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ABSTRACT

Today, one of the biggest challenges faced in the intersection
of the Deep Learning (DL) and synthetic aperture RADAR
(SAR) domains is the scarcity of precisely annotated datasets
suitable for properly training a supervised algorithm. This
paper shows that it is possible to successfully exploit weak-
labeled data instead of relying on manually annotated labels.
In particular, we show how it is possible to train, with state-
of-the-art performance, a deep model for the segmentation of
water surfaces in SAR images from a weak-labeled dataset.
Finally, we present examples of applications of the learned
model to the segmentation of inland water bodies and floods.

Index Terms— Deep Learning, SAR, water bodies,
floods

1. INTRODUCTION

Precisely annotated datasets are characterized by labels which
have a one-to-one correspondence with the input and theo-
retically zero errors, since they are manually generated by
domain-experts. Instead, weak-labeled datasets admit the
presence of a significant disturbance in the labels, which can
be interpreted in different ways according to the domain. The
production of a precisely annotated dataset requires extreme
effort and is almost impractical in the Earth Observation (EO)
domain, given the scale of its applications. Indeed, the vast
majority of publicly available EO datasets are weakly labeled
[1], thus generated from data sources at lower spatial, tem-
poral, semantic or thematic resolutions than the input data
source, and are produced with semi-automatic procedures.
In this paper we use a set of experiments to show how it
is possible to successfully train a Deep Convolutional Neu-
ral Network (DCNN) in a weak supervised fashion, for the
semantic segmentation of water surfaces in SAR images.
The possibility of monitoring water surfaces from space has
played a fundamental role in the understanding of extreme
events such as floods and droughts, as well as in improving
the management of water as a natural resource. As climate
change continues to trigger extreme weather events, the de-
mand for new tools to monitor water surfaces has never
been greater. Thus, the development of better performing
algorithms is a key point for transforming EO data into use-

ful insights and then actions. SAR has always been the
major player in surface water mapping tasks, thanks to its
all-weather capabilities and its physical-based interpretation,
which helps address water surfaces through its specific scat-
tering mechanism [2]. Nevertheless, few solutions have been
developed in the DL era [3, 4] due to the issues discussed
above. Furthermore, these studies focus exclusively on flood
mapping applications, neglecting small water bodies, and are
trained on a lower resolution ready-to-use versions of the
input data, which will be addressed in section 2.1. This paper
is structured as follows: in section 2 we describe the dataset,
in section 3 we introduce the learning problem, in section 4
we present the experiments and in section 5 we provide the
validation and test results.

2. DATASET

In this section we introduce the input data and label sources,
as well as the processing steps carried out to assemble the
dataset. We also provide details on the statistics of the train-
ing, validation and test sets.

2.1. Input data

Sentinel-1 (S-1) mission is the major free source of SAR data.
It has a global spatial coverage with a 6-days (Europe) to 12-
days (World) revisit time and up to 1 day (Europe) temporal
coverage, intended as the time span between two consecutive
observations in different SAR geometry. S-1 background op-
erational mode TOPSAR-IW acquires 22 x 5 meters spatial
resolution single look complex (SLC) data. In this work, we
build our dataset from full-resolution SLC, exploiting o cal-
ibrated intensity in both VV and VH polarization, rather than
resorting to multi-looked ground range detected (GRD) data
as is done for the main publicly available dataset [1] and in
other works [3, 4]. The raw SLC are processed with a stan-
dard pipeline using SNAP, which performs debursting, merg-
ing, calibration and geocoding. o intensities are geocoded to
UTM map reference at a sampling space of 10 meters using
nearest neighbour in order to not alter the radiometry of the
data.



2.2. Labels

The weak labels are extracted from 2015 Copernicus’ Water
and Wetness High Resolution Layer, which is a 10 meters spa-
tial resolution product. It is generated with a semi-automatic
procedure from calibrated NDVI obtained from different high
resolution optical satellites [5]. This product has a thematic
resolution of 5 classes, permanent and temporary water bod-
ies, permanent and temporary wetlands, and sea surfaces. Re-
fer to table 1 for the id of each of the five classes.

| class-id | class semantic \
1 permanent water bodies
2 temporary water bodies
3 permanent wetlands
4 temporary wetlands
255 sea surface

Table 1. Classes in the Water and Wetness High Resolution Layer.

Being a multitemporal aggregate, this product only de-
picts the average condition of water surfaces. From the se-
mantic point of view it maps water bodies down to a width of
30 meters, ignoring the smallest one. Thus, it can be consid-
ered a weak label due to both temporal and semantic flaws.
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Fig. 1. Sample input patches (VH) and labels.

Indeed, in figure 1 it is possible to observe that the labels
do not match the water surfaces in the input patches exactly
and that the minor river branch in patch 2 is not annotated in
its label.

2.3. Train-test-validation sets and statistics

In EO-related researches, spatial auto-correlation phenomena
often hampers validation of supervised algorithm [6]. In order
to avoid this mistake, we build our training set by extracting
128 x 128 patches from a single S-1 full-swath image over the
Low Countries (Netherlands, Belgium), while validation and
test set patches are sampled in time and space from two dif-
ferent areas of a full-swath stack spanning the Padana Plains
(Italy) area at a one year temporal horizon. These two regions
are both rich in water bodies but are characterized by signifi-
cant morphological differences. Multitemporality is exploited
in order to test robustness against seasonal variability. The

validation and test sets are generated by randomly sampling
the available patches respectively from a 70% - 30% split of
the Padana Plains area. The patches are not sampled blindly
from the two splits, but from subsets of patches with the same
positive class frequency, in order to enforce the same global
positive class frequency in both the validation and test sets, as
shown in table 2.

| set | #patches | positive class frequency |
train 13145 0.065
test 5327 0.024
validation 2280 0.021

Table 2. Datasets statistics.

3. DEEP MODEL

In this section we present the details relative to the imple-
mented architecture and the optimization exploited to learn
the segmentation task over S-1 images. In this set of experi-
ments the architecture parameters are fixed and are not subject
to an ablation study.

3.1. Architecture

U-Net is one of the most successful models for image seman-
tic segmentation and denoising tasks [7]. Originally devel-
oped for applications on medical images, it has been exploited
in various domains, including EO [8].

HxW

B Inputimage
[ Conv 3x3 + ReLU
B Max pooling 2x2
O TConv2x2

[ Conv 1x1

i’} Concatenation

w| i

| T

Fig. 2. U-Net architecture.

Its peculiarity is the encoder-decoder structure: the en-
coder compresses the information by means of a series of
pooling operations, allowing the extraction of the most sig-
nificant features from the input data at different levels of ab-
straction. Each block of the encoding path is composed by a
2 x 2 max-pooling followed by two stacked convolutional lay-
ers with 3 x 3 1-strided kernels. Except for the input layer, the
encoding block is fed with the feature maps of the previous
block and it produces a pooled tensor with doubled features

Of = Enc(O%; ") (1)



where O! of dimension H'~' x W!=! x O~ is the out-
put of the previous encoding layer and O% are the feature
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The decoder maps the latent representation back to the origi-
nal spatial resolution by means of a series of upsampling op-
erations. Each decoding block Ogl upsamples the features
fed by the previous block, applying a 2 x 2 transposed con-
volution. The feature maps decoded at [-th level are concate-
nated with those at the same encoding level in order to help
the reconstruction (skip-connections)

I}y = O @ Upsample(O5) )

where O%; and Ogl are the feature maps extracted by the
encoder (E) and by the decoder (D) at the I-th and (I — 1)-th
layers respectively, & represents the concatenation operator.
Each convolutional layer is followed by a rectified linear unit
(ReLU), a non linearity defined as

ReLU(z) = max(0, z). 3)

Finally, the features decoded back at the original input reso-
lution are fed to the classification layer, made of two stacked
convolutional layers with 1 x 1 kernels. The raw output log-
its are then used to evaluate the loss function during training
or normalized with a sigmoid during inference. The overall
U-Net architecture is depicted in figure 2, it corresponds to
the baseline implementation as [7] deprived of one encoding
block to accommodate the smaller 128 x 128 patch size, com-
pared to the 512 x 512 in [7]; C equals 64.

3.2. Optimization

The architecture’s weights are learned by backpropagation
training over 100 epochs, using an ADAM optimizer [9] with
a learning rate of le~ and standard Betas. Gradients are
computed over mini-batches of 16 patches of size 128 x 128.
The loss function to which is subject the optimization prob-
lem is a Binary Cross Entropy (BCE) computed on logits, in
order to exploit the sum-log-exp trick

n

L(z,y) = =Y _lyalog(o(zn)) + (1 — yn)log(1 — o(xa))] 4)

4. EXPERIMENTS

This set of experiments is composed of seven runs aimed at
understanding which combination of sub-classes is the best
performing (table 1) when used to predict all the sub-classes
as a single positive class. Models performance is measured in
terms of Fj score, the harmonic mean of precision and recall.
The training and validation learning curve are shown in figure
3. For each run, test F; and other performance metrics are
computed at the state that produced the highest validation F;.
Performance details are presented in the following section.
The experiments are implemented in PyTorch.
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Fig. 3. Training learning curves (top) and validation ones (bottom).

5. RESULTS AND CONCLUSIONS

We have composed a weakly labelled dataset for training a
deep architecture to segment water surfaces in SAR images.
Table 3 and 4 summarize validation and test performances
for the seven different runs. The best test and validation F}
scores (.87, .86) are achieved by aggregating the sub-classes
1,2,3 and 255. Thus, it is interesting to notice that the subclass
4 (temporary wetlands) acts as a disturbance in the learning
phase. The contribution of the class 255 (sea surface) in reg-
ularizing the learning also stands out.

] class-id \ " \ loU \ precision \ recall \ loss ‘

1 .693 | .533 941 549 | .044

1,2 .695 | .533 901 566 | .045

1,3 17 | 559 944 578 | .040
1,2,3,4 767 | .622 .844 703 | .051
1,3,255 858 | 751 937 791 | .022
1,2,3,255 | .865 | .762 927 811 | .023
1,2,3,4,255 | .857 | .751 872 .843 | .030

Table 3. Performances on the validation set at the epoch that pro-
duced the best F; score for each of the seven runs.

These results also point out that is not necessary to per-
form speckle-filtering pre-processing. Given the encoder-
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Fig. 4. Test samples segmentation performed by the best model.

| class-id | Fy [ IoU | precision | recall | loss |

1 .691 | .528 877 .570 .034

1,2 .663 | 496 .843 .630 .040

1,3 774 | 593 .892 .540 .031
1,2,34 748 | .597 782 716 .055
1,3,255 863 | .767 .896 .841 .020
1,2,3,255 | .873 | .774 .887 .858 .020
1,2,3,4,255 | .855 | .746 821 .891 | 0.032

Table 4. Performances on the test set at the epoch that produced the
best validation F score for each of the seven runs.

decoder structure of U-Net it is plausible to think that seg-
mentation and denoising task are learnt jointly. This specula-
tion will be addressed in future work.

The third row in figure 4 shows the segmentations pro-
duced by the best I} scoring architecture for some test sam-
ples. It is evident that the architecture succeeded in learning
to produce detailed segmentations of small water bodies. It
is interesting to notice that the architecture is also able to re-
construct the minor river branch not labeled in column 2 and
other finer details in the other samples. This fact is representa-
tive of the great generalization capabilities of DL architecture.
Figure 5 shows an application, always of the best F} scoring
architecture, for the delineation of a flooded area.

Fig. 5. Nonantola (Italy) flood on 6th Dec 2020

6. CODE AND DATASET

A dockerized inference-ready version of the best architecture

is available at https://github.com/francescoasaro/IGARSS21.

The dataset is available upon request to the authors.
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