability region (DIR) is 13.67ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒  for λs = 0 then increases to 17.31ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒 for λs = 0.4 (due 474 

to the compressive nature of pre-loading effect on the plate which decreases its stiffness) while the width of DIR 475 

decreases to 11.59ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒 for λs = -0.4 (due to tensile nature of pre-loading effect on plate which increases its 476 

stiffness) at dynamic load factor of λd  = 0.5. Also, it is observed from the figure that the origin of instability 477 
corresponding to λs = 0.4 occurs at lower excitation frequency compared to the origin of instability corresponding to 478 
λs = 0 due to a decrease in the stiffness of the plate while the origin of instability corresponding to λs = -0.4 occurs at 479 
higher excitation frequency compared to the origin of instability corresponding to λs = 0 due to increase in the stiffness 480 
of the plate. 481 

Effect of CNT Mass Fraction  482 
Further paramentric studies are presented to investigate the effect of CNT mass fraction with respect to instability 483 
and the nonlinear vibration response at λd = 0.5. For this purpose, a simply supported RD-CNTRC plate (a/b=1, 484 
b/h=50, α=β=1, λs =0) subjected to Load  Case-III is considered.  485 
As observed from Fig. 14(a), the effect of nonlinearity increases with the mass fraction of CNT. In other words, the 486 
rate of increase in the amplitude of the nonlinear vibration decreases with an increase in the CNT mass fraction. One 487 
can note that the width of the dynamic instability region of the plate decreases with the increase in the mass fraction 488 
of CNTs in the matrix, as shown in Fig. 14(b). Furthermore, the origin of instability shift towards the higher value 489 
of dimensionless excitation frequency (Ω). Because of the increase in stiffness of the plate with the addition of CNTs 490 
(INCOMPLETE). The sequence of dynamic instability width for wr=0, wr=0.05, wr=0.1 and wr=0.2 at λd = 0.5 491 

respectively are 3.0 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒, 1.42 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒, 1.04 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒 and 0.72 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒 . 492 

 493 
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 494 
Fig. 14. Effect of CNT mass ratio (wr) on (a) nonlinear vibration response at λd = 0.5 and (b) principle instability 495 
zone of a simply supported RD-CNTRC plate (a/b=1, b/h=50, α=β=1, λs =0) under Case-III of localized in-plane 496 

loading. 497 

Effect of Shape of In-plane Load  498 
In many practical situations ─ damaged boundary, stiffened plate connected to the unstiffened plate, improper 499 
connection between two structural components ─ the loads at the edge of the plate are localized. These situations can 500 
be successfully handled by using the set of in-plane loads considered in this study. 501 
Fig. 15 reports the nonlinear vibration response at λd = 0.5 and the dynamic load factor of a simply supported RD-502 
CNTRC plate (a/b=1, b/h=20, α=β=1, λs = 0, wr = 0.25). The plate is subjected to three cases of localized and uniform 503 
in-plane loading with respect to the Ncr of Case-III loading. The width of the frequency-amplitude curve is maximum 504 
for Case-III loading and minimum for Case-I loading as shown in Fig. 15(a). This behavior is explained by observing 505 

that the resultant stiffness of plate (𝐾𝐾� = KL + KNL ± λd Ncr KG) for Case-III loading is less compared to the resultant 506 
stiffness associated with Case-I loading. Also, it is observed that the frequency-amplitude curve for Case-II loading 507 
and uniform loading are very close, which indicates that both the loadings have similar effects.  508 
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 509 
Fig. 15. (a) Nonlinear vibration response at λd = 0.5 and (b) principle instability zone of a simply supported RD-510 
CNTRC plate (a/b=1, b/h=20, α=β=1, λs = 0, wr = 0.25) subjected to three cases of localized in-plane loadings and 511 
uniform in-plane loading. 512 

Similarly, from Fig. 15(b), it can be observed that the origin of the dynamic instability region for all the load cases 513 
is the same because the value of the static load factor is considered zero (λs = 0). However, the width of the dynamic 514 
instability region is maximum for Case-III loading and minimum for Case-I; on the contrary, for Case-II and uniform 515 
loading, it is almost the same. The sequence of dynamic instability width for Case-I, Case-II, uniform loading, and 516 

Case-III loadings are 7.22 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒, 10.16 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒, 10.42 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒 and 13.59 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒 respectively at 517 

λd = 0.5. This behavior is explaind by observing that the resultant stiffness of plate (𝐾𝐾�) increases in sequences as 518 

𝐾𝐾�Case-III < 𝐾𝐾�Uniform < 𝐾𝐾�Case-II < 𝐾𝐾�Case-I. At λs = 0 and λd = 0, the initial stiffness of the plate (KL + KNL1 + KNL2) is 519 

independent from all the different types of loadings. 520 

Fig. 16 reports the plot of the nonlinear vibration response at λd =0.5, and the dynamic instability region of a simply 521 
supported RD-CNTRC plate (a/b=1, b/h=20, α=β=1, wr = 0.25) subjected to three cases of localized in-plane loadings 522 
and uniform in-plane loading with a static load factor of λs =0.4. From Fig. 16(a), it can be concluded that the 523 
nonlinear vibration response curve of the RD-CNTRC plate for Case-II loading and uniform loading the plate 524 
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behaves almost the same while the nonlinear vibration response for loading Case-I and Case-III behaves differently 525 
than the other two loadings (THIS IS NOT CLEAR).  526 

 527 
Fig. 16. (a) Nonlinear vibration response at  λd =0.5 and (b) principle instability zone of a simply supported RD-528 
CNTRC plate (a/b=1, b/h=20, α=β=1, λs =0.4, wr = 0.25) subjected to three cases of localized in-plane loadings and 529 
uniform in-plane loading. 530 

Also, the difference between the origin of nonlinear vibration response curves, as in Fig. 16(a) corresponding to 531 
lower and upper instability boundaries (see, Fig. 16(b)), increases with an increase in loading concentration towards 532 
the center edge of the plate. Whereas from Fig. 16(b), the origin of the dynamic instability region is not the same as 533 
it is observed in the case of Fig. 15(b). Because of the pre-loading (i.e., static load factor) applied at the edge of the 534 
plate. It is also observed from Fig. 15(b) that the Case-II loading and uniform loading has a similar effect on the 535 
instability of the RD-CNTRC plate. The sequence of dynamic instability width of RD-CNTRC plate for Case-I, 536 

Case-II, uniform, and Case-III loadings respectively are 8.17 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒, 12.15 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒, 12.45 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒 and 537 

17.31 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒 at λd =0.5. 538 
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Effect of Boundary Conditions  540 
In real-life situations, the RD-CNTRC plates can be fitted in various ways to the adjacent components of a complex 541 
structure. Hence, the effects of boundary conditions should be investigated on the nonlinear vibration and dynamic 542 
instability. For this scope. a RD-CNTRC plate (a/b=1, b/h=50, α=β=1, λs =0, wr = 0.25) is considered with and 543 
different boundary conditions are analyzed. The loading condition is of the one of Case-III. The results are 544 
summarized in Fig.17.  545 

 546 
Fig. 17. (a) Nonlinear vibration response at  λd =0.5 and (b) principle instability zone of a RD-CNTRC plate (a/b=1, 547 
b/h=50, α=β=1, λs =0, wr = 0.25) with different boundary conditions subjected to Case-III of localized in-plane 548 
loading. 549 

As seen from Fig. 17(a), SCSC and CSCS boundary conditions lead to very similar results. On the contrary, the 550 
nonlinear vibration response curves are inherently different for CCCC and SSSS conditions. As expected, fully 551 
clamped conditions promote the hardening response of the plate, as one may observe from Fig. 17(a).  552 
Referring to Fig. 17(b), it is observed that the origin of the dynamic instability region for SCSC and CSCS boundary 553 
conditions starts from the same point of excitation frequency, whereas, for other SSSS and CCCC boundary 554 
condition, it is having a lower value and higher values respectively. Also, the dynamic instability width of the RD-555 
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CNTRC plate with SSSS, CSCS, SCSC, and CCCC boundary conditions respectively are 13.67 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒, 11.15 556 

ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒, 9.36 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒 and 8.91 ℎ�𝐸𝐸𝑒𝑒𝑒𝑒/𝜌𝜌𝑒𝑒𝑒𝑒  at λd =0, which represents that the stiffness of the plate changes 557 

with the boundary condition of the plate, and thus the width of the dynamic instability region changes. Although 558 
CSCS and SCSC boundary conditions have the same origin of instability with the change in dynamic load factor, 559 
the width of the instability region changes, and it is different based on stiffness gained by the plate due to boundary 560 
conditions and which shows that SCSC condition provides more stiffness than that of CSCS condition as the width 561 
of the dynamic instability region is less for SCSC than CSCS boundary condition. 562 

Conclusions 563 

In this study, a semi-analytical solution has been developed to investigate the buckling, dynamic instability, and 564 
nonlinear vibration behavior of a randomly oriented SWCNT reinforced RD-CNTRC plate based on HSDT under the 565 
action of three cases of localized in-plane loadings. The effect of different types of CNT agglomeration models, CNT 566 
mass fraction, static and dynamic load factors, boundary conditions, and three cases of localized in-plane periodic 567 
loadings along with uniform loading on the dynamic instability and nonlinear vibration of the RD-CNTRC plates were 568 
studies in details. The remarks from the present semi-analytical investigation are summarized as: 569 

• The buckling load and fundamental frequency of the RD-CNTRC plate incerase with the rise in CNT mass 570 
fraction in the matrix. However,  the rate of growth in buckling loads and fundamental frequencies decreases 571 
with a further increase in CNT mass fraction compared to the case where there are no CNTs in the matrix, 572 
and CNT is added to the matrix by a small fraction. 573 

• Pre-loading has a significant effect on the dynamic instability and nonlinear vibration of the plate. When 574 
there is no pre-load (i.e., λs =0), all load cases have the same origin of instability. Small increase in static load 575 
factor determine a change in the origin of instability for all load cases. 576 

• The origin of instability shifts towards lower excitation frequency for Case-III loading and higher for Case-I 577 
type loading for any positive value of static load factor (i.e., λs = +ve). 578 

• Among all the case of loadings, the width of the frequency-amplitude curve and DIR of the RD-CNTRC 579 
plate is maximum for Case-III localized loading, and minimum for Case-I localized loading. While Case-II 580 
type localized loading and uniform loading shows almost the same effect on the dynamic instability and 581 
nonlinear vibration of the RD-CNTRC plate. 582 

• In the case of different boundary conditions, the width of the DIR of the RD-CNTRC plate is minimum for 583 
CCCC and maximum for SSSS. The plate with the CCCC boundary condition behaves more hardening than 584 
the plate with SSSS, SCSC, and CSCS boundary conditions.  585 

 586 

Appendix A 587 
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The generalized analytical expression for the localized in-plane loading is derived using the Fourier series expansion 588 
along the y-direction. The loading is applied partially at the edge of the plate, so that domain of the unloaded part will 589 
be considered zero. The general case of localized in-plane loading function is written as,  590 

N(y) = 

0 −𝑏𝑏
2

< 𝑦𝑦 <-𝑏𝑏
2
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where, 𝑑𝑑0 is the distance from the top and the bottom of the plate edges (Fig. 18).  591 

 
Fig. 18. Schematic diagram of RD-CNTRC plate load under localized in-plane loading representing the generalized 

case of loading. 

The above-localized in-plane loading function is represented through Fourier series as: 
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− 𝑑𝑑0� − 𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝑖𝑖 �

𝑏𝑏
2
− 𝑑𝑑0 −

𝑑𝑑
2
��  

=
4𝑁𝑁�0
𝛽𝛽𝑖𝑖𝑏𝑏

�𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝑖𝑖 �
𝑑𝑑
2

+ 𝑑𝑑0 −
𝑏𝑏
2
� +  𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝑖𝑖 �

𝑏𝑏
2
− 𝑑𝑑0��  

Since 𝛽𝛽𝑖𝑖 = 2𝜋𝜋𝜋𝜋
𝑏𝑏

  

𝑎𝑎𝑖𝑖 =
2𝑁𝑁�0
𝜋𝜋𝜋𝜋

�𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝑖𝑖 �
𝑑𝑑
2

+ 𝑑𝑑0 −
𝑏𝑏
2
� +  𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝑖𝑖 �

𝑏𝑏
2
− 𝑑𝑑0�� (A.4) 

Similarly,  

𝑏𝑏𝑖𝑖 =
2
𝑏𝑏
⎣
⎢
⎢
⎢
⎡

� 𝑁𝑁(𝑦𝑦)𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑖𝑖𝑦𝑦𝑦𝑦𝑦𝑦 + � 𝑁𝑁(𝑦𝑦)𝑠𝑠𝑠𝑠𝑠𝑠𝛽𝛽𝑖𝑖𝑦𝑦𝑦𝑦𝑦𝑦

𝑏𝑏
2−𝑑𝑑0

𝑏𝑏
2 −𝑑𝑑0−

𝑑𝑑
2

−𝑏𝑏
2 +𝑑𝑑0+

𝑑𝑑
2

−𝑏𝑏
2 +𝑑𝑑0 ⎦

⎥
⎥
⎥
⎤
 

 

=
2𝑁𝑁�0
𝛽𝛽𝑖𝑖𝑏𝑏

�−𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑖𝑖 �−
𝑏𝑏
2

+ 𝑑𝑑0 +
𝑑𝑑
2
� +  𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑖𝑖 �−

𝑏𝑏
2

+ 𝑑𝑑0� − 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑖𝑖 �
𝑏𝑏
2
− 𝑑𝑑0� + 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑖𝑖 �

𝑏𝑏
2
− 𝑑𝑑0 −

𝑑𝑑
2
��  

=
2𝑁𝑁�0
𝛽𝛽𝑖𝑖𝑏𝑏

�−𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑖𝑖 �
𝑏𝑏
2
− 𝑑𝑑0 −

𝑑𝑑
2
� +  𝑐𝑐𝑐𝑐𝑐𝑐 �

𝑏𝑏
2
− 𝑑𝑑0 −

𝑑𝑑
2
��  

𝑏𝑏𝑖𝑖 = 0 (A.5) 
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Thus, using Eqs. (A.3), (A.4) and (A.5), Eq. (A.2) can be written as:  

𝑁𝑁(𝑦𝑦) =
𝑁𝑁�0𝑑𝑑
𝑏𝑏

+ �
2𝑁𝑁�0
𝜋𝜋𝜋𝜋

�𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝑖𝑖 �
𝑑𝑑
2

+ 𝑑𝑑0 −
𝑏𝑏
2
� +  𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝑖𝑖 �

𝑏𝑏
2
− 𝑑𝑑0�� 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑖𝑖𝑦𝑦

∞

𝑖𝑖=1

 (A.6) 

Considering, i = r, the generalized equation for the localized loading at the edge of the plate (keeping the total 

localized load to be same as uniform load) can be written as Eq. (A.7) 

𝑁𝑁(𝑦𝑦) =
𝑏𝑏
𝑑𝑑
�
𝑁𝑁�0𝑑𝑑
𝑏𝑏

+ �
2𝑁𝑁�0
𝜋𝜋𝜋𝜋

�𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝑖𝑖 �
𝑑𝑑
2

+ 𝑑𝑑0 −
𝑏𝑏
2
� +  𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝑖𝑖 �

𝑏𝑏
2
− 𝑑𝑑0�� 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑖𝑖𝑦𝑦

∞

𝑟𝑟=1

� (A.7) 

Case-I: putting 𝑑𝑑0 = 0 in Eq. (A.7)  

𝑁𝑁(𝑦𝑦) =
𝑏𝑏
𝑑𝑑
�
𝑁𝑁�0𝑑𝑑
𝑏𝑏

+ �
2𝑁𝑁�0
𝜋𝜋𝜋𝜋

�𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝑖𝑖 �
𝑑𝑑
2
−
𝑏𝑏
2
� +  𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝑖𝑖 �

𝑏𝑏
2
�� 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑖𝑖𝑦𝑦

∞

𝑟𝑟=1

�  

Since 𝛽𝛽𝑖𝑖 = 2𝜋𝜋𝜋𝜋
𝑏𝑏

  

𝑁𝑁(𝑦𝑦) =
𝑏𝑏
𝑑𝑑
�
𝑁𝑁�0𝑑𝑑
𝑏𝑏

+ �
2𝑁𝑁�0
𝜋𝜋𝜋𝜋

�𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝑖𝑖 �
𝑑𝑑
2
−
𝑏𝑏
2
�� 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑖𝑖𝑦𝑦

∞

𝑟𝑟=1

� (A.8) 

Case-II:  putting 𝑑𝑑0 = 0.125𝑏𝑏 in Eq. (A.7)  

𝑁𝑁(𝑦𝑦) =
𝑏𝑏
𝑑𝑑
�
𝑁𝑁�0𝑑𝑑
𝑏𝑏

+ �
2𝑁𝑁�0
𝜋𝜋𝜋𝜋

�𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝑖𝑖 �
𝑑𝑑
2
−

3𝑏𝑏
8
� +  𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝑖𝑖 �

3𝑏𝑏
8
�� 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑖𝑖𝑦𝑦

∞

𝑟𝑟=1

� (A.9) 

Case-III:  putting 𝑑𝑑0 = 0.25𝑏𝑏 in Eq. (A.7)  

𝑁𝑁(𝑦𝑦) =
𝑏𝑏
𝑑𝑑
�
𝑁𝑁�0𝑑𝑑
𝑏𝑏

+ �
2𝑁𝑁�0
𝜋𝜋𝜋𝜋

�𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝑖𝑖 �
𝑑𝑑
2
−
𝑏𝑏
4
� +  𝑆𝑆𝑆𝑆𝑆𝑆𝛽𝛽𝑖𝑖 �

𝑏𝑏
4
�� 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽𝑖𝑖𝑦𝑦

∞

𝑟𝑟=1

� (A.10) 

Appendix B 592 

The nonlinear governing partial differential equations of the RD-CNTRC plate in terms of displacements (u0, v0, w0) 593 

and rotation (𝜙𝜙𝑥𝑥0, 𝜙𝜙𝑦𝑦0) variables are given below: 594 
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𝐴𝐴11𝑢𝑢,𝑥𝑥𝑥𝑥
0 + 2𝐴𝐴16𝑢𝑢,𝑥𝑥𝑥𝑥

0 + 𝐴𝐴66𝑢𝑢,𝑦𝑦𝑦𝑦
0 + 𝐴𝐴16𝑣𝑣,𝑥𝑥𝑥𝑥

0 + (𝐴𝐴12 + 𝐴𝐴66)𝑣𝑣,𝑥𝑥𝑥𝑥
0 + 𝐴𝐴26𝑣𝑣,𝑦𝑦𝑦𝑦

0 + 𝐴𝐴11𝑤𝑤,𝑥𝑥
0𝑤𝑤,𝑥𝑥𝑥𝑥

0 + 2𝐴𝐴16𝑤𝑤,𝑥𝑥
0𝑤𝑤,𝑥𝑥𝑥𝑥

0

+ 𝐴𝐴66𝑤𝑤,𝑥𝑥
0𝑤𝑤,𝑦𝑦𝑦𝑦

0 + 𝐴𝐴16𝑤𝑤,𝑦𝑦
0𝑤𝑤,𝑥𝑥𝑥𝑥

0 +(𝐴𝐴12 + 𝐴𝐴66)𝑤𝑤,𝑦𝑦
0𝑤𝑤,𝑥𝑥𝑥𝑥

0 + 𝐴𝐴26𝑤𝑤,𝑦𝑦
0𝑤𝑤,𝑦𝑦𝑦𝑦

0 + 𝐵𝐵11𝜙𝜙𝑥𝑥,𝑥𝑥𝑥𝑥
0

+ 2𝐵𝐵16𝜙𝜙𝑥𝑥,𝑥𝑥𝑥𝑥
0 + 𝐵𝐵66𝜙𝜙𝑥𝑥,𝑦𝑦𝑦𝑦

0 + 𝐵𝐵16𝜙𝜙𝑦𝑦,𝑥𝑥𝑥𝑥
0 +(𝐵𝐵12 + 𝐵𝐵66)𝜙𝜙𝑦𝑦,𝑥𝑥𝑥𝑥

0 + 𝐵𝐵26𝜙𝜙𝑦𝑦,𝑦𝑦𝑦𝑦
0 = 𝐶𝐶𝑔𝑔𝑢𝑢,𝑡𝑡𝑡𝑡

0  

    (B.1) 

𝐴𝐴16𝑢𝑢,𝑥𝑥𝑥𝑥
0 + (𝐴𝐴12 + 𝐴𝐴66)𝑢𝑢,𝑥𝑥𝑥𝑥

0 + 𝐴𝐴26𝑢𝑢,𝑦𝑦𝑦𝑦
0 + 𝐴𝐴66𝑣𝑣,𝑥𝑥𝑥𝑥

0 + 2𝐴𝐴26𝑣𝑣,𝑥𝑥𝑥𝑥
0 + 𝐴𝐴22𝑣𝑣,𝑦𝑦𝑦𝑦

0 + 𝐴𝐴16𝑤𝑤,𝑥𝑥
0𝑤𝑤,𝑥𝑥𝑥𝑥

0 + (𝐴𝐴12

+ 𝐴𝐴66)𝑤𝑤,𝑥𝑥
0𝑤𝑤,𝑥𝑥𝑥𝑥

0 + 𝐴𝐴26𝑤𝑤,𝑥𝑥
0𝑤𝑤,𝑦𝑦𝑦𝑦

0 + 𝐴𝐴66𝑤𝑤,𝑦𝑦
0𝑤𝑤,𝑥𝑥𝑥𝑥

0 + 2𝐴𝐴26𝑤𝑤,𝑦𝑦
0𝑤𝑤,𝑥𝑥𝑥𝑥

0 + 𝐴𝐴22𝑤𝑤,𝑦𝑦
0𝑤𝑤,𝑦𝑦𝑦𝑦

0

+ 𝐵𝐵16𝜙𝜙𝑥𝑥,𝑥𝑥𝑥𝑥
0 +(𝐵𝐵12 + 𝐵𝐵66)𝜙𝜙𝑥𝑥,𝑥𝑥𝑥𝑥

0 + 𝐵𝐵26𝜙𝜙𝑥𝑥,𝑦𝑦𝑦𝑦
0 + 𝐵𝐵66𝜙𝜙𝑦𝑦,𝑥𝑥𝑥𝑥

0 + 2𝐵𝐵26𝜙𝜙𝑦𝑦,𝑥𝑥𝑥𝑥
0 + 𝐵𝐵22𝜙𝜙𝑦𝑦,𝑦𝑦𝑦𝑦

0

= 𝐶𝐶𝑔𝑔𝑣𝑣,𝑡𝑡𝑡𝑡
0  

    (B.2) 

𝑘𝑘𝑐𝑐𝐻𝐻55𝜙𝜙𝑥𝑥,𝑥𝑥 + 𝑘𝑘𝑐𝑐𝐻𝐻45𝜙𝜙𝑥𝑥,𝑦𝑦 + 𝑘𝑘𝑐𝑐𝐻𝐻45𝜙𝜙𝑦𝑦,𝑥𝑥 + 𝑘𝑘𝑐𝑐𝐻𝐻44𝜙𝜙𝑦𝑦,𝑦𝑦 + 𝑘𝑘𝑐𝑐𝐻𝐻55𝑤𝑤,𝑥𝑥𝑥𝑥
0 + 𝑘𝑘𝑐𝑐2𝐻𝐻45𝑤𝑤,𝑥𝑥𝑥𝑥

0 + 𝑘𝑘𝑐𝑐𝐻𝐻44𝑤𝑤,𝑦𝑦𝑦𝑦
0

+ (𝑁𝑁𝑥𝑥𝑥𝑥 − (𝑛𝑛𝑇𝑇)𝑥𝑥𝑥𝑥)𝑤𝑤,𝑥𝑥𝑥𝑥
0 + 2�𝑁𝑁𝑥𝑥𝑥𝑥 − (𝑛𝑛𝑇𝑇)𝑥𝑥𝑥𝑥�𝑤𝑤,𝑥𝑥𝑥𝑥

0 + �𝑁𝑁𝑦𝑦𝑦𝑦 − (𝑛𝑛𝑇𝑇)𝑦𝑦𝑦𝑦�𝑤𝑤,𝑦𝑦𝑦𝑦
0 = 𝜌𝜌𝑔𝑔𝑤𝑤,𝑡𝑡𝑡𝑡

0  
    (B.3) 

where, 595 

𝑁𝑁𝑥𝑥𝑥𝑥 = 𝐴𝐴11�𝑢𝑢,𝑥𝑥
0 + 0.5(𝑤𝑤,𝑥𝑥

0)2� + 𝐴𝐴12�𝑣𝑣,𝑦𝑦
0 + 0.5(𝑤𝑤,𝑦𝑦

0 )2� + 𝐴𝐴16�𝑢𝑢,𝑦𝑦
0 + 𝑣𝑣,𝑥𝑥

0 + 𝑤𝑤,𝑥𝑥
0𝑤𝑤,𝑦𝑦

0 � + 𝐵𝐵11𝜙𝜙𝑥𝑥,𝑥𝑥 + 𝐵𝐵12𝜙𝜙𝑦𝑦,𝑦𝑦

+ 𝐵𝐵16(𝜙𝜙𝑥𝑥,𝑦𝑦 + 𝜙𝜙𝑦𝑦,𝑥𝑥) 
    (B.3.1) 

𝑁𝑁𝑦𝑦𝑦𝑦 = 𝐴𝐴12�𝑢𝑢,𝑥𝑥
0 + 0.5(𝑤𝑤,𝑥𝑥

0)2� + 𝐴𝐴22�𝑣𝑣,𝑦𝑦
0 + 0.5(𝑤𝑤,𝑦𝑦

0 )2� + 𝐴𝐴26�𝑢𝑢,𝑦𝑦
0 + 𝑣𝑣,𝑥𝑥

0 + 𝑤𝑤,𝑥𝑥
0𝑤𝑤,𝑦𝑦

0 � + 𝐵𝐵12𝜙𝜙𝑥𝑥,𝑥𝑥 + 𝐵𝐵22𝜙𝜙𝑦𝑦,𝑦𝑦

+ 𝐵𝐵26(𝜙𝜙𝑥𝑥,𝑦𝑦 + 𝜙𝜙𝑦𝑦,𝑥𝑥) 
    (B.3.2) 

𝑁𝑁𝑥𝑥𝑥𝑥 = 𝐴𝐴16�𝑢𝑢,𝑥𝑥
0 + 0.5(𝑤𝑤,𝑥𝑥

0)2� + 𝐴𝐴26�𝑣𝑣,𝑦𝑦
0 + 0.5(𝑤𝑤,𝑦𝑦

0 )2� + 𝐴𝐴66�𝑢𝑢,𝑦𝑦
0 + 𝑣𝑣,𝑥𝑥

0 + 𝑤𝑤,𝑥𝑥
0𝑤𝑤,𝑦𝑦

0 � + 𝐵𝐵16𝜙𝜙𝑥𝑥,𝑥𝑥 + 𝐵𝐵26𝜙𝜙𝑦𝑦,𝑦𝑦

+ 𝐵𝐵66(𝜙𝜙𝑥𝑥,𝑦𝑦 + 𝜙𝜙𝑦𝑦,𝑥𝑥) 

 

   (B.3.3) 

𝐵𝐵11𝑢𝑢,𝑥𝑥𝑥𝑥
0 +  2𝐵𝐵16𝑢𝑢,𝑥𝑥𝑥𝑥

0 +  𝐵𝐵66𝑢𝑢,𝑦𝑦𝑦𝑦
0 + 𝐵𝐵16𝑣𝑣,𝑥𝑥𝑥𝑥

0

+ �𝐵𝐵12 + 𝐵𝐵66)𝑣𝑣,𝑥𝑥𝑥𝑥
0 + 𝐵𝐵26𝑣𝑣,𝑦𝑦𝑦𝑦

0 − 𝑘𝑘𝑐𝑐𝐻𝐻55𝑤𝑤,𝑥𝑥
0 − 𝑘𝑘𝑐𝑐𝐻𝐻45𝑤𝑤,𝑦𝑦

0 + 𝐵𝐵11𝑤𝑤,𝑥𝑥
0𝑤𝑤,𝑥𝑥𝑥𝑥

0

+ 2𝐵𝐵16𝑤𝑤,𝑥𝑥
0𝑤𝑤,𝑥𝑥𝑥𝑥

0 + 𝐵𝐵66𝑤𝑤,𝑥𝑥
0𝑤𝑤,𝑦𝑦𝑦𝑦

0 + 𝐵𝐵16𝑤𝑤,𝑦𝑦
0𝑤𝑤,𝑥𝑥𝑥𝑥

0 + (𝐵𝐵12 + 𝐵𝐵66)𝑤𝑤,𝑦𝑦
0𝑤𝑤,𝑥𝑥𝑥𝑥

0 + 𝐵𝐵26𝑤𝑤,𝑦𝑦
0𝑤𝑤,𝑦𝑦𝑦𝑦

0

+ 𝐷𝐷11𝜙𝜙𝑥𝑥,𝑥𝑥𝑥𝑥
0 + 2𝐷𝐷16𝜙𝜙𝑥𝑥,𝑥𝑥𝑥𝑥

0 + 𝐷𝐷66𝜙𝜙𝑥𝑥,𝑦𝑦𝑦𝑦
0 + 𝐷𝐷16𝜙𝜙𝑦𝑦,𝑥𝑥𝑥𝑥

0 + (𝐷𝐷12 + 𝐷𝐷66)𝜙𝜙𝑦𝑦,𝑥𝑥𝑥𝑥
0 + 𝐷𝐷26𝜙𝜙𝑦𝑦,𝑦𝑦𝑦𝑦

0

− 𝑘𝑘𝑐𝑐(𝐻𝐻55𝜙𝜙𝑥𝑥 + 𝐻𝐻45𝜙𝜙𝑦𝑦� = 𝜌𝜌ℎ𝜙𝜙𝑥𝑥 ,𝑡𝑡𝑡𝑡
0  

 

(B.4) 

 

𝐵𝐵16𝑢𝑢,𝑥𝑥𝑥𝑥
0 + (𝐵𝐵12 + 𝐵𝐵66)𝑢𝑢,𝑥𝑥𝑥𝑥

0 + 𝐵𝐵26𝑢𝑢,𝑦𝑦𝑦𝑦
0 +  𝐵𝐵66𝑣𝑣,𝑥𝑥𝑥𝑥

0 + 2𝐵𝐵26𝑣𝑣,𝑥𝑥𝑥𝑥
0 + 𝐵𝐵22𝑣𝑣,𝑦𝑦𝑦𝑦

0 − 𝑘𝑘𝑐𝑐𝐻𝐻45𝑤𝑤,𝑥𝑥
0 − 𝑘𝑘𝑐𝑐𝐻𝐻44𝑤𝑤,𝑦𝑦

0

+ 𝐵𝐵16𝑤𝑤,𝑥𝑥
0𝑤𝑤,𝑥𝑥𝑥𝑥

0 + (𝐵𝐵12 + 𝐵𝐵66)𝑤𝑤,𝑥𝑥
0𝑤𝑤,𝑥𝑥𝑥𝑥

0 + 𝐵𝐵26𝑤𝑤,𝑥𝑥
0𝑤𝑤,𝑦𝑦𝑦𝑦

0 + 𝐵𝐵66𝑤𝑤,𝑦𝑦
0𝑤𝑤,𝑥𝑥𝑥𝑥

0 + 2𝐵𝐵26𝑤𝑤,𝑦𝑦
0𝑤𝑤,𝑥𝑥𝑥𝑥

0

+ 𝐵𝐵22𝑤𝑤,𝑦𝑦
0𝑤𝑤,𝑦𝑦𝑦𝑦

0 + 𝐷𝐷16𝜙𝜙𝑥𝑥,𝑥𝑥𝑥𝑥
0 + (𝐷𝐷12 + 𝐷𝐷66)𝜙𝜙𝑥𝑥,𝑥𝑥𝑥𝑥

0 + 𝐷𝐷26𝜙𝜙𝑥𝑥,𝑦𝑦𝑦𝑦
0 + 𝐷𝐷66𝜙𝜙𝑦𝑦,𝑦𝑦𝑦𝑦

0

+ 2𝐷𝐷26𝜙𝜙𝑦𝑦,𝑥𝑥𝑥𝑥
0 + 𝐷𝐷22𝜙𝜙𝑦𝑦,𝑦𝑦𝑦𝑦

0 − 𝑘𝑘𝑐𝑐(𝐻𝐻45𝜙𝜙𝑥𝑥 + 𝐻𝐻44𝜙𝜙𝑦𝑦) = 𝜌𝜌ℎ𝜙𝜙𝑦𝑦 ,𝑡𝑡𝑡𝑡
0  

(B.5) 
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Data Availability Statement 597 
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All model and corresponding data generated and used during the present investigation appear in the published article 598 
and are available upon request. 599 
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